These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, PGD caching requires a complicated dance of first computing
the MMU role and passing it to __kvm_mmu_new_pgd(), and then separately calling
kvm_init_mmu().
Part of this is due to kvm_mmu_free_roots using mmu->root_level and
mmu->shadow_root_level to distinguish whether the page table uses a single
root or 4 PAE roots. Because kvm_init_mmu() can overwrite mmu->root_level,
kvm_mmu_free_roots() must be called before kvm_init_mmu().
However, even after kvm_init_mmu() there is a way to detect whether the
page table may hold PAE roots, as root.hpa isn't backed by a shadow when
it points at PAE roots. Using this method results in simpler code, and
is one less obstacle in moving all calls to __kvm_mmu_new_pgd() after the
MMU has been initialized.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN and bail if KVM attempts to free a root that isn't backed by a shadow
page. KVM allocates a bare page for "special" roots, e.g. when using PAE
paging or shadowing 2/3/4-level page tables with 4/5-level, and so root_hpa
will be valid but won't be backed by a shadow page. It's all too easy to
blindly call mmu_free_root_page() on root_hpa, be nice and WARN instead of
crashing KVM and possibly the kernel.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In current async pagefault logic, when a page is ready, KVM relies on
kvm_arch_can_dequeue_async_page_present() to determine whether to deliver
a READY event to the Guest. This function test token value of struct
kvm_vcpu_pv_apf_data, which must be reset to zero by Guest kernel when a
READY event is finished by Guest. If value is zero meaning that a READY
event is done, so the KVM can deliver another.
But the kvm_arch_setup_async_pf() may produce a valid token with zero
value, which is confused with previous mention and may lead the loss of
this READY event.
This bug may cause task blocked forever in Guest:
INFO: task stress:7532 blocked for more than 1254 seconds.
Not tainted 5.10.0 #16
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:stress state:D stack: 0 pid: 7532 ppid: 1409
flags:0x00000080
Call Trace:
__schedule+0x1e7/0x650
schedule+0x46/0xb0
kvm_async_pf_task_wait_schedule+0xad/0xe0
? exit_to_user_mode_prepare+0x60/0x70
__kvm_handle_async_pf+0x4f/0xb0
? asm_exc_page_fault+0x8/0x30
exc_page_fault+0x6f/0x110
? asm_exc_page_fault+0x8/0x30
asm_exc_page_fault+0x1e/0x30
RIP: 0033:0x402d00
RSP: 002b:00007ffd31912500 EFLAGS: 00010206
RAX: 0000000000071000 RBX: ffffffffffffffff RCX: 00000000021a32b0
RDX: 000000000007d011 RSI: 000000000007d000 RDI: 00000000021262b0
RBP: 00000000021262b0 R08: 0000000000000003 R09: 0000000000000086
R10: 00000000000000eb R11: 00007fefbdf2baa0 R12: 0000000000000000
R13: 0000000000000002 R14: 000000000007d000 R15: 0000000000001000
Signed-off-by: Liang Zhang <zhangliang5@huawei.com>
Message-Id: <20220222031239.1076682-1-zhangliang5@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the allocation of shadow pages from their initialization. This
is in preparation for splitting huge pages outside of the vCPU fault
context, which requires a different allocation mechanism.
No functional changed intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Derive the page role from the parent shadow page, since the only thing
that changes is the level. This is in preparation for splitting huge
pages during VM-ioctls which do not have access to the vCPU MMU context.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vCPU's mmu_role already has the correct values for direct,
has_4_byte_gpte, access, and ad_disabled. Remove the code that was
redundantly overwriting these fields with the same values.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of passing a pointer to the root page table and the root level
separately, pass in a pointer to the root kvm_mmu_page struct. This
reduces the number of arguments by 1, cutting down on line lengths.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
restore_acc_track_spte() is pure SPTE bit manipulation, making it a good
fit for spte.h. And now that the WARN_ON_ONCE() calls have been removed,
there isn't any good reason to not inline it.
This move also prepares for a follow-up commit that will need to call
restore_acc_track_spte() from spte.c
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-11-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The warnings in restore_acc_track_spte() can be removed because the only
caller checks is_access_track_spte(), and is_access_track_spte() checks
!spte_ad_enabled(). In other words, the warning can never be triggered.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-9-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the logic to atomically replace an SPTE with an SPTE that
points to a new page table into a single helper function. This will be
used in a follow-up commit to split huge pages, which involves replacing
each huge page SPTE with an SPTE that points to a page table.
Opportunistically drop the call to trace_kvm_mmu_get_page() in
kvm_tdp_mmu_map() since it is redundant with the identical tracepoint in
tdp_mmu_alloc_sp().
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
First remove tdp_mmu_ from the name since it is redundant given that it
is a static function in tdp_mmu.c. There is a pattern of using tdp_mmu_
as a prefix in the names of static TDP MMU functions, but all of the
other handle_*() variants do not include such a prefix. So drop it
entirely.
Then change "page" to "pt" to convey that this is operating on a page
table rather than an struct page. Purposely use "pt" instead of "sp"
since this function takes the raw RCU-protected page table pointer as an
argument rather than a pointer to the struct kvm_mmu_page.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 3 functions in tdp_mmu.c that handle shadow pages:
alloc_tdp_mmu_page() -> tdp_mmu_alloc_sp()
tdp_mmu_link_page() -> tdp_mmu_link_sp()
tdp_mmu_unlink_page() -> tdp_mmu_unlink_sp()
These changed make tdp_mmu a consistent prefix before the verb in the
function name, and make it more clear that these functions deal with
kvm_mmu_page structs rather than struct pages.
One could argue that "shadow page" is the wrong term for a page table in
the TDP MMU since it never actually shadows a guest page table.
However, "shadow page" (or "sp" for short) has evolved to become the
standard term in KVM when referring to a kvm_mmu_page struct, and its
associated page table and other metadata, regardless of whether the page
table shadows a guest page table. So this commit just makes the TDP MMU
more consistent with the rest of KVM.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
tdp_mmu_set_spte_atomic() and tdp_mmu_zap_spte_atomic() return a bool
with true indicating the SPTE modification was successful and false
indicating failure. Change these functions to return an int instead
since that is the common practice.
Opportunistically fix up the kernel-doc style for the Return section
above tdp_mmu_set_spte_atomic().
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate a bunch of code that was manually re-reading the spte if the
cmpxchg failed. There is no extra cost of doing this because we already
have the spte value as a result of the cmpxchg (and in fact this
eliminates re-reading the spte), and none of the call sites depend on
iter->old_spte retaining the stale spte value.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rmap_write_protect() is a poor name because it also write-protects SPTEs
in the TDP MMU, not just SPTEs in the rmap. It is also confusing that
rmap_write_protect() is not a simple wrapper around
__rmap_write_protect(), since that is the common pattern for functions
with double-underscore names.
Rename rmap_write_protect() to kvm_vcpu_write_protect_gfn() to convey
that KVM is write-protecting a specific gfn in the context of a vCPU.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the large comment above DEFAULT_SPTE_HOST_WRITABLE with the
large comment above is_writable_pte() into one comment. This comment
explains the different reasons why an SPTE may be non-writable and KVM
keeps track of that with the {Host,MMU}-writable bits.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230723.1701061-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both "writeable" and "writable" are valid, but we should be consistent
about which we use. DEFAULT_SPTE_MMU_WRITEABLE was the odd one out in
the SPTE code, so rename it to DEFAULT_SPTE_MMU_WRITABLE.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230713.1700406-1-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move is_writable_pte() close to the other functions that check
writability information about SPTEs. While here opportunistically
replace the open-coded bit arithmetic in
check_spte_writable_invariants() with a call to is_writable_pte().
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check SPTE writable invariants when setting SPTEs rather than in
spte_can_locklessly_be_made_writable(). By the time KVM checks
spte_can_locklessly_be_made_writable(), the SPTE has long been since
corrupted.
Note that these invariants only apply to shadow-present leaf SPTEs (i.e.
not to MMIO SPTEs, non-leaf SPTEs, etc.). Add a comment explaining the
restriction and only instrument the code paths that set shadow-present
leaf SPTEs.
To account for access tracking, also check the SPTE writable invariants
when marking an SPTE as an access track SPTE. This also lets us remove
a redundant WARN from mark_spte_for_access_track().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the WARNs in spte_can_locklessly_be_made_writable() to a separate
helper function. This is in preparation for moving these checks to the
places where SPTEs are set.
Opportunistically add warning error messages that include the SPTE to
make future debugging of these warnings easier.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run(). This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.
In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name. Justification for using the VMX nomenclature:
- set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
event that has already been "set" in e.g. the vIRR. SVM's relevant
VMCB field is even named event_inj, and KVM's stat is irq_injections.
- prepare_guest_switch => prepare_switch_to_guest because the former is
ambiguous, e.g. it could mean switching between multiple guests,
switching from the guest to host, etc...
- update_pi_irte => pi_update_irte to allow for matching match the rest
of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().
- start_assignment => pi_start_assignment to again follow VMX's posted
interrupt naming scheme, and to provide context for what bit of code
might care about an otherwise undescribed "assignment".
The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong. x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs. Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.
VMX and SVM function names are intentionally left as is to minimize the
diff. Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap both valid and invalid roots when zapping/unmapping a gfn range, as
KVM must ensure it holds no references to the freed page after returning
from the unmap operation. Most notably, the TDP MMU doesn't zap invalid
roots in mmu_notifier callbacks. This leads to use-after-free and other
issues if the mmu_notifier runs to completion while an invalid root
zapper yields as KVM fails to honor the requirement that there must be
_no_ references to the page after the mmu_notifier returns.
The bug is most easily reproduced by hacking KVM to cause a collision
between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug
exists between kvm_mmu_notifier_invalidate_range_start() and memslot
updates as well. Invalidating a root ensures pages aren't accessible by
the guest, and KVM won't read or write page data itself, but KVM will
trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing
a zap of an invalid root _after_ the mmu_notifier returns is fatal.
WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm]
RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0xa8/0xe0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
zap_gfn_range+0x1f3/0x310 [kvm]
kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm]
kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm]
set_nx_huge_pages+0xb4/0x190 [kvm]
param_attr_store+0x70/0x100
module_attr_store+0x19/0x30
kernfs_fop_write_iter+0x119/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1cc/0x270
ksys_write+0x5f/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check for an invalid root out of kvm_tdp_mmu_get_root() and into
the one place it actually matters, tdp_mmu_next_root(), as the other user
already has an implicit validity check. A future bug fix will need to
get references to invalid roots to honor mmu_notifier requests; there's
no point in forcing what will be a common path to open code getting a
reference to a root.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the common TDP MMU zap helper when handling an MMU notifier unmap
event, the two flows are semantically identical. Consolidate the code in
preparation for a future bug fix, as both kvm_tdp_mmu_unmap_gfn_range()
and __kvm_tdp_mmu_zap_gfn_range() are guilty of not zapping SPTEs in
invalid roots.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull more kvm updates from Paolo Bonzini:
"Generic:
- selftest compilation fix for non-x86
- KVM: avoid warning on s390 in mark_page_dirty
x86:
- fix page write-protection bug and improve comments
- use binary search to lookup the PMU event filter, add test
- enable_pmu module parameter support for Intel CPUs
- switch blocked_vcpu_on_cpu_lock to raw spinlock
- cleanups of blocked vCPU logic
- partially allow KVM_SET_CPUID{,2} after KVM_RUN (5.16 regression)
- various small fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (46 commits)
docs: kvm: fix WARNINGs from api.rst
selftests: kvm/x86: Fix the warning in lib/x86_64/processor.c
selftests: kvm/x86: Fix the warning in pmu_event_filter_test.c
kvm: selftests: Do not indent with spaces
kvm: selftests: sync uapi/linux/kvm.h with Linux header
selftests: kvm: add amx_test to .gitignore
KVM: SVM: Nullify vcpu_(un)blocking() hooks if AVIC is disabled
KVM: SVM: Move svm_hardware_setup() and its helpers below svm_x86_ops
KVM: SVM: Drop AVIC's intermediate avic_set_running() helper
KVM: VMX: Don't do full kick when handling posted interrupt wakeup
KVM: VMX: Fold fallback path into triggering posted IRQ helper
KVM: VMX: Pass desired vector instead of bool for triggering posted IRQ
KVM: VMX: Don't do full kick when triggering posted interrupt "fails"
KVM: SVM: Skip AVIC and IRTE updates when loading blocking vCPU
KVM: SVM: Use kvm_vcpu_is_blocking() in AVIC load to handle preemption
KVM: SVM: Remove unnecessary APICv/AVIC update in vCPU unblocking path
KVM: SVM: Don't bother checking for "running" AVIC when kicking for IPIs
KVM: SVM: Signal AVIC doorbell iff vCPU is in guest mode
KVM: x86: Remove defunct pre_block/post_block kvm_x86_ops hooks
KVM: x86: Unexport LAPIC's switch_to_{hv,sw}_timer() helpers
...
Rewrite the comment in kvm_mmu_slot_remove_write_access() that explains
why it is safe to flush TLBs outside of the MMU lock after
write-protecting SPTEs for dirty logging. The current comment is a long
run-on sentence that was difficult to understand. In addition it was
specific to the shadow MMU (mentioning mmu_spte_update()) when the TDP
MMU has to handle this as well.
The new comment explains:
- Why the TLB flush is necessary at all.
- Why it is desirable to do the TLB flush outside of the MMU lock.
- Why it is safe to do the TLB flush outside of the MMU lock.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-5-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SPTEs are tagged with software-only bits to indicate if it is
"MMU-writable" and "Host-writable". These bits are used to determine why
KVM has marked an SPTE as read-only.
Document these bits and their invariants, and enforce the invariants
with new WARNs in spte_can_locklessly_be_made_writable() to ensure they
are not accidentally violated in the future.
Opportunistically move DEFAULT_SPTE_{MMU,HOST}_WRITABLE next to
EPT_SPTE_{MMU,HOST}_WRITABLE since the new documentation applies to
both.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When handling the changed_pte notifier and the new PTE is read-only,
clear both the Host-writable and MMU-writable bits in the SPTE. This
preserves the invariant that MMU-writable is set if-and-only-if
Host-writable is set.
No functional change intended. Nothing currently relies on the
aforementioned invariant and technically the changed_pte notifier is
dead code.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-3-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the TDP MMU is write-protection GFNs for page table protection (as
opposed to for dirty logging, or due to the HVA not being writable), it
checks if the SPTE is already write-protected and if so skips modifying
the SPTE and the TLB flush.
This behavior is incorrect because it fails to check if the SPTE
is write-protected for page table protection, i.e. fails to check
that MMU-writable is '0'. If the SPTE was write-protected for dirty
logging but not page table protection, the SPTE could locklessly be made
writable, and vCPUs could still be running with writable mappings cached
in their TLB.
Fix this by only skipping setting the SPTE if the SPTE is already
write-protected *and* MMU-writable is already clear. Technically,
checking only MMU-writable would suffice; a SPTE cannot be writable
without MMU-writable being set. But check both to be paranoid and
because it arguably yields more readable code.
Fixes: 46044f72c3 ("kvm: x86/mmu: Support write protection for nesting in tdp MMU")
Cc: stable@vger.kernel.org
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-2-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
Pull misc x86 updates from Borislav Petkov:
"The pile which we cannot find the proper topic for so we stick it in
x86/misc:
- Add support for decoding instructions which do MMIO accesses in
order to use it in SEV and TDX guests
- An include fix and reorg to allow for removing set_fs in UML later"
* tag 'x86_misc_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mtrr: Remove the mtrr_bp_init() stub
x86/sev-es: Use insn_decode_mmio() for MMIO implementation
x86/insn-eval: Introduce insn_decode_mmio()
x86/insn-eval: Introduce insn_get_modrm_reg_ptr()
x86/insn-eval: Handle insn_get_opcode() failure
Add an IS_ENABLED() check in setup_arch() and call pat_disable()
directly if MTRRs are not supported. This allows to remove the
<asm/memtype.h> include in <asm/mtrr.h>, which pull in lowlevel x86
headers that should not be included for UML builds and will cause build
warnings with a following patch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211215165612.554426-2-hch@lst.de
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Play nice with a NULL shadow page when checking for an obsolete root in
the page fault handler by flagging the page fault as stale if there's no
shadow page associated with the root and KVM_REQ_MMU_RELOAD is pending.
Invalidating memslots, which is the only case where _all_ roots need to
be reloaded, requests all vCPUs to reload their MMUs while holding
mmu_lock for lock.
The "special" roots, e.g. pae_root when KVM uses PAE paging, are not
backed by a shadow page. Running with TDP disabled or with nested NPT
explodes spectaculary due to dereferencing a NULL shadow page pointer.
Skip the KVM_REQ_MMU_RELOAD check if there is a valid shadow page for the
root. Zapping shadow pages in response to guest activity, e.g. when the
guest frees a PGD, can trigger KVM_REQ_MMU_RELOAD even if the current
vCPU isn't using the affected root. I.e. KVM_REQ_MMU_RELOAD can be seen
with a completely valid root shadow page. This is a bit of a moot point
as KVM currently unloads all roots on KVM_REQ_MMU_RELOAD, but that will
be cleaned up in the future.
Fixes: a955cad84c ("KVM: x86/mmu: Retry page fault if root is invalidated by memslot update")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211209060552.2956723-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This bit is very close to mean "role.quadrant is not in use", except that
it is false also when the MMU is mapping guest physical addresses
directly. In that case, role.quadrant is indeed not in use, but there
are no guest PTEs at all.
Changing the name and direction of the bit removes the special case,
since a guest with paging disabled, or not considering guest paging
structures as is the case for two-dimensional paging, does not have
to deal with 4-byte guest PTEs.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-10-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>