Recent Fam19h EPYC server line of processors from AMD support system
management functionality via HSMP (Host System Management Port) interface.
The Host System Management Port (HSMP) is an interface to provide
OS-level software with access to system management functions via a
set of mailbox registers.
More details on the interface can be found in chapter
"7 Host System Management Port (HSMP)" of the following PPR
https://www.amd.com/system/files/TechDocs/55898_B1_pub_0.50.zip
This patch adds new amd_hsmp module under the drivers/platforms/x86/
which creates miscdevice with an IOCTL interface to the user space.
/dev/hsmp is for running the hsmp mailbox commands.
Signed-off-by: Suma Hegde <suma.hegde@amd.com>
Signed-off-by: Naveen Krishna Chatradhi <nchatrad@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Nathan Fontenot <nathan.fontenot@amd.com>
Link: https://lore.kernel.org/r/20220222050501.18789-1-nchatrad@amd.com
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Zap only obsolete roots when responding to zapping a single root shadow
page. Because KVM keeps root_count elevated when stuffing a previous
root into its PGD cache, shadowing a 64-bit guest means that zapping any
root causes all vCPUs to reload all roots, even if their current root is
not affected by the zap.
For many kernels, zapping a single root is a frequent operation, e.g. in
Linux it happens whenever an mm is dropped, e.g. process exits, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220225182248.3812651-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cast kvm_x86_ops.func to 'void *' when updating KVM static calls that are
conditionally patched to __static_call_return0(). clang complains about
using mismatching pointers in the ternary operator, which breaks the
build when compiling with CONFIG_KVM_WERROR=y.
>> arch/x86/include/asm/kvm-x86-ops.h:82:1: warning: pointer type mismatch
('bool (*)(struct kvm_vcpu *)' and 'void *') [-Wpointer-type-mismatch]
Fixes: 5be2226f41 ("KVM: x86: allow defining return-0 static calls")
Reported-by: Like Xu <like.xu.linux@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Message-Id: <20220223162355.3174907-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Christoph Hellwig and a few others spent a huge effort on removing
set_fs() from most of the important architectures, but about half the
other architectures were never completed even though most of them don't
actually use set_fs() at all.
I did a patch for microblaze at some point, which turned out to be fairly
generic, and now ported it to most other architectures, using new generic
implementations of access_ok() and __{get,put}_kernel_nocheck().
Three architectures (sparc64, ia64, and sh) needed some extra work,
which I also completed.
* 'set_fs-4' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
uaccess: remove CONFIG_SET_FS
ia64: remove CONFIG_SET_FS support
sh: remove CONFIG_SET_FS support
sparc64: remove CONFIG_SET_FS support
lib/test_lockup: fix kernel pointer check for separate address spaces
uaccess: generalize access_ok()
uaccess: fix type mismatch warnings from access_ok()
arm64: simplify access_ok()
m68k: fix access_ok for coldfire
MIPS: use simpler access_ok()
MIPS: Handle address errors for accesses above CPU max virtual user address
uaccess: add generic __{get,put}_kernel_nofault
nios2: drop access_ok() check from __put_user()
x86: use more conventional access_ok() definition
x86: remove __range_not_ok()
sparc64: add __{get,put}_kernel_nofault()
nds32: fix access_ok() checks in get/put_user
uaccess: fix nios2 and microblaze get_user_8()
uaccess: fix integer overflow on access_ok()
There are many different ways that access_ok() is defined across
architectures, but in the end, they all just compare against the
user_addr_max() value or they accept anything.
Provide one definition that works for most architectures, checking
against TASK_SIZE_MAX for user processes or skipping the check inside
of uaccess_kernel() sections.
For architectures without CONFIG_SET_FS(), this should be the fastest
check, as it comes down to a single comparison of a pointer against a
compile-time constant, while the architecture specific versions tend to
do something more complex for historic reasons or get something wrong.
Type checking for __user annotations is handled inconsistently across
architectures, but this is easily simplified as well by using an inline
function that takes a 'const void __user *' argument. A handful of
callers need an extra __user annotation for this.
Some architectures had trick to use 33-bit or 65-bit arithmetic on the
addresses to calculate the overflow, however this simpler version uses
fewer registers, which means it can produce better object code in the
end despite needing a second (statically predicted) branch.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mark Rutland <mark.rutland@arm.com> [arm64, asm-generic]
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Nine architectures are still missing __{get,put}_kernel_nofault:
alpha, ia64, microblaze, nds32, nios2, openrisc, sh, sparc32, xtensa.
Add a generic version that lets everything use the normal
copy_{from,to}_kernel_nofault() code based on these, removing the last
use of get_fs()/set_fs() from architecture-independent code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The way that access_ok() is defined on x86 is slightly different from
most other architectures, and a bit more complex.
The generic version tends to result in the best output on all
architectures, as it results in single comparison against a constant
limit for calls with a known size.
There are a few callers of __range_not_ok(), all of which use TASK_SIZE
as the limit rather than TASK_SIZE_MAX, but I could not see any reason
for picking this. Changing these to call __access_ok() instead uses the
default limit, but keeps the behavior otherwise.
x86 is the only architecture with a WARN_ON_IN_IRQ() checking
access_ok(), but it's probably best to leave that in place.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The __range_not_ok() helper is an x86 (and sparc64) specific interface
that does roughly the same thing as __access_ok(), but with different
calling conventions.
Change this to use the normal interface in order for consistency as we
clean up all access_ok() implementations.
This changes the limit from TASK_SIZE to TASK_SIZE_MAX, which Al points
out is the right thing do do here anyway.
The callers have to use __access_ok() instead of the normal access_ok()
though, because on x86 that contains a WARN_ON_IN_IRQ() check that cannot
be used inside of NMI context while tracing.
The check in copy_code() is not needed any more, because this one is
already done by copy_from_user_nmi().
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/YgsUKcXGR7r4nINj@zeniv-ca.linux.org.uk/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull kvm fixes from Paolo Bonzini:
"x86 host:
- Expose KVM_CAP_ENABLE_CAP since it is supported
- Disable KVM_HC_CLOCK_PAIRING in TSC catchup mode
- Ensure async page fault token is nonzero
- Fix lockdep false negative
- Fix FPU migration regression from the AMX changes
x86 guest:
- Don't use PV TLB/IPI/yield on uniprocessor guests
PPC:
- reserve capability id (topic branch for ppc/kvm)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: nSVM: disallow userspace setting of MSR_AMD64_TSC_RATIO to non default value when tsc scaling disabled
KVM: x86/mmu: make apf token non-zero to fix bug
KVM: PPC: reserve capability 210 for KVM_CAP_PPC_AIL_MODE_3
x86/kvm: Don't use pv tlb/ipi/sched_yield if on 1 vCPU
x86/kvm: Fix compilation warning in non-x86_64 builds
x86/kvm/fpu: Remove kvm_vcpu_arch.guest_supported_xcr0
x86/kvm/fpu: Limit guest user_xfeatures to supported bits of XCR0
kvm: x86: Disable KVM_HC_CLOCK_PAIRING if tsc is in always catchup mode
KVM: Fix lockdep false negative during host resume
KVM: x86: Add KVM_CAP_ENABLE_CAP to x86
The kernel provides infrastructure to set or clear the encryption mask
from the pages for AMD SEV, but TDX requires few tweaks.
- TDX and SEV have different requirements to the cache and TLB
flushing.
- TDX has own routine to notify VMM about page encryption status change.
Modify __set_memory_enc_pgtable() and make it flexible enough to cover
both AMD SEV and Intel TDX. The AMD-specific behavior is isolated in the
callbacks under x86_platform.guest. TDX will provide own version of said
callbacks.
[ bp: Beat into submission. ]
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20220223043528.2093214-1-brijesh.singh@amd.com
AMD SME/SEV uses a bit in the page table entries to indicate that the
page is encrypted and not accessible to the VMM.
TDX uses a similar approach, but the polarity of the mask is opposite to
AMD: if the bit is set the page is accessible to VMM.
Provide vendor-neutral API to deal with the mask: cc_mkenc() and
cc_mkdec() modify given address to make it encrypted/decrypted. It can
be applied to phys_addr_t, pgprotval_t or page table entry value.
pgprot_encrypted() and pgprot_decrypted() reimplemented using new
helpers.
The implementation will be extended to cover TDX.
pgprot_decrypted() is used by drivers (i915, virtio_gpu, vfio).
cc_mkdec() called by pgprot_decrypted(). Export cc_mkdec().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-5-kirill.shutemov@linux.intel.com
The kernel derives the confidential computing platform
type it is running as from sme_me_mask on AMD or by using
hv_is_isolation_supported() on HyperV isolation VMs. This detection
process will be more complicated as more platforms get added.
Declare a confidential computing vendor variable explicitly and set it
via cc_set_vendor() on the respective platform.
[ bp: Massage commit message, fixup HyperV check. ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-4-kirill.shutemov@linux.intel.com
This allows code sharing between fast-headers tree and the vanilla
scheduler tree.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
New conflicts in sched/core due to the following upstream fixes:
44585f7bc0 ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
a06247c680 ("psi: Fix uaf issue when psi trigger is destroyed while being polled")
Conflicts:
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thanks to the chaps at VUsec it is now clear that eIBRS is not
sufficient, therefore allow enabling of retpolines along with eIBRS.
Add spectre_v2=eibrs, spectre_v2=eibrs,lfence and
spectre_v2=eibrs,retpoline options to explicitly pick your preferred
means of mitigation.
Since there's new mitigations there's also user visible changes in
/sys/devices/system/cpu/vulnerabilities/spectre_v2 to reflect these
new mitigations.
[ bp: Massage commit message, trim error messages,
do more precise eIBRS mode checking. ]
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Patrick Colp <patrick.colp@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
The RETPOLINE_AMD name is unfortunate since it isn't necessarily
AMD only, in fact Hygon also uses it. Furthermore it will likely be
sufficient for some Intel processors. Therefore rename the thing to
RETPOLINE_LFENCE to better describe what it is.
Add the spectre_v2=retpoline,lfence option as an alias to
spectre_v2=retpoline,amd to preserve existing setups. However, the output
of /sys/devices/system/cpu/vulnerabilities/spectre_v2 will be changed.
[ bp: Fix typos, massage. ]
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Currently sched_dynamic_update needs to open-code the enabled/disabled
function names for each preemption model it supports, when in practice
this is a boolean enabled/disabled state for each function.
Make this clearer and avoid repetition by defining the enabled/disabled
states at the function definition, and using helper macros to perform the
static_call_update(). Where x86 currently overrides the enabled
function, it is made to provide both the enabled and disabled states for
consistency, with defaults provided by the core code otherwise.
In subsequent patches this will allow us to support PREEMPT_DYNAMIC
without static calls.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-3-mark.rutland@arm.com
Remove mmu_audit.c and all its collateral, the auditing code has suffered
severe bitrot, ironically partly due to shadow paging being more stable
and thus not benefiting as much from auditing, but mostly due to TDP
supplanting shadow paging for non-nested guests and shadowing of nested
TDP not heavily stressing the logic that is being audited.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A few vendor callbacks are only used by VMX, but they return an integer
or bool value. Introduce KVM_X86_OP_OPTIONAL_RET0 for them: if a func is
NULL in struct kvm_x86_ops, it will be changed to __static_call_return0
when updating static calls.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All their invocations are conditional on vcpu->arch.apicv_active,
meaning that they need not be implemented by vendor code: even
though at the moment both vendors implement APIC virtualization,
all of them can be optional. In fact SVM does not need many of
them, and their implementation can be deleted now.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the newly corrected KVM_X86_OP annotations to warn about possible
NULL pointer dereferences as soon as the vendor module is loaded.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The original use of KVM_X86_OP_NULL, which was to mark calls
that do not follow a specific naming convention, is not in use
anymore. Instead, let's mark calls that are optional because
they are always invoked within conditionals or with static_call_cond.
Those that are _not_, i.e. those that are defined with KVM_X86_OP,
must be defined by both vendor modules or some kind of NULL pointer
dereference is bound to happen at runtime.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The two ioctls used to implement userspace-accelerated TPR,
KVM_TPR_ACCESS_REPORTING and KVM_SET_VAPIC_ADDR, are available
even if hardware-accelerated TPR can be used. So there is
no reason not to report KVM_CAP_VAPIC.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_arch currently contains the guest supported features in both
guest_supported_xcr0 and guest_fpu.fpstate->user_xfeatures field.
Currently both fields are set to the same value in
kvm_vcpu_after_set_cpuid() and are not changed anywhere else after that.
Since it's not good to keep duplicated data, remove guest_supported_xcr0.
To keep the code more readable, introduce kvm_guest_supported_xcr()
and kvm_guest_supported_xfd() to replace the previous usages of
guest_supported_xcr0.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Message-Id: <20220217053028.96432-3-leobras@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is a regular need in the kernel to provide a way to declare
having a dynamically sized set of trailing elements in a structure.
Kernel code should always use “flexible array members”[1] for these
cases. The older style of one-element or zero-length arrays should
no longer be used[2].
This code was transformed with the help of Coccinelle:
(next-20220214$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch)
@@
identifier S, member, array;
type T1, T2;
@@
struct S {
...
T1 member;
T2 array[
- 0
];
};
UAPI and wireless changes were intentionally excluded from this patch
and will be sent out separately.
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays
Link: https://github.com/KSPP/linux/issues/78
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
asm/shmbuf.h is currently excluded from the UAPI compile-test because of
the errors like follows:
HDRTEST usr/include/asm/shmbuf.h
In file included from ./usr/include/asm/shmbuf.h:6,
from <command-line>:
./usr/include/asm-generic/shmbuf.h:26:33: error: field ‘shm_perm’ has incomplete type
26 | struct ipc64_perm shm_perm; /* operation perms */
| ^~~~~~~~
./usr/include/asm-generic/shmbuf.h:27:9: error: unknown type name ‘size_t’
27 | size_t shm_segsz; /* size of segment (bytes) */
| ^~~~~~
./usr/include/asm-generic/shmbuf.h:40:9: error: unknown type name ‘__kernel_pid_t’
40 | __kernel_pid_t shm_cpid; /* pid of creator */
| ^~~~~~~~~~~~~~
./usr/include/asm-generic/shmbuf.h:41:9: error: unknown type name ‘__kernel_pid_t’
41 | __kernel_pid_t shm_lpid; /* pid of last operator */
| ^~~~~~~~~~~~~~
The errors can be fixed by replacing size_t with __kernel_size_t and by
including proper headers.
Then, remove the no-header-test entry from user/include/Makefile.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
linux/signal.h and asm/signal.h are currently excluded from the UAPI
compile-test because of the errors like follows:
HDRTEST usr/include/asm/signal.h
In file included from <command-line>:
./usr/include/asm/signal.h:103:9: error: unknown type name ‘size_t’
103 | size_t ss_size;
| ^~~~~~
The errors can be fixed by replacing size_t with __kernel_size_t.
Then, remove the no-header-test entries from user/include/Makefile.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Read HW interrupt pending state from the HW
x86:
- Don't truncate the performance event mask on AMD
- Fix Xen runstate updates to be atomic when preempting vCPU
- Fix for AMD AVIC interrupt injection race
- Several other AMD fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW
KVM: x86/pmu: Don't truncate the PerfEvtSeln MSR when creating a perf event
KVM: SVM: fix race between interrupt delivery and AVIC inhibition
KVM: SVM: set IRR in svm_deliver_interrupt
KVM: SVM: extract avic_ring_doorbell
selftests: kvm: Remove absent target file
KVM: arm64: vgic: Read HW interrupt pending state from the HW
KVM: x86/xen: Fix runstate updates to be atomic when preempting vCPU
KVM: x86: SVM: move avic definitions from AMD's spec to svm.h
KVM: x86: lapic: don't touch irr_pending in kvm_apic_update_apicv when inhibiting it
KVM: x86: nSVM: deal with L1 hypervisor that intercepts interrupts but lets L2 control them
KVM: x86: nSVM: expose clean bit support to the guest
KVM: x86: nSVM/nVMX: set nested_run_pending on VM entry which is a result of RSM
KVM: x86: nSVM: mark vmcb01 as dirty when restoring SMM saved state
KVM: x86: nSVM: fix potential NULL derefernce on nested migration
KVM: x86: SVM: don't passthrough SMAP/SMEP/PKE bits in !NPT && !gCR0.PG case
Revert "svm: Add warning message for AVIC IPI invalid target"
Pull objtool fix from Borislav Petkov:
"Fix a case where objtool would mistakenly warn about instructions
being unreachable"
* tag 'objtool_urgent_for_v5.17_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/bug: Merge annotate_reachable() into _BUG_FLAGS() asm
Instrumentation glue like KASAN causes the following warning:
vmlinux.o: warning: objtool: mce_gather_info()+0x5f: call to v8086_mode.constprop.0() leaves .noinstr.text section
due to gcc creating a function call for that oneliner. Force-inline it
and even save some vmlinux bytes (.config is close to an allmodconfig):
text data bss dec hex filename
209431677 208257651 34411048 452100376 1af28118 vmlinux.before
209431519 208257615 34411048 452100182 1af28056 vmlinux.after
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20220204083015.17317-3-bp@alien8.de
Add a x86-specific cpumask_clear_cpu() helper which will be used in
places where the explicit KASAN-instrumentation in the *_bit() helpers
is unwanted.
Also, always inline two more cpumask generic helpers.
allyesconfig:
text data bss dec hex filename
190553143 159425889 32076404 382055436 16c5b40c vmlinux.before
190551812 159424945 32076404 382053161 16c5ab29 vmlinux.after
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20220204083015.17317-2-bp@alien8.de
Pull xen fixes from Juergen Gross:
- Two small cleanups
- Another fix for addressing the EFI framebuffer above 4GB when running
as Xen dom0
- A patch to let Xen guests use reserved bits in MSI- and IO-APIC-
registers for extended APIC-IDs the same way KVM guests are doing it
already
* tag 'for-linus-5.17a-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/pci: Make use of the helper macro LIST_HEAD()
xen/x2apic: Fix inconsistent indenting
xen/x86: detect support for extended destination ID
xen/x86: obtain full video frame buffer address for Dom0 also under EFI
Modern compilers are perfectly capable of extracting parallelism from
the XOR routines, provided that the prototypes reflect the nature of the
input accurately, in particular, the fact that the input vectors are
expected not to overlap. This is not documented explicitly, but is
implied by the interchangeability of the various C routines, some of
which use temporary variables while others don't: this means that these
routines only behave identically for non-overlapping inputs.
So let's decorate these input vectors with the __restrict modifier,
which informs the compiler that there is no overlap. While at it, make
the input-only vectors pointer-to-const as well.
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/563
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use slightly more verbose names for the so called "memory encrypt",
a.k.a. "mem enc", kvm_x86_ops hooks to bridge the gap between the current
super short kvm_x86_ops names and SVM's more verbose, but non-conforming
names. This is a step toward using kvm-x86-ops.h with KVM_X86_CVM_OP()
to fill svm_x86_ops.
Opportunistically rename mem_enc_op() to mem_enc_ioctl() to better
reflect its true nature, as it really is a full fledged ioctl() of its
own. Ideally, the hook would be named confidential_vm_ioctl() or so, as
the ioctl() is a gateway to more than just memory encryption, and because
its underlying purpose to support Confidential VMs, which can be provided
without memory encryption, e.g. if the TCB of the guest includes the host
kernel but not host userspace, or by isolation in hardware without
encrypting memory. But, diverging from KVM_MEMORY_ENCRYPT_OP even
further is undeseriable, and short of creating alises for all related
ioctl()s, which introduces a different flavor of divergence, KVM is stuck
with the nomenclature.
Defer renaming SVM's functions to a future commit as there are additional
changes needed to make SVM fully conforming and to match reality (looking
at you, svm_vm_copy_asid_from()).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_get_cs_db_l_bits() to SVM and rename it appropriately so that
its svm_x86_ops entry can be filled via kvm-x86-ops, and to eliminate a
superfluous export from KVM x86.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define and use static_call()s for .vm_{copy,move}_enc_context_from(),
mostly so that the op is defined in kvm-x86-ops.h. This will allow using
KVM_X86_OP in vendor code to wire up the implementation. Any performance
gains eeked out by using static_call() is a happy bonus and not the
primary motiviation.
Opportunistically refactor the code to reduce indentation and keep line
lengths reasonable, and to be consistent when wrapping versus running
a bit over the 80 char soft limit.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define and use a static_call() for kvm_x86_ops.vcpu_deliver_sipi_vector(),
mostly so that the op is defined in kvm-x86-ops.h. This will allow using
KVM_X86_OP in vendor code to wire up the implementation. Any performance
gains eeked out by using static_call() is a happy bonus and not the
primary motiviation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename a variety of kvm_x86_op function pointers so that preferred name
for vendor implementations follows the pattern <vendor>_<function>, e.g.
rename .run() to .vcpu_run() to match {svm,vmx}_vcpu_run(). This will
allow vendor implementations to be wired up via the KVM_X86_OP macro.
In many cases, VMX and SVM "disagree" on the preferred name, though in
reality it's VMX and x86 that disagree as SVM blindly prepended _svm to
the kvm_x86_ops name. Justification for using the VMX nomenclature:
- set_{irq,nmi} => inject_{irq,nmi} because the helper is injecting an
event that has already been "set" in e.g. the vIRR. SVM's relevant
VMCB field is even named event_inj, and KVM's stat is irq_injections.
- prepare_guest_switch => prepare_switch_to_guest because the former is
ambiguous, e.g. it could mean switching between multiple guests,
switching from the guest to host, etc...
- update_pi_irte => pi_update_irte to allow for matching match the rest
of VMX's posted interrupt naming scheme, which is vmx_pi_<blah>().
- start_assignment => pi_start_assignment to again follow VMX's posted
interrupt naming scheme, and to provide context for what bit of code
might care about an otherwise undescribed "assignment".
The "tlb_flush" => "flush_tlb" creates an inconsistency with respect to
Hyper-V's "tlb_remote_flush" hooks, but Hyper-V really is the one that's
wrong. x86, VMX, and SVM all use flush_tlb, and even common KVM is on a
variant of the bandwagon with "kvm_flush_remote_tlbs", e.g. a more
appropriate name for the Hyper-V hooks would be flush_remote_tlbs. Leave
that change for another time as the Hyper-V hooks always start as NULL,
i.e. the name doesn't matter for using kvm-x86-ops.h, and changing all
names requires an astounding amount of churn.
VMX and SVM function names are intentionally left as is to minimize the
diff. Both VMX and SVM will need to rename even more functions in order
to fully utilize KVM_X86_OPS, i.e. an additional patch for each is
inevitable.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>