Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
* for-next/esr-elx-64-bit:
: Treat ESR_ELx as a 64-bit register.
KVM: arm64: uapi: Add kvm_debug_exit_arch.hsr_high
KVM: arm64: Treat ESR_EL2 as a 64-bit register
arm64: Treat ESR_ELx as a 64-bit register
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
arm64: Make ESR_ELx_xVC_IMM_MASK compatible with assembly
ESR_EL2 was defined as a 32-bit register in the initial release of the
ARM Architecture Manual for Armv8-A, and was later extended to 64 bits,
with bits [63:32] RES0. ARMv8.7 introduced FEAT_LS64, which makes use of
bits [36:32].
KVM treats ESR_EL1 as a 64-bit register when saving and restoring the
guest context, but ESR_EL2 is handled as a 32-bit register. Start
treating ESR_EL2 as a 64-bit register to allow KVM to make use of the
most significant 32 bits in the future.
The type chosen to represent ESR_EL2 is u64, as that is consistent with the
notation KVM overwhelmingly uses today (u32), and how the rest of the
registers are declared.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220425114444.368693-5-alexandru.elisei@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
pkvm_hyp_alloc_private_va_range() can be used to reserve private VA ranges
in the pKVM nVHE hypervisor. Allocations are aligned based on the order of
the requested size.
This will be used to implement stack guard pages for pKVM nVHE hypervisor
(in a subsequent patch in the series).
Credits to Quentin Perret <qperret@google.com> for the idea of moving
private VA allocation out of __pkvm_create_private_mapping()
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220420214317.3303360-3-kaleshsingh@google.com
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
* for-next/fpsimd:
arm64: cpufeature: Warn if we attempt to read a zero width field
arm64: cpufeature: Add missing .field_width for GIC system registers
arm64: signal: nofpsimd: Do not allocate fp/simd context when not available
arm64: cpufeature: Always specify and use a field width for capabilities
arm64: Always use individual bits in CPACR floating point enables
arm64: Define CPACR_EL1_FPEN similarly to other floating point controls
CPACR_EL1 has several bitfields for controlling traps for floating point
features to EL1, each of which has a separate bits for EL0 and EL1. Marc
Zyngier noted that we are not consistent in our use of defines to
manipulate these, sometimes using a define covering the whole field and
sometimes using defines for the individual bits. Make this consistent by
expanding the whole field defines where they are used (currently only in
the KVM code) and deleting them so that no further uses can be
introduced.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220207152109.197566-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
QARMA3 is relaxed version of the QARMA5 algorithm which expected to
reduce the latency of calculation while still delivering a suitable
level of security.
Support for QARMA3 can be discovered via ID_AA64ISAR2_EL1
APA3, bits [15:12] Indicates whether the QARMA3 algorithm is
implemented in the PE for address
authentication in AArch64 state.
GPA3, bits [11:8] Indicates whether the QARMA3 algorithm is
implemented in the PE for generic code
authentication in AArch64 state.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220224124952.119612-4-vladimir.murzin@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Cortex-A510's erratum #2077057 causes SPSR_EL2 to be corrupted when
single-stepping authenticated ERET instructions. A single step is
expected, but a pointer authentication trap is taken instead. The
erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
Because the conditions require an ERET into active-not-pending state,
this is only a problem for the EL2 when EL2 is stepping EL1. In this case
the previous SPSR_EL2 value is preserved in struct kvm_vcpu, and can be
restored.
Cc: stable@vger.kernel.org # 53960faf2b: arm64: Add Cortex-A510 CPU part definition
Cc: stable@vger.kernel.org
Signed-off-by: James Morse <james.morse@arm.com>
[maz: fixup cpucaps ordering]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-5-james.morse@arm.com
When any exception other than an IRQ occurs, the CPU updates the ESR_EL2
register with the exception syndrome. An SError may also become pending,
and will be synchronised by KVM. KVM notes the exception type, and whether
an SError was synchronised in exit_code.
When an exception other than an IRQ occurs, fixup_guest_exit() updates
vcpu->arch.fault.esr_el2 from the hardware register. When an SError was
synchronised, the vcpu esr value is used to determine if the exception
was due to an HVC. If so, ELR_EL2 is moved back one instruction. This
is so that KVM can process the SError first, and re-execute the HVC if
the guest survives the SError.
But if an IRQ synchronises an SError, the vcpu's esr value is stale.
If the previous non-IRQ exception was an HVC, KVM will corrupt ELR_EL2,
causing an unrelated guest instruction to be executed twice.
Check ARM_EXCEPTION_CODE() before messing with ELR_EL2, IRQs don't
update this register so don't need to check.
Fixes: defe21f49b ("KVM: arm64: Move PC rollback on SError to HYP")
Cc: stable@vger.kernel.org
Reported-by: Steven Price <steven.price@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-3-james.morse@arm.com
KVM/arm64 updates for Linux 5.16
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
* kvm-arm64/pkvm-hyp-sharing:
: .
: Series from Quentin Perret, implementing HYP page share/unshare:
:
: This series implements an unshare hypercall at EL2 in nVHE
: protected mode, and makes use of it to unmmap guest-specific
: data-structures from EL2 stage-1 during guest tear-down.
: Crucially, the implementation of the share and unshare
: routines use page refcounts in the host kernel to avoid
: accidentally unmapping data-structures that overlap a common
: page.
: [...]
: .
KVM: arm64: pkvm: Unshare guest structs during teardown
KVM: arm64: Expose unshare hypercall to the host
KVM: arm64: Implement do_unshare() helper for unsharing memory
KVM: arm64: Implement __pkvm_host_share_hyp() using do_share()
KVM: arm64: Implement do_share() helper for sharing memory
KVM: arm64: Introduce wrappers for host and hyp spin lock accessors
KVM: arm64: Extend pkvm_page_state enumeration to handle absent pages
KVM: arm64: pkvm: Refcount the pages shared with EL2
KVM: arm64: Introduce kvm_share_hyp()
KVM: arm64: Implement kvm_pgtable_hyp_unmap() at EL2
KVM: arm64: Hook up ->page_count() for hypervisor stage-1 page-table
KVM: arm64: Fixup hyp stage-1 refcount
KVM: arm64: Refcount hyp stage-1 pgtable pages
KVM: arm64: Provide {get,put}_page() stubs for early hyp allocator
Signed-off-by: Marc Zyngier <maz@kernel.org>
Introduce an unshare hypercall which can be used to unmap memory from
the hypervisor stage-1 in nVHE protected mode. This will be useful to
update the EL2 ownership state of pages during guest teardown, and
avoids keeping dangling mappings to unreferenced portions of memory.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-14-qperret@google.com
Explicitly name the combination of SW0 | SW1 as reserved in the pte and
introduce a new PKVM_NOPAGE meta-state which, although not directly
stored in the software bits of the pte, can be used to represent an
entry for which there is no underlying page. This is distinct from an
invalid pte, as stage-2 identity mappings for the host are created
lazily and so an invalid pte there is the same as a valid mapping for
the purposes of ownership information.
This state will be used for permission checking during page transitions
in later patches.
Reviewed-by: Andrew Walbran <qwandor@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211215161232.1480836-9-qperret@google.com
* kvm-arm64/pkvm-cleanups-5.17:
: .
: pKVM cleanups from Quentin Perret:
:
: This series is a collection of various fixes and cleanups for KVM/arm64
: when running in nVHE protected mode. The first two patches are real
: fixes/improvements, the following two are minor cleanups, and the last
: two help satisfy my paranoia so they're certainly optional.
: .
KVM: arm64: pkvm: Make kvm_host_owns_hyp_mappings() robust to VHE
KVM: arm64: pkvm: Stub io map functions
KVM: arm64: Make __io_map_base static
KVM: arm64: Make the hyp memory pool static
KVM: arm64: pkvm: Disable GICv2 support
KVM: arm64: pkvm: Fix hyp_pool max order
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/hyp-header-split:
: .
: Tidy up the header file usage for the nvhe hyp object so
: that header files under arch/arm64/kvm/hyp/include are not
: included by host code running at EL1.
: .
KVM: arm64: Move host EL1 code out of hyp/ directory
KVM: arm64: Generate hyp_constants.h for the host
arm64: Add missing include of asm/cpufeature.h to asm/mmu.h
Signed-off-by: Marc Zyngier <maz@kernel.org>
Protected KVM is trying to turn AArch32 exceptions into an illegal
exception entry. Unfortunately, it does that in a way that is a bit
abrupt, and too early for PSTATE to be available.
Instead, move it to the fixup code, which is a more reasonable place
for it. This will also be useful for the NV code.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In order to be able to use primitives such as vcpu_mode_is_32bit(),
we need to synchronize the guest PSTATE. However, this is currently
done deep into the bowels of the world-switch code, and we do have
helpers evaluating this much earlier (__vgic_v3_perform_cpuif_access
and handle_aarch32_guest, for example).
Move the saving of the guest pstate into the early fixups, which
cures the first issue. The second one will be addressed separately.
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that we can track an equivalent of TIF_FOREIGN_FPSTATE, drop
the mapping of current's thread_info at EL2.
Signed-off-by: Marc Zyngier <maz@kernel.org>
We currently have to maintain a mapping the thread_info structure
at EL2 in order to be able to check the TIF_FOREIGN_FPSTATE flag.
In order to eventually get rid of this, start with a vcpu flag that
shadows the thread flag on each entry into the hypervisor.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The SVE host tracking in KVM is pretty involved. It relies on a
set of flags tracking the ownership of the SVE register, as well
as that of the EL0 access.
It is also pretty scary: __hyp_sve_save_host() computes
a thread_struct pointer and obtains a sve_state which gets directly
accessed without further ado, even on nVHE. How can this even work?
The answer to that is that it doesn't, and that this is mostly dead
code. Closer examination shows that on executing a syscall, userspace
loses its SVE state entirely. This is part of the ABI. Another
thing to notice is that although the kernel provides helpers such as
kernel_neon_begin()/end(), they only deal with the FP/NEON state,
and not SVE.
Given that you can only execute a guest as the result of a syscall,
and that the kernel cannot use SVE by itself, it becomes pretty
obvious that there is never any host SVE state to save, and that
this code is only there to increase confusion.
Get rid of the TIF_SVE tracking and host save infrastructure altogether.
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Pull KVM updates from Paolo Bonzini:
"ARM:
- More progress on the protected VM front, now with the full fixed
feature set as well as the limitation of some hypercalls after
initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
RISC-V:
- New KVM port.
x86:
- New API to control TSC offset from userspace
- TSC scaling for nested hypervisors on SVM
- Switch masterclock protection from raw_spin_lock to seqcount
- Clean up function prototypes in the page fault code and avoid
repeated memslot lookups
- Convey the exit reason to userspace on emulation failure
- Configure time between NX page recovery iterations
- Expose Predictive Store Forwarding Disable CPUID leaf
- Allocate page tracking data structures lazily (if the i915 KVM-GT
functionality is not compiled in)
- Cleanups, fixes and optimizations for the shadow MMU code
s390:
- SIGP Fixes
- initial preparations for lazy destroy of secure VMs
- storage key improvements/fixes
- Log the guest CPNC
Starting from this release, KVM-PPC patches will come from Michael
Ellerman's PPC tree"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
RISC-V: KVM: fix boolreturn.cocci warnings
RISC-V: KVM: remove unneeded semicolon
RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
RISC-V: KVM: Factor-out FP virtualization into separate sources
KVM: s390: add debug statement for diag 318 CPNC data
KVM: s390: pv: properly handle page flags for protected guests
KVM: s390: Fix handle_sske page fault handling
KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
KVM: x86: Clarify the kvm_run.emulation_failure structure layout
KVM: s390: Add a routine for setting userspace CPU state
KVM: s390: Simplify SIGP Set Arch handling
KVM: s390: pv: avoid stalls when making pages secure
KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
KVM: s390: pv: avoid double free of sida page
KVM: s390: pv: add macros for UVC CC values
s390/mm: optimize reset_guest_reference_bit()
s390/mm: optimize set_guest_storage_key()
s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
...
Pull arm64 updates from Will Deacon:
"There's the usual summary below, but the highlights are support for
the Armv8.6 timer extensions, KASAN support for asymmetric MTE, the
ability to kexec() with the MMU enabled and a second attempt at
switching to the generic pfn_valid() implementation.
Summary:
- Support for the Arm8.6 timer extensions, including a
self-synchronising view of the system registers to elide some
expensive ISB instructions.
- Exception table cleanup and rework so that the fixup handlers
appear correctly in backtraces.
- A handful of miscellaneous changes, the main one being selection of
CONFIG_HAVE_POSIX_CPU_TIMERS_TASK_WORK.
- More mm and pgtable cleanups.
- KASAN support for "asymmetric" MTE, where tag faults are reported
synchronously for loads (via an exception) and asynchronously for
stores (via a register).
- Support for leaving the MMU enabled during kexec relocation, which
significantly speeds up the operation.
- Minor improvements to our perf PMU drivers.
- Improvements to the compat vDSO build system, particularly when
building with LLVM=1.
- Preparatory work for handling some Coresight TRBE tracing errata.
- Cleanup and refactoring of the SVE code to pave the way for SME
support in future.
- Ensure SCS pages are unpoisoned immediately prior to freeing them
when KASAN is enabled for the vmalloc area.
- Try moving to the generic pfn_valid() implementation again now that
the DMA mapping issue from last time has been resolved.
- Numerous improvements and additions to our FPSIMD and SVE
selftests"
[ armv8.6 timer updates were in a shared branch and already came in
through -tip in the timer pull - Linus ]
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
arm64: Select POSIX_CPU_TIMERS_TASK_WORK
arm64: Document boot requirements for FEAT_SME_FA64
arm64/sve: Fix warnings when SVE is disabled
arm64/sve: Add stub for sve_max_virtualisable_vl()
arm64: errata: Add detection for TRBE write to out-of-range
arm64: errata: Add workaround for TSB flush failures
arm64: errata: Add detection for TRBE overwrite in FILL mode
arm64: Add Neoverse-N2, Cortex-A710 CPU part definition
selftests: arm64: Factor out utility functions for assembly FP tests
arm64: vmlinux.lds.S: remove `.fixup` section
arm64: extable: add load_unaligned_zeropad() handler
arm64: extable: add a dedicated uaccess handler
arm64: extable: add `type` and `data` fields
arm64: extable: use `ex` for `exception_table_entry`
arm64: extable: make fixup_exception() return bool
arm64: extable: consolidate definitions
arm64: gpr-num: support W registers
arm64: factor out GPR numbering helpers
arm64: kvm: use kvm_exception_table_entry
arm64: lib: __arch_copy_to_user(): fold fixups into body
...
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
The previous rework of the early exit code to provide an EC-based
decoding tree missed the fact that we have two trap paths for
ptrauth: the instructions (EC_PAC) and the sysregs (EC_SYS64).
Rework the handlers to call the ptrauth handling code on both
paths.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211013120346.2926621-2-maz@kernel.org
Protected VMs have more restricted features that need to be
trapped. Moreover, the host should not be trusted to set the
appropriate trapping registers and their values.
Initialize the trapping registers, i.e., hcr_el2, mdcr_el2, and
cptr_el2 at EL2 for protected guests, based on the values of the
guest's feature id registers.
No functional change intended as trap handlers introduced in the
previous patch are still not hooked in to the guest exit
handlers.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-9-tabba@google.com
Add system register handlers for protected VMs. These cover Sys64
registers (including feature id registers), and debug.
No functional change intended as these are not hooked in yet to
the guest exit handlers introduced earlier. So when trapping is
triggered, the exit handlers let the host handle it, as before.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010145636.1950948-8-tabba@google.com
Simplify the early exception handling by slicing the gigantic decoding
tree into a more manageable set of functions, similar to what we have
in handle_exit.c.
This will also make the structure reusable for pKVM's own early exit
handling.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20211010145636.1950948-4-tabba@google.com
The KVM page-table library refcounts the pages of concatenated stage-2
PGDs individually. However, when running KVM in protected mode, the
host's stage-2 PGD is currently managed by EL2 as a single high-order
compound page, which can cause the refcount of the tail pages to reach 0
when they shouldn't, hence corrupting the page-table.
Fix this by introducing a new hyp_split_page() helper in the EL2 page
allocator (matching the kernel's split_page() function), and make use of
it from host_s2_zalloc_pages_exact().
Fixes: 1025c8c0c6 ("KVM: arm64: Wrap the host with a stage 2")
Acked-by: Will Deacon <will@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005090155.734578-5-qperret@google.com
* kvm-arm64/pkvm-fixed-features-prologue:
: Rework a bunch of common infrastructure as a prologue
: to Fuad Tabba's protected VM fixed feature series.
KVM: arm64: Upgrade trace_kvm_arm_set_dreg32() to 64bit
KVM: arm64: Add config register bit definitions
KVM: arm64: Add feature register flag definitions
KVM: arm64: Track value of cptr_el2 in struct kvm_vcpu_arch
KVM: arm64: Keep mdcr_el2's value as set by __init_el2_debug
KVM: arm64: Restore mdcr_el2 from vcpu
KVM: arm64: Refactor sys_regs.h,c for nVHE reuse
KVM: arm64: Fix names of config register fields
KVM: arm64: MDCR_EL2 is a 64-bit register
KVM: arm64: Remove trailing whitespace in comment
KVM: arm64: placeholder to check if VM is protected
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/mmu/vmid-cleanups:
: Cleanup the stage-2 configuration by providing a single helper,
: and tidy up some of the ordering requirements for the VMID
: allocator.
KVM: arm64: Upgrade VMID accesses to {READ,WRITE}_ONCE
KVM: arm64: Unify stage-2 programming behind __load_stage2()
KVM: arm64: Move kern_hyp_va() usage in __load_guest_stage2() into the callers
Signed-off-by: Marc Zyngier <maz@kernel.org>
On deactivating traps, restore the value of mdcr_el2 from the
newly created and preserved host value vcpu context, rather than
directly reading the hardware register.
Up until and including this patch the two values are the same,
i.e., the hardware register and the vcpu one. A future patch will
be changing the value of mdcr_el2 on activating traps, and this
ensures that its value will be restored.
No functional change intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-7-tabba@google.com
The host kernel is currently able to change EL2 stage-1 mappings without
restrictions thanks to the __pkvm_create_mappings() hypercall. But in a
world where the host is no longer part of the TCB, this clearly poses a
problem.
To fix this, introduce a new hypercall to allow the host to share a
physical memory page with the hypervisor, and remove the
__pkvm_create_mappings() variant. The new hypercall implements
ownership and permission checks before allowing the sharing operation,
and it annotates the shared page in the hypervisor stage-1 and host
stage-2 page-tables.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-21-qperret@google.com