* for-next/misc:
: Miscellaneous patches
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64/sve: Remove redundant system_supports_sve() tests
arm64: mte: Remove unused mte_assign_mem_tag_range()
arm64: Add __init section marker to some functions
arm64/sve: Rework SVE access trap to convert state in registers
docs: arm64: Fix a grammar error
arm64: smp: Add missing prototype for some smp.c functions
arm64: setup: name `tcr` register
arm64: setup: name `mair` register
arm64: stacktrace: Move start_backtrace() out of the header
arm64: barrier: Remove spec_bar() macro
arm64: entry: remove test_irqs_unmasked macro
ARM64: enable GENERIC_FIND_FIRST_BIT
arm64: defconfig: Use DEBUG_INFO_REDUCED
* for-next/kselftest:
: Various kselftests for arm64
kselftest: arm64: Add BTI tests
kselftest/arm64: mte: Report filename on failing temp file creation
kselftest/arm64: mte: Fix clang warning
kselftest/arm64: mte: Makefile: Fix clang compilation
kselftest/arm64: mte: Output warning about failing compiler
kselftest/arm64: mte: Use cross-compiler if specified
kselftest/arm64: mte: Fix MTE feature detection
kselftest/arm64: mte: common: Fix write() warnings
kselftest/arm64: mte: user_mem: Fix write() warning
kselftest/arm64: mte: ksm_options: Fix fscanf warning
kselftest/arm64: mte: Fix pthread linking
kselftest/arm64: mte: Fix compilation with native compiler
* for-next/xntable:
: Add hierarchical XN permissions for all page tables
arm64: mm: use XN table mapping attributes for user/kernel mappings
arm64: mm: use XN table mapping attributes for the linear region
arm64: mm: add missing P4D definitions and use them consistently
* for-next/vdso:
: Minor improvements to the compat vdso and sigpage
arm64: compat: Poison the compat sigpage
arm64: vdso: Avoid ISB after reading from cntvct_el0
arm64: compat: Allow signal page to be remapped
arm64: vdso: Remove redundant calls to flush_dcache_page()
arm64: vdso: Use GFP_KERNEL for allocating compat vdso and signal pages
* for-next/fiq:
: Support arm64 FIQ controller registration
arm64: irq: allow FIQs to be handled
arm64: Always keep DAIF.[IF] in sync
arm64: entry: factor irq triage logic into macros
arm64: irq: rework root IRQ handler registration
arm64: don't use GENERIC_IRQ_MULTI_HANDLER
genirq: Allow architectures to override set_handle_irq() fallback
* for-next/epan:
: Support for Enhanced PAN (execute-only permissions)
arm64: Support execute-only permissions with Enhanced PAN
* for-next/kasan-vmalloc:
: Support CONFIG_KASAN_VMALLOC on arm64
arm64: Kconfig: select KASAN_VMALLOC if KANSAN_GENERIC is enabled
arm64: kaslr: support randomized module area with KASAN_VMALLOC
arm64: Kconfig: support CONFIG_KASAN_VMALLOC
arm64: kasan: abstract _text and _end to KERNEL_START/END
arm64: kasan: don't populate vmalloc area for CONFIG_KASAN_VMALLOC
* for-next/fgt-boot-init:
: Booting clarifications and fine grained traps setup
arm64: Require that system registers at all visible ELs be initialized
arm64: Disable fine grained traps on boot
arm64: Document requirements for fine grained traps at boot
* for-next/vhe-only:
: Dealing with VHE-only CPUs (a.k.a. M1)
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
arm64: cpufeature: Allow early filtering of feature override
* arm64/for-next/perf:
arm64: perf: Remove redundant initialization in perf_event.c
perf/arm_pmu_platform: Clean up with dev_printk
perf/arm_pmu_platform: Fix error handling
perf/arm_pmu_platform: Use dev_err_probe() for IRQ errors
docs: perf: Address some html build warnings
docs: perf: Add new description on HiSilicon uncore PMU v2
drivers/perf: hisi: Add support for HiSilicon PA PMU driver
drivers/perf: hisi: Add support for HiSilicon SLLC PMU driver
drivers/perf: hisi: Update DDRC PMU for programmable counter
drivers/perf: hisi: Add new functions for HHA PMU
drivers/perf: hisi: Add new functions for L3C PMU
drivers/perf: hisi: Add PMU version for uncore PMU drivers.
drivers/perf: hisi: Refactor code for more uncore PMUs
drivers/perf: hisi: Remove unnecessary check of counter index
drivers/perf: Simplify the SMMUv3 PMU event attributes
drivers/perf: convert sysfs sprintf family to sysfs_emit
drivers/perf: convert sysfs scnprintf family to sysfs_emit_at() and sysfs_emit()
drivers/perf: convert sysfs snprintf family to sysfs_emit
* for-next/neon-softirqs-disabled:
: Run kernel mode SIMD with softirqs disabled
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
Pull arm64 fixes from Will Deacon:
- Fix incorrect asm constraint for load_unaligned_zeropad() fixup
- Fix thread flag update when setting TIF_MTE_ASYNC_FAULT
- Fix restored irq state when handling fault on kprobe
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: kprobes: Restore local irqflag if kprobes is cancelled
arm64: mte: Ensure TIF_MTE_ASYNC_FAULT is set atomically
arm64: fix inline asm in load_unaligned_zeropad()
The kernel does not use any keys besides IA so we don't need to
install IB/DA/DB/GA on kernel exit if we arrange to install them
on task switch instead, which we can expect to happen an order of
magnitude less often.
Furthermore we can avoid installing the user IA in the case where the
user task has IA disabled and just leave the kernel IA installed. This
also lets us avoid needing to install IA on kernel entry.
On an Apple M1 under a hypervisor, the overhead of kernel entry/exit
has been measured to be reduced by 15.6ns in the case where IA is
enabled, and 31.9ns in the case where IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/Ieddf6b580d23c9e0bed45a822dabe72d2ffc9a8e
Link: https://lore.kernel.org/r/2d653d055f38f779937f2b92f8ddd5cf9e4af4f4.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This change introduces a prctl that allows the user program to control
which PAC keys are enabled in a particular task. The main reason
why this is useful is to enable a userspace ABI that uses PAC to
sign and authenticate function pointers and other pointers exposed
outside of the function, while still allowing binaries conforming
to the ABI to interoperate with legacy binaries that do not sign or
authenticate pointers.
The idea is that a dynamic loader or early startup code would issue
this prctl very early after establishing that a process may load legacy
binaries, but before executing any PAC instructions.
This change adds a small amount of overhead to kernel entry and exit
due to additional required instruction sequences.
On a DragonBoard 845c (Cortex-A75) with the powersave governor, the
overhead of similar instruction sequences was measured as 4.9ns when
simulating the common case where IA is left enabled, or 43.7ns when
simulating the uncommon case where IA is disabled. These numbers can
be seen as the worst case scenario, since in more realistic scenarios
a better performing governor would be used and a newer chip would be
used that would support PAC unlike Cortex-A75 and would be expected
to be faster than Cortex-A75.
On an Apple M1 under a hypervisor, the overhead of the entry/exit
instruction sequences introduced by this patch was measured as 0.3ns
in the case where IA is left enabled, and 33.0ns in the case where
IA is disabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ibc41a5e6a76b275efbaa126b31119dc197b927a5
Link: https://lore.kernel.org/r/d6609065f8f40397a4124654eb68c9f490b4d477.1616123271.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently there are a number of places in the SVE code where we check both
system_supports_sve() and TIF_SVE. This is a bit redundant given that we
should never get into a situation where we have set TIF_SVE without having
SVE support and it is not clear that silently ignoring a mistakenly set
TIF_SVE flag is the most sensible error handling approach. For now let's
just drop the system_supports_sve() checks since this will at least reduce
overhead a little.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210412172320.3315-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If instruction being single stepped caused a page fault, the kprobes
is cancelled to let the page fault handler continue as a normal page
fault. But the local irqflags are disabled so cpu will restore pstate
with DAIF masked. After pagefault is serviced, the kprobes is
triggerred again, we overwrite the saved_irqflag by calling
kprobes_save_local_irqflag(). NOTE, DAIF is masked in this new saved
irqflag. After kprobes is serviced, the cpu pstate is retored with
DAIF masked.
This patch is inspired by one patch for riscv from Liao Chang.
Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210412174101.6bfb0594@xhacker.debian
Signed-off-by: Will Deacon <will@kernel.org>
Pull ARM cpufreq updates for v5.13 from Viresh Kumar:
"- Fix typos in s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Armada 37xx: Fix cpufreq changing base CPU speed to 800 MHz from
1000 MHz (Pali Rohár and Marek Behún).
- cpufreq-dt: Return -EPROBE_DEFER on failure to add table (Quanyang
Wang).
- Minor cleanup in cppc driver (Tom Saeger).
- Add frequency invariance support for CPPC driver and generalize
freq invariance support arch-topology driver (Viresh Kumar)."
* 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm:
cpufreq: armada-37xx: Fix module unloading
cpufreq: armada-37xx: Remove cur_frequency variable
cpufreq: armada-37xx: Fix determining base CPU frequency
cpufreq: armada-37xx: Fix driver cleanup when registration failed
clk: mvebu: armada-37xx-periph: Fix workaround for switching from L1 to L0
clk: mvebu: armada-37xx-periph: Fix switching CPU freq from 250 Mhz to 1 GHz
cpufreq: armada-37xx: Fix the AVS value for load L1
clk: mvebu: armada-37xx-periph: remove .set_parent method for CPU PM clock
cpufreq: armada-37xx: Fix setting TBG parent for load levels
cpufreq: dt: dev_pm_opp_of_cpumask_add_table() may return -EPROBE_DEFER
cpufreq: cppc: simplify default delay_us setting
cpufreq: Rudimentary typos fix in the file s5pv210-cpufreq.c
cpufreq: CPPC: Add support for frequency invariance
arch_topology: Export arch_freq_scale and helpers
arch_topology: Allow multiple entities to provide sched_freq_tick() callback
arch_topology: Rename freq_scale as arch_freq_scale
The entry from EL0 code checks the TFSRE0_EL1 register for any
asynchronous tag check faults in user space and sets the
TIF_MTE_ASYNC_FAULT flag. This is not done atomically, potentially
racing with another CPU calling set_tsk_thread_flag().
Replace the non-atomic ORR+STR with an STSET instruction. While STSET
requires ARMv8.1 and an assembler that understands LSE atomics, the MTE
feature is part of ARMv8.5 and already requires an updated assembler.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 637ec831ea ("arm64: mte: Handle synchronous and asynchronous tag check faults")
Cc: <stable@vger.kernel.org> # 5.10.x
Reported-by: Will Deacon <will@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210409173710.18582-1-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Kernel mode NEON can be used in task or softirq context, but only in
a non-nesting manner, i.e., softirq context is only permitted if the
interrupt was not taken at a point where the kernel was using the NEON
in task context.
This means all users of kernel mode NEON have to be aware of this
limitation, and either need to provide scalar fallbacks that may be much
slower (up to 20x for AES instructions) and potentially less safe, or
use an asynchronous interface that defers processing to a later time
when the NEON is guaranteed to be available.
Given that grabbing and releasing the NEON is cheap, we can relax this
restriction, by increasing the granularity of kernel mode NEON code, and
always disabling softirq processing while the NEON is being used in task
context.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210302090118.30666-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides a mode that asynchronously updates the TFSR_EL1 register
when a tag check exception is detected.
To take advantage of this mode the kernel has to verify the status of
the register at:
1. Context switching
2. Return to user/EL0 (Not required in entry from EL0 since the kernel
did not run)
3. Kernel entry from EL1
4. Kernel exit to EL1
If the register is non-zero a trace is reported.
Add the required features for EL1 detection and reporting.
Note: ITFSB bit is set in the SCTLR_EL1 register hence it guaranties that
the indirect writes to TFSR_EL1 are synchronized at exception entry to
EL1. On the context switch path the synchronization is guarantied by the
dsb() in __switch_to().
The dsb(nsh) in mte_check_tfsr_exit() is provisional pending
confirmation by the architects.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-8-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
load_unaligned_zeropad() and __get/put_kernel_nofault() functions can
read past some buffer limits which may include some MTE granule with a
different tag.
When MTE async mode is enabled, the load operation crosses the boundaries
and the next granule has a different tag the PE sets the TFSR_EL1.TF1 bit
as if an asynchronous tag fault is happened.
Enable Tag Check Override (TCO) in these functions before the load and
disable it afterwards to prevent this to happen.
Note: The same condition can be hit in MTE sync mode but we deal with it
through the exception handling.
In the current implementation, mte_async_mode flag is set only at boot
time but in future kasan might acquire some runtime features that
that change the mode dynamically, hence we disable it when sync mode is
selected for future proof.
Cc: Will Deacon <will@kernel.org>
Reported-by: Branislav Rankov <Branislav.Rankov@arm.com>
Tested-by: Branislav Rankov <Branislav.Rankov@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-6-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
MTE provides an asynchronous mode for detecting tag exceptions. In
particular instead of triggering a fault the arm64 core updates a
register which is checked by the kernel after the asynchronous tag
check fault has occurred.
Add support for MTE asynchronous mode.
The exception handling mechanism will be added with a future patch.
Note: KASAN HW activates async mode via kasan.mode kernel parameter.
The default mode is set to synchronous.
The code that verifies the status of TFSR_EL1 will be added with a
future patch.
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-2-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With CONFIG_CFI_CLANG, the compiler replaces function address
references with the address of the function's CFI jump table
entry. This means that __pa_symbol(function) returns the physical
address of the jump table entry, which can lead to address space
confusion as the jump table points to the function's virtual
address. Therefore, use the function_nocfi() macro to ensure we are
always taking the address of the actual function instead.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-14-samitolvanen@google.com
CONFIG_ARM64_VHE was introduced with ARMv8.1 (some 7 years ago),
and has been enabled by default for almost all that time.
Given that newer systems that are VHE capable are finally becoming
available, and that some systems are even incapable of not running VHE,
drop the configuration altogether.
Anyone willing to stick to non-VHE on VHE hardware for obscure
reasons should use the 'kvm-arm.mode=nvhe' command-line option.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-4-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It seems that the CPUs part of the SoC known as Apple M1 have the
terrible habit of being stuck with HCR_EL2.E2H==1, in violation
of the architecture.
Try and work around this deplorable state of affairs by detecting
the stuck bit early and short-circuit the nVHE dance. Additional
filtering code ensures that attempts at switching to nVHE from
the command-line are also ignored.
It is still unknown whether there are many more such nuggets
to be found...
Reported-by: Hector Martin <marcan@marcan.st>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-3-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some CPUs are broken enough that some overrides need to be rejected
at the earliest opportunity. In some cases, that's right at cpu
feature override time.
Provide the necessary infrastructure to filter out overrides,
and to report such filtered out overrides to the core cpufeature code.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210408131010.1109027-2-maz@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When we enable SVE usage in userspace after taking a SVE access trap we
need to ensure that the portions of the register state that are not
shared with the FPSIMD registers are zeroed. Currently we do this by
forcing the FPSIMD registers to be saved to the task struct and converting
them there. This is wasteful in the common case where the task state is
loaded into the registers and we will immediately return to userspace
since we can initialise the SVE state directly in registers instead of
accessing multiple copies of the register state in memory.
Instead in that common case do the conversion in the registers and
update the task metadata so that we can return to userspace without
spilling the register state to memory unless there is some other reason
to do so.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210312190313.24598-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Allow for a randomized stack offset on a per-syscall basis, with roughly
5 bits of entropy. (And include AAPCS rationale AAPCS thanks to Mark
Rutland.)
In order to avoid unconditional stack canaries on syscall entry (due to
the use of alloca()), also disable stack protector to avoid triggering
needless checks and slowing down the entry path. As there is no general
way to control stack protector coverage with a function attribute[1],
this must be disabled at the compilation unit level. This isn't a problem
here, though, since stack protector was not triggered before: examining
the resulting syscall.o, there are no changes in canary coverage (none
before, none now).
[1] a working __attribute__((no_stack_protector)) has been added to GCC
and Clang but has not been released in any version yet:
https://gcc.gnu.org/git/gitweb.cgi?p=gcc.git;h=346b302d09c1e6db56d9fe69048acb32fbb97845https://reviews.llvm.org/rG4fbf84c1732fca596ad1d6e96015e19760eb8a9b
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210401232347.2791257-6-keescook@chromium.org
To aid with debugging, add details of the source of a panic from nVHE
hyp. This is done by having nVHE hyp exit to nvhe_hyp_panic_handler()
rather than directly to panic(). The handler will then add the extra
details for debugging before panicking the kernel.
If the panic was due to a BUG(), look up the metadata to log the file
and line, if available, otherwise log an address that can be looked up
in vmlinux. The hyp offset is also logged to allow other hyp VAs to be
converted, similar to how the kernel offset is logged during a panic.
__hyp_panic_string is now inlined since it no longer needs to be
referenced as a symbol and the message is free to diverge between VHE
and nVHE.
The following is an example of the logs generated by a BUG in nVHE hyp.
[ 46.754840] kvm [307]: nVHE hyp BUG at: arch/arm64/kvm/hyp/nvhe/switch.c:242!
[ 46.755357] kvm [307]: Hyp Offset: 0xfffea6c58e1e0000
[ 46.755824] Kernel panic - not syncing: HYP panic:
[ 46.755824] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800
[ 46.755824] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000
[ 46.755824] VCPU:0000d93a880d0000
[ 46.756960] CPU: 3 PID: 307 Comm: kvm-vcpu-0 Not tainted 5.12.0-rc3-00005-gc572b99cf65b-dirty #133
[ 46.757459] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
[ 46.758366] Call trace:
[ 46.758601] dump_backtrace+0x0/0x1b0
[ 46.758856] show_stack+0x18/0x70
[ 46.759057] dump_stack+0xd0/0x12c
[ 46.759236] panic+0x16c/0x334
[ 46.759426] arm64_kernel_unmapped_at_el0+0x0/0x30
[ 46.759661] kvm_arch_vcpu_ioctl_run+0x134/0x750
[ 46.759936] kvm_vcpu_ioctl+0x2f0/0x970
[ 46.760156] __arm64_sys_ioctl+0xa8/0xec
[ 46.760379] el0_svc_common.constprop.0+0x60/0x120
[ 46.760627] do_el0_svc+0x24/0x90
[ 46.760766] el0_svc+0x2c/0x54
[ 46.760915] el0_sync_handler+0x1a4/0x1b0
[ 46.761146] el0_sync+0x170/0x180
[ 46.761889] SMP: stopping secondary CPUs
[ 46.762786] Kernel Offset: 0x3e1cd2820000 from 0xffff800010000000
[ 46.763142] PHYS_OFFSET: 0xffffa9f680000000
[ 46.763359] CPU features: 0x00240022,61806008
[ 46.763651] Memory Limit: none
[ 46.813867] ---[ end Kernel panic - not syncing: HYP panic:
[ 46.813867] PS:400003c9 PC:0000d93a82c705ac ESR:f2000800
[ 46.813867] FAR:0000000080080000 HPFAR:0000000000800800 PAR:0000000000000000
[ 46.813867] VCPU:0000d93a880d0000 ]---
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210318143311.839894-6-ascull@google.com
After KASAN_VMALLOC works in arm64, we can randomize module region
into vmalloc area now.
Test:
VMALLOC area ffffffc010000000 fffffffdf0000000
before the patch:
module_alloc_base/end ffffffc008b80000 ffffffc010000000
after the patch:
module_alloc_base/end ffffffdcf4bed000 ffffffc010000000
And the function that insmod some modules is fine.
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Link: https://lore.kernel.org/r/20210324040522.15548-5-lecopzer.chen@mediatek.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently start_backtrace() is a static inline function in the header.
Since it really shouldn't be sufficiently performance critical that we
actually need to have it inlined move it into a C file, this will save
anyone else scratching their head about why it is defined in the header.
As far as I can see it's only there because it was factored out of the
various callers.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210319174022.33051-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull arm64 fixes from Will Deacon:
"Minor fixes all over, ranging from typos to tests to errata
workarounds:
- Fix possible memory hotplug failure with KASLR
- Fix FFR value in SVE kselftest
- Fix backtraces reported in /proc/$pid/stack
- Disable broken CnP implementation on NVIDIA Carmel
- Typo fixes and ACPI documentation clarification
- Fix some W=1 warnings"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: kernel: disable CNP on Carmel
arm64/process.c: fix Wmissing-prototypes build warnings
kselftest/arm64: sve: Do not use non-canonical FFR register value
arm64: mm: correct the inside linear map range during hotplug check
arm64: kdump: update ppos when reading elfcorehdr
arm64: cpuinfo: Fix a typo
Documentation: arm64/acpi : clarify arm64 support of IBFT
arm64: stacktrace: don't trace arch_stack_walk()
arm64: csum: cast to the proper type
Now that the read_ctr macro has been specialised for nVHE,
the whole CPU_FTR_REG_HYP_COPY infrastrcture looks completely
overengineered.
Simplify it by populating the two u64 quantities (MMFR0 and 1)
that the hypervisor need.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In protected mode, late CPUs are not allowed to boot (enforced by
the PSCI relay). We can thus specialise the read_ctr macro to
always return a pre-computed, sanitised value. Special care is
taken to prevent the use of this custome version outside of
the protected mode.
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
On NVIDIA Carmel cores, CNP behaves differently than it does on standard
ARM cores. On Carmel, if two cores have CNP enabled and share an L2 TLB
entry created by core0 for a specific ASID, a non-shareable TLBI from
core1 may still see the shared entry. On standard ARM cores, that TLBI
will invalidate the shared entry as well.
This causes issues with patchsets that attempt to do local TLBIs based
on cpumasks instead of broadcast TLBIs. Avoid these issues by disabling
CNP support for NVIDIA Carmel cores.
Signed-off-by: Rich Wiley <rwiley@nvidia.com>
Link: https://lore.kernel.org/r/20210324002809.30271-1-rwiley@nvidia.com
[will: Fix pre-existing whitespace issue]
Signed-off-by: Will Deacon <will@kernel.org>
On contemporary platforms we don't use FIQ, and treat any stray FIQ as a
fatal event. However, some platforms have an interrupt controller wired
to FIQ, and need to handle FIQ as part of regular operation.
So that we can support both cases dynamically, this patch updates the
FIQ exception handling code to operate the same way as the IRQ handling
code, with its own handle_arch_fiq handler. Where a root FIQ handler is
not registered, an unexpected FIQ exception will trigger the default FIQ
handler, which will panic() as today. Where a root FIQ handler is
registered, handling of the FIQ is deferred to that handler.
As el0_fiq_invalid_compat is supplanted by el0_fiq, the former is
removed. For !CONFIG_COMPAT builds we never expect to take an exception
from AArch32 EL0, so we keep the common el0_fiq_invalid handler.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Apple SoCs (A11 and newer) have some interrupt sources hardwired to the
FIQ line. We implement support for this by simply treating IRQs and FIQs
the same way in the interrupt vectors.
To support these systems, the FIQ mask bit needs to be kept in sync with
the IRQ mask bit, so both kinds of exceptions are masked together. No
other platforms should be delivering FIQ exceptions right now, and we
already unmask FIQ in normal process context, so this should not have an
effect on other systems - if spurious FIQs were arriving, they would
already panic the kernel.
Signed-off-by: Hector Martin <marcan@marcan.st>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll allow an FIQ handler to be registered, and
FIQ exceptions will need to be triaged very similarly to IRQ exceptions.
So that we can reuse the existing logic, this patch factors the IRQ
triage logic out into macros that can be reused for FIQ.
The macros are named to follow the elX_foo_handler scheme used by the C
exception handlers. For consistency with other top-level exception
handlers, the kernel_entry/kernel_exit logic is not moved into the
macros. As FIQ will use a different C handler, this handler name is
provided as an argument to the macros.
There should be no functional change as a result of this patch.
Signed-off-by: Marc Zyngier <maz@kernel.org>
[Mark: rework macros, commit message, rebase before DAIF rework]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we accidentally unmask IRQs before we've registered a root IRQ
handler, handle_arch_irq will be NULL, and the IRQ exception handler
will branch to a bogus address.
To make this easier to debug, this patch initialises handle_arch_irq to
a default handler which will panic(), making such problems easier to
debug. When we add support for FIQ handlers, we can follow the same
approach.
When we add support for a root FIQ handler, it's possible to have root
IRQ handler without an root FIQ handler, and in theory the inverse is
also possible. To permit this, and to keep the IRQ/FIQ registration
logic similar, this patch removes the panic in the absence of a root IRQ
controller. Instead, set_handle_irq() logs when a handler is registered,
which is sufficient for debug purposes.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Hector Martin <marcan@marcan.st>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210315115629.57191-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>