One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct tp_probes {
...
struct tracepoint_func probes[0];
};
instance = kmalloc(sizeof(sizeof(struct tp_probes) +
sizeof(struct tracepoint_func) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, probes, count) GFP_KERNEL);
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Commit c19fa94a8f ("Add HAVE_64BIT_ALIGNED_ACCESS") added the config for
architectures that required 64bit aligned access for all 64bit words. As
the ftrace ring buffer stores data on 4 byte alignment, this config option
was used to force it to store data on 8 byte alignment to make sure the data
being stored and written directly into the ring buffer was 8 byte aligned as
it would cause issues trying to write an 8 byte word on a 4 not 8 byte
aligned memory location.
But with the removal of the metag architecture, which was the only
architecture to use this, there is no architecture supported by Linux that
requires 8 byte aligne access for all 8 byte words (4 byte alignment is good
enough). Removing this config can simplify the code a bit.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Custom trampolines can only be enabled if there is only a single ops
attached to it. If there's only a single callback registered to a function,
and the ops has a trampoline registered for it, then we can call the
trampoline directly. This is very useful for improving the performance of
ftrace and livepatch.
If more than one callback is registered to a function, the general
trampoline is used, and the custom trampoline is not restored back to the
direct call even if all the other callbacks were unregistered and we are
back to one callback for the function.
To fix this, set FTRACE_FL_TRAMP flag if rec count is decremented
to one, and the ops that left has a trampoline.
Testing After this patch :
insmod livepatch_unshare_files.ko
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0
echo unshare_files > /sys/kernel/debug/tracing/set_ftrace_filter
echo function > /sys/kernel/debug/tracing/current_tracer
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (2) R I ->ftrace_ops_list_func+0x0/0x150
echo nop > /sys/kernel/debug/tracing/current_tracer
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0
Link: http://lkml.kernel.org/r/1556969979-111047-1-git-send-email-cj.chengjian@huawei.com
Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The trace event self tests enable loop through *all* events, enables each
one, one at a time, runs some code to trigger various events (not
necessarily the same events), and checks if anything went wrong. The issue
is that trace events are usually the least likely start up test to cause a
problem, but they take the longest to run (because there are so many
events). When one of the other tests trigger a bug, the trace event start up
tests causes the bisect to take much longer, because it takes 10s of seconds
to get through the trace event tests.
By making them a separate config (even though they are enabled by default if
start up tests are set), it is possible to turn them off and still run the
other tracing start up tests much quicker.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Add kprobe_event= boot parameter to define kprobe events
at boot time.
The definition syntax is similar to tracefs/kprobe_events
interface, but use ',' and ';' instead of ' ' and '\n'
respectively. e.g.
kprobe_event=p,vfs_read,$arg1,$arg2
This puts a probe on vfs_read with argument1 and 2, and
enable the new event.
Link: http://lkml.kernel.org/r/155851395498.15728.830529496248543583.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Initialize kprobes at postcore_initcall level instead of module_init
since kprobes is not a module, and it depends on only subsystems
initialized in core_initcall.
This will allow ftrace kprobe event to add new events when it is
initializing because ftrace kprobe event is initialized at
later initcall level.
Link: http://lkml.kernel.org/r/155851394736.15728.13626739508905120098.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Support user-space dereference syntax for probe event arguments
to dereference the data-structure or array in user-space.
The syntax is just adding 'u' before an offset value.
+|-u<OFFSET>(<FETCHARG>)
e.g. +u8(%ax), +u0(+0(%si))
For example, if you probe do_sched_setscheduler(pid, policy,
param) and record param->sched_priority, you can add new
probe as below;
p do_sched_setscheduler priority=+u0($arg3)
Note that kprobe event provides this and it doesn't change the
dereference method automatically because we do not know whether
the given address is in userspace or kernel on some archs.
So as same as "ustring", this is an option for user, who has to
carefully choose the dereference method.
Link: http://lkml.kernel.org/r/155789872187.26965.4468456816590888687.stgit@devnote2
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Add "ustring" type for fetching user-space string from kprobe event.
User can specify ustring type at uprobe event, and it is same as
"string" for uprobe.
Note that probe-event provides this option but it doesn't choose the
correct type automatically since we have not way to decide the address
is in user-space or not on some arch (and on some other arch, you can
fetch the string by "string" type). So user must carefully check the
target code (e.g. if you see __user on the target variable) and
use this new type.
Link: http://lkml.kernel.org/r/155789871009.26965.14167558859557329331.stgit@devnote2
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Starting with GCC 9, -Warray-bounds detects cases when memset is called
starting on a member of a struct but the size to be cleared ends up
writing over further members.
Such a call happens in the trace code to clear, at once, all members
after and including `seq` on struct trace_iterator:
In function 'memset',
inlined from 'ftrace_dump' at kernel/trace/trace.c:8914:3:
./include/linux/string.h:344:9: warning: '__builtin_memset' offset
[8505, 8560] from the object at 'iter' is out of the bounds of
referenced subobject 'seq' with type 'struct trace_seq' at offset
4368 [-Warray-bounds]
344 | return __builtin_memset(p, c, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to avoid GCC complaining about it, we compute the address
ourselves by adding the offsetof distance instead of referring
directly to the member.
Since there are two places doing this clear (trace.c and trace_kdb.c),
take the chance to move the workaround into a single place in
the internal header.
Link: http://lkml.kernel.org/r/20190523124535.GA12931@gmail.com
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
[ Removed unnecessary parenthesis around "iter" ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Without this check a snapshot is taken whenever a bucket's max is hit,
rather than only when the global max is hit, as it should be.
Before:
In this example, we do a first run of the workload (cyclictest),
examine the output, note the max ('triggering value') (347), then do
a second run and note the max again.
In this case, the max in the second run (39) is below the max in the
first run, but since we haven't cleared the histogram, the first max
is still in the histogram and is higher than any other max, so it
should still be the max for the snapshot. It isn't however - the
value should still be 347 after the second run.
# echo 'hist:keys=pid:ts0=common_timestamp.usecs if comm=="cyclictest"' >> /sys/kernel/debug/tracing/events/sched/sched_waking/trigger
# echo 'hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0:onmax($wakeup_lat).save(next_prio,next_comm,prev_pid,prev_prio,prev_comm):onmax($wakeup_lat).snapshot() if next_comm=="cyclictest"' >> /sys/kernel/debug/tracing/events/sched/sched_switch/trigger
# cyclictest -p 80 -n -s -t 2 -D 2
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2143 } hitcount: 199
max: 44 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/4
{ next_pid: 2145 } hitcount: 1325
max: 38 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/2
{ next_pid: 2144 } hitcount: 1982
max: 347 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
Snapshot taken (see tracing/snapshot). Details:
triggering value { onmax($wakeup_lat) }: 347
triggered by event with key: { next_pid: 2144 }
# cyclictest -p 80 -n -s -t 2 -D 2
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2143 } hitcount: 199
max: 44 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/4
{ next_pid: 2148 } hitcount: 199
max: 16 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/1
{ next_pid: 2145 } hitcount: 1325
max: 38 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/2
{ next_pid: 2150 } hitcount: 1326
max: 39 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/4
{ next_pid: 2144 } hitcount: 1982
max: 347 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
{ next_pid: 2149 } hitcount: 1983
max: 130 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/0
Snapshot taken (see tracing/snapshot). Details:
triggering value { onmax($wakeup_lat) }: 39
triggered by event with key: { next_pid: 2150 }
After:
In this example, we do a first run of the workload (cyclictest),
examine the output, note the max ('triggering value') (375), then do
a second run and note the max again.
In this case, the max in the second run is still 375, the highest in
any bucket, as it should be.
# cyclictest -p 80 -n -s -t 2 -D 2
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2072 } hitcount: 200
max: 28 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/5
{ next_pid: 2074 } hitcount: 1323
max: 375 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/2
{ next_pid: 2073 } hitcount: 1980
max: 153 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
Snapshot taken (see tracing/snapshot). Details:
triggering value { onmax($wakeup_lat) }: 375
triggered by event with key: { next_pid: 2074 }
# cyclictest -p 80 -n -s -t 2 -D 2
# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
{ next_pid: 2101 } hitcount: 199
max: 49 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
{ next_pid: 2072 } hitcount: 200
max: 28 next_prio: 120 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/5
{ next_pid: 2074 } hitcount: 1323
max: 375 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/2
{ next_pid: 2103 } hitcount: 1325
max: 74 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/4
{ next_pid: 2073 } hitcount: 1980
max: 153 next_prio: 19 next_comm: cyclictest
prev_pid: 0 prev_prio: 120 prev_comm: swapper/6
{ next_pid: 2102 } hitcount: 1981
max: 84 next_prio: 19 next_comm: cyclictest
prev_pid: 12 prev_prio: 120 prev_comm: kworker/0:1
Snapshot taken (see tracing/snapshot). Details:
triggering value { onmax($wakeup_lat) }: 375
triggered by event with key: { next_pid: 2074 }
Link: http://lkml.kernel.org/r/95958351329f129c07504b4d1769c47a97b70d65.1555597045.git.tom.zanussi@linux.intel.com
Cc: stable@vger.kernel.org
Fixes: a3785b7eca ("tracing: Add hist trigger snapshot() action")
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
hist_field_var_ref() is an implementation of hist_field_fn_t(), which
can be called with a null tracing_map_elt elt param when assembling a
key in event_hist_trigger().
In the case of hist_field_var_ref() this doesn't make sense, because a
variable can only be resolved by looking it up using an already
assembled key i.e. a variable can't be used to assemble a key since
the key is required in order to access the variable.
Upper layers should prevent the user from constructing a key using a
variable in the first place, but in case one slips through, it
shouldn't cause a NULL pointer dereference. Also if one does slip
through, we want to know about it, so emit a one-time warning in that
case.
Link: http://lkml.kernel.org/r/64ec8dc15c14d305295b64cdfcc6b2b9dd14753f.1555597045.git.tom.zanussi@linux.intel.com
Reported-by: Vincent Bernat <vincent@bernat.ch>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Merge yet more updates from Andrew Morton:
"A few final bits:
- large changes to vmalloc, yielding large performance benefits
- tweak the console-flush-on-panic code
- a few fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
panic: add an option to replay all the printk message in buffer
initramfs: don't free a non-existent initrd
fs/writeback.c: use rcu_barrier() to wait for inflight wb switches going into workqueue when umount
mm/compaction.c: correct zone boundary handling when isolating pages from a pageblock
mm/vmap: add DEBUG_AUGMENT_LOWEST_MATCH_CHECK macro
mm/vmap: add DEBUG_AUGMENT_PROPAGATE_CHECK macro
mm/vmalloc.c: keep track of free blocks for vmap allocation
Pull IRQ chip updates from Ingo Molnar:
"A late irqchips update:
- New TI INTR/INTA set of drivers
- Rewrite of the stm32mp1-exti driver as a platform driver
- Update the IOMMU MSI mapping API to be RT friendly
- A number of cleanups and other low impact fixes"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
iommu/dma-iommu: Remove iommu_dma_map_msi_msg()
irqchip/gic-v3-mbi: Don't map the MSI page in mbi_compose_m{b, s}i_msg()
irqchip/ls-scfg-msi: Don't map the MSI page in ls_scfg_msi_compose_msg()
irqchip/gic-v3-its: Don't map the MSI page in its_irq_compose_msi_msg()
irqchip/gicv2m: Don't map the MSI page in gicv2m_compose_msi_msg()
iommu/dma-iommu: Split iommu_dma_map_msi_msg() in two parts
genirq/msi: Add a new field in msi_desc to store an IOMMU cookie
arm64: arch_k3: Enable interrupt controller drivers
irqchip/ti-sci-inta: Add msi domain support
soc: ti: Add MSI domain bus support for Interrupt Aggregator
irqchip/ti-sci-inta: Add support for Interrupt Aggregator driver
dt-bindings: irqchip: Introduce TISCI Interrupt Aggregator bindings
irqchip/ti-sci-intr: Add support for Interrupt Router driver
dt-bindings: irqchip: Introduce TISCI Interrupt router bindings
gpio: thunderx: Use the default parent apis for {request,release}_resources
genirq: Introduce irq_chip_{request,release}_resource_parent() apis
firmware: ti_sci: Add helper apis to manage resources
firmware: ti_sci: Add RM mapping table for am654
firmware: ti_sci: Add support for IRQ management
firmware: ti_sci: Add support for RM core ops
...
Pull cgroup fix from Tejun Heo:
"The cgroup2 freezer pulled in this cycle broke strace. This pull
request includes a workaround for the problem.
It's not a complete fix in that it may cause spurious frozen state
flip-flops which is fairly minor. Will push a full fix once it's
ready"
* 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
signal: unconditionally leave the frozen state in ptrace_stop()
Pull time fixes from Ingo Molnar:
"A TIA adjtimex interface extension, and a POSIX compliance ABI fix for
timespec64 users"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ntp: Allow TAI-UTC offset to be set to zero
y2038: Make CONFIG_64BIT_TIME unconditional
Pull locking fix from Ingo Molnar:
"A single rwsem fix"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rwsem: Prevent decrement of reader count before increment
Alex Xu reported a regression in strace, caused by the introduction of
the cgroup v2 freezer. The regression can be reproduced by stracing
the following simple program:
#include <unistd.h>
int main() {
write(1, "a", 1);
return 0;
}
An attempt to run strace ./a.out leads to the infinite loop:
[ pre-main omitted ]
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
write(1, "a", 1) = ? ERESTARTSYS (To be restarted if SA_RESTART is set)
[ repeats forever ]
The problem occurs because the traced task leaves ptrace_stop()
(and the signal handling loop) with the frozen bit set. So let's
call cgroup_leave_frozen(true) unconditionally after sleeping
in ptrace_stop().
With this patch applied, strace works as expected:
[ pre-main omitted ]
write(1, "a", 1) = 1
exit_group(0) = ?
+++ exited with 0 +++
Reported-by: Alex Xu <alex_y_xu@yahoo.ca>
Fixes: 76f969e894 ("cgroup: cgroup v2 freezer")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull tracing updates from Steven Rostedt:
"The major changes in this tracing update includes:
- Removal of non-DYNAMIC_FTRACE from 32bit x86
- Removal of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on
config options
And other minor fixes and clean ups"
* tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
x86: Hide the int3_emulate_call/jmp functions from UML
livepatch: Remove klp_check_compiler_support()
ftrace/x86: Remove mcount support
ftrace/x86_32: Remove support for non DYNAMIC_FTRACE
tracing: Simplify "if" macro code
tracing: Fix documentation about disabling options using trace_options
tracing: Replace kzalloc with kcalloc
tracing: Fix partial reading of trace event's id file
tracing: Allow RCU to run between postponed startup tests
tracing: Fix white space issues in parse_pred() function
tracing: Eliminate const char[] auto variables
ring-buffer: Fix mispelling of Calculate
tracing: probeevent: Fix to make the type of $comm string
tracing: probeevent: Do not accumulate on ret variable
tracing: uprobes: Re-enable $comm support for uprobe events
ftrace/x86_64: Emulate call function while updating in breakpoint handler
x86_64: Allow breakpoints to emulate call instructions
x86_64: Add gap to int3 to allow for call emulation
tracing: kdb: Allow ftdump to skip all but the last few entries
tracing: Add trace_total_entries() / trace_total_entries_cpu()
...
Merge more updates from Andrew Morton:
- a couple of hotfixes
- almost all of the rest of MM
- lib/ updates
- binfmt_elf updates
- autofs updates
- quite a lot of misc fixes and updates
- reiserfs, fatfs
- signals
- exec
- cpumask
- rapidio
- sysctl
- pids
- eventfd
- gcov
- panic
- pps
- gdb script updates
- ipc updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (126 commits)
mm: memcontrol: fix NUMA round-robin reclaim at intermediate level
mm: memcontrol: fix recursive statistics correctness & scalabilty
mm: memcontrol: move stat/event counting functions out-of-line
mm: memcontrol: make cgroup stats and events query API explicitly local
drivers/virt/fsl_hypervisor.c: prevent integer overflow in ioctl
drivers/virt/fsl_hypervisor.c: dereferencing error pointers in ioctl
mm, memcg: rename ambiguously named memory.stat counters and functions
arch: remove <asm/sizes.h> and <asm-generic/sizes.h>
treewide: replace #include <asm/sizes.h> with #include <linux/sizes.h>
fs/block_dev.c: Remove duplicate header
fs/cachefiles/namei.c: remove duplicate header
include/linux/sched/signal.h: replace `tsk' with `task'
fs/coda/psdev.c: remove duplicate header
ipc: do cyclic id allocation for the ipc object.
ipc: conserve sequence numbers in ipcmni_extend mode
ipc: allow boot time extension of IPCMNI from 32k to 16M
ipc/mqueue: optimize msg_get()
ipc/mqueue: remove redundant wq task assignment
ipc: prevent lockup on alloc_msg and free_msg
scripts/gdb: print cached rate in lx-clk-summary
...
When kernel panic happens, it will first print the panic call stack,
then the ending msg like:
[ 35.743249] ---[ end Kernel panic - not syncing: Fatal exception
[ 35.749975] ------------[ cut here ]------------
The above message are very useful for debugging.
But if system is configured to not reboot on panic, say the
"panic_timeout" parameter equals 0, it will likely print out many noisy
message like WARN() call stack for each and every CPU except the panic
one, messages like below:
WARNING: CPU: 1 PID: 280 at kernel/sched/core.c:1198 set_task_cpu+0x183/0x190
Call Trace:
<IRQ>
try_to_wake_up
default_wake_function
autoremove_wake_function
__wake_up_common
__wake_up_common_lock
__wake_up
wake_up_klogd_work_func
irq_work_run_list
irq_work_tick
update_process_times
tick_sched_timer
__hrtimer_run_queues
hrtimer_interrupt
smp_apic_timer_interrupt
apic_timer_interrupt
For people working in console mode, the screen will first show the panic
call stack, but immediately overridden by these noisy extra messages,
which makes debugging much more difficult, as the original context gets
lost on screen.
Also these noisy messages will confuse some users, as I have seen many bug
reporters posted the noisy message into bugzilla, instead of the real
panic call stack and context.
Adding a flag "suppress_printk" which gets set in panic() to avoid those
noisy messages, without changing current kernel behavior that both panic
blinking and sysrq magic key can work as is, suggested by Petr Mladek.
To verify this, make sure kernel is not configured to reboot on panic and
in console
# echo c > /proc/sysrq-trigger
to see if console only prints out the panic call stack.
Link: http://lkml.kernel.org/r/1551430186-24169-1-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LLVM uses profiling data that's deliberately similar to GCC, but has a
very different way of exporting that data. LLVM calls llvm_gcov_init()
once per module, and provides a couple of callbacks that we can use to
ask for more data.
We care about the "writeout" callback, which in turn calls back into
compiler-rt/this module to dump all the gathered coverage data to disk:
llvm_gcda_start_file()
llvm_gcda_emit_function()
llvm_gcda_emit_arcs()
llvm_gcda_emit_function()
llvm_gcda_emit_arcs()
[... repeats for each function ...]
llvm_gcda_summary_info()
llvm_gcda_end_file()
This design is much more stateless and unstructured than gcc's, and is
intended to run at process exit. This forces us to keep some local
state about which module we're dealing with at the moment. On the other
hand, it also means we don't depend as much on how LLVM represents
profiling data internally.
See LLVM's lib/Transforms/Instrumentation/GCOVProfiling.cpp for more
details on how this works, particularly GCOVProfiler::emitProfileArcs(),
GCOVProfiler::insertCounterWriteout(), and GCOVProfiler::insertFlush().
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190417225328.208129-1-trong@android.com
Signed-off-by: Greg Hackmann <ghackmann@android.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Tri Vo <trong@android.com>
Co-developed-by: Nick Desaulniers <ndesaulniers@google.com>
Co-developed-by: Tri Vo <trong@android.com>
Tested-by: Trilok Soni <tsoni@quicinc.com>
Tested-by: Prasad Sodagudi <psodagud@quicinc.com>
Tested-by: Tri Vo <trong@android.com>
Tested-by: Daniel Mentz <danielmentz@google.com>
Tested-by: Petri Gynther <pgynther@google.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Today, proc_do_large_bitmap() truncates a large write input buffer to
PAGE_SIZE - 1, which may result in misparsed numbers at the (truncated)
end of the buffer. Further, it fails to notify the caller that the
buffer was truncated, so it doesn't get called iteratively to finish the
entire input buffer.
Tell the caller if there's more work to do by adding the skipped amount
back to left/*lenp before returning.
To fix the misparsing, reset the position if we have completely consumed
a truncated buffer (or if just one char is left, which may be a "-" in a
range), and ask the caller to come back for more.
Link: http://lkml.kernel.org/r/20190320222831.8243-7-mcgrof@kernel.org
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. In latencytop source codes, we only have such calling chain:
account_scheduler_latency(struct task_struct *task, int usecs, int inter)
{
if (unlikely(latencytop_enabled)) /* the outtermost check */
__account_scheduler_latency(task, usecs, inter);
}
__account_scheduler_latency
account_global_scheduler_latency
if (!latencytop_enabled)
So, the inner check for latencytop_enabled is not necessary at all.
2. In clear_all_latency_tracing and now is called
clear_tsk_latency_tracing the check for latencytop_enabled is redundant
and buggy to some extent.
We have no reason to refuse clearing the /proc/$pid/latency if
latencytop_enabled is set to 0, considering that if we use latencytop
manually by echo 0 > /proc/sys/kernel/latencytop, then we want to clear
/proc/$pid/latency and failed.
Also we don't have such check in brother function
clear_global_latency_tracing.
Notes: These changes are only visible to users who set
CONFIG_LATENCYTOP and won't change user tool latencytop's behavior.
Link: http://lkml.kernel.org/r/20190226114602.16902-2-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By design notifiers can be registerd once only, 2nd register attempt
called by mistake silently corrupts notifiers list.
A few years ago I investigated described problem, the host was power
cycled because of notifier list corruption. I've prepared this patch
and applied it to the OpenVZ kernel and sent this patch but nobody
commented on it. Later it helped us to detect a similar problem in the
OpenVz kernel.
Mistakes with notifier registration can happen for example during
subsystem initialization from different namespaces, or because of a lost
unregister in the roll-back path on initialization failures.
The proposed check cannot prevent the described problem, however it
allows us to detect its reason quickly without coredump analysis.
Link: http://lkml.kernel.org/r/04127e71-4782-9bbb-fe5a-7c01e93a99b0@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Psi monitor aims to provide a low-latency short-term pressure detection
mechanism configurable by users. It allows users to monitor psi metrics
growth and trigger events whenever a metric raises above user-defined
threshold within user-defined time window.
Time window and threshold are both expressed in usecs. Multiple psi
resources with different thresholds and window sizes can be monitored
concurrently.
Psi monitors activate when system enters stall state for the monitored
psi metric and deactivate upon exit from the stall state. While system
is in the stall state psi signal growth is monitored at a rate of 10
times per tracking window. Min window size is 500ms, therefore the min
monitoring interval is 50ms. Max window size is 10s with monitoring
interval of 1s.
When activated psi monitor stays active for at least the duration of one
tracking window to avoid repeated activations/deactivations when psi
signal is bouncing.
Notifications to the users are rate-limited to one per tracking window.
Link: http://lkml.kernel.org/r/20190319235619.260832-8-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>