APICV_INHIBIT_REASON_HYPERV is currently unconditionally forced upon
SynIC activation as SynIC's AutoEOI is incompatible with APICv/AVIC. It is,
however, possible to track whether the feature was actually used by the
guest and only inhibit APICv/AVIC when needed.
TLFS suggests a dedicated 'HV_DEPRECATING_AEOI_RECOMMENDED' flag to let
Windows know that AutoEOI feature should be avoided. While it's up to
KVM userspace to set the flag, KVM can help a bit by exposing global
APICv/AVIC enablement.
Maxim:
- always set HV_DEPRECATING_AEOI_RECOMMENDED in kvm_get_hv_cpuid,
since this feature can be used regardless of AVIC
Paolo:
- use arch.apicv_update_lock to protect the hv->synic_auto_eoi_used
instead of atomic ops
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-12-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is never a good idea to enter a guest on a vCPU when the
AVIC inhibition state doesn't match the enablement of
the AVIC on the vCPU.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-11-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently on SVM, the kvm_request_apicv_update toggles the APICv
memslot without doing any synchronization.
If there is a mismatch between that memslot state and the AVIC state,
on one of the vCPUs, an APIC mmio access can be lost:
For example:
VCPU0: enable the APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
VCPU1: access an APIC mmio register.
Since AVIC is still disabled on VCPU1, the access will not be intercepted
by it, and neither will it cause MMIO fault, but rather it will just be
read/written from/to the dummy page mapped into the
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT.
Fix that by adding a lock guarding the AVIC state changes, and carefully
order the operations of kvm_request_apicv_update to avoid this race:
1. Take the lock
2. Send KVM_REQ_APICV_UPDATE
3. Update the apic inhibit reason
4. Release the lock
This ensures that at (2) all vCPUs are kicked out of the guest mode,
but don't yet see the new avic state.
Then only after (4) all other vCPUs can update their AVIC state and resume.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
on AMD, APIC virtualization needs to dynamicaly inhibit the AVIC in a
response to some events, and this is problematic and not efficient to do by
enabling/disabling the memslot that covers APIC's mmio range.
Plus due to SRCU locking, it makes it more complex to
request AVIC inhibition.
Instead, the APIC memslot will be always enabled, but be invisible
to the guest, such as the MMU code will not install a SPTE for it,
when it is inhibited and instead jump straight to emulating the access.
When inhibiting the AVIC, this SPTE will be zapped.
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will allow it to return RET_PF_EMULATE for APIC mmio
emulation.
This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
try_async_pf is a wrong name for this function, since this code
is used when asynchronous page fault is not enabled as well.
This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This together with previous patch, ensures that
kvm_zap_gfn_range doesn't race with page fault
running on another vcpu, and will make this page fault code
retry instead.
This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This comment makes it clear that the range of gfns that this
function receives is non inclusive.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_flush_remote_tlbs_with_address expects (start gfn, number of pages),
and not (start gfn, end gfn)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.
The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().
Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.
MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).
This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use this file to dump rmap statistic information. The statistic is done by
calculating the rmap count and the result is log-2-based.
An example output of this looks like (idle 6GB guest, right after boot linux):
Rmap_Count: 0 1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1023
Level=4K: 3086676 53045 12330 1272 502 121 76 2 0 0 0
Level=2M: 5947 231 0 0 0 0 0 0 0 0 0
Level=1G: 32 0 0 0 0 0 0 0 0 0 0
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce kvm_mmu_slot_lpages() to calculcate lpage_info and rmap array size.
The other __kvm_mmu_slot_lpages() can take an extra parameter of npages rather
than fetching from the memslot pointer. Start to use the latter one in
kvm_alloc_memslot_metadata().
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.
Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.
Fixes: 89c8a4984f ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Invert the mask of bits that we pick from L2 in
nested_vmcb02_prepare_control
* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr
This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.
Fixes: 3d6368ef58 ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear nested.pi_pending on nested VM-Enter even if L2 will run without
posted interrupts enabled. If nested.pi_pending is left set from a
previous L2, vmx_complete_nested_posted_interrupt() will pick up the
stale flag and exit to userspace with an "internal emulation error" due
the new L2 not having a valid nested.pi_desc.
Arguably, vmx_complete_nested_posted_interrupt() should first check for
posted interrupts being enabled, but it's also completely reasonable that
KVM wouldn't screw up a fundamental flag. Not to mention that the mere
existence of nested.pi_pending is a long-standing bug as KVM shouldn't
move the posted interrupt out of the IRR until it's actually processed,
e.g. KVM effectively drops an interrupt when it performs a nested VM-Exit
with a "pending" posted interrupt. Fixing the mess is a future problem.
Prior to vmx_complete_nested_posted_interrupt() interpreting a null PI
descriptor as an error, this was a benign bug as the null PI descriptor
effectively served as a check on PI not being enabled. Even then, the
new flow did not become problematic until KVM started checking the result
of kvm_check_nested_events().
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Fixes: 966eefb896 ("KVM: nVMX: Disable vmcs02 posted interrupts if vmcs12 PID isn't mappable")
Fixes: 47d3530f86c0 ("KVM: x86: Exit to userspace when kvm_check_nested_events fails")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810144526.2662272-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ROL16(val, n) macro is repeatedly defined in several vmcs-related
files, and it has never been used outside the KVM context.
Let's move it to vmcs.h without any intended functional changes.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210809093410.59304-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic). Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that nested VMX pulls KVM's desired VMCS controls from vmcs01 instead
of re-calculating on the fly, bury the helpers that do the calcluations
in vmx.c.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the secondary execution controls cache now that it's effectively
dead code; it is only read immediately after it is written.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When preparing controls for vmcs02, grab KVM's desired controls from
vmcs01's shadow state instead of recalculating the controls from scratch,
or in the secondary execution controls, instead of using the dedicated
cache. Calculating secondary exec controls is eye-poppingly expensive
due to the guest CPUID checks, hence the dedicated cache, but the other
calculations aren't exactly free either.
Explicitly clear several bits (x2APIC, DESC exiting, and load EFER on
exit) as appropriate as they may be set in vmcs01, whereas the previous
implementation relied on dynamic bits being cleared in the calculator.
Intentionally propagate VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL from
vmcs01 to vmcs02. Whether or not PERF_GLOBAL_CTRL is loaded depends on
whether or not perf itself is active, so unless perf stops between the
exit from L1 and entry to L2, vmcs01 will hold the desired value. This
is purely an optimization as atomic_switch_perf_msrs() will set/clear
the control as needed at VM-Enter, i.e. it avoids two extra VMWRITEs in
the case where perf is active (versus starting with the bits clear in
vmcs02, which was the previous behavior).
Cc: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit efdab99281 ("KVM: x86: fix escape of guest dr6 to the host")
fixed a bug by resetting DR6 unconditionally when the vcpu being scheduled out.
But writing to debug registers is slow, and it can be visible in perf results
sometimes, even if neither the host nor the guest activate breakpoints.
Since KVM_DEBUGREG_WONT_EXIT on Intel processors is the only case
where DR6 gets the guest value, and it never happens at all on SVM,
the register can be cleared in vmx.c right after reading it.
Reported-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit c77fb5fe6f ("KVM: x86: Allow the guest to run with dirty debug
registers") allows the guest accessing to DRs without exiting when
KVM_DEBUGREG_WONT_EXIT and we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before the commit.
But the commit sets the hardware DR6 not only when KVM_DEBUGREG_WONT_EXIT,
but also when KVM_DEBUGREG_BP_ENABLED. The second case is unnecessary
and just leads to a more case which leaks stale DR6 to the host which has
to be resolved by unconditionally reseting DR6 in kvm_arch_vcpu_put().
Even if KVM_DEBUGREG_WONT_EXIT, however, setting the host DR6 only matters
on VMX because SVM always uses the DR6 value from the VMCB. So move this
line to vmx.c and make it conditional on KVM_DEBUGREG_WONT_EXIT.
Reported-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ae561edeb4 ("KVM: x86: DR0-DR3 are not clear on reset") added code to
ensure eff_db are updated when they're modified through non-standard paths.
But there is no reason to also update hardware DRs unless hardware breakpoints
are active or DR exiting is disabled, and in those cases updating hardware is
handled by KVM_DEBUGREG_WONT_EXIT and KVM_DEBUGREG_BP_ENABLED.
KVM_DEBUGREG_RELOAD just causes unnecesarry load of hardware DRs and is better
to be removed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210809174307.145263-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync. When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault. The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.
Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations. But underflow is the best case scenario. The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.
Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok. Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.
For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write. If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.
Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault. I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled. Holding mmu_lock for read also
prevents the indirect shadow page from being freed. But as above, keep
it simple and always take the lock.
Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP. Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).
Alternative #2, the unsync logic could be made thread safe. In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice. However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).
Fixes: a2855afc7e ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the min_level for the TDP iterator at the root level when zapping all
SPTEs to optimize the iterator's try_step_down(). Zapping a non-leaf
SPTE will recursively zap all its children, thus there is no need for the
iterator to attempt to step down. This avoids rereading the top-level
SPTEs after they are zapped by causing try_step_down() to short-circuit.
In most cases, optimizing try_step_down() will be in the noise as the cost
of zapping SPTEs completely dominates the overall time. The optimization
is however helpful if the zap occurs with relatively few SPTEs, e.g. if KVM
is zapping in response to multiple memslot updates when userspace is adding
and removing read-only memslots for option ROMs. In that case, the task
doing the zapping likely isn't a vCPU thread, but it still holds mmu_lock
for read and thus can be a noisy neighbor of sorts.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass "all ones" as the end GFN to signal "zap all" for the TDP MMU and
really zap all SPTEs in this case. As is, zap_gfn_range() skips non-leaf
SPTEs whose range exceeds the range to be zapped. If shadow_phys_bits is
not aligned to the range size of top-level SPTEs, e.g. 512gb with 4-level
paging, the "zap all" flows will skip top-level SPTEs whose range extends
beyond shadow_phys_bits and leak their SPs when the VM is destroyed.
Use the current upper bound (based on host.MAXPHYADDR) to detect that the
caller wants to zap all SPTEs, e.g. instead of using the max theoretical
gfn, 1 << (52 - 12). The more precise upper bound allows the TDP iterator
to terminate its walk earlier when running on hosts with MAXPHYADDR < 52.
Add a WARN on kmv->arch.tdp_mmu_pages when the TDP MMU is destroyed to
help future debuggers should KVM decide to leak SPTEs again.
The bug is most easily reproduced by running (and unloading!) KVM in a
VM whose host.MAXPHYADDR < 39, as the SPTE for gfn=0 will be skipped.
=============================================================================
BUG kvm_mmu_page_header (Not tainted): Objects remaining in kvm_mmu_page_header on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Slab 0x000000004d8f7af1 objects=22 used=2 fp=0x00000000624d29ac flags=0x4000000000000200(slab|zone=1)
CPU: 0 PID: 1582 Comm: rmmod Not tainted 5.14.0-rc2+ #420
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack_lvl+0x45/0x59
slab_err+0x95/0xc9
__kmem_cache_shutdown.cold+0x3c/0x158
kmem_cache_destroy+0x3d/0xf0
kvm_mmu_module_exit+0xa/0x30 [kvm]
kvm_arch_exit+0x5d/0x90 [kvm]
kvm_exit+0x78/0x90 [kvm]
vmx_exit+0x1a/0x50 [kvm_intel]
__x64_sys_delete_module+0x13f/0x220
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_need_pf_intercept() when determining if L0 wants to handle a #PF
in L2 or if the VM-Exit should be forwarded to L1. The current logic fails
to account for the case where #PF is intercepted to handle
guest.MAXPHYADDR < host.MAXPHYADDR and ends up reflecting all #PFs into
L1. At best, L1 will complain and inject the #PF back into L2. At
worst, L1 will eat the unexpected fault and cause L2 to hang on infinite
page faults.
Note, while the bug was technically introduced by the commit that added
support for the MAXPHYADDR madness, the shame is all on commit
a0c134347b ("KVM: VMX: introduce vmx_need_pf_intercept").
Fixes: 1dbf5d68af ("KVM: VMX: Add guest physical address check in EPT violation and misconfig")
Cc: stable@vger.kernel.org
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812045615.3167686-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a nested EPT violation/misconfig is injected into the guest,
the shadow EPT PTEs associated with that address need to be synced.
This is done by kvm_inject_emulated_page_fault() before it calls
nested_ept_inject_page_fault(). However, that will only sync the
shadow EPT PTE associated with the current L1 EPTP. Since the ASID
is based on EP4TA rather than the full EPTP, so syncing the current
EPTP is not enough. The SPTEs associated with any other L1 EPTPs
in the prev_roots cache with the same EP4TA also need to be synced.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20210806222229.1645356-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
hv_vcpu is initialized again a dozen lines below, and at this
point vcpu->arch.hyperv is not valid. Remove the initializer.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove an ancient restriction that disallowed exposing EFER.NX to the
guest if EFER.NX=0 on the host, even if NX is fully supported by the CPU.
The motivation of the check, added by commit 2cc51560ae ("KVM: VMX:
Avoid saving and restoring msr_efer on lightweight vmexit"), was to rule
out the case of host.EFER.NX=0 and guest.EFER.NX=1 so that KVM could run
the guest with the host's EFER.NX and thus avoid context switching EFER
if the only divergence was the NX bit.
Fast forward to today, and KVM has long since stopped running the guest
with the host's EFER.NX. Not only does KVM context switch EFER if
host.EFER.NX=1 && guest.EFER.NX=0, KVM also forces host.EFER.NX=0 &&
guest.EFER.NX=1 when using shadow paging (to emulate SMEP). Furthermore,
the entire motivation for the restriction was made obsolete over a decade
ago when Intel added dedicated host and guest EFER fields in the VMCS
(Nehalem timeframe), which reduced the overhead of context switching EFER
from 400+ cycles (2 * WRMSR + 1 * RDMSR) to a mere ~2 cycles.
In practice, the removed restriction only affects non-PAE 32-bit kernels,
as EFER.NX is set during boot if NX is supported and the kernel will use
PAE paging (32-bit or 64-bit), regardless of whether or not the kernel
will actually use NX itself (mark PTEs non-executable).
Alternatively and/or complementarily, startup_32_smp() in head_32.S could
be modified to set EFER.NX=1 regardless of paging mode, thus eliminating
the scenario where NX is supported but not enabled. However, that runs
the risk of breaking non-KVM non-PAE kernels (though the risk is very,
very low as there are no known EFER.NX errata), and also eliminates an
easy-to-use mechanism for stressing KVM's handling of guest vs. host EFER
across nested virtualization transitions.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210805183804.1221554-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The proper spelling for the acronym referring to the Edge/Level Control
Register is ELCR rather than ECLR. Adjust references accordingly. No
functional change.
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2107200251080.9461@angie.orcam.me.uk
Use the secondary_exec_controls_get() accessor in vmx_has_waitpkg() to
effectively get the controls for the current VMCS, as opposed to using
vmx->secondary_exec_controls, which is the cached value of KVM's desired
controls for vmcs01 and truly not reflective of any particular VMCS.
While the waitpkg control is not dynamic, i.e. vmcs01 will always hold
the same waitpkg configuration as vmx->secondary_exec_controls, the same
does not hold true for vmcs02 if the L1 VMM hides the feature from L2.
If L1 hides the feature _and_ does not intercept MSR_IA32_UMWAIT_CONTROL,
L2 could incorrectly read/write L1's virtual MSR instead of taking a #GP.
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gfn_to_rmap was removed in the previous patch so there is no need to
retain the double underscore on __gfn_to_rmap.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
rmap_add() and rmap_recycle() both run in the context of the vCPU and
thus we can use kvm_vcpu_gfn_to_memslot() to look up the memslot. This
enables rmap_add() and rmap_recycle() to take advantage of
vcpu->last_used_slot and avoid expensive memslot searching.
This change improves the performance of "Populate memory time" in
dirty_log_perf_test with tdp_mmu=N. In addition to improving the
performance, "Populate memory time" no longer scales with the number
of memslots in the VM.
Command | Before | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x1 | 15.18001570s | 14.99469366s
./dirty_log_perf_test -v64 -x64 | 18.71336392s | 14.98675076s
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing TDP MMU methods to handle dirty logging are vcpu-agnostic
since they can be driven by MMU notifiers and other non-vcpu-specific
events in addition to page faults. However this means that the TDP MMU
is not benefiting from the new vcpu->last_used_slot. Fix that by
introducing a tdp_mmu_map_set_spte_atomic() which is only called during
a TDP page fault and has access to the kvm_vcpu for fast slot lookups.
This improves "Populate memory time" in dirty_log_perf_test by 5%:
Command | Before | After
------------------------------- | ---------------- | -------------
./dirty_log_perf_test -v64 -x64 | 5.472321072s | 5.169832886s
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210804222844.1419481-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take a signed 'long' instead of an 'unsigned long' for the number of
pages to add/subtract to the total number of pages used by the MMU. This
fixes a zero-extension bug on 32-bit kernels that effectively corrupts
the per-cpu counter used by the shrinker.
Per-cpu counters take a signed 64-bit value on both 32-bit and 64-bit
kernels, whereas kvm_mod_used_mmu_pages() takes an unsigned long and thus
an unsigned 32-bit value on 32-bit kernels. As a result, the value used
to adjust the per-cpu counter is zero-extended (unsigned -> signed), not
sign-extended (signed -> signed), and so KVM's intended -1 gets morphed to
4294967295 and effectively corrupts the counter.
This was found by a staggering amount of sheer dumb luck when running
kvm-unit-tests on a 32-bit KVM build. The shrinker just happened to kick
in while running tests and do_shrink_slab() logged an error about trying
to free a negative number of objects. The truly lucky part is that the
kernel just happened to be a slightly stale build, as the shrinker no
longer yells about negative objects as of commit 18bb473e50 ("mm:
vmscan: shrink deferred objects proportional to priority").
vmscan: shrink_slab: mmu_shrink_scan+0x0/0x210 [kvm] negative objects to delete nr=-858993460
Fixes: bc8a3d8925 ("kvm: mmu: Fix overflow on kvm mmu page limit calculation")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210804214609.1096003-1-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gfn_to_hva_cache is not thread-safe, so it is usually used only within
a vCPU (whose code is protected by vcpu->mutex). The Xen interface
implementation has such a cache in kvm->arch, but it is not really
used except to store the location of the shared info page. Replace
shinfo_set and shinfo_cache with just the value that is passed via
KVM_XEN_ATTR_TYPE_SHARED_INFO; the only complication is that the
initialization value is not zero anymore and therefore kvm_xen_init_vm
needs to be introduced.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM SEV code uses bitmaps to manage ASID states. ASID 0 was always skipped
because it is never used by VM. Thus, in existing code, ASID value and its
bitmap postion always has an 'offset-by-1' relationship.
Both SEV and SEV-ES shares the ASID space, thus KVM uses a dynamic range
[min_asid, max_asid] to handle SEV and SEV-ES ASIDs separately.
Existing code mixes the usage of ASID value and its bitmap position by
using the same variable called 'min_asid'.
Fix the min_asid usage: ensure that its usage is consistent with its name;
allocate extra size for ASID 0 to ensure that each ASID has the same value
with its bitmap position. Add comments on ASID bitmap allocation to clarify
the size change.
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Marc Orr <marcorr@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Alper Gun <alpergun@google.com>
Cc: Dionna Glaze <dionnaglaze@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vipin Sharma <vipinsh@google.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20210802180903.159381-1-mizhang@google.com>
[Fix up sev_asid_free to also index by ASID, as suggested by Sean
Christopherson, and use nr_asids in sev_cpu_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the raw ASID, not ASID-1, when nullifying the last used VMCB when
freeing an SEV ASID. The consumer, pre_sev_run(), indexes the array by
the raw ASID, thus KVM could get a false negative when checking for a
different VMCB if KVM manages to reallocate the same ASID+VMCB combo for
a new VM.
Note, this cannot cause a functional issue _in the current code_, as
pre_sev_run() also checks which pCPU last did VMRUN for the vCPU, and
last_vmentry_cpu is initialized to -1 during vCPU creation, i.e. is
guaranteed to mismatch on the first VMRUN. However, prior to commit
8a14fe4f0c ("kvm: x86: Move last_cpu into kvm_vcpu_arch as
last_vmentry_cpu"), SVM tracked pCPU on its own and zero-initialized the
last_cpu variable. Thus it's theoretically possible that older versions
of KVM could miss a TLB flush if the first VMRUN is on pCPU0 and the ASID
and VMCB exactly match those of a prior VM.
Fixes: 70cd94e60c ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on our observations, after any vm-exit associated with vPMU, there
are at least two or more perf interfaces to be called for guest counter
emulation, such as perf_event_{pause, read_value, period}(), and each one
will {lock, unlock} the same perf_event_ctx. The frequency of calls becomes
more severe when guest use counters in a multiplexed manner.
Holding a lock once and completing the KVM request operations in the perf
context would introduce a set of impractical new interfaces. So we can
further optimize the vPMU implementation by avoiding repeated calls to
these interfaces in the KVM context for at least one pattern:
After we call perf_event_pause() once, the event will be disabled and its
internal count will be reset to 0. So there is no need to pause it again
or read its value. Once the event is paused, event period will not be
updated until the next time it's resumed or reprogrammed. And there is
also no need to call perf_event_period twice for a non-running counter,
considering the perf_event for a running counter is never paused.
Based on this implementation, for the following common usage of
sampling 4 events using perf on a 4u8g guest:
echo 0 > /proc/sys/kernel/watchdog
echo 25 > /proc/sys/kernel/perf_cpu_time_max_percent
echo 10000 > /proc/sys/kernel/perf_event_max_sample_rate
echo 0 > /proc/sys/kernel/perf_cpu_time_max_percent
for i in `seq 1 1 10`
do
taskset -c 0 perf record \
-e cpu-cycles -e instructions -e branch-instructions -e cache-misses \
/root/br_instr a
done
the average latency of the guest NMI handler is reduced from
37646.7 ns to 32929.3 ns (~1.14x speed up) on the Intel ICX server.
Also, in addition to collecting more samples, no loss of sampling
accuracy was observed compared to before the optimization.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210728120705.6855-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Using rmap_get_first() and rmap_remove() for zapping a huge rmap list could be
slow. The easy way is to travers the rmap list, collecting the a/d bits and
free the slots along the way.
Provide a pte_list_destroy() and do exactly that.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220605.26377-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a counter field into pte_list_desc, so as to simplify the add/remove/loop
logic. E.g., we don't need to loop over the array any more for most reasons.
This will make more sense after we've switched the array size to be larger
otherwise the counter will be a waste.
Initially I wanted to store a tail pointer at the head of the array list so we
don't need to traverse the list at least for pushing new ones (if without the
counter we traverse both the list and the array). However that'll need
slightly more change without a huge lot benefit, e.g., after we grow entry
numbers per array the list traversing is not so expensive.
So let's be simple but still try to get as much benefit as we can with just
these extra few lines of changes (not to mention the code looks easier too
without looping over arrays).
I used the same a test case to fork 500 child and recycle them ("./rmap_fork
500" [1]), this patch further speeds up the total fork time of about 4%, which
is a total of 33% of vanilla kernel:
Vanilla: 473.90 (+-5.93%)
3->15 slots: 366.10 (+-4.94%)
Add counter: 351.00 (+-3.70%)
[1] 825436f825
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220602.26327-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently rmap array element only contains 3 entries. However for EPT=N there
could have a lot of guest pages that got tens of even hundreds of rmap entry.
A normal distribution of a 6G guest (even if idle) shows this with rmap count
statistics:
Rmap_Count: 0 1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1023
Level=4K: 3089171 49005 14016 1363 235 212 15 7 0 0 0
Level=2M: 5951 227 0 0 0 0 0 0 0 0 0
Level=1G: 32 0 0 0 0 0 0 0 0 0 0
If we do some more fork some pages will grow even larger rmap counts.
This patch makes PTE_LIST_EXT bigger so it'll be more efficient for the general
use case of EPT=N as we do list reference less and the loops over PTE_LIST_EXT
will be slightly more efficient; but still not too large so less waste when
array not full.
It should not affecting EPT=Y since EPT normally only has zero or one rmap
entry for each page, so no array is even allocated.
With a test case to fork 500 child and recycle them ("./rmap_fork 500" [1]),
this patch speeds up fork time of about 29%.
Before: 473.90 (+-5.93%)
After: 366.10 (+-4.94%)
[1] 825436f825
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-6-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TLFS states that "Availability of the XMM fast hypercall interface is
indicated via the “Hypervisor Feature Identification” CPUID Leaf
(0x40000003, see section 2.4.4) ... Any attempt to use this interface
when the hypervisor does not indicate availability will result in a #UD
fault."
Implement the check for 'strict' mode (KVM_CAP_HYPERV_ENFORCE_CPUID).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210730122625.112848-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hypercall failures are unusual with potentially far going consequences
so it would be useful to see their results when tracing.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210730122625.112848-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case guest doesn't have access to the particular hypercall we can avoid
reading XMM registers.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210730122625.112848-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As alluded to in commit f36f3f2846 ("KVM: add "new" argument to
kvm_arch_commit_memory_region"), a bunch of other places where struct
kvm_memory_slot is used, needs to be refactored to preserve the
"const"ness of struct kvm_memory_slot across-the-board.
Signed-off-by: Hamza Mahfooz <someguy@effective-light.com>
Message-Id: <20210713023338.57108-1-someguy@effective-light.com>
[Do not touch body of slot_rmap_walk_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For an event to be in injected state when nested_svm_vmrun executes,
it must have come from exitintinfo when svm_complete_interrupts ran:
vcpu_enter_guest
static_call(kvm_x86_run) -> svm_vcpu_run
svm_complete_interrupts
// now the event went from "exitintinfo" to "injected"
static_call(kvm_x86_handle_exit) -> handle_exit
svm_invoke_exit_handler
vmrun_interception
nested_svm_vmrun
However, no event could have been in exitintinfo before a VMRUN
vmexit. The code in svm.c is a bit more permissive than the one
in vmx.c:
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
but in any case, a VMRUN instruction would not even start to execute
during an attempted event delivery.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Preserve CR0.CD and CR0.NW on INIT instead of forcing them to '1', as
defined by both Intel's SDM and AMD's APM.
Note, current versions of Intel's SDM are very poorly written with
respect to INIT behavior. Table 9-1. "IA-32 and Intel 64 Processor
States Following Power-up, Reset, or INIT" quite clearly lists power-up,
RESET, _and_ INIT as setting CR0=60000010H, i.e. CD/NW=1. But the SDM
then attempts to qualify CD/NW behavior in a footnote:
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits
are cleared.
Presumably that footnote is only meant for INIT, as the RESET case and
especially the power-up case are rather non-sensical. Another footnote
all but confirms that:
6. Internal caches are invalid after power-up and RESET, but left
unchanged with an INIT.
Bare metal testing shows that CD/NW are indeed preserved on INIT (someone
else can hack their BIOS to check RESET and power-up :-D).
Reported-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-47-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop redundant clears of vcpu->arch.hflags in init_vmcb() since
kvm_vcpu_reset() always clears hflags, and it is also always
zero at vCPU creation time. And of course, the second clearing
in init_vmcb() was always redundant.
Suggested-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate a full #INIT instead of simply initializing the VMCB if the
guest hits a shutdown. Initializing the VMCB but not other vCPU state,
much of which is mirrored by the VMCB, results in incoherent and broken
vCPU state.
Ideally, KVM would not automatically init anything on shutdown, and
instead put the vCPU into e.g. KVM_MP_STATE_UNINITIALIZED and force
userspace to explicitly INIT or RESET the vCPU. Even better would be to
add KVM_MP_STATE_SHUTDOWN, since technically NMI can break shutdown
(and SMI on Intel CPUs).
But, that ship has sailed, and emulating #INIT is the next best thing as
that has at least some connection with reality since there exist bare
metal platforms that automatically INIT the CPU if it hits shutdown.
Fixes: 46fe4ddd9d ("[PATCH] KVM: SVM: Propagate cpu shutdown events to userspace")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move VMWRITE sequences in vmx_vcpu_reset() guarded by !init_event into
init_vmcs() to make it more obvious that they're, uh, initializing the
VMCS.
No meaningful functional change intended (though the order of VMWRITEs
and whatnot is different).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop a call to vmx_clear_hlt() during vCPU INIT, the guest's activity
state is unconditionally set to "active" a few lines earlier in
vmx_vcpu_reset().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate all of the dynamic MSR bitmap adjustments into
vmx_update_msr_bitmap_x2apic(), and rename the mode tracker to reflect
that it is x2APIC specific. If KVM gains more cases of dynamic MSR
pass-through, odds are very good that those new cases will be better off
with their own logic, e.g. see Intel PT MSRs and MSR_IA32_SPEC_CTRL.
Attempting to handle all updates in a common helper did more harm than
good, as KVM ended up collecting a large number of useless "updates".
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother initializing msr_bitmap_mode to 0, all of struct vcpu_vmx is
zero initialized.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit call to update the x2APIC MSRs when the userspace MSR
filter is modified. The x2APIC MSRs are deliberately exempt from
userspace filtering.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop unnecessary MSR bitmap updates during nested transitions, as L1's
APIC_BASE MSR is not modified by the standard VM-Enter/VM-Exit flows,
and L2's MSR bitmap is managed separately. In the unlikely event that L1
is pathological and loads APIC_BASE via the VM-Exit load list, KVM will
handle updating the bitmap in its normal WRMSR flows.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove an unnecessary MSR bitmap refresh during vCPU RESET/INIT. In both
cases, the MSR bitmap already has the desired values and state.
At RESET, the vCPU is guaranteed to be running with x2APIC disabled, the
x2APIC MSRs are guaranteed to be intercepted due to the MSR bitmap being
initialized to all ones by alloc_loaded_vmcs(), and vmx->msr_bitmap_mode
is guaranteed to be zero, i.e. reflecting x2APIC disabled.
At INIT, the APIC_BASE MSR is not modified, thus there can't be any
change in x2APIC state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the setting of CR0, CR4, EFER, RFLAGS, and RIP from vendor code to
common x86. VMX and SVM now have near-identical sequences, the only
difference being that VMX updates the exception bitmap. Updating the
bitmap on SVM is unnecessary, but benign. Unfortunately it can't be left
behind in VMX due to the need to update exception intercepts after the
control registers are set.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating vCPU INIT, do not unconditionally refresh the list of user
return MSRs that need to be loaded into hardware when running the guest.
Unconditionally refreshing the list is confusing, as the vast majority of
MSRs are not modified on INIT. The real motivation is to handle the case
where an INIT during long mode obviates the need to load the SYSCALL MSRs,
and that is handled as needed by vmx_set_efer().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-36-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After a CPUID update, refresh the list of user return MSRs that are
loaded into hardware when running the vCPU. This is necessary to handle
the oddball case where userspace exposes X86_FEATURE_RDTSCP to the guest
after the vCPU is running.
Fixes: 0023ef39dc ("kvm: vmx: Set IA32_TSC_AUX for legacy mode guests")
Fixes: 4e47c7a6d7 ("KVM: VMX: Add instruction rdtscp support for guest")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split setup_msrs() into vmx_setup_uret_msrs() and an open coded refresh
of the MSR bitmap, and skip the latter when refreshing the user return
MSRs during an EFER load. Only the x2APIC MSRs are dynamically exposed
and hidden, and those are not affected by a change in EFER.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move code to stuff vmcb->save.dr6 to its architectural init value from
svm_vcpu_reset() into sev_es_sync_vmsa(). Except for protected guests,
a.k.a. SEV-ES guests, vmcb->save.dr6 is set during VM-Enter, i.e. the
extra write is unnecessary. For SEV-ES, stuffing save->dr6 handles a
theoretical case where the VMSA could be encrypted before the first
KVM_RUN.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop direct writes to vmcb->save.cr4 during vCPU RESET/INIT, as the
values being written are fully redundant with respect to
svm_set_cr4(vcpu, 0) a few lines earlier. Note, svm_set_cr4() also
correctly forces X86_CR4_PAE when NPT is disabled.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hoist svm_set_cr0() up in the sequence of register initialization during
vCPU RESET/INIT, purely to match VMX so that a future patch can move the
sequences to common x86.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the "internal" variants of setting segment registers when stuffing
state on nested VM-Exit in order to skip the "emulation required"
updates. VM-Exit must always go to protected mode, and all segments are
mostly hardcoded (to valid values) on VM-Exit. The bits of the segments
that aren't hardcoded are explicitly checked during VM-Enter, e.g. the
selector RPLs must all be zero.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't refresh "emulation required" when stuffing segments during
transitions to/from real mode when running without unrestricted guest.
The checks are unnecessary as vmx_set_cr0() unconditionally rechecks
"emulation required". They also happen to be broken, as enter_pmode()
and enter_rmode() run with a stale vcpu->arch.cr0.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the long mode and EPT w/o unrestricted guest side effect processing
down in vmx_set_cr0() so that the EPT && !URG case doesn't have to stuff
vcpu->arch.cr0 early. This also fixes an oddity where CR0 might not be
marked available, i.e. the early vcpu->arch.cr0 write would appear to be
in danger of being overwritten, though that can't actually happen in the
current code since CR0.TS is the only guest-owned bit, and CR0.TS is not
read by vmx_set_cr4().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the MMU permission_fault() check if paging is disabled when
verifying the cached MMIO GVA is usable. The check is unnecessary and
can theoretically get a false positive since the MMU doesn't zero out
"permissions" or "pkru_mask" when guest paging is disabled.
The obvious alternative is to zero out all the bitmasks when configuring
nonpaging MMUs, but that's unnecessary work and doesn't align with the
MMU's general approach of doing as little as possible for flows that are
supposed to be unreachable.
This is nearly a nop as the false positive is nothing more than an
insignificant performance blip, and more or less limited to string MMIO
when L1 is running with paging disabled. KVM doesn't cache MMIO if L2 is
active with nested TDP since the "GVA" is really an L2 GPA. If L2 is
active without nested TDP, then paging can't be disabled as neither VMX
nor SVM allows entering the guest without paging of some form.
Jumping back to L1 with paging disabled, in that case direct_map is true
and so KVM will use CR2 as a GPA; the only time it doesn't is if the
fault from the emulator doesn't match or emulator_can_use_gpa(), and that
fails only on string MMIO and other instructions with multiple memory
operands.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the logic for grabbing vmcs.GUEST_CR3 in vmx_cache_reg() to look
directly at the execution controls, as opposed to effectively inferring
the controls based on vCPUs. Inferring the controls isn't wrong, but it
creates a very subtle dependency between the caching logic, the state of
vcpu->arch.cr0 (via is_paging()), and the behavior of vmx_set_cr0().
Using the execution controls doesn't completely eliminate the dependency
in vmx_set_cr0(), e.g. neglecting to cache CR3 before enabling
interception would still break the guest, but it does reduce the
code dependency and mostly eliminate the logical dependency (that CR3
loads are intercepted in certain scenarios). Eliminating the subtle
read of vcpu->arch.cr0 will also allow for additional cleanup in
vmx_set_cr0().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Keep CR3 load/store exiting enable as needed when running L2 in order to
honor L1's desires. This fixes a largely theoretical bug where L1 could
intercept CR3 but not CR0.PG and end up not getting the desired CR3 exits
when L2 enables paging. In other words, the existing !is_paging() check
inadvertantly handles the normal case for L2 where vmx_set_cr0() is
called during VM-Enter, which is guaranteed to run with paging enabled,
and thus will never clear the bits.
Removing the !is_paging() check will also allow future consolidation and
cleanup of the related code. From a performance perspective, this is
all a nop, as the VMCS controls shadow will optimize away the VMWRITE
when the controls are in the desired state.
Add a comment explaining why CR3 is intercepted, with a big disclaimer
about not querying the old CR3. Because vmx_set_cr0() is used for flows
that are not directly tied to MOV CR3, e.g. vCPU RESET/INIT and nested
VM-Enter, it's possible that is_paging() is not synchronized with CR3
load/store exiting. This is actually guaranteed in the current code, as
KVM starts with CR3 interception disabled. Obviously that can be fixed,
but there's no good reason to play whack-a-mole, and it tends to end
poorly, e.g. descriptor table exiting for UMIP emulation attempted to be
precise in the past and ended up botching the interception toggling.
Fixes: fe3ef05c75 ("KVM: nVMX: Prepare vmcs02 from vmcs01 and vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the CR0/CR3/CR4 shenanigans for EPT without unrestricted guest back
into vmx_set_cr0(). This will allow a future patch to eliminate the
rather gross stuffing of vcpu->arch.cr0 in the paging transition cases
by snapshotting the old CR0.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a bogus write to vcpu->arch.cr0 that immediately precedes
vmx_set_cr0() during vCPU RESET/INIT. For RESET, this is a nop since
the "old" CR0 value is meaningless. But for INIT, if the vCPU is coming
from paging enabled mode, crushing vcpu->arch.cr0 will cause the various
is_paging() checks in vmx_set_cr0() to get false negatives.
For the exit_lmode() case, the false negative is benign as vmx_set_efer()
is called immediately after vmx_set_cr0().
For EPT without unrestricted guest, the false negative will cause KVM to
unnecessarily run with CR3 load/store exiting. But again, this is
benign, albeit sub-optimal.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Opt-in to forcing CR0.WP=1 for shadow paging, and stop lying about WP
being "always on" for unrestricted guest. In addition to making KVM a
wee bit more honest, this paves the way for additional cleanup.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop unnecessary initialization of vmcb->save.rip during vCPU RESET/INIT,
as svm_vcpu_run() unconditionally propagates VCPU_REGS_RIP to save.rip.
No true functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the EDX initialization at vCPU RESET, which is now identical between
VMX and SVM, into common code.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the APIC base RESET logic, which is currently spread out
across both x86 and vendor code. For an in-kernel APIC, the vendor code
is redundant. But for a userspace APIC, KVM relies on the vendor code
to initialize vcpu->arch.apic_base. Hoist the vcpu->arch.apic_base
initialization above the !apic check so that it applies to both flavors
of APIC emulation, and delete the vendor code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stuff vcpu->arch.apic_base and apic->base_address directly during APIC
reset, as opposed to bouncing through kvm_set_apic_base() while fudging
the ENABLE bit during creation to avoid the other, unwanted side effects.
This is a step towards consolidating the APIC RESET logic across x86,
VMX, and SVM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Write vcpu->arch.apic_base directly instead of bouncing through
kvm_set_apic_base(). This is a glorified nop, and is a step towards
cleaning up the mess that is local APIC creation.
When using an in-kernel APIC, kvm_create_lapic() explicitly sets
vcpu->arch.apic_base to MSR_IA32_APICBASE_ENABLE to avoid its own
kvm_lapic_set_base() call in kvm_lapic_reset() from triggering state
changes. That call during RESET exists purely to set apic->base_address
to the default base value. As a result, by the time VMX gets control,
the only missing piece is the BSP bit being set for the reset BSP.
For a userspace APIC, there are no side effects to process (for the APIC).
In both cases, the call to kvm_update_cpuid_runtime() is a nop because
the vCPU hasn't yet been exposed to userspace, i.e. there can't be any
CPUID entries.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the BSP bit appropriately during local APIC "reset" instead of
relying on vendor code to clean up at a later point. This is a step
towards consolidating the local APIC, VMX, and SVM xAPIC initialization
code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't set the BSP bit in vcpu->arch.apic_base when the local APIC is
managed by userspace. Forcing all vCPUs to be BSPs is non-sensical, and
was dead code when it was added by commit 97222cc831 ("KVM: Emulate
local APIC in kernel"). At the time, kvm_lapic_set_base() was invoked
if and only if the local APIC was in-kernel (and it couldn't be called
before the vCPU created its APIC).
kvm_lapic_set_base() eventually gained generic usage, but the latent bug
escaped notice because the only true consumer would be the guest itself
in the form of an explicit RDMSRs on APs. Out of Linux, SeaBIOS, and
EDK2/OVMF, only OVMF consumes the BSP bit from the APIC_BASE MSR. For
the vast majority of usage in OVMF, BSP confusion would be benign.
OVMF's BSP election upon SMI rendezvous might be broken, but practically
no one runs KVM with an out-of-kernel local APIC, let alone does so while
utilizing SMIs with OVMF.
Fixes: 97222cc831 ("KVM: Emulate local APIC in kernel")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make vcpu0 the arbitrary owner of the PIT, as was intended when PIT
migration was added by commit 2f5997140f ("KVM: migrate PIT timer").
The PIT was unintentionally turned into being owned by the BSP by commit
c5af89b68a ("KVM: Introduce kvm_vcpu_is_bsp() function."), and was then
unintentionally converted to a shared ownership model when
kvm_vcpu_is_bsp() was modified to check the APIC base MSR instead of
hardcoding vcpu0 as the BSP.
Functionally, this just means the PIT's hrtimer is migrated less often.
The real motivation is to remove the usage of kvm_vcpu_is_bsp(), so that
more legacy/broken crud can be removed in a future patch.
Fixes: 58d269d8cc ("KVM: x86: BSP in MSR_IA32_APICBASE is writable")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a BSP APIC update in kvm_lapic_reset() that is a glorified and
confusing nop. When the code was originally added, kvm_vcpu_is_bsp()
queried kvm->arch.bsp_vcpu, i.e. the intent was to set the BSP bit in the
BSP vCPU's APIC. But, stuffing the BSP bit at INIT was wrong since the
guest can change its BSP(s); this was fixed by commit 58d269d8cc ("KVM:
x86: BSP in MSR_IA32_APICBASE is writable").
In other words, kvm_vcpu_is_bsp() is now purely a reflection of
vcpu->arch.apic_base.MSR_IA32_APICBASE_BSP, thus the update will always
set the current value and kvm_lapic_set_base() is effectively a nop if
the new and old values match. The RESET case, which does need to stuff
the BSP for the reset vCPU, is handled by vendor code (though this will
soon be moved to common code).
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if KVM ends up in a state where it thinks its APIC map needs to be
recalculated, but KVM is not emulating the local APIC. This is mostly
to document KVM's "rules" in order to provide clarity in future cleanups.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit MMU reset in SVM's vCPU RESET/INIT flow now that the
common x86 path correctly handles conditional MMU resets, e.g. if INIT
arrives while the vCPU is in 64-bit mode.
This reverts commit ebae871a50 ("kvm: svm: reset mmu on VCPU reset").
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit MMU reset when entering emulated real mode now that the
vCPU INIT/RESET path correctly handles conditional MMU resets, e.g. if
INIT arrives while the vCPU is in 64-bit mode.
Note, while there are multiple other direct calls to vmx_set_cr0(), i.e.
paths that change CR0 without invoking kvm_post_set_cr0(), only the INIT
emulation can reach enter_rmode(). CLTS emulation only toggles CR.TS,
VM-Exit (and late VM-Fail) emulation cannot architecturally transition to
Real Mode, and VM-Enter to Real Mode is possible if and only if
Unrestricted Guest is enabled (exposed to L1).
This effectively reverts commit 8668a3c468 ("KVM: VMX: Reset mmu
context when entering real mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At vCPU RESET/INIT (mostly RESET), stuff EDX with KVM's hardcoded,
default Family-Model-Stepping ID of 0x600 if CPUID.0x1 isn't defined.
At RESET, the CPUID lookup is guaranteed to "miss" because KVM emulates
RESET before exposing the vCPU to userspace, i.e. userspace can't
possibly have done set the vCPU's CPUID model, and thus KVM will always
write '0'. At INIT, using 0x600 is less bad than using '0'.
While initializing EDX to '0' is _extremely_ unlikely to be noticed by
the guest, let alone break the guest, and can be overridden by
userspace for the RESET case, using 0x600 is preferable as it will allow
consolidating the relevant VMX and SVM RESET/INIT logic in the future.
And, digging through old specs suggests that neither Intel nor AMD have
ever shipped a CPU that initialized EDX to '0' at RESET.
Regarding 0x600 as KVM's default Family, it is a sane default and in
many ways the most appropriate. Prior to the 386 implementations, DX
was undefined at RESET. With the 386, 486, 586/P5, and 686/P6/Athlon,
both Intel and AMD set EDX to 3, 4, 5, and 6 respectively. AMD switched
to using '15' as its primary Family with the introduction of AMD64, but
Intel has continued using '6' for the last few decades.
So, '6' is a valid Family for both Intel and AMD CPUs, is compatible
with both 32-bit and 64-bit CPUs (albeit not a perfect fit for 64-bit
AMD), and of the common Families (3 - 6), is the best fit with respect to
KVM's virtual CPU model. E.g. prior to the P6, Intel CPUs did not have a
STI window. Modern operating systems, Linux included, rely on the STI
window, e.g. for "safe halt", and KVM unconditionally assumes the virtual
CPU has an STI window. Thus enumerating a Family ID of 3, 4, or 5 would
be provably wrong.
Opportunistically remove a stale comment.
Fixes: 66f7b72e11 ("KVM: x86: Make register state after reset conform to specification")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not allow an inexact CPUID "match" when querying the guest's CPUID.0x1
to stuff EDX during INIT. In the common case, where the guest CPU model
is an AMD variant, allowing an inexact match is a nop since KVM doesn't
emulate Intel's goofy "out-of-range" logic for AMD and Hygon. If the
vCPU model happens to be an Intel variant, an inexact match is possible
if and only if the max CPUID leaf is precisely '0'. Aside from the fact
that there's probably no CPU in existence with a single CPUID leaf, if
the max CPUID leaf is '0', that means that CPUID.0.EAX is '0', and thus
an inexact match for CPUID.0x1.EAX will also yield '0'.
So, with lots of twisty logic, no functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set EDX at RESET/INIT based on the userspace-defined CPUID model when
possible, i.e. when CPUID.0x1.EAX is defind by userspace. At RESET/INIT,
all CPUs that support CPUID set EDX to the FMS enumerated in
CPUID.0x1.EAX. If no CPUID match is found, fall back to KVM's default
of 0x600 (Family '6'), which is the least awful approximation of KVM's
virtual CPU model.
Fixes: 6aa8b732ca ("[PATCH] kvm: userspace interface")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly set GDTR.base and IDTR.base to zero when intializing the VMCB.
Functionally this only affects INIT, as the bases are implicitly set to
zero on RESET by virtue of the VMCB being zero allocated.
Per AMD's APM, GDTR.base and IDTR.base are zeroed after RESET and INIT.
Fixes: 04d2cc7780 ("KVM: Move main vcpu loop into subarch independent code")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set L1's LDTR on VM-Exit per the Intel SDM:
The host-state area does not contain a selector field for LDTR. LDTR is
established as follows on all VM exits: the selector is cleared to
0000H, the segment is marked unusable and is otherwise undefined
(although the base address is always canonical).
This is likely a benign bug since the LDTR is unusable, as it means the
L1 VMM is conditioned to reload its LDTR in order to function properly on
bare metal.
Fixes: 4704d0befb ("KVM: nVMX: Exiting from L2 to L1")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the guest's TLB on INIT, as required by Intel's SDM. Although
AMD's APM states that the TLBs are unchanged by INIT, it's not clear that
that's correct as the APM also states that the TLB is flush on "External
initialization of the processor." Regardless, relying on the guest to be
paranoid is unnecessarily risky, while an unnecessary flush is benign
from a functional perspective and likely has no measurable impact on
guest performance.
Note, as of the April 2021 version of Intels' SDM, it also contradicts
itself with respect to TLB flushing. The overview of INIT explicitly
calls out the TLBs as being invalidated, while a table later in the same
section says they are unchanged.
9.1 INITIALIZATION OVERVIEW:
The major difference is that during an INIT, the internal caches, MSRs,
MTRRs, and x87 FPU state are left unchanged (although, the TLBs and BTB
are invalidated as with a hardware reset)
Table 9-1:
Register Power up Reset INIT
Data and Code Cache, TLBs: Invalid[6] Invalid[6] Unchanged
Given Core2's erratum[*] about global TLB entries not being flush on INIT,
it's safe to assume that the table is simply wrong.
AZ28. INIT Does Not Clear Global Entries in the TLB
Problem: INIT may not flush a TLB entry when:
• The processor is in protected mode with paging enabled and the page global enable
flag is set (PGE bit of CR4 register)
• G bit for the page table entry is set
• TLB entry is present in TLB when INIT occurs
• Software may encounter unexpected page fault or incorrect address translation due
to a TLB entry erroneously left in TLB after INIT.
Workaround: Write to CR3, CR4 (setting bits PSE, PGE or PAE) or CR0 (setting
bits PG or PE) registers before writing to memory early in BIOS
code to clear all the global entries from TLB.
Status: For the steppings affected, see the Summary Tables of Changes.
[*] https://www.intel.com/content/dam/support/us/en/documents/processors/mobile/celeron/sb/320121.pdf
Fixes: 6aa8b732ca ("[PATCH] kvm: userspace interface")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Special case of disabling the APICv on the current vCPU right away in
kvm_request_apicv_update doesn't bring much benefit vs raising
KVM_REQ_APICV_UPDATE on it instead, since this request will be processed
on the next entry to the guest.
(the comment about having another #VMEXIT is wrong).
It also hides various assumptions that APIVc enable state matches
the APICv inhibit state, as this special case only makes those states
match on the current vCPU.
Previous patches fixed few such assumptions so now it should be safe
to drop this special case.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With the addition of fast page fault support, the TDP-specific MMU has reached
feature parity with the original MMU. All my testing in the last few months
has been done with the TDP MMU; switch the default on 64-bit machines.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make fast_page_fault interoperate with the TDP MMU by leveraging
walk_shadow_page_lockless_{begin,end} to acquire the RCU read lock and
introducing a new helper function kvm_tdp_mmu_fast_pf_get_last_sptep to
grab the lowest level sptep.
Suggested-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acquire the RCU read lock in walk_shadow_page_lockless_begin and release
it in walk_shadow_page_lockless_end when the TDP MMU is enabled. This
should not introduce any functional changes but is used in the following
commit to make fast_page_fault interoperate with the TDP MMU.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-4-dmatlack@google.com>
[Use if...else instead of if(){return;}]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enum values have to be exported to userspace since the formatting is not
done in the kernel. Without doing this perf maps RET_PF_FIXED and
RET_PF_SPURIOUS to 0, which results in incorrect output:
$ perf record -a -e kvmmmu:fast_page_fault --filter "ret==3" -- ./access_tracking_perf_test
$ perf script | head -1
[...] new 610006048d25877 spurious 0 fixed 0 <------ should be 1
Fix this by exporting the enum values to userspace with TRACE_DEFINE_ENUM.
Fixes: c4371c2a68 ("KVM: x86/mmu: Return unique RET_PF_* values if the fault was fixed")
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
fast_page_fault is only called from direct_page_fault where we know the
address is a gpa.
Fixes: 736c291c9f ("KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVM")
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The file has been moved to arch/x86 long time ago. Time to get rid of
non-x86 stuff.
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210701154105.23215-3-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new statistic max_mmu_rmap_size, which stores the maximum size of rmap
for the vm.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210625153214.43106-2-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return the old SPTE when clearing a SPTE and push the "old SPTE present"
check to the caller. Private shadow page support will use the old SPTE
in rmap_remove() to determine whether or not there is a linked private
shadow page.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <b16bac1fd1357aaf39e425aab2177d3f89ee8318.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Employ a 'continue' to reduce the indentation for linking a new shadow
page during __direct_map() in preparation for linking private pages.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <702419686d5700373123f6ea84e7a946c2cad8b4.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the kvm_dirty_regs vs. KVM_SYNC_X86_VALID_FIELDS check out of
sync_regs() and into its sole caller, kvm_arch_vcpu_ioctl_run(). This
allows a future patch to allow synchronizing select state for protected
VMs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <889017a8d31cea46472e0c64b234ef5919278ed9.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Once an exception has been injected, any side effects related to
the exception (such as setting CR2 or DR6) have been taked place.
Therefore, once KVM sets the VM-entry interruption information
field or the AMD EVENTINJ field, the next VM-entry must deliver that
exception.
Pending interrupts are processed after injected exceptions, so
in theory it would not be a problem to use KVM_INTERRUPT when
an injected exception is present. However, DOSEMU is using
run->ready_for_interrupt_injection to detect interrupt windows
and then using KVM_SET_SREGS/KVM_SET_REGS to inject the
interrupt manually. For this to work, the interrupt window
must be delayed after the completion of the previous event
injection.
Cc: stable@vger.kernel.org
Reported-by: Stas Sergeev <stsp2@yandex.ru>
Tested-by: Stas Sergeev <stsp2@yandex.ru>
Fixes: 71cc849b70 ("KVM: x86: Fix split-irqchip vs interrupt injection window request")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently when SVM is enabled in guest CPUID, AVIC is inhibited as soon
as the guest CPUID is set.
AVIC happens to be fully disabled on all vCPUs by the time any guest
entry starts (if after migration the entry can be nested).
The reason is that currently we disable avic right away on vCPU from which
the kvm_request_apicv_update was called and for this case, it happens to be
called on all vCPUs (by svm_vcpu_after_set_cpuid).
After we stop doing this, AVIC will end up being disabled only when
KVM_REQ_APICV_UPDATE is processed which is after we done switching to the
nested guest.
Fix this by just using vmcb01 in svm_refresh_apicv_exec_ctrl for avic
(which is a right thing to do anyway).
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is possible that AVIC was requested to be disabled but
not yet disabled, e.g if the nested entry is done right
after svm_vcpu_after_set_cpuid.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is possible for AVIC inhibit and AVIC active state to be mismatched.
Currently we disable AVIC right away on vCPU which started the AVIC inhibit
request thus this warning doesn't trigger but at least in theory,
if svm_set_vintr is called at the same time on multiple vCPUs,
the warning can happen.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, svm_hv_vmcb_dirty_nested_enlightenments has an incorrect
dereference of vmcb->control.reserved_sw before the vmcb is checked
for being non-NULL. The compiler is usually sinking the dereference
after the check; instead of doing this ourselves in the source,
ensure that svm_hv_vmcb_dirty_nested_enlightenments is only called
with a non-NULL VMCB.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Untested for now due to issues with my AMD machine. - Paolo]
KVM_MAX_VCPU_ID is the maximum vcpu-id of a guest, and not the number
of vcpu-ids. Fix array indexed by vcpu-id to have KVM_MAX_VCPU_ID+1
elements.
Note that this is currently no real problem, as KVM_MAX_VCPU_ID is
an odd number, resulting in always enough padding being available at
the end of those arrays.
Nevertheless this should be fixed in order to avoid rare problems in
case someone is using an even number for KVM_MAX_VCPU_ID.
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20210701154105.23215-2-jgross@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_KVM_ASYNC_PF_ACK MSR is part of interrupt based asynchronous page fault
interface and not the original (deprecated) KVM_FEATURE_ASYNC_PF. This is
stated in Documentation/virt/kvm/msr.rst.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20210722123018.260035-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make svm_copy_vmrun_state()/svm_copy_vmloadsave_state() interface match
'memcpy(dest, src)' to avoid any confusion.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210719090322.625277-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To match svm_copy_vmrun_state(), rename nested_svm_vmloadsave() to
svm_copy_vmloadsave_state().
Opportunistically add missing braces to 'else' branch in
vmload_vmsave_interception().
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210716144104.465269-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for host SMIs on AMD
* Fixes for guest SMIs on AMD
* Fixes for selftests on s390 and ARM
* Fix memory leak
* Enforce no-instrumentation area on vmentry when hardware
breakpoints are in use.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDwRi4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOt4AgAl6xEkMwDC74d/QFIOA7s2GD3ugfa
z5XqGN1qz/nmEMnuIg6/tjTXDPmn/dfLMqy8RGZfyUv6xbgPcv/7JuFMRILvwGTb
SbOVrGnR/QOhMdlfWH34qDkXeEsthTXSgQgVm/iiED0TttvQYVcZ/E9mgzaWQXor
T1yTug2uAUXJ1EBxY0ZBo2kbh+BvvdmhEF0pksZOuwqZdH3zn3QCXwAwkL/OtUYE
M6nNn3j1LU38C4OK1niXOZZVOuMIdk/l7LyFpjUQTFlIqitQAPtBE5MD+K+A9oC2
Yocxyj2tId1e6o8bLic/oN8/LpdORTvA/wDMj5M1DcMzvxQuQIpGYkcVGg==
=gjVA
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Allow again loading KVM on 32-bit non-PAE builds
- Fixes for host SMIs on AMD
- Fixes for guest SMIs on AMD
- Fixes for selftests on s390 and ARM
- Fix memory leak
- Enforce no-instrumentation area on vmentry when hardware breakpoints
are in use.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
KVM: selftests: smm_test: Test SMM enter from L2
KVM: nSVM: Restore nested control upon leaving SMM
KVM: nSVM: Fix L1 state corruption upon return from SMM
KVM: nSVM: Introduce svm_copy_vmrun_state()
KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
KVM: SVM: add module param to control the #SMI interception
KVM: SVM: remove INIT intercept handler
KVM: SVM: #SMI interception must not skip the instruction
KVM: VMX: Remove vmx_msr_index from vmx.h
KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
...
If the VM was migrated while in SMM, no nested state was saved/restored,
and therefore svm_leave_smm has to load both save and control area
of the vmcb12. Save area is already loaded from HSAVE area,
so now load the control area as well from the vmcb12.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMCB split commit 4995a3685f ("KVM: SVM: Use a separate vmcb for the
nested L2 guest") broke return from SMM when we entered there from guest
(L2) mode. Gen2 WS2016/Hyper-V is known to do this on boot. The problem
manifests itself like this:
kvm_exit: reason EXIT_RSM rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_smm_transition: vcpu 0: leaving SMM, smbase 0x7ffb3000
kvm_nested_vmrun: rip: 0x000000007ffbb280 vmcb: 0x0000000008224000
nrip: 0xffffffffffbbe119 int_ctl: 0x01020000 event_inj: 0x00000000
npt: on
kvm_nested_intercepts: cr_read: 0000 cr_write: 0010 excp: 40060002
intercepts: fd44bfeb 0000217f 00000000
kvm_entry: vcpu 0, rip 0xffffffffffbbe119
kvm_exit: reason EXIT_NPF rip 0xffffffffffbbe119 info
200000006 1ab000
kvm_nested_vmexit: vcpu 0 reason npf rip 0xffffffffffbbe119 info1
0x0000000200000006 info2 0x00000000001ab000 intr_info 0x00000000
error_code 0x00000000
kvm_page_fault: address 1ab000 error_code 6
kvm_nested_vmexit_inject: reason EXIT_NPF info1 200000006 info2 1ab000
int_info 0 int_info_err 0
kvm_entry: vcpu 0, rip 0x7ffbb280
kvm_exit: reason EXIT_EXCP_GP rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_inj_exception: #GP (0x0)
Note: return to L2 succeeded but upon first exit to L1 its RIP points to
'RSM' instruction but we're not in SMM.
The problem appears to be that VMCB01 gets irreversibly destroyed during
SMM execution. Previously, we used to have 'hsave' VMCB where regular
(pre-SMM) L1's state was saved upon nested_svm_vmexit() but now we just
switch to VMCB01 from VMCB02.
Pre-split (working) flow looked like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() restores L1's state from 'hsave'
- SMM -> RSM
- enter_svm_guest_mode() switches to L2 but keeps 'hsave' intact so we have
pre-SMM (and pre L2 VMRUN) L1's state there
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from L1.
This was always broken with regards to svm_get_nested_state()/
svm_set_nested_state(): 'hsave' was never a part of what's being
save and restored so migration happening during SMM triggered from L2 would
never restore L1's state correctly.
Post-split flow (broken) looks like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() switches to VMCB01 from VMCB02
- SMM -> RSM
- enter_svm_guest_mode() switches from VMCB01 to VMCB02 but pre-SMM VMCB01
is already lost.
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from VMCB01 but it is corrupted
(reflects the state during 'RSM' execution).
VMX doesn't have this problem because unlike VMCB, VMCS keeps both guest
and host state so when we switch back to VMCS02 L1's state is intact there.
To resolve the issue we need to save L1's state somewhere. We could've
created a third VMCB for SMM but that would require us to modify saved
state format. L1's architectural HSAVE area (pointed by MSR_VM_HSAVE_PA)
seems appropriate: L0 is free to save any (or none) of L1's state there.
Currently, KVM does 'none'.
Note, for nested state migration to succeed, both source and destination
hypervisors must have the fix. We, however, don't need to create a new
flag indicating the fact that HSAVE area is now populated as migration
during SMM triggered from L2 was always broken.
Fixes: 4995a3685f ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the code setting non-VMLOAD-VMSAVE state from
svm_set_nested_state() into its own function. This is going to be
re-used from svm_enter_smm()/svm_leave_smm().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APM states that "The address written to the VM_HSAVE_PA MSR, which holds
the address of the page used to save the host state on a VMRUN, must point
to a hypervisor-owned page. If this check fails, the WRMSR will fail with
a #GP(0) exception. Note that a value of 0 is not considered valid for the
VM_HSAVE_PA MSR and a VMRUN that is attempted while the HSAVE_PA is 0 will
fail with a #GP(0) exception."
svm_set_msr() already checks that the supplied address is valid, so only
check for '0' is missing. Add it to nested_svm_vmrun().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-3-vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APM states that #GP is raised upon write to MSR_VM_HSAVE_PA when
the supplied address is not page-aligned or is outside of "maximum
supported physical address for this implementation".
page_address_valid() check seems suitable. Also, forcefully page-align
the address when it's written from VMM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
[Add comment about behavior for host-provided values. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use IS_ERR() instead of checking for a NULL pointer when querying for
sev_pin_memory() failures. sev_pin_memory() always returns an error code
cast to a pointer, or a valid pointer; it never returns NULL.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Fixes: d3d1af85e2 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Fixes: 15fb7de1a7 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210506175826.2166383-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return -EFAULT if copy_to_user() fails; if accessing user memory faults,
copy_to_user() returns the number of bytes remaining, not an error code.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Fixes: d3d1af85e2 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210506175826.2166383-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In theory there are no side effects of not intercepting #SMI,
because then #SMI becomes transparent to the OS and the KVM.
Plus an observation on recent Zen2 CPUs reveals that these
CPUs ignore #SMI interception and never deliver #SMI VMexits.
This is also useful to test nested KVM to see that L1
handles #SMIs correctly in case when L1 doesn't intercept #SMI.
Finally the default remains the same, the SMI are intercepted
by default thus this patch doesn't have any effect unless
non default module param value is used.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kernel never sends real INIT even to CPUs, other than on boot.
Thus INIT interception is an error which should be caught
by a check for an unknown VMexit reason.
On top of that, the current INIT VM exit handler skips
the current instruction which is wrong.
That was added in commit 5ff3a351f6 ("KVM: x86: Move trivial
instruction-based exit handlers to common code").
Fixes: 5ff3a351f6 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5ff3a351f6 ("KVM: x86: Move trivial instruction-based
exit handlers to common code"), unfortunately made a mistake of
treating nop_on_interception and nop_interception in the same way.
Former does truly nothing while the latter skips the instruction.
SMI VM exit handler should do nothing.
(SMI itself is handled by the host when we do STGI)
Fixes: 5ff3a351f6 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_msr_index was used to record the list of MSRs which can be lazily
restored when kvm returns to userspace. It is now reimplemented as
kvm_uret_msrs_list, a common x86 list which is only used inside x86.c.
So just remove the obsolete declaration in vmx.h.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210707235702.31595-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the host is using debug registers but the guest is not using them
nor is the guest in guest-debug state, the kvm code does not reset
the host debug registers before kvm_x86->run(). Rather, it relies on
the hardware vmentry instruction to automatically reset the dr7 registers
which ensures that the host breakpoints do not affect the guest.
This however violates the non-instrumentable nature around VM entry
and exit; for example, when a host breakpoint is set on vcpu->arch.cr2,
Another issue is consistency. When the guest debug registers are active,
the host breakpoints are reset before kvm_x86->run(). But when the
guest debug registers are inactive, the host breakpoints are delayed to
be disabled. The host tracing tools may see different results depending
on what the guest is doing.
To fix the problems, we clear %db7 unconditionally before kvm_x86->run()
if the host has set any breakpoints, no matter if the guest is using
them or not.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210628172632.81029-1-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
[Only clear %db7 instead of reloading all debug registers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD platform does not support the functions Ah CPUID leaf. The returned
results for this entry should all remain zero just like the native does:
AMD host:
0x0000000a 0x00: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
(uncanny) AMD guest:
0x0000000a 0x00: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00008000
Fixes: cadbaa039b ("perf/x86/intel: Make anythread filter support conditional")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210628074354.33848-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d04 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e132 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210625020354.431829-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks. The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".
For non-SEV guests, not dropping bits is the correct behavior. Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits. And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.
For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted. Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM. The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.
Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-5-seanjc@google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use boot_cpu_data.x86_phys_bits instead of the raw CPUID information to
enumerate the MAXPHYADDR for KVM guests when TDP is disabled (the guest
version is only relevant to NPT/TDP).
When using shadow paging, any reductions to the host's MAXPHYADDR apply
to KVM and its guests as well, i.e. using the raw CPUID info will cause
KVM to misreport the number of PA bits available to the guest.
Unconditionally zero out the "Physical Address bit reduction" entry.
For !TDP, the adjustment is already done, and for TDP enumerating the
host's reduction is wrong as the reduction does not apply to GPAs.
Fixes: 9af9b94068 ("x86/cpu/AMD: Handle SME reduction in physical address size")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore the guest MAXPHYADDR reported by CPUID.0x8000_0008 if TDP, i.e.
NPT, is disabled, and instead use the host's MAXPHYADDR. Per AMD'S APM:
Maximum guest physical address size in bits. This number applies only
to guests using nested paging. When this field is zero, refer to the
PhysAddrSize field for the maximum guest physical address size.
Fixes: 24c82e576b ("KVM: Sanitize cpuid")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let KVM load if EFER.NX=0 even if NX is supported, the analysis and
testing (or lack thereof) for the non-PAE host case was garbage.
If the kernel won't be using PAE paging, .Ldefault_entry in head_32.S
skips over the entire EFER sequence. Hopefully that can be changed in
the future to allow KVM to require EFER.NX, but the motivation behind
KVM's requirement isn't yet merged. Reverting and revisiting the mess
at a later date is by far the safest approach.
This reverts commit 8bbed95d2c.
Fixes: 8bbed95d2c ("KVM: x86: WARN and reject loading KVM if NX is supported but not enabled")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210625001853.318148-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
writes the FPU state to the alternate stack without checking whether
the stack is large enough to accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
updated despite the fact that the FPU state which is stored on the
signal stack has grown over time which causes trouble in the field
when AVX512 is available on a CPU. The kernel does not expose the
minimum requirements for the alternate stack size depending on the
available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well
- A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
related issues unearthed quite some inconsistencies, duplicated code
and other issues.
The fine granular overhaul addresses this, makes the code more robust
and maintainable, which allows to integrate upcoming XSTATE related
features in sane ways.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
/TbbRZu7nXDN2w==
=Mq1m
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of live migration
- Support for initializing the PDPTRs without loading them from memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this has
been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
+/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
=NcRh
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This covers all architectures (except MIPS) so I don't expect any
other feature pull requests this merge window.
ARM:
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration and
apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical
address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of
live migration
- Support for initializing the PDPTRs without loading them from
memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this
has been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM
registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
on AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
kvm: x86: disable the narrow guest module parameter on unload
selftests: kvm: Allows userspace to handle emulation errors.
kvm: x86: Allow userspace to handle emulation errors
KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
KVM: x86: Enhance comments for MMU roles and nested transition trickiness
KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
KVM: x86/mmu: Use MMU's role to determine PTTYPE
KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
KVM: x86/mmu: Add a helper to calculate root from role_regs
KVM: x86/mmu: Add helper to update paging metadata
KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
KVM: x86/mmu: Get nested MMU's root level from the MMU's role
...
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
This better reflects the purpose of this variable on AMD, since
on AMD the AVIC's memory slot can be enabled and disabled dynamically.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210623113002.111448-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the kvm_intel module unloads the module parameter
'allow_smaller_maxphyaddr' is not cleared because the backing variable is
defined in the kvm module. As a result, if the module parameter's state
was set before kvm_intel unloads, it will also be set when it reloads.
Explicitly clear the state in vmx_exit() to prevent this from happening.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20210623203426.1891402-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Add a fallback mechanism to the in-kernel instruction emulator that
allows userspace the opportunity to process an instruction the emulator
was unable to. When the in-kernel instruction emulator fails to process
an instruction it will either inject a #UD into the guest or exit to
userspace with exit reason KVM_INTERNAL_ERROR. This is because it does
not know how to proceed in an appropriate manner. This feature lets
userspace get involved to see if it can figure out a better path
forward.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210510144834.658457-2-aaronlewis@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let the guest use 1g hugepages if TDP is enabled and the host supports
GBPAGES, KVM can't actively prevent the guest from using 1g pages in this
case since they can't be disabled in the hardware page walker. While
injecting a page fault if a bogus 1g page is encountered during a
software page walk is perfectly reasonable since KVM is simply honoring
userspace's vCPU model, doing so arguably doesn't provide any meaningful
value, and at worst will be horribly confusing as the guest will see
inconsistent behavior and seemingly spurious page faults.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-55-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the current MMU instead of vCPU state to query CR4.SMEP when handling
a page fault. In the nested NPT case, the current CR4.SMEP reflects L2,
whereas the page fault is shadowing L1's NPT, which uses L1's hCR4.
Practically speaking, this is a nop a NPT walks are always user faults,
i.e. this code will never be reached, but fix it up for consistency.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-54-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the current MMU instead of vCPU state to query CR0.WP when handling
a page fault. In the nested NPT case, the current CR0.WP reflects L2,
whereas the page fault is shadowing L1's NPT. Practically speaking, this
is a nop a NPT walks are always user faults, but fix it up for
consistency.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-53-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the extra reset of shadow_zero_bits in the nested NPT flow now
that shadow_mmu_init_context computes the correct level for nested NPT.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-52-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the pre-computed last_nonleaf_level, which is arguably wrong and at
best confusing. Per the comment:
Can have large pages at levels 2..last_nonleaf_level-1.
the intent of the variable would appear to be to track what levels can
_legally_ have large pages, but that intent doesn't align with reality.
The computed value will be wrong for 5-level paging, or if 1gb pages are
not supported.
The flawed code is not a problem in practice, because except for 32-bit
PSE paging, bit 7 is reserved if large pages aren't supported at the
level. Take advantage of this invariant and simply omit the level magic
math for 64-bit page tables (including PAE).
For 32-bit paging (non-PAE), the adjustments are needed purely because
bit 7 is ignored if PSE=0. Retain that logic as is, but make
is_last_gpte() unique per PTTYPE so that the PSE check is avoided for
PAE and EPT paging. In the spirit of avoiding branches, bump the "last
nonleaf level" for 32-bit PSE paging by adding the PSE bit itself.
Note, bit 7 is ignored or has other meaning in CR3/EPTP, but despite
FNAME(walk_addr_generic) briefly grabbing CR3/EPTP in "pte", they are
not PTEs and will blow up all the other gpte helpers.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-51-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand the comments for the MMU roles. The interactions with gfn_track
PGD reuse in particular are hairy.
Regarding PGD reuse, add comments in the nested virtualization flows to
call out why kvm_init_mmu() is unconditionally called even when nested
TDP is used.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-50-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace make_spte()'s WARN on a collision with the magic MMIO value with
a generic WARN on reserved bits being set (including EPT's reserved WX
combination). Warning on any reserved bits covers MMIO, A/D tracking
bits with PAE paging, and in theory any future goofs that are introduced.
Opportunistically convert to ONCE behavior to avoid spamming the kernel
log, odds are very good that if KVM screws up one SPTE, it will botch all
SPTEs for the same MMU.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-49-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract the reserved SPTE check and print helpers in get_mmio_spte() to
new helpers so that KVM can also WARN on reserved badness when making a
SPTE.
Tag the checking helper with __always_inline to improve the probability
of the compiler generating optimal code for the checking loop, e.g. gcc
appears to avoid using %rbp when the helper is tagged with a vanilla
"inline".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-48-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role instead of vCPU state or role_regs to determine the
PTTYPE, i.e. which helpers to wire up.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-47-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip paging32E_init_context() and paging64_init_context_common() and go
directly to paging64_init_context() (was the common version) now that
the relevant flows don't need to distinguish between 64-bit PAE and
32-bit PAE for other reasons.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to calculate the level for non-EPT page tables from the
MMU's role_regs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate MMU guest metadata updates into a common helper for TDP,
shadow, and nested MMUs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother updating the bitmasks and last-leaf information if paging is
disabled as the metadata will never be used.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move calls to reset_rsvds_bits_mask() out of the various mode statements
and under a more generic CR0.PG=1 check. This will allow for additional
code consolidation in the future.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Get LA57 from the role_regs, which are initialized from the vCPU even
though TDP is enabled, instead of pulling the value directly from the
vCPU when computing the guest's root_level for TDP MMUs. Note, the check
is inside an is_long_mode() statement, so that requirement is not lost.
Use role_regs even though the MMU's role is available and arguably
"better". A future commit will consolidate the guest root level logic,
and it needs access to EFER.LMA, which is not tracked in the role (it
can't be toggled on VM-Exit, unlike LA57).
Drop is_la57_mode() as there are no remaining users, and to discourage
pulling MMU state from the vCPU (in the future).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Initialize the MMU's (guest) root_level using its mmu_role instead of
redoing the calculations. The role_regs used to calculate the mmu_role
are initialized from the vCPU, i.e. this should be a complete nop.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mmu.nx as there no consumers left.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Get the MMU's effective EFER.NX from its role instead of using the
one-off, dedicated flag. This will allow dropping said flag in a
future commit.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role and role_regs to calculate the MMU's guest root level
and NX bit. For some flows, the vCPU state may not be correct (or
relevant), e.g. EPT doesn't interact with EFER.NX and nested NPT will
configure the guest_mmu with possibly-stale vCPU state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the NX bit from the MMU's role instead of the MMU itself so that the
redundant, dedicated "nx" flag can be dropped.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-36-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role to get CR4.PSE when determining the last level at
which the guest _cannot_ create a non-leaf PTE, i.e. cannot create a
huge page.
Note, the existing logic is arguably wrong when considering 5-level
paging and the case where 1gb pages aren't supported. In practice, the
logic is confusing but not broken, because except for 32-bit non-PAE
paging, bit 7 (_PAGE_PSE) bit is reserved when a huge page isn't supported at
that level. I.e. setting bit 7 will terminate the guest walk one way or
another. Furthermore, last_nonleaf_level is only consulted after KVM has
verified there are no reserved bits set.
All that confusion will be addressed in a future patch by dropping
last_nonleaf_level entirely. For now, massage the code to continue the
march toward using mmu_role for (almost) all MMU computations.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role to calculate the Protection Keys (Restrict Userspace)
bitmask instead of pulling bits from current vCPU state. For some flows,
the vCPU state may not be correct (or relevant), e.g. EPT doesn't
interact with PKRU. Case in point, the "ept" param simply disappears.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role to generate the permission bitmasks for the MMU.
For some flows, the vCPU state may not be correct (or relevant), e.g.
the nested NPT MMU can be initialized with incoherent vCPU state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the vCPU param from __reset_rsvds_bits_mask() as it's now unused,
and ideally will remain unused in the future. Any information that's
needed by the low level helper should be explicitly provided as it's used
for both shadow/host MMUs and guest MMUs, i.e. vCPU state may be
meaningless or simply wrong.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role to get CR4.PSE when calculating reserved bits for the
guest's PTEs. Practically speaking, this is a glorified nop as the role
always come from vCPU state for the relevant flows, but converting to
the roles will provide consistency once everything else is converted, and
will Just Work if the "always comes from vCPU" behavior were ever to
change (unlikely).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally pass pse=false when calculating reserved bits for shadow
PTEs. CR4.PSE is only relevant for 32-bit non-PAE paging, which KVM does
not use for shadow paging (including nested NPT).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-30-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor shadow MMU initialization to immediately set its new mmu_role
after verifying it differs from the old role, and so that all flavors
of MMU initialization share the same check-and-set pattern. Immediately
setting the role will allow future commits to use mmu_role to configure
the MMU without consuming stale state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't set cr4_pke or cr4_la57 in the MMU role if long mode isn't active,
which is required for protection keys and 5-level paging to be fully
enabled. Ignoring the bit avoids unnecessary reconfiguration on reuse,
and also means consumers of mmu_role don't need to manually check for
long mode.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't set CR0/CR4/EFER bits in the MMU role if paging is disabled, paging
modifiers are irrelevant if there is no paging in the first place.
Somewhat arbitrarily clear gpte_is_8_bytes for shadow paging if paging is
disabled in the guest. Again, there are no guest PTEs to process, so the
size is meaningless.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add accessors via a builder macro for all mmu_role bits that track a CR0,
CR4, or EFER bit, abstracting whether the bits are in the base or the
extended role.
Future commits will switch to using mmu_role instead of vCPU state to
configure the MMU, i.e. there are about to be a large number of users.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename "nxe" to "efer_nx" so that future macro magic can use the pattern
<reg>_<bit> for all CR0, CR4, and EFER bits that included in the role.
Using "efer_nx" also makes it clear that the role bit reflects EFER.NX,
not the NX bit in the corresponding PTE.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the provided role_regs to calculate the mmu_role instead of pulling
bits from current vCPU state. For some flows, e.g. nested TDP, the vCPU
state may not be correct (or relevant).
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not incorporate CR0/CR4 bits into the role for the nested EPT MMU, as
EPT behavior is not influenced by CR0/CR4. Note, this is the guest_mmu,
(L1's EPT), not nested_mmu (L2's IA32 paging); the nested_mmu does need
CR0/CR4, and is initialized in a separate flow.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the MMU metadata update calls to deduplicate code, and to
prep for future cleanup.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce "struct kvm_mmu_role_regs" to hold the register state that is
incorporated into the mmu_role. For nested TDP, the register state that
is factored into the MMU isn't vCPU state; the dedicated struct will be
used to propagate the correct state throughout the flows without having
to pass multiple params, and also provides helpers for the various flag
accessors.
Intentionally make the new helpers cumbersome/ugly by prepending four
underscores. In the not-too-distant future, it will be preferable to use
the mmu_role to query bits as the mmu_role can drop irrelevant bits
without creating contradictions, e.g. clearing CR4 bits when CR0.PG=0.
Reserve the clean helper names (no underscores) for the mmu_role.
Add a helper for vCPU conversion, which is the common case.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the mmu_role to initialize shadow root level instead of assuming the
level of KVM's shadow root (host) is the same as that of the guest root,
or in the case of 32-bit non-PAE paging where KVM forces PAE paging.
For nested NPT, the shadow root level cannot be adapted to L1's NPT root
level and is instead always the TDP root level because NPT uses the
current host CR0/CR4/EFER, e.g. 64-bit KVM can't drop into 32-bit PAE to
shadow L1's NPT.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move nested NPT's invocation of reset_shadow_zero_bits_mask() into the
MMU proper and unexport said function. Aside from dropping an export,
this is a baby step toward eliminating the call entirely by fixing the
shadow_root_level confusion.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Grab all CR0/CR4 MMU role bits from current vCPU state when initializing
a non-nested shadow MMU. Extract the masks from kvm_post_set_cr{0,4}(),
as the CR0/CR4 update masks must exactly match the mmu_role bits, with
one exception (see below). The "full" CR0/CR4 will be used by future
commits to initialize the MMU and its role, as opposed to the current
approach of pulling everything from vCPU, which is incorrect for certain
flows, e.g. nested NPT.
CR4.LA57 is an exception, as it can be toggled on VM-Exit (for L1's MMU)
but can't be toggled via MOV CR4 while long mode is active. I.e. LA57
needs to be in the mmu_role, but technically doesn't need to be checked
by kvm_post_set_cr4(). However, the extra check is completely benign as
the hardware restrictions simply mean LA57 will never be _the_ cause of
a MMU reset during MOV CR4.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the smep_andnot_wp role check from the "uses NX" calculation now
that all non-nested shadow MMUs treat NX as used via the !TDP check.
The shadow MMU for nested NPT, which shares the helper, does not need to
deal with SMEP (or WP) as NPT walks are always "user" accesses and WP is
explicitly noted as being ignored:
Table walks for guest page tables are always treated as user writes at
the nested page table level.
A table walk for the guest page itself is always treated as a user
access at the nested page table level
The host hCR0.WP bit is ignored under nested paging.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment in the nested NPT initialization flow to call out that it
intentionally uses vmcb01 instead current vCPU state to get the effective
hCR4 and hEFER for L1's NPT context.
Note, despite nSVM's efforts to handle the case where vCPU state doesn't
reflect L1 state, the MMU may still do the wrong thing due to pulling
state from the vCPU instead of the passed in CR0/CR4/EFER values. This
will be addressed in future commits.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When configuring KVM's MMU, pass CR0 and CR4 as unsigned longs, and EFER
as a u64 in various flows (mostly MMU). Passing the params as u32s is
functionally ok since all of the affected registers reserve bits 63:32 to
zero (enforced by KVM), but it's technically wrong.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename mmu_need_write_protect() to mmu_try_to_unsync_pages() and update
a variety of related, stale comments. Add several new comments to call
out subtle details, e.g. that upper-level shadow pages are write-tracked,
and that can_unsync is false iff KVM is in the process of synchronizing
pages.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nove the kvm_unlink_unsync_page() call out of kvm_sync_page() and into
it's sole caller, and fold __kvm_sync_page() into kvm_sync_page() since
the latter becomes a pure pass-through. There really should be no reason
for code to do a complete sync of a shadow page outside of the full
kvm_mmu_sync_roots(), e.g. the one use case that creeped in turned out to
be flawed and counter-productive.
Drop the stale comment about @sp->gfn needing to be write-protected, as
it directly contradicts the kvm_mmu_get_page() usage.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explain the usage of sync_page() in kvm_mmu_get_page(), which is
subtle in how and why it differs from mmu_sync_children().
Signed-off-by: Sean Christopherson <seanjc@google.com>
[Split out of a different patch by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When synchronizing a shadow page, WARN and zap the page if its mmu role
isn't compatible with the current MMU context, where "compatible" is an
exact match sans the bits that have no meaning in the overall MMU context
or will be explicitly overwritten during the sync. Many of the helpers
used by sync_page() are specific to the current context, updating a SMM
vs. non-SMM shadow page would use the wrong memslots, updating L1 vs. L2
PTEs might work but would be extremely bizaree, and so on and so forth.
Drop the guard with respect to 8-byte vs. 4-byte PTEs in
__kvm_sync_page(), it was made useless when kvm_mmu_get_page() stopped
trying to sync shadow pages irrespective of the current MMU context.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Originally, __kvm_sync_page used to check the cr4_pae bit in the role
to avoid zapping 4-byte kvm_mmu_pages when guest page size are 8-byte
or the other way round. However, in commit 47c42e6b41 ("KVM: x86: fix
handling of role.cr4_pae and rename it to 'gpte_size'", 2019-03-28) it
was observed that this did not work for nested EPT, where the page table
size would be 8 bytes even if CR4.PAE=0. (Note that the check still
has to be done for nested *NPT*, so it is not possible to use tdp_enabled
or similar).
Therefore, a hack was introduced to identify nested EPT shadow pages
and unconditionally call __kvm_sync_page() on them. However, it is
possible to do without the hack to identify nested EPT shadow pages:
if EPT is active, there will be no shadow pages in non-EPT format,
and all of them will have gpte_is_8_bytes set to true; we can just
check the MMU role directly, and the test will always be true.
Even for non-EPT shadow MMUs, this test should really always be true
now that __kvm_sync_page() is called if and only if the role is an
exact match (kvm_mmu_get_page()) or is part of the current MMU context
(kvm_mmu_sync_roots()). A future commit will convert the likely-pointless
check into a meaningful WARN to enforce that the mmu_roles of the current
context and the shadow page are compatible.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When creating a new upper-level shadow page, zap unsync shadow pages at
the same target gfn instead of attempting to sync the pages. This fixes
a bug where an unsync shadow page could be sync'd with an incompatible
context, e.g. wrong smm, is_guest, etc... flags. In practice, the bug is
relatively benign as sync_page() is all but guaranteed to fail its check
that the guest's desired gfn (for the to-be-sync'd page) matches the
current gfn associated with the shadow page. I.e. kvm_sync_page() would
end up zapping the page anyways.
Alternatively, __kvm_sync_page() could be modified to explicitly verify
the mmu_role of the unsync shadow page is compatible with the current MMU
context. But, except for this specific case, __kvm_sync_page() is called
iff the page is compatible, e.g. the transient sync in kvm_mmu_get_page()
requires an exact role match, and the call from kvm_sync_mmu_roots() is
only synchronizing shadow pages from the current MMU (which better be
compatible or KVM has problems). And as described above, attempting to
sync shadow pages when creating an upper-level shadow page is unlikely
to succeed, e.g. zero successful syncs were observed when running Linux
guests despite over a million attempts.
Fixes: 9f1a122f97 ("KVM: MMU: allow more page become unsync at getting sp time")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-10-seanjc@google.com>
[Remove WARN_ON after __kvm_sync_page. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop MAXPHYADDR from mmu_role now that all MMUs have their role
invalidated after a CPUID update. Invalidating the role forces all MMUs
to re-evaluate the guest's MAXPHYADDR, and the guest's MAXPHYADDR can
only be changed only through a CPUID update.
This reverts commit de3ccd26fa.
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Warn userspace that KVM_SET_CPUID{,2} after KVM_RUN "may" cause guest
instability. Initialize last_vmentry_cpu to -1 and use it to detect if
the vCPU has been run at least once when its CPUID model is changed.
KVM does not correctly handle changes to paging related settings in the
guest's vCPU model after KVM_RUN, e.g. MAXPHYADDR, GBPAGES, etc... KVM
could theoretically zap all shadow pages, but actually making that happen
is a mess due to lock inversion (vcpu->mutex is held). And even then,
updating paging settings on the fly would only work if all vCPUs are
stopped, updated in concert with identical settings, then restarted.
To support running vCPUs with different vCPU models (that affect paging),
KVM would need to track all relevant information in kvm_mmu_page_role.
Note, that's the _page_ role, not the full mmu_role. Updating mmu_role
isn't sufficient as a vCPU can reuse a shadow page translation that was
created by a vCPU with different settings and thus completely skip the
reserved bit checks (that are tied to CPUID).
Tracking CPUID state in kvm_mmu_page_role is _extremely_ undesirable as
it would require doubling gfn_track from a u16 to a u32, i.e. would
increase KVM's memory footprint by 2 bytes for every 4kb of guest memory.
E.g. MAXPHYADDR (6 bits), GBPAGES, AMD vs. INTEL = 1 bit, and SEV C-BIT
would all need to be tracked.
In practice, there is no remotely sane use case for changing any paging
related CPUID entries on the fly, so just sweep it under the rug (after
yelling at userspace).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers. Despite the efforts of commit de3ccd26fa
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role. E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.
The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.
Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes. Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...
Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint. The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.
In other words, resetting the MMU after a CPUID update is largely a
superficial fix. But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported. For cases where KVM botches guest behavior, the damage is
limited to that guest. But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.
Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization. When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level. Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.
But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section. L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient. Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.
Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.
This reverts commit 8053f924ca.
Fixes: 8053f924ca ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the MMU's role to get its effective SMEP value when injecting a fault
into the guest. When walking L1's (nested) NPT while L2 is active, vCPU
state will reflect L2, whereas NPT uses the host's (L1 in this case) CR0,
CR4, EFER, etc... If L1 and L2 have different settings for SMEP and
L1 does not have EFER.NX=1, this can result in an incorrect PFEC.FETCH
when injecting #NPF.
Fixes: e57d4a356a ("KVM: Add instruction fetch checking when walking guest page table")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reset the MMU context at vCPU INIT (and RESET for good measure) if CR0.PG
was set prior to INIT. Simply re-initializing the current MMU is not
sufficient as the current root HPA may not be usable in the new context.
E.g. if TDP is disabled and INIT arrives while the vCPU is in long mode,
KVM will fail to switch to the 32-bit pae_root and bomb on the next
VM-Enter due to running with a 64-bit CR3 in 32-bit mode.
This bug was papered over in both VMX and SVM, but still managed to rear
its head in the MMU role on VMX. Because EFER.LMA=1 requires CR0.PG=1,
kvm_calc_shadow_mmu_root_page_role() checks for EFER.LMA without first
checking CR0.PG. VMX's RESET/INIT flow writes CR0 before EFER, and so
an INIT with the vCPU in 64-bit mode will cause the hack-a-fix to
generate the wrong MMU role.
In VMX, the INIT issue is specific to running without unrestricted guest
since unrestricted guest is available if and only if EPT is enabled.
Commit 8668a3c468 ("KVM: VMX: Reset mmu context when entering real
mode") resolved the issue by forcing a reset when entering emulated real
mode.
In SVM, commit ebae871a50 ("kvm: svm: reset mmu on VCPU reset") forced
a MMU reset on every INIT to workaround the flaw in common x86. Note, at
the time the bug was fixed, the SVM problem was exacerbated by a complete
lack of a CR4 update.
The vendor resets will be reverted in future patches, primarily to aid
bisection in case there are non-INIT flows that rely on the existing VMX
logic.
Because CR0.PG is unconditionally cleared on INIT, and because CR0.WP and
all CR4/EFER paging bits are ignored if CR0.PG=0, simply checking that
CR0.PG was '1' prior to INIT/RESET is sufficient to detect a required MMU
context reset.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark NX as being used for all non-nested shadow MMUs, as KVM will set the
NX bit for huge SPTEs if the iTLB mutli-hit mitigation is enabled.
Checking the mitigation itself is not sufficient as it can be toggled on
at any time and KVM doesn't reset MMU contexts when that happens. KVM
could reset the contexts, but that would require purging all SPTEs in all
MMUs, for no real benefit. And, KVM already forces EFER.NX=1 when TDP is
disabled (for WP=0, SMEP=1, NX=0), so technically NX is never reserved
for shadow MMUs.
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a misguided WARN that attempts to detect the scenario where using
a special A/D tracking flag will set reserved bits on a non-MMIO spte.
The WARN triggers false positives when using EPT with 32-bit KVM because
of the !64-bit clause, which is just flat out wrong. The whole A/D
tracking goo is specific to EPT, and one of the big selling points of EPT
is that EPT is decoupled from the host's native paging mode.
Drop the WARN instead of trying to salvage the check. Keeping a check
specific to A/D tracking bits would essentially regurgitate the same code
that led to KVM needed the tracking bits in the first place.
A better approach would be to add a generic WARN on reserved bits being
set, which would naturally cover the A/D tracking bits, work for all
flavors of paging, and be self-documenting to some extent.
Fixes: 8a406c8953 ("KVM: x86/mmu: Rename and document A/D scheme for TDP SPTEs")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To remove code duplication, use the binary stats descriptors in the
implementation of the debugfs interface for statistics. This unifies
the definition of statistics for the binary and debugfs interfaces.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-8-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a VCPU ioctl to get a statistics file descriptor by which a read
functionality is provided for userspace to read out VCPU stats header,
descriptors and data.
Define VCPU statistics descriptors and header for all architectures.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com> #arm64
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-5-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a VM ioctl to get a statistics file descriptor by which a read
functionality is provided for userspace to read out VM stats header,
descriptors and data.
Define VM statistics descriptors and header for all architectures.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com> #arm64
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-4-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit defines the API for userspace and prepare the common
functionalities to support per VM/VCPU binary stats data readings.
The KVM stats now is only accessible by debugfs, which has some
shortcomings this change series are supposed to fix:
1. The current debugfs stats solution in KVM could be disabled
when kernel Lockdown mode is enabled, which is a potential
rick for production.
2. The current debugfs stats solution in KVM is organized as "one
stats per file", it is good for debugging, but not efficient
for production.
3. The stats read/clear in current debugfs solution in KVM are
protected by the global kvm_lock.
Besides that, there are some other benefits with this change:
1. All KVM VM/VCPU stats can be read out in a bulk by one copy
to userspace.
2. A schema is used to describe KVM statistics. From userspace's
perspective, the KVM statistics are self-describing.
3. With the fd-based solution, a separate telemetry would be able
to read KVM stats in a less privileged environment.
4. After the initial setup by reading in stats descriptors, a
telemetry only needs to read the stats data itself, no more
parsing or setup is needed.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com> #arm64
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-3-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Generic KVM stats are those collected in architecture independent code
or those supported by all architectures; put all generic statistics in
a separate structure. This ensures that they are defined the same way
in the statistics API which is being added, removing duplication among
different architectures in the declaration of the descriptors.
No functional change intended.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210618222709.1858088-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat a NULL shadow page in the "is a TDP MMU" check as valid, non-TDP
root. KVM uses a "direct" PAE paging MMU when TDP is disabled and the
guest is running with paging disabled. In that case, root_hpa points at
the pae_root page (of which only 32 bytes are used), not a standard
shadow page, and the WARN fires (a lot).
Fixes: 0b873fd7fb ("KVM: x86/mmu: Remove redundant is_tdp_mmu_enabled check")
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622072454.3449146-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark #ACs that won't be reinjected to the guest as wanted by L0 so that
KVM handles split-lock #AC from L2 instead of forwarding the exception to
L1. Split-lock #AC isn't yet virtualized, i.e. L1 will treat it like a
regular #AC and do the wrong thing, e.g. reinject it into L2.
Fixes: e6f8b6c12f ("KVM: VMX: Extend VMXs #AC interceptor to handle split lock #AC in guest")
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622172244.3561540-1-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the case where kvm_memslots_have_rmaps(kvm) is false the boolean
variable flush is not set and is uninitialized. If is_tdp_mmu_enabled(kvm)
is true then the call to kvm_tdp_mmu_zap_collapsible_sptes passes the
uninitialized value of flush into the call. Fix this by initializing
flush to false.
Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622150912.23429-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Failed VM-entry is often due to a faulty core. To help identify bad
cores, print the id of the last logical processor that attempted
VM-entry whenever dumping a VMCS or VMCB.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210621221648.1833148-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PKRU value of a task is stored in task->thread.pkru when the task is
scheduled out. PKRU is restored on schedule in from there. So keeping the
XSAVE buffer up to date is a pointless exercise.
Remove the xstate fiddling and cleanup all related functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.897372712@linutronix.de
write_pkru() was originally used just to write to the PKRU register. It
was mercifully short and sweet and was not out of place in pgtable.h with
some other pkey-related code.
But, later work included a requirement to also modify the task XSAVE
buffer when updating the register. This really is more related to the
XSAVE architecture than to paging.
Move the read/write_pkru() to asm/pkru.h. pgtable.h won't miss them.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de
This is not a copy functionality. It restores the register state from the
supplied kernel buffer.
No functional changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121454.716058365@linutronix.de
A copy is guaranteed to leave the source intact, which is not the case when
FNSAVE is used as that reinitilizes the registers.
Save does not make such guarantees and it matches what this is about,
i.e. to save the state for a later restore.
Rename it to save_fpregs_to_fpstate().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121454.508853062@linutronix.de
PKRU is being removed from the kernel XSAVE/FPU buffers. This removal
will probably include warnings for code that look up PKRU in those
buffers.
KVM currently looks up the location of PKRU but doesn't even use the
pointer that it gets back. Rework the code to avoid calling
get_xsave_addr() except in cases where its result is actually used.
This makes the code more clear and also avoids the inevitable PKRU
warnings.
This is probably a good cleanup and could go upstream idependently
of any PKRU rework.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121453.541037562@linutronix.de
Calculate the max VMCS index for vmcs12 by walking the array to find the
actual max index. Hardcoding the index is prone to bitrot, and the
calculation is only done on KVM bringup (albeit on every CPU, but there
aren't _that_ many null entries in the array).
Fixes: 3c0f99366e ("KVM: nVMX: Add a TSC multiplier field in VMCS12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210618214658.2700765-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As part of smaller maxphyaddr emulation, kvm needs to intercept
present page faults to see if it needs to add the RSVD flag (bit 3) to
the error code. However, there is no need to intercept page faults
that already have the RSVD flag set. When setting up the page fault
intercept, add the RSVD flag into the #PF error code mask field (but
not the #PF error code match field) to skip the intercept when the
RSVD flag is already set.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210618235941.1041604-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa checks below the top-level check in kvm_mmu_page_fault are
theoretically redundant since there is no longer a way for the root_hpa
to be reset during a page fault. The details of why are described in
commit ddce620821 ("KVM: x86/mmu: Move root_hpa validity checks to top
of page fault handler")
__direct_map, kvm_tdp_mmu_map, and get_mmio_spte are all only reachable
through kvm_mmu_page_fault, therefore their root_hpa checks are
redundant.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This change simplifies the call sites slightly and also abstracts away
the implementation detail of looking at root_hpa as the mechanism for
determining if the mmu is the TDP MMU.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This check is redundant because the root shadow page will only be a TDP
MMU page if is_tdp_mmu_enabled() returns true, and is_tdp_mmu_enabled()
never changes for the lifetime of a VM.
It's possible that this check was added for performance reasons but it
is unlikely that it is useful in practice since to_shadow_page() is
cheap. That being said, this patch also caches the return value of
is_tdp_mmu_root() in direct_page_fault() since there's no reason to
duplicate the call so many times, so performance is not a concern.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The check for is_tdp_mmu_root in kvm_tdp_mmu_map is redundant because
kvm_tdp_mmu_map's only caller (direct_page_fault) already checks
is_tdp_mmu_root.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If is_tdp_mmu_root is not inlined, the elimination of TDP MMU calls as dead
code might not work out. To avoid this, explicitly declare the stubbed
is_tdp_mmu_root on 32-bit hosts.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if NX is reported as supported but not enabled in EFER. All flavors
of the kernel, including non-PAE 32-bit kernels, set EFER.NX=1 if NX is
supported, even if NX usage is disable via kernel command line. KVM relies
on NX being enabled if it's supported, e.g. KVM will generate illegal NPT
entries if nx_huge_pages is enabled and NX is supported but not enabled.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210615164535.2146172-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refuse to load KVM if NX support is not available. Shadow paging has
assumed NX support since commit 9167ab7993 ("KVM: vmx, svm: always run
with EFER.NXE=1 when shadow paging is active"), and NPT has assumed NX
support since commit b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation").
While the NX huge pages mitigation should not be enabled by default for
AMD CPUs, it can be turned on by userspace at will.
Unlike Intel CPUs, AMD does not provide a way for firmware to disable NX
support, and Linux always sets EFER.NX=1 if it is supported. Given that
it's extremely unlikely that a CPU supports NPT but not NX, making NX a
formal requirement is far simpler than adding requirements to the
mitigation flow.
Fixes: 9167ab7993 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active")
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210615164535.2146172-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refuse to load KVM if NX support is not available and EPT is not enabled.
Shadow paging has assumed NX support since commit 9167ab7993 ("KVM:
vmx, svm: always run with EFER.NXE=1 when shadow paging is active"), so
for all intents and purposes this has been a de facto requirement for
over a year.
Do not require NX support if EPT is enabled purely because Intel CPUs let
firmware disable NX support via MSR_IA32_MISC_ENABLES. If not for that,
VMX (and KVM as a whole) could require NX support with minimal risk to
breaking userspace.
Fixes: 9167ab7993 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210615164535.2146172-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit in sched/urgent moved the cfs_rq_is_decayed() function:
a7b359fc6a: ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
and this fresh commit in sched/core modified it in the old location:
9e077b52d8: ("sched/pelt: Check that *_avg are null when *_sum are")
Merge the two variants.
Conflicts:
kernel/sched/fair.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
reported by syzkaller ("KVM: x86: Immediately reset the MMU context when the SMM
flag is cleared").
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDLldwUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPTOgf/XpAehLdWlx2877ulcBD0Kjt0tLvH
OFHRD1Ir0d1Ay3DX8qmxLquXHB4CoDGZBwi1d7AI165kUP/XLmV0bY6TZ74inI/P
CaD8Bsbm8+iBl5jrovEPc+223bK+3OFOvo2pk6M/MlsO/ExRikaPDtHOnkfousbl
nLX8v2qd7ihWyJOdLJMU9pV8E2iczQoCuH9yWBHdCrxRxWtPzkEekPWb0sujByiF
4tD7sqiEA3ugbF1Wm5keQV63NLplfxx+Zun0FV+tbpjjxQWAGl81dP+zmqok0sM/
qQCyZevt6jLLkL+Fn6hI6PP9OTeYreX2fgwhWXs71d2js33yNg5Veqx5Bw==
=Gs/y
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Miscellaneous bugfixes.
The main interesting one is a NULL pointer dereference reported by
syzkaller ("KVM: x86: Immediately reset the MMU context when the SMM
flag is cleared")"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: selftests: Fix kvm_check_cap() assertion
KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU
KVM: X86: Fix x86_emulator slab cache leak
KVM: SVM: Call SEV Guest Decommission if ASID binding fails
KVM: x86: Immediately reset the MMU context when the SMM flag is cleared
KVM: x86: Fix fall-through warnings for Clang
KVM: SVM: fix doc warnings
KVM: selftests: Fix compiling errors when initializing the static structure
kvm: LAPIC: Restore guard to prevent illegal APIC register access
TDP MMU iterator's level is identical to page table's actual level. For
instance, for the last level page table (whose entry points to one 4K
page), iter->level is 1 (PG_LEVEL_4K), and in case of 5 level paging,
the iter->level is mmu->shadow_root_level, which is 5. However, struct
kvm_mmu_page's level currently is not set correctly when it is allocated
in kvm_tdp_mmu_map(). When iterator hits non-present SPTE and needs to
allocate a new child page table, currently iter->level, which is the
level of the page table where the non-present SPTE belongs to, is used.
This results in struct kvm_mmu_page's level always having its parent's
level (excpet root table's level, which is initialized explicitly using
mmu->shadow_root_level).
This is kinda wrong, and not consistent with existing non TDP MMU code.
Fortuantely sp->role.level is only used in handle_removed_tdp_mmu_page()
and kvm_tdp_mmu_zap_sp(), and they are already aware of this and behave
correctly. However to make it consistent with legacy MMU code (and fix
the issue that both root page table and its child page table have
shadow_root_level), use iter->level - 1 in kvm_tdp_mmu_map(), and change
handle_removed_tdp_mmu_page() and kvm_tdp_mmu_zap_sp() accordingly.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <bcb6569b6e96cb78aaa7b50640e6e6b53291a74e.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently pf_fixed is not increased when prefault is true. This is not
correct, since prefault here really means "async page fault completed".
In that case, the original page fault from the guest was morphed into as
async page fault and pf_fixed was not increased. So when prefault
indicates async page fault is completed, pf_fixed should be increased.
Additionally, currently pf_fixed is also increased even when page fault
is spurious, while legacy MMU increases pf_fixed when page fault returns
RET_PF_EMULATE or RET_PF_FIXED.
To fix above two issues, change to increase pf_fixed when return value
is not RET_PF_SPURIOUS (RET_PF_RETRY has already been ruled out by
reaching here).
More information:
https://lore.kernel.org/kvm/cover.1620200410.git.kai.huang@intel.com/T/#mbb5f8083e58a2cd262231512b9211cbe70fc3bd5
Fixes: bb18842e21 ("kvm: x86/mmu: Add TDP MMU PF handler")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <2ea8b7f5d4f03c99b32bc56fc982e1e4e3d3fc6b.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently tdp_mmu_map_handle_target_level() returns 0, which is
RET_PF_RETRY, when page fault is actually fixed. This makes
kvm_tdp_mmu_map() also return RET_PF_RETRY in this case, instead of
RET_PF_FIXED. Fix by initializing ret to RET_PF_FIXED.
Note that kvm_mmu_page_fault() resumes guest on both RET_PF_RETRY and
RET_PF_FIXED, which means in practice returning the two won't make
difference, so this fix alone won't be necessary for stable tree.
Fixes: bb18842e21 ("kvm: x86/mmu: Add TDP MMU PF handler")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f9e8956223a586cd28c090879a8ff40f5eb6d609.1623717884.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_LAPIC stores the current value of TMCCT and KVM_SET_LAPIC's memcpy
stores it in vcpu->arch.apic->regs, KVM_SET_LAPIC could store zero in
vcpu->arch.apic->regs after it uses it, and then the stored value would
always be zero. In addition, the TMCCT is always computed on-demand and
never directly readable.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1623223000-18116-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This hypercall is used by the SEV guest to notify a change in the page
encryption status to the hypervisor. The hypercall should be invoked
only when the encryption attribute is changed from encrypted -> decrypted
and vice versa. By default all guest pages are considered encrypted.
The hypercall exits to userspace to manage the guest shared regions and
integrate with the userspace VMM's migration code.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <90778988e1ee01926ff9cac447aacb745f954c8c.1623174621.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot kvm->stats.nx_lpage_splits into a local unsigned long to avoid
64-bit division on 32-bit kernels. Casting to an unsigned long is safe
because the maximum number of shadow pages, n_max_mmu_pages, is also an
unsigned long, i.e. KVM will start recycling shadow pages before the
number of splits can exceed a 32-bit value.
ERROR: modpost: "__udivdi3" [arch/x86/kvm/kvm.ko] undefined!
Fixes: 7ee093d4f3f5 ("KVM: switch per-VM stats to u64")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210615162905.2132937-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When APICv is active, interrupt injection doesn't raise KVM_REQ_EVENT
request (see __apic_accept_irq()) as the required work is done by hardware.
In case KVM_REQ_APICV_UPDATE collides with such injection, the interrupt
may never get delivered.
Currently, the described situation is hardly possible: all
kvm_request_apicv_update() calls normally happen upon VM creation when
no interrupts are pending. We are, however, going to move unconditional
kvm_request_apicv_update() call from kvm_hv_activate_synic() to
synic_update_vector() and without this fix 'hyperv_connections' test from
kvm-unit-tests gets stuck on IPI delivery attempt right after configuring
a SynIC route which triggers APICv disablement.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the explicit check on EPTP switching being enabled. The EPTP
switching check is handled in the generic VMFUNC function check, while
the underlying VMFUNC enablement check is done by hardware and redone
by generic VMFUNC emulation.
The vmcs12 EPT check is handled by KVM at VM-Enter in the form of a
consistency check, keep it but add a WARN.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN and inject #UD when emulating VMFUNC for L2 if the function is
out-of-bounds or if VMFUNC is not enabled in vmcs12. Neither condition
should occur in practice, as the CPU is supposed to prioritize the #UD
over VM-Exit for out-of-bounds input and KVM is supposed to enable
VMFUNC in vmcs02 if and only if it's enabled in vmcs12, but neither of
those dependencies is obvious.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the @reset_roots param from kvm_init_mmu(), the one user,
kvm_mmu_reset_context() has already unloaded the MMU and thus freed and
invalidated all roots. This also happens to be why the reset_roots=true
paths doesn't leak roots; they're already invalid.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer the MMU sync on PCID invalidation so that multiple sync requests in
a single VM-Exit are batched. This is a very minor optimization as
checking for unsync'd children is quite cheap.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use __kvm_mmu_new_pgd() via kvm_init_shadow_ept_mmu() to emulate
VMFUNC[EPTP_SWITCH] instead of nuking all MMUs. EPTP_SWITCH is the EPT
equivalent of MOV to CR3, i.e. is a perfect fit for the common PGD flow,
the only hiccup being that A/D enabling is buried in the EPTP. But, that
is easily handled by bouncing through kvm_init_shadow_ept_mmu().
Explicitly request a guest TLB flush if VPID is disabled. Per Intel's
SDM, if VPID is disabled, "an EPTP-switching VMFUNC invalidates combined
mappings associated with VPID 0000H (for all PCIDs and for all EP4TA
values, where EP4TA is the value of bits 51:12 of EPTP)".
Note, this technically is a very bizarre bug fix of sorts if L2 is using
PAE paging, as avoiding the full MMU reload also avoids incorrectly
reloading the PDPTEs, which the SDM explicitly states are not touched:
If PAE paging is in use, an EPTP-switching VMFUNC does not load the
four page-directory-pointer-table entries (PDPTEs) from the
guest-physical address in CR3. The logical processor continues to use
the four guest-physical addresses already present in the PDPTEs. The
guest-physical address in CR3 is not translated through the new EPT
paging structures (until some operation that would load the PDPTEs).
In addition to optimizing L2's MMU shenanigans, avoiding the full reload
also optimizes L1's MMU as KVM_REQ_MMU_RELOAD wipes out all roots in both
root_mmu and guest_mmu.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM_REQ_TLB_FLUSH_GUEST instead of KVM_REQ_MMU_RELOAD when emulating
INVPCID of all contexts. In the current code, this is a glorified nop as
TLB_FLUSH_GUEST becomes kvm_mmu_unload(), same as MMU_RELOAD, when TDP
is disabled, which is the only time INVPCID is only intercepted+emulated.
In the future, reusing TLB_FLUSH_GUEST will simplify optimizing paths
that emulate a guest TLB flush, e.g. by synchronizing as needed instead
of completely unloading all MMUs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating INVVPID for L1, free only L2+ roots, using the guest_mode
tag in the MMU role to identify L2+ roots. From L1's perspective, its
own TLB entries use VPID=0, and INVVPID is not requied to invalidate such
entries. Per Intel's SDM, INVVPID _may_ invalidate entries with VPID=0,
but it is not required to do so.
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the dedicated nested_vmx_transition_mmu_sync() now that the MMU sync
is handled via KVM_REQ_TLB_FLUSH_GUEST, and fold that flush into the
all-encompassing nested_vmx_transition_tlb_flush().
Opportunistically add a comment explaning why nested EPT never needs to
sync the MMU on VM-Enter.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop skip_mmu_sync and skip_tlb_flush from __kvm_mmu_new_pgd() now that
all call sites unconditionally skip both the sync and flush.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce nested_svm_transition_tlb_flush() and use it force an MMU sync
and TLB flush on nSVM VM-Enter and VM-Exit instead of sneaking the logic
into the __kvm_mmu_new_pgd() call sites. Add a partial todo list to
document issues that need to be addressed before the unconditional sync
and flush can be modified to look more like nVMX's logic.
In addition to making nSVM's forced flushing more overt (guess who keeps
losing track of it), the new helper brings further convergence between
nSVM and nVMX, and also sets the stage for dropping the "skip" params
from __kvm_mmu_new_pgd().
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop leveraging the MMU sync and TLB flush requested by the fast PGD
switch helper now that kvm_set_cr3() manually handles the necessary sync,
frees, and TLB flush. This will allow dropping the params from the fast
PGD helpers since nested SVM is now the odd blob out.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush and sync all PGDs for the current/target PCID on MOV CR3 with a
TLB flush, i.e. without PCID_NOFLUSH set. Paraphrasing Intel's SDM
regarding the behavior of MOV to CR3:
- If CR4.PCIDE = 0, invalidates all TLB entries associated with PCID
000H and all entries in all paging-structure caches associated with
PCID 000H.
- If CR4.PCIDE = 1 and NOFLUSH=0, invalidates all TLB entries
associated with the PCID specified in bits 11:0, and all entries in
all paging-structure caches associated with that PCID. It is not
required to invalidate entries in the TLBs and paging-structure
caches that are associated with other PCIDs.
- If CR4.PCIDE=1 and NOFLUSH=1, is not required to invalidate any TLB
entries or entries in paging-structure caches.
Extract and reuse the logic for INVPCID(single) which is effectively the
same flow and works even if CR4.PCIDE=0, as the current PCID will be '0'
in that case, thus honoring the requirement of flushing PCID=0.
Continue passing skip_tlb_flush to kvm_mmu_new_pgd() even though it
_should_ be redundant; the clean up will be done in a future patch. The
overhead of an unnecessary nop sync is minimal (especially compared to
the actual sync), and the TLB flush is handled via request. Avoiding the
the negligible overhead is not worth the risk of breaking kernels that
backport the fix.
Fixes: 956bf3531f ("kvm: x86: Skip shadow page resync on CR3 switch when indicated by guest")
Cc: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bogus logic that incorrectly clobbers the accessed/dirty enabling
status of the nested MMU on an EPTP switch. When nested EPT is enabled,
walk_mmu points at L2's _legacy_ page tables, not L1's EPT for L2.
This is likely a benign bug, as mmu->ept_ad is never consumed (since the
MMU is not a nested EPT MMU), and stuffing mmu_role.base.ad_disabled will
never propagate into future shadow pages since the nested MMU isn't used
to map anything, just to walk L2's page tables.
Note, KVM also does a full MMU reload, i.e. the guest_mmu will be
recreated using the new EPTP, and thus any change in A/D enabling will be
properly recognized in the relevant MMU.
Fixes: 41ab937274 ("KVM: nVMX: Emulate EPTP switching for the L1 hypervisor")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use BIT_ULL() instead of an open-coded shift to check whether or not a
function is enabled in L1's VMFUNC bitmap. This is a benign bug as KVM
supports only bit 0, and will fail VM-Enter if any other bits are set,
i.e. bits 63:32 are guaranteed to be zero.
Note, "function" is bounded by hardware as VMFUNC will #UD before taking
a VM-Exit if the function is greater than 63.
Before:
if ((vmcs12->vm_function_control & (1 << function)) == 0)
0x000000000001a916 <+118>: mov $0x1,%eax
0x000000000001a91b <+123>: shl %cl,%eax
0x000000000001a91d <+125>: cltq
0x000000000001a91f <+127>: and 0x128(%rbx),%rax
After:
if (!(vmcs12->vm_function_control & BIT_ULL(function & 63)))
0x000000000001a955 <+117>: mov 0x128(%rbx),%rdx
0x000000000001a95c <+124>: bt %rax,%rdx
Fixes: 27c42a1bb8 ("KVM: nVMX: Enable VMFUNC for the L1 hypervisor")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Trigger a full TLB flush on behalf of the guest on nested VM-Enter and
VM-Exit when VPID is disabled for L2. kvm_mmu_new_pgd() syncs only the
current PGD, which can theoretically leave stale, unsync'd entries in a
previous guest PGD, which could be consumed if L2 is allowed to load CR3
with PCID_NOFLUSH=1.
Rename KVM_REQ_HV_TLB_FLUSH to KVM_REQ_TLB_FLUSH_GUEST so that it can
be utilized for its obvious purpose of emulating a guest TLB flush.
Note, there is no change the actual TLB flush executed by KVM, even
though the fast PGD switch uses KVM_REQ_TLB_FLUSH_CURRENT. When VPID is
disabled for L2, vpid02 is guaranteed to be '0', and thus
nested_get_vpid02() will return the VPID that is shared by L1 and L2.
Generate the request outside of kvm_mmu_new_pgd(), as getting the common
helper to correctly identify which requested is needed is quite painful.
E.g. using KVM_REQ_TLB_FLUSH_GUEST when nested EPT is in play is wrong as
a TLB flush from the L1 kernel's perspective does not invalidate EPT
mappings. And, by using KVM_REQ_TLB_FLUSH_GUEST, nVMX can do future
simplification by moving the logic into nested_vmx_transition_tlb_flush().
Fixes: 41fab65e7c ("KVM: nVMX: Skip MMU sync on nested VMX transition when possible")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMCS12 is used to keep the authoritative state during nested state
migration. In case 'need_vmcs12_to_shadow_sync' flag is set, we're
in between L2->L1 vmexit and L1 guest run when actual sync to
enlightened (or shadow) VMCS happens. Nested state, however, has
no flag for 'need_vmcs12_to_shadow_sync' so vmx_set_nested_state()->
set_current_vmptr() always sets it. Enlightened vmptrld path, however,
doesn't have the quirk so some VMCS12 changes may not get properly
reflected to eVMCS and L1 will see an incorrect state.
Note, during L2 execution or when need_vmcs12_to_shadow_sync is not
set the change is effectively a nop: in the former case all changes
will get reflected during the first L2->L1 vmexit and in the later
case VMCS12 and eVMCS are already in sync (thanks to
copy_enlightened_to_vmcs12() in vmx_get_nested_state()).
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-11-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When nested state migration happens during L1's execution, it
is incorrect to modify eVMCS as it is L1 who 'owns' it at the moment.
At least genuine Hyper-V seems to not be very happy when 'clean fields'
data changes underneath it.
'Clean fields' data is used in KVM twice: by copy_enlightened_to_vmcs12()
and prepare_vmcs02_rare() so we can reset it from prepare_vmcs02() instead.
While at it, update a comment stating why exactly we need to reset
'hv_clean_fields' data from L0.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'need_vmcs12_to_shadow_sync' is used for both shadow and enlightened
VMCS sync when we exit to L1. The comment in nested_vmx_failValid()
validly states why shadow vmcs sync can be omitted but this doesn't
apply to enlightened VMCS as it 'shadows' all VMCS12 fields.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'Clean fields' data from enlightened VMCS is only valid upon vmentry: L1
hypervisor is not obliged to keep it up-to-date while it is mangling L2's
state, KVM_GET_NESTED_STATE request may come at a wrong moment when actual
eVMCS changes are unsynchronized with 'hv_clean_fields'. As upon migration
VMCS12 is used as a source of ultimate truth, we must make sure we pick all
the changes to eVMCS and thus 'clean fields' data must be ignored.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unlike VMREAD/VMWRITE/VMPTRLD, VMCLEAR is a valid instruction when
enlightened VMCS is in use. TLFS has the following brief description:
"The L1 hypervisor can execute a VMCLEAR instruction to transition an
enlightened VMCS from the active to the non-active state". Normally,
this change can be ignored as unmapping active eVMCS can be postponed
until the next VMLAUNCH instruction but in case nested state is migrated
with KVM_GET_NESTED_STATE/KVM_SET_NESTED_STATE, keeping eVMCS mapped
may result in its synchronization with VMCS12 and this is incorrect:
L1 hypervisor is free to reuse inactive eVMCS memory for something else.
Inactive eVMCS after VMCLEAR can just be unmapped.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unlike regular set_current_vmptr(), nested_vmx_handle_enlightened_vmptrld()
can not be called directly from vmx_set_nested_state() as KVM may not have
all the information yet (e.g. HV_X64_MSR_VP_ASSIST_PAGE MSR may not be
restored yet). Enlightened VMCS is mapped later while getting nested state
pages. In the meantime, vmx->nested.hv_evmcs_vmptr remains 'EVMPTR_INVALID'
and it's indistinguishable from 'evmcs is not in use' case. This leads to
certain issues, in particular, if KVM_GET_NESTED_STATE is called right
after KVM_SET_NESTED_STATE, KVM_STATE_NESTED_EVMCS flag in the resulting
state will be unset (and such state will later fail to load).
Introduce 'EVMPTR_MAP_PENDING' state to detect not-yet-mapped eVMCS after
restore. With this, the 'is_guest_mode(vcpu)' hack in vmx_has_valid_vmcs12()
is no longer needed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
copy_vmcs12_to_enlightened()/copy_enlightened_to_vmcs12() don't return any result,
make them return 'void'.
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In theory, L1 can try to disable enlightened VMENTRY in VP assist page and
try to issue VMLAUNCH/VMRESUME. While nested_vmx_handle_enlightened_vmptrld()
properly handles this as 'EVMPTRLD_DISABLED', previously mapped eVMCS
remains mapped and thus all evmptr_is_valid() checks will still pass and
nested_vmx_run() will proceed when it shouldn't.
Release eVMCS immediately when we detect that enlightened vmentry was
disabled by L1.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'dirty_vmcs12' is only checked in prepare_vmcs02_early()/prepare_vmcs02()
and both checks look like:
'vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)'
so for eVMCS case the flag changes nothing. Drop the assignment to avoid
the confusion.
No functional change intended.
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of checking 'vmx->nested.hv_evmcs' use '-1' in
'vmx->nested.hv_evmcs_vmptr' to indicate 'evmcs is not in use' state. This
matches how we check 'vmx->nested.current_vmptr'. Introduce EVMPTR_INVALID
and evmptr_is_valid() and use it instead of raw '-1' check as a preparation
to adding other 'special' values.
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210526132026.270394-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
if new KVM_*_SREGS2 ioctls are used, the PDPTRs are
a part of the migration state and are correctly
restored by those ioctls.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is a new version of KVM_GET_SREGS / KVM_SET_SREGS.
It has the following changes:
* Has flags for future extensions
* Has vcpu's PDPTRs, allowing to save/restore them on migration.
* Lacks obsolete interrupt bitmap (done now via KVM_SET_VCPU_EVENTS)
New capability, KVM_CAP_SREGS2 is added to signal
the userspace of this ioctl.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Small refactoring that will be used in the next patch.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to the rest of guest page accesses after a migration,
this access should be delayed to KVM_REQ_GET_NESTED_STATE_PAGES.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document the actual reason why we need to do it
on migration and move the call to svm_set_nested_state
to be closer to VMX code.
To avoid loading the PDPTRs from possibly not up to date memory map,
in nested_svm_load_cr3 after the move, move this code to
.get_nested_state_pages.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kill off pdptrs_changed() and instead go through the full kvm_set_cr3()
for PAE guest, even if the new CR3 is the same as the current CR3. For
VMX, and SVM with NPT enabled, the PDPTRs are unconditionally marked as
unavailable after VM-Exit, i.e. the optimization is dead code except for
SVM without NPT.
In the unlikely scenario that anyone cares about SVM without NPT _and_ a
PAE guest, they've got bigger problems if their guest is loading the same
CR3 so frequently that the performance of kvm_set_cr3() is notable,
especially since KVM's fast PGD switching means reloading the same CR3
does not require a full rebuild. Given that PAE and PCID are mutually
exclusive, i.e. a sync and flush are guaranteed in any case, the actual
benefits of the pdptrs_changed() optimization are marginal at best.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210607090203.133058-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the "PDPTRs unchanged" check to skip PDPTR loading during nested
SVM transitions as it's not at all an optimization. Reading guest memory
to get the PDPTRs isn't magically cheaper by doing it in pdptrs_changed(),
and if the PDPTRs did change, KVM will end up doing the read twice.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210607090203.133058-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the pdptrs_changed() check when loading L2's CR3. The set of
available registers is always reset when switching VMCSes (see commit
e5d03de593, "KVM: nVMX: Reset register cache (available and dirty
masks) on VMCS switch"), thus the "are PDPTRs available" check will
always fail. And even if it didn't fail, reading guest memory to check
the PDPTRs is just as expensive as reading guest memory to load 'em.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210607090203.133058-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hypercalls which use extended processor masks are only available when
HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED privilege bit is exposed (and
'RECOMMENDED' is rather a misnomer).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-28-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V partition must possess 'HV_X64_CLUSTER_IPI_RECOMMENDED'
privilege ('recommended' is rather a misnomer) to issue
HVCALL_SEND_IPI hypercalls.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-27-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V partition must possess 'HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED'
privilege ('recommended' is rather a misnomer) to issue
HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST/SPACE hypercalls.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-26-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V partition must possess 'HV_DEBUGGING' privilege to issue
HVCALL_POST_DEBUG_DATA/HVCALL_RETRIEVE_DEBUG_DATA/
HVCALL_RESET_DEBUG_SESSION hypercalls.
Note, when SynDBG is disabled hv_check_hypercall_access() returns
'true' (like for any other unknown hypercall) so the result will
be HV_STATUS_INVALID_HYPERCALL_CODE and not HV_STATUS_ACCESS_DENIED.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-25-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TLFS6.0b states that partition issuing HVCALL_NOTIFY_LONG_SPIN_WAIT must
posess 'UseHypercallForLongSpinWait' privilege but there's no
corresponding feature bit. Instead, we have "Recommended number of attempts
to retry a spinlock failure before notifying the hypervisor about the
failures. 0xFFFFFFFF indicates never notify." Use this to check access to
the hypercall. Also, check against zero as the corresponding CPUID must
be set (and '0' attempts before re-try is weird anyway).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-22-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce hv_check_hypercallr_access() to check if the particular hypercall
should be available to guest, this will be used with
KVM_CAP_HYPERV_ENFORCE_CPUID mode.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-21-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthetic timers can only be configured in 'direct' mode when
HV_STIMER_DIRECT_MODE_AVAILABLE bit was exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-20-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Access to all MSRs is now properly checked. To avoid 'forgetting' to
properly check access to new MSRs in the future change the default
to 'false' meaning 'no access'.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-19-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthetic debugging MSRs (HV_X64_MSR_SYNDBG_CONTROL,
HV_X64_MSR_SYNDBG_STATUS, HV_X64_MSR_SYNDBG_SEND_BUFFER,
HV_X64_MSR_SYNDBG_RECV_BUFFER, HV_X64_MSR_SYNDBG_PENDING_BUFFER,
HV_X64_MSR_SYNDBG_OPTIONS) are only available to guest when
HV_FEATURE_DEBUG_MSRS_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-18-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL are only
available to guest when HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE bit is
exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-17-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_REENLIGHTENMENT_CONTROL/HV_X64_MSR_TSC_EMULATION_CONTROL/
HV_X64_MSR_TSC_EMULATION_STATUS are only available to guest when
HV_ACCESS_REENLIGHTENMENT bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-16-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_TSC_FREQUENCY/HV_X64_MSR_APIC_FREQUENCY are only available to
guest when HV_ACCESS_FREQUENCY_MSRS bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-15-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_EOI, HV_X64_MSR_ICR, HV_X64_MSR_TPR, and
HV_X64_MSR_VP_ASSIST_PAGE are only available to guest when
HV_MSR_APIC_ACCESS_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-14-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synthetic timers MSRs (HV_X64_MSR_STIMER[0-3]_CONFIG,
HV_X64_MSR_STIMER[0-3]_COUNT) are only available to guest when
HV_MSR_SYNTIMER_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-13-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SynIC MSRs (HV_X64_MSR_SCONTROL, HV_X64_MSR_SVERSION, HV_X64_MSR_SIEFP,
HV_X64_MSR_SIMP, HV_X64_MSR_EOM, HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15)
are only available to guest when HV_MSR_SYNIC_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-12-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_REFERENCE_TSC is only available to guest when
HV_MSR_REFERENCE_TSC_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-11-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_RESET is only available to guest when HV_MSR_RESET_AVAILABLE bit
is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_VP_INDEX is only available to guest when
HV_MSR_VP_INDEX_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_TIME_REF_COUNT is only available to guest when
HV_MSR_TIME_REF_COUNT_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_VP_RUNTIME is only available to guest when
HV_MSR_VP_RUNTIME_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
HV_X64_MSR_GUEST_OS_ID/HV_X64_MSR_HYPERCALL are only available to guest
when HV_MSR_HYPERCALL_AVAILABLE bit is exposed.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce hv_check_msr_access() to check if the particular MSR
should be accessible by guest, this will be used with
KVM_CAP_HYPERV_ENFORCE_CPUID mode.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Limiting exposed Hyper-V features requires a fast way to check if the
particular feature is exposed in guest visible CPUIDs or not. To aboid
looping through all CPUID entries on every hypercall/MSR access cache
the required leaves on CPUID update.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Modeled after KVM_CAP_ENFORCE_PV_FEATURE_CPUID, the new capability allows
for limiting Hyper-V features to those exposed to the guest in Hyper-V
CPUIDs (0x40000003, 0x40000004, ...).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210521095204.2161214-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
From Hyper-V TLFS:
"The hypervisor exposes hypercalls (HvFlushVirtualAddressSpace,
HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressList, and
HvFlushVirtualAddressListEx) that allow operating systems to more
efficiently manage the virtual TLB. The L1 hypervisor can choose to
allow its guest to use those hypercalls and delegate the responsibility
to handle them to the L0 hypervisor. This requires the use of a
partition assist page."
Add the Direct Virtual Flush support for SVM.
Related VMX changes:
commit 6f6a657c99 ("KVM/Hyper-V/VMX: Add direct tlb flush support")
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <fc8d24d8eb7017266bb961e39a171b0caf298d7f.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enlightened MSR-Bitmap as per TLFS:
"The L1 hypervisor may collaborate with the L0 hypervisor to make MSR
accesses more efficient. It can enable enlightened MSR bitmaps by setting
the corresponding field in the enlightened VMCS to 1. When enabled, L0
hypervisor does not monitor the MSR bitmaps for changes. Instead, the L1
hypervisor must invalidate the corresponding clean field after making
changes to one of the MSR bitmaps."
Enable this for SVM.
Related VMX changes:
commit ceef7d10df ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <87df0710f95d28b91cc4ea014fc4d71056eebbee.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM added support for certain reserved fields to be used by
software or hypervisor. Add the following reserved fields:
- VMCB offset 0x3e0 - 0x3ff
- Clean bit 31
- SVM intercept exit code 0xf0000000
Later patches will make use of this for supporting Hyper-V
nested virtualization enhancements.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <a1f17a43a8e9e751a1a9cc0281649d71bdbf721b.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently the remote TLB flush logic is specific to VMX.
Move it to a common place so that SVM can use it as well.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <4f4e4ca19778437dae502f44363a38e99e3ef5d1.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the following per-VCPU statistic to KVM debugfs to show if a given
VCPU is in guest mode:
guest_mode
Also add this as a per-VM statistic to KVM debugfs to show the total number
of VCPUs that are in guest mode in a given VM.
Signed-off-by: Krish Sadhukhan <Krish.Sadhukhan@oracle.com>
Message-Id: <20210609180340.104248-3-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the 'nested_run' statistic counts all guest-entry attempts,
including those that fail during vmentry checks on Intel and during
consistency checks on AMD. Convert this statistic to count only those
guest-entries that make it past these state checks and make it to guest
code. This will tell us the number of guest-entries that actually executed
or tried to execute guest code.
Signed-off-by: Krish Sadhukhan <Krish.Sadhukhan@oracle.com>
Message-Id: <20210609180340.104248-2-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that .post_leave_smm() is gone, drop "pre_" from the remaining
helpers. The helpers aren't invoked purely before SMI/RSM processing,
e.g. both helpers are invoked after state is snapshotted (from regs or
SMRAM), and the RSM helper is invoked after some amount of register state
has been stuffed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the .post_leave_smm() emulator callback, which at this point is just
a wrapper to kvm_mmu_reset_context(). The manual context reset is
unnecessary, because unlike enter_smm() which calls vendor MSR/CR helpers
directly, em_rsm() bounces through the KVM helpers, e.g. kvm_set_cr4(),
which are responsible for processing side effects. em_rsm() is already
subtly relying on this behavior as it doesn't manually do
kvm_update_cpuid_runtime(), e.g. to recognize CR4.OSXSAVE changes.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the SMM tracepoint, which handles both entering and exiting SMM,
from kvm_enter_smm to kvm_smm_transition.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoke the "entering SMM" tracepoint from kvm_smm_changed() instead of
enter_smm(), effectively moving it from before reading vCPU state to
after reading state (but still before writing it to SMRAM!). The primary
motivation is to consolidate code, but calling the tracepoint from
kvm_smm_changed() also makes its invocation consistent with respect to
SMI and RSM, and with respect to KVM_SET_VCPU_EVENTS (which previously
only invoked the tracepoint when forcing the vCPU out of SMM).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the core of SMM hflags modifications into kvm_smm_changed() and use
kvm_smm_changed() in enter_smm(). Clear HF_SMM_INSIDE_NMI_MASK for
leaving SMM but do not set it for entering SMM. If the vCPU is executing
outside of SMM, the flag should unequivocally be cleared, e.g. this
technically fixes a benign bug where the flag could be left set after
KVM_SET_VCPU_EVENTS, but the reverse is not true as NMI blocking depends
on pre-SMM state or userspace input.
Note, this adds an extra kvm_mmu_reset_context() to enter_smm(). The
extra/early reset isn't strictly necessary, and in a way can never be
necessary since the vCPU/MMU context is in a half-baked state until the
final context reset at the end of the function. But, enter_smm() is not
a hot path, and exploding on an invalid root_hpa is probably better than
having a stale SMM flag in the MMU role; it's at least no worse.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move RSM emulation's call to kvm_smm_changed() from .post_leave_smm() to
.exiting_smm(), leaving behind the MMU context reset. The primary
motivation is to allow for future cleanup, but this also fixes a bug of
sorts by queueing KVM_REQ_EVENT even if RSM causes shutdown, e.g. to let
an INIT wake the vCPU from shutdown. Of course, KVM doesn't properly
emulate a shutdown state, e.g. KVM doesn't block SMIs after shutdown, and
immediately exits to userspace, so the event request is a moot point in
practice.
Moving kvm_smm_changed() also moves the RSM tracepoint. This isn't
strictly necessary, but will allow consolidating the SMI and RSM
tracepoints in a future commit (by also moving the SMI tracepoint).
Invoking the tracepoint before loading SMRAM state also means the SMBASE
that reported in the tracepoint will point that the state that will be
used for RSM, as opposed to the SMBASE _after_ RSM completes, which is
arguably a good thing if the tracepoint is being used to debug a RSM/SMM
issue.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the .set_hflags() emulator hook with a dedicated .exiting_smm(),
moving the SMM and SMM_INSIDE_NMI flag handling out of the emulator in
the process. This is a step towards consolidating much of the logic in
kvm_smm_changed(), including the SMM hflags updates.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently introduced KVM_REQ_TRIPLE_FAULT to properly emulate
shutdown if RSM from SMM fails.
Note, entering shutdown after clearing the SMM flag and restoring NMI
blocking is architecturally correct with respect to AMD's APM, which KVM
also uses for SMRAM layout and RSM NMI blocking behavior. The APM says:
An RSM causes a processor shutdown if an invalid-state condition is
found in the SMRAM state-save area. Only an external reset, external
processor-initialization, or non-maskable external interrupt (NMI) can
cause the processor to leave the shutdown state.
Of note is processor-initialization (INIT) as a valid shutdown wake
event, as INIT is blocked by SMM, implying that entering shutdown also
forces the CPU out of SMM.
For recent Intel CPUs, restoring NMI blocking is technically wrong, but
so is restoring NMI blocking in the first place, and Intel's RSM
"architecture" is such a mess that just about anything is allowed and can
be justified as micro-architectural behavior.
Per the SDM:
On Pentium 4 and later processors, shutdown will inhibit INTR and A20M
but will not change any of the other inhibits. On these processors,
NMIs will be inhibited if no action is taken in the SMI handler to
uninhibit them (see Section 34.8).
where Section 34.8 says:
When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the
attribute to keep NMI interrupts disabled. Potentially, an NMI could be
latched (while in SMM or upon exit) and serviced upon exit of SMM even
though the previous NMI handler has still not completed.
I.e. RSM unconditionally unblocks NMI, but shutdown on RSM does not,
which is in direct contradiction of KVM's behavior. But, as mentioned
above, KVM follows AMD architecture and restores NMI blocking on RSM, so
that micro-architectural detail is already lost.
And for Pentium era CPUs, SMI# can break shutdown, meaning that at least
some Intel CPUs fully leave SMM when entering shutdown:
In the shutdown state, Intel processors stop executing instructions
until a RESET#, INIT# or NMI# is asserted. While Pentium family
processors recognize the SMI# signal in shutdown state, P6 family and
Intel486 processors do not.
In other words, the fact that Intel CPUs have implemented the two
extremes gives KVM carte blanche when it comes to honoring Intel's
architecture for handling shutdown during RSM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-3-seanjc@google.com>
[Return X86EMUL_CONTINUE after triple fault. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that APICv/AVIC enablement is kept in common 'enable_apicv' variable,
there's no need to call kvm_apicv_init() from vendor specific code.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unify VMX and SVM code by moving APICv/AVIC enablement tracking to common
'enable_apicv' variable. Note: unlike APICv, AVIC is disabled by default.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210609150911.1471882-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement PM hibernation/suspend prepare notifiers so that KVM
can reliably set PVCLOCK_GUEST_STOPPED on VCPUs and properly
suspend VMs.
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Message-Id: <20210606021045.14159-2-senozhatsky@chromium.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't allow posted interrupts to modify a stale posted interrupt
descriptor (including the initial value of 0).
Empirical tests on real hardware reveal that a posted interrupt
descriptor referencing an unbacked address has PCI bus error semantics
(reads as all 1's; writes are ignored). However, kvm can't distinguish
unbacked addresses from device-backed (MMIO) addresses, so it should
really ask userspace for an MMIO completion. That's overly
complicated, so just punt with KVM_INTERNAL_ERROR.
Don't return the error until the posted interrupt descriptor is
actually accessed. We don't want to break the existing kvm-unit-tests
that assume they can launch an L2 VM with a posted interrupt
descriptor that references MMIO space in L1.
Fixes: 6beb7bd52e ("kvm: nVMX: Refactor nested_get_vmcs12_pages()")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210604172611.281819-8-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the kernel has no mapping for the vmcs02 virtual APIC page,
userspace MMIO completion is necessary to process nested posted
interrupts. This is not a configuration that KVM supports. Rather than
silently ignoring the problem, try to exit to userspace with
KVM_INTERNAL_ERROR.
Note that the event that triggers this error is consumed as a
side-effect of a call to kvm_check_nested_events. On some paths
(notably through kvm_vcpu_check_block), the error is dropped. In any
case, this is an incremental improvement over always ignoring the
error.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210604172611.281819-7-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No functional change intended. At present, the only negative value
returned by kvm_check_nested_events is -EBUSY.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210604172611.281819-6-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No functional change intended. At present, 'r' will always be -EBUSY
on a control transfer to the 'out' label.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210604172611.281819-5-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No functional change intended.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20210604172611.281819-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A survey of the callsites reveals that they all ensure the vCPU is in
guest mode before calling kvm_check_nested_events. Remove this dead
code so that the only negative value this function returns (at the
moment) is -EBUSY.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210604172611.281819-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the TSC offset and multiplier on nested transitions and expose
the TSC scaling feature to L1.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-11-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently vmx_vcpu_load_vmcs() writes the TSC_MULTIPLIER field of the
VMCS every time the VMCS is loaded. Instead of doing this, set this
field from common code on initialization and whenever the scaling ratio
changes.
Additionally remove vmx->current_tsc_ratio. This field is redundant as
vcpu->arch.tsc_scaling_ratio already tracks the current TSC scaling
ratio. The vmx->current_tsc_ratio field is only used for avoiding
unnecessary writes but it is no longer needed after removing the code
from the VMCS load path.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Message-Id: <20210607105438.16541-1-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The write_l1_tsc_offset() callback has a misleading name. It does not
set L1's TSC offset, it rather updates the current TSC offset which
might be different if a nested guest is executing. Additionally, both
the vmx and svm implementations use the same logic for calculating the
current TSC before writing it to hardware.
Rename the function and move the common logic to the caller. The vmx/svm
specific code now merely sets the given offset to the corresponding
hardware structure.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-9-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L2 is entered we need to "merge" the TSC multiplier and TSC offset
values of 01 and 12 together.
The merging is done using the following equations:
offset_02 = ((offset_01 * mult_12) >> shift_bits) + offset_12
mult_02 = (mult_01 * mult_12) >> shift_bits
Where shift_bits is kvm_tsc_scaling_ratio_frac_bits.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-8-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to implement as much of the nested TSC scaling logic as
possible in common code, we need these vendor callbacks for retrieving
the TSC offset and the TSC multiplier that L1 has set for L2.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-7-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Sometimes kvm_scale_tsc() needs to use the current scaling ratio and
other times (like when reading the TSC from user space) it needs to use
L1's scaling ratio. Have the caller specify this by passing the ratio as
a parameter.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-5-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All existing code uses kvm_compute_tsc_offset() passing L1 TSC values to
it. Let's document this by renaming it to kvm_compute_l1_tsc_offset().
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-4-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store L1's scaling ratio in the kvm_vcpu_arch struct like we already do
for L1's TSC offset. This allows for easy save/restore when we enter and
then exit the nested guest.
Signed-off-by: Ilias Stamatis <ilstam@amazon.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210526184418.28881-3-ilstam@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the TDP MMU is in use, wait to allocate the rmaps until the shadow
MMU is actually used. (i.e. a nested VM is launched.) This saves memory
equal to 0.2% of guest memory in cases where the TDP MMU is used and
there are no nested guests involved.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If only the TDP MMU is being used to manage the memory mappings for a VM,
then many rmap operations can be skipped as they are guaranteed to be
no-ops. This saves some time which would be spent on the rmap operation.
It also avoids acquiring the MMU lock in write mode for many operations.
This makes it safe to run the VM without rmaps allocated, when only
using the TDP MMU and sets the stage for waiting to allocate the rmaps
until they're needed.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a field to control whether new memslots should have rmaps allocated
for them. As of this change, it's not safe to skip allocating rmaps, so
the field is always set to allocate rmaps. Future changes will make it
safe to operate without rmaps, using the TDP MMU. Then further changes
will allow the rmaps to be allocated lazily when needed for nested
oprtation.
No functional change expected.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Small refactor to facilitate allocating rmaps for all memslots at once.
No functional change expected.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Small code deduplication. No functional change expected.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, when dirty logging is started in initially-all-set mode,
we write protect huge pages to prepare for splitting them into
4K pages, and leave normal pages untouched as the logging will
be enabled lazily as dirty bits are cleared.
However, enabling dirty logging lazily is also feasible for huge pages.
This not only reduces the time of start dirty logging, but it also
greatly reduces side-effect on guest when there is high dirty rate.
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-3-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for write protecting large page lazily during dirty log tracking,
for which we will only need to write protect gfns at large page
granularity.
No functional or performance change expected.
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-2-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that kvm_hv_flush_tlb() has been patched to support XMM hypercall
inputs, we can start advertising this feature to guests.
Cc: Alexander Graf <graf@amazon.com>
Cc: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <e63fc1c61dd2efecbefef239f4f0a598bd552750.1622019134.git.sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V supports the use of XMM registers to perform fast hypercalls.
This allows guests to take advantage of the improved performance of the
fast hypercall interface even though a hypercall may require more than
(the current maximum of) two input registers.
The XMM fast hypercall interface uses six additional XMM registers (XMM0
to XMM5) to allow the guest to pass an input parameter block of up to
112 bytes.
Add framework to read from XMM registers in kvm_hv_hypercall() and use
the additional hypercall inputs from XMM registers in kvm_hv_flush_tlb()
when possible.
Cc: Alexander Graf <graf@amazon.com>
Co-developed-by: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <fc62edad33f1920fe5c74dde47d7d0b4275a9012.1622019134.git.sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As of now there are 7 parameters (and flags) that are used in various
hyper-v hypercall handlers. There are 6 more input/output parameters
passed from XMM registers which are to be added in an upcoming patch.
To make passing arguments to the handlers more readable, capture all
these parameters into a single structure.
Cc: Alexander Graf <graf@amazon.com>
Cc: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <273f7ed510a1f6ba177e61b73a5c7bfbee4a4a87.1622019133.git.sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-v XMM fast hypercalls use XMM registers to pass input/output
parameters. To access these, hyperv.c can reuse some FPU register
accessors defined in emulator.c. Move them to a common location so both
can access them.
While at it, reorder the parameters of these accessor methods to make
them more readable.
Cc: Alexander Graf <graf@amazon.com>
Cc: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <01a85a6560714d4d3637d3d86e5eba65073318fa.1622019133.git.sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Function 'is_nx_huge_page_enabled' is called only by kvm/mmu, so make
it as inline fucntion and remove the unnecessary declaration.
Cc: Ben Gardon <bgardon@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Message-Id: <1622102271-63107-1-git-send-email-zhangshaokun@hisilicon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate and check the full mmu_role when initializing the MMU context
for the nested MMU, where "full" means the bits and pieces of the role
that aren't handled by kvm_calc_mmu_role_common(). While the nested MMU
isn't used for shadow paging, things like the number of levels in the
guest's page tables are surprisingly important when walking the guest
page tables. Failure to reinitialize the nested MMU context if L2's
paging mode changes can result in unexpected and/or missed page faults,
and likely other explosions.
E.g. if an L1 vCPU is running both a 32-bit PAE L2 and a 64-bit L2, the
"common" role calculation will yield the same role for both L2s. If the
64-bit L2 is run after the 32-bit PAE L2, L0 will fail to reinitialize
the nested MMU context, ultimately resulting in a bad walk of L2's page
tables as the MMU will still have a guest root_level of PT32E_ROOT_LEVEL.
WARNING: CPU: 4 PID: 167334 at arch/x86/kvm/vmx/vmx.c:3075 ept_save_pdptrs+0x15/0xe0 [kvm_intel]
Modules linked in: kvm_intel]
CPU: 4 PID: 167334 Comm: CPU 3/KVM Not tainted 5.13.0-rc1-d849817d5673-reqs #185
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:ept_save_pdptrs+0x15/0xe0 [kvm_intel]
Code: <0f> 0b c3 f6 87 d8 02 00f
RSP: 0018:ffffbba702dbba00 EFLAGS: 00010202
RAX: 0000000000000011 RBX: 0000000000000002 RCX: ffffffff810a2c08
RDX: ffff91d7bc30acc0 RSI: 0000000000000011 RDI: ffff91d7bc30a600
RBP: ffff91d7bc30a600 R08: 0000000000000010 R09: 0000000000000007
R10: 0000000000000000 R11: 0000000000000000 R12: ffff91d7bc30a600
R13: ffff91d7bc30acc0 R14: ffff91d67c123460 R15: 0000000115d7e005
FS: 00007fe8e9ffb700(0000) GS:ffff91d90fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000029f15a001 CR4: 00000000001726e0
Call Trace:
kvm_pdptr_read+0x3a/0x40 [kvm]
paging64_walk_addr_generic+0x327/0x6a0 [kvm]
paging64_gva_to_gpa_nested+0x3f/0xb0 [kvm]
kvm_fetch_guest_virt+0x4c/0xb0 [kvm]
__do_insn_fetch_bytes+0x11a/0x1f0 [kvm]
x86_decode_insn+0x787/0x1490 [kvm]
x86_decode_emulated_instruction+0x58/0x1e0 [kvm]
x86_emulate_instruction+0x122/0x4f0 [kvm]
vmx_handle_exit+0x120/0x660 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xe25/0x1cb0 [kvm]
kvm_vcpu_ioctl+0x211/0x5a0 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x40/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bf627a9288 ("x86/kvm/mmu: check if MMU reconfiguration is needed in init_kvm_nested_mmu()")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210610220026.1364486-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit c9b8b07cde (KVM: x86: Dynamically allocate per-vCPU emulation context)
tries to allocate per-vCPU emulation context dynamically, however, the
x86_emulator slab cache is still exiting after the kvm module is unload
as below after destroying the VM and unloading the kvm module.
grep x86_emulator /proc/slabinfo
x86_emulator 36 36 2672 12 8 : tunables 0 0 0 : slabdata 3 3 0
This patch fixes this slab cache leak by destroying the x86_emulator slab cache
when the kvm module is unloaded.
Fixes: c9b8b07cde (KVM: x86: Dynamically allocate per-vCPU emulation context)
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1623387573-5969-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Send SEV_CMD_DECOMMISSION command to PSP firmware if ASID binding
fails. If a failure happens after a successful LAUNCH_START command,
a decommission command should be executed. Otherwise, guest context
will be unfreed inside the AMD SP. After the firmware will not have
memory to allocate more SEV guest context, LAUNCH_START command will
begin to fail with SEV_RET_RESOURCE_LIMIT error.
The existing code calls decommission inside sev_unbind_asid, but it is
not called if a failure happens before guest activation succeeds. If
sev_bind_asid fails, decommission is never called. PSP firmware has a
limit for the number of guests. If sev_asid_binding fails many times,
PSP firmware will not have resources to create another guest context.
Cc: stable@vger.kernel.org
Fixes: 59414c9892 ("KVM: SVM: Add support for KVM_SEV_LAUNCH_START command")
Reported-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Alper Gun <alpergun@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210610174604.2554090-1-alpergun@google.com>
Immediately reset the MMU context when the vCPU's SMM flag is cleared so
that the SMM flag in the MMU role is always synchronized with the vCPU's
flag. If RSM fails (which isn't correctly emulated), KVM will bail
without calling post_leave_smm() and leave the MMU in a bad state.
The bad MMU role can lead to a NULL pointer dereference when grabbing a
shadow page's rmap for a page fault as the initial lookups for the gfn
will happen with the vCPU's SMM flag (=0), whereas the rmap lookup will
use the shadow page's SMM flag, which comes from the MMU (=1). SMM has
an entirely different set of memslots, and so the initial lookup can find
a memslot (SMM=0) and then explode on the rmap memslot lookup (SMM=1).
general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 8410 Comm: syz-executor382 Not tainted 5.13.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:__gfn_to_rmap arch/x86/kvm/mmu/mmu.c:935 [inline]
RIP: 0010:gfn_to_rmap+0x2b0/0x4d0 arch/x86/kvm/mmu/mmu.c:947
Code: <42> 80 3c 20 00 74 08 4c 89 ff e8 f1 79 a9 00 4c 89 fb 4d 8b 37 44
RSP: 0018:ffffc90000ffef98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888015b9f414 RCX: ffff888019669c40
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffff811d9cdb R09: ffffed10065a6002
R10: ffffed10065a6002 R11: 0000000000000000 R12: dffffc0000000000
R13: 0000000000000003 R14: 0000000000000001 R15: 0000000000000000
FS: 000000000124b300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000028e31000 CR4: 00000000001526e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
rmap_add arch/x86/kvm/mmu/mmu.c:965 [inline]
mmu_set_spte+0x862/0xe60 arch/x86/kvm/mmu/mmu.c:2604
__direct_map arch/x86/kvm/mmu/mmu.c:2862 [inline]
direct_page_fault+0x1f74/0x2b70 arch/x86/kvm/mmu/mmu.c:3769
kvm_mmu_do_page_fault arch/x86/kvm/mmu.h:124 [inline]
kvm_mmu_page_fault+0x199/0x1440 arch/x86/kvm/mmu/mmu.c:5065
vmx_handle_exit+0x26/0x160 arch/x86/kvm/vmx/vmx.c:6122
vcpu_enter_guest+0x3bdd/0x9630 arch/x86/kvm/x86.c:9428
vcpu_run+0x416/0xc20 arch/x86/kvm/x86.c:9494
kvm_arch_vcpu_ioctl_run+0x4e8/0xa40 arch/x86/kvm/x86.c:9722
kvm_vcpu_ioctl+0x70f/0xbb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3460
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:1069 [inline]
__se_sys_ioctl+0xfb/0x170 fs/ioctl.c:1055
do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x440ce9
Cc: stable@vger.kernel.org
Reported-by: syzbot+fb0b6a7e8713aeb0319c@syzkaller.appspotmail.com
Fixes: 9ec19493fb ("KVM: x86: clear SMM flags before loading state while leaving SMM")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to enable -Wimplicit-fallthrough for Clang, fix a couple
of warnings by explicitly adding break statements instead of just letting
the code fall through to the next case.
Link: https://github.com/KSPP/linux/issues/115
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Message-Id: <20210528200756.GA39320@embeddedor>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix kernel-doc warnings:
arch/x86/kvm/svm/avic.c:233: warning: Function parameter or member 'activate' not described in 'avic_update_access_page'
arch/x86/kvm/svm/avic.c:233: warning: Function parameter or member 'kvm' not described in 'avic_update_access_page'
arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'e' not described in 'get_pi_vcpu_info'
arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'kvm' not described in 'get_pi_vcpu_info'
arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'svm' not described in 'get_pi_vcpu_info'
arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'vcpu_info' not described in 'get_pi_vcpu_info'
arch/x86/kvm/svm/avic.c:1009: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Message-Id: <20210609122217.2967131-1-chenxiaosong2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per the SDM, "any access that touches bytes 4 through 15 of an APIC
register may cause undefined behavior and must not be executed."
Worse, such an access in kvm_lapic_reg_read can result in a leak of
kernel stack contents. Prior to commit 01402cf810 ("kvm: LAPIC:
write down valid APIC registers"), such an access was explicitly
disallowed. Restore the guard that was removed in that commit.
Fixes: 01402cf810 ("kvm: LAPIC: write down valid APIC registers")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Message-Id: <20210602205224.3189316-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
without nested page tables.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDAVpQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNkOgf9F97eFxAdod3/wbW9EbsUPR5bMTLE
+R6Hmvw+yCm/W2cycVGdCSh1BEKNuZN/XfHln2cYVfVr6ndog58A4Y0urFAhTROv
IHs8TCA5biQitoZ716l88ExOitnqJiSmMhGex969+zm1Lb9MQo1KA/zxERlqCi3s
Pfcxb6I8VbD9LEb6NaQdDgQoslJo1tzhe9gGYAYrpMOZujpj1RPeIOZIfeII0MP/
g14/JSar8cXc9QJ6zbiKn8HhpmzGJnaIsyFFL2RMIBlKvxsnpOU6VmisLTL9407o
P246Vq59BM8pdRCVUW9W9hLr2ho8lmi+ZYXASCm+qfn8cLaHyRCqSK56ZQ==
=nW43
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes, including a TLB flush fix that affects processors without
nested page tables"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: fix previous commit for 32-bit builds
kvm: avoid speculation-based attacks from out-of-range memslot accesses
KVM: x86: Unload MMU on guest TLB flush if TDP disabled to force MMU sync
KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message
selftests: kvm: Add support for customized slot0 memory size
KVM: selftests: introduce P47V64 for s390x
KVM: x86: Ensure PV TLB flush tracepoint reflects KVM behavior
KVM: X86: MMU: Use the correct inherited permissions to get shadow page
KVM: LAPIC: Write 0 to TMICT should also cancel vmx-preemption timer
KVM: SVM: Fix SEV SEND_START session length & SEND_UPDATE_DATA query length after commit 238eca821c
When using shadow paging, unload the guest MMU when emulating a guest TLB
flush to ensure all roots are synchronized. From the guest's perspective,
flushing the TLB ensures any and all modifications to its PTEs will be
recognized by the CPU.
Note, unloading the MMU is overkill, but is done to mirror KVM's existing
handling of INVPCID(all) and ensure the bug is squashed. Future cleanup
can be done to more precisely synchronize roots when servicing a guest
TLB flush.
If TDP is enabled, synchronizing the MMU is unnecessary even if nested
TDP is in play, as a "legacy" TLB flush from L1 does not invalidate L1's
TDP mappings. For EPT, an explicit INVEPT is required to invalidate
guest-physical mappings; for NPT, guest mappings are always tagged with
an ASID and thus can only be invalidated via the VMCB's ASID control.
This bug has existed since the introduction of KVM_VCPU_FLUSH_TLB.
It was only recently exposed after Linux guests stopped flushing the
local CPU's TLB prior to flushing remote TLBs (see commit 4ce94eabac,
"x86/mm/tlb: Flush remote and local TLBs concurrently"), but is also
visible in Windows 10 guests.
Tested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: f38a7b7526 ("KVM: X86: support paravirtualized help for TLB shootdowns")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
[sean: massaged comment and changelog]
Message-Id: <20210531172256.2908-1-jiangshanlai@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the __string() machinery provided by the tracing subystem to make a
copy of the string literals consumed by the "nested VM-Enter failed"
tracepoint. A complete copy is necessary to ensure that the tracepoint
can't outlive the data/memory it consumes and deference stale memory.
Because the tracepoint itself is defined by kvm, if kvm-intel and/or
kvm-amd are built as modules, the memory holding the string literals
defined by the vendor modules will be freed when the module is unloaded,
whereas the tracepoint and its data in the ring buffer will live until
kvm is unloaded (or "indefinitely" if kvm is built-in).
This bug has existed since the tracepoint was added, but was recently
exposed by a new check in tracing to detect exactly this type of bug.
fmt: '%s%s
' current_buffer: ' vmx_dirty_log_t-140127 [003] .... kvm_nested_vmenter_failed: '
WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0
CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:trace_check_vprintf+0x3be/0x3e0
Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20
RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8
RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4
R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000
FS: 00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0
Call Trace:
trace_event_printf+0x5e/0x80
trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm]
print_trace_line+0x1dd/0x4e0
s_show+0x45/0x150
seq_read_iter+0x2d5/0x4c0
seq_read+0x106/0x150
vfs_read+0x98/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x40/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes: 380e0055bc ("KVM: nVMX: trace nested VM-Enter failures detected by H/W")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Message-Id: <20210607175748.674002-1-seanjc@google.com>
In record_steal_time(), st->preempted is read twice, and
trace_kvm_pv_tlb_flush() might output result inconsistent if
kvm_vcpu_flush_tlb_guest() see a different st->preempted later.
It is a very trivial problem and hardly has actual harm and can be
avoided by reseting and reading st->preempted in atomic way via xchg().
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210531174628.10265-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When computing the access permissions of a shadow page, use the effective
permissions of the walk up to that point, i.e. the logic AND of its parents'
permissions. Two guest PxE entries that point at the same table gfn need to
be shadowed with different shadow pages if their parents' permissions are
different. KVM currently uses the effective permissions of the last
non-leaf entry for all non-leaf entries. Because all non-leaf SPTEs have
full ("uwx") permissions, and the effective permissions are recorded only
in role.access and merged into the leaves, this can lead to incorrect
reuse of a shadow page and eventually to a missing guest protection page
fault.
For example, here is a shared pagetable:
pgd[] pud[] pmd[] virtual address pointers
/->pmd1(u--)->pte1(uw-)->page1 <- ptr1 (u--)
/->pud1(uw-)--->pmd2(uw-)->pte2(uw-)->page2 <- ptr2 (uw-)
pgd-| (shared pmd[] as above)
\->pud2(u--)--->pmd1(u--)->pte1(uw-)->page1 <- ptr3 (u--)
\->pmd2(uw-)->pte2(uw-)->page2 <- ptr4 (u--)
pud1 and pud2 point to the same pmd table, so:
- ptr1 and ptr3 points to the same page.
- ptr2 and ptr4 points to the same page.
(pud1 and pud2 here are pud entries, while pmd1 and pmd2 here are pmd entries)
- First, the guest reads from ptr1 first and KVM prepares a shadow
page table with role.access=u--, from ptr1's pud1 and ptr1's pmd1.
"u--" comes from the effective permissions of pgd, pud1 and
pmd1, which are stored in pt->access. "u--" is used also to get
the pagetable for pud1, instead of "uw-".
- Then the guest writes to ptr2 and KVM reuses pud1 which is present.
The hypervisor set up a shadow page for ptr2 with pt->access is "uw-"
even though the pud1 pmd (because of the incorrect argument to
kvm_mmu_get_page in the previous step) has role.access="u--".
- Then the guest reads from ptr3. The hypervisor reuses pud1's
shadow pmd for pud2, because both use "u--" for their permissions.
Thus, the shadow pmd already includes entries for both pmd1 and pmd2.
- At last, the guest writes to ptr4. This causes no vmexit or pagefault,
because pud1's shadow page structures included an "uw-" page even though
its role.access was "u--".
Any kind of shared pagetable might have the similar problem when in
virtual machine without TDP enabled if the permissions are different
from different ancestors.
In order to fix the problem, we change pt->access to be an array, and
any access in it will not include permissions ANDed from child ptes.
The test code is: https://lore.kernel.org/kvm/20210603050537.19605-1-jiangshanlai@gmail.com/
Remember to test it with TDP disabled.
The problem had existed long before the commit 41074d07c7 ("KVM: MMU:
Fix inherited permissions for emulated guest pte updates"), and it
is hard to find which is the culprit. So there is no fixes tag here.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210603052455.21023-1-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Fixes: cea0f0e7ea ("[PATCH] KVM: MMU: Shadow page table caching")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the SDM 10.5.4.1:
A write of 0 to the initial-count register effectively stops the local
APIC timer, in both one-shot and periodic mode.
However, the lapic timer oneshot/periodic mode which is emulated by vmx-preemption
timer doesn't stop by writing 0 to TMICT since vmx->hv_deadline_tsc is still
programmed and the guest will receive the spurious timer interrupt later. This
patch fixes it by also cancelling the vmx-preemption timer when writing 0 to
the initial-count register.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1623050385-100988-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 238eca821c ("KVM: SVM: Allocate SEV command structures on local stack")
uses the local stack to allocate the structures used to communicate with the PSP,
which were earlier being kzalloced. This breaks SEV live migration for
computing the SEND_START session length and SEND_UPDATE_DATA query length as
session_len and trans_len and hdr_len fields are not zeroed respectively for
the above commands before issuing the SEV Firmware API call, hence the
firmware returns incorrect session length and update data header or trans length.
Also the SEV Firmware API returns SEV_RET_INVALID_LEN firmware error
for these length query API calls, and the return value and the
firmware error needs to be passed to the userspace as it is, so
need to remove the return check in the KVM code.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <20210607061532.27459-1-Ashish.Kalra@amd.com>
Fixes: 238eca821c ("KVM: SVM: Allocate SEV command structures on local stack")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmC9UH8eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGRDYH/3WgnRz5DfVhjmlD
Lg38mPmbZWhFibXghrYrpbVpTyhjGFRuNtXAt2p7/nYnM71wzI6Qkx6cRKZeB5HE
/SqeksPWUEgJaUuoXeQBrBaG7q/+9ph7Rgaf2wP7k+E00RI3E4pbMubuqFAUeikr
itKFD9aTUsgT5XbG2hH5Ddwh5hBD2C/1PVt3jpLnJkXRCn91uEh+R7SHXP/fsjAd
ZaGOVbAGm+jePCQDBXpVUn+8fJdxvQg7rxWVRRRhi5LXG+pnAezbkGl746zBwaSw
K6lmVSA+eAiVkKu6nR4HJv9Hax1juFbp9xpcCo4jzxO5NJF4jsmytjLEaYFdi4NX
G542808=
=BPDL
-----END PGP SIGNATURE-----
Merge tag 'v5.13-rc5' into x86/cleanups
Pick up dependent changes in order to base further cleanups ontop.
Signed-off-by: Borislav Petkov <bp@suse.de>
* Another state update on exit to userspace fix
* Prevent the creation of mixed 32/64 VMs
* Fix regression with irqbypass not restarting the guest on failed connect
* Fix regression with debug register decoding resulting in overlapping access
* Commit exception state on exit to usrspace
* Fix the MMU notifier return values
* Add missing 'static' qualifiers in the new host stage-2 code
x86 fixes:
* fix guest missed wakeup with assigned devices
* fix WARN reported by syzkaller
* do not use BIT() in UAPI headers
* make the kvm_amd.avic parameter bool
PPC fixes:
* make halt polling heuristics consistent with other architectures
selftests:
* various fixes
* new performance selftest memslot_perf_test
* test UFFD minor faults in demand_paging_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCyF0MUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOHSgf/Q4Hm5e12Bj2xJy6A+iShnrbbT8PW
hcIIOA7zGWXfjVYcBV7anbj7CcpzfIz0otcRBABa5mkhj+fb3YmPEb0EzCPi4Hru
zxpcpB2w7W7WtUOIKe2EmaT+4Pk6/iLcfr8UMHMqx460akE9OmIg10QNWai3My/3
RIOeakSckBI9e/1TQZbxH66dsLwCT0lLco7i7AWHdFxkzUQyoA34HX5pczOCBsO5
3nXH+/txnRVhqlcyzWLVVGVzFqmpHtBqkIInDOXfUqIoxo/gOhOgF1QdMUEKomxn
5ZFXlL5IXNtr+7yiI67iHX7CWkGZE9oJ04TgPHn6LR6wRnVvc3JInzcB5Q==
=ollO
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"ARM fixes:
- Another state update on exit to userspace fix
- Prevent the creation of mixed 32/64 VMs
- Fix regression with irqbypass not restarting the guest on failed
connect
- Fix regression with debug register decoding resulting in
overlapping access
- Commit exception state on exit to usrspace
- Fix the MMU notifier return values
- Add missing 'static' qualifiers in the new host stage-2 code
x86 fixes:
- fix guest missed wakeup with assigned devices
- fix WARN reported by syzkaller
- do not use BIT() in UAPI headers
- make the kvm_amd.avic parameter bool
PPC fixes:
- make halt polling heuristics consistent with other architectures
selftests:
- various fixes
- new performance selftest memslot_perf_test
- test UFFD minor faults in demand_paging_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (44 commits)
selftests: kvm: fix overlapping addresses in memslot_perf_test
KVM: X86: Kill off ctxt->ud
KVM: X86: Fix warning caused by stale emulation context
KVM: X86: Use kvm_get_linear_rip() in single-step and #DB/#BP interception
KVM: x86/mmu: Fix comment mentioning skip_4k
KVM: VMX: update vcpu posted-interrupt descriptor when assigning device
KVM: rename KVM_REQ_PENDING_TIMER to KVM_REQ_UNBLOCK
KVM: x86: add start_assignment hook to kvm_x86_ops
KVM: LAPIC: Narrow the timer latency between wait_lapic_expire and world switch
selftests: kvm: do only 1 memslot_perf_test run by default
KVM: X86: Use _BITUL() macro in UAPI headers
KVM: selftests: add shared hugetlbfs backing source type
KVM: selftests: allow using UFFD minor faults for demand paging
KVM: selftests: create alias mappings when using shared memory
KVM: selftests: add shmem backing source type
KVM: selftests: refactor vm_mem_backing_src_type flags
KVM: selftests: allow different backing source types
KVM: selftests: compute correct demand paging size
KVM: selftests: simplify setup_demand_paging error handling
KVM: selftests: Print a message if /dev/kvm is missing
...
ctxt->ud is consumed only by x86_decode_insn(), we can kill it off by
passing emulation_type to x86_decode_insn() and dropping ctxt->ud
altogether. Tracking that info in ctxt for literally one call is silly.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <1622160097-37633-2-git-send-email-wanpengli@tencent.com>
Reported by syzkaller:
WARNING: CPU: 7 PID: 10526 at linux/arch/x86/kvm//x86.c:7621 x86_emulate_instruction+0x41b/0x510 [kvm]
RIP: 0010:x86_emulate_instruction+0x41b/0x510 [kvm]
Call Trace:
kvm_mmu_page_fault+0x126/0x8f0 [kvm]
vmx_handle_exit+0x11e/0x680 [kvm_intel]
vcpu_enter_guest+0xd95/0x1b40 [kvm]
kvm_arch_vcpu_ioctl_run+0x377/0x6a0 [kvm]
kvm_vcpu_ioctl+0x389/0x630 [kvm]
__x64_sys_ioctl+0x8e/0xd0
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Commit 4a1e10d5b5 ("KVM: x86: handle hardware breakpoints during emulation())
adds hardware breakpoints check before emulation the instruction and parts of
emulation context initialization, actually we don't have the EMULTYPE_NO_DECODE flag
here and the emulation context will not be reused. Commit c8848cee74 ("KVM: x86:
set ctxt->have_exception in x86_decode_insn()) triggers the warning because it
catches the stale emulation context has #UD, however, it is not during instruction
decoding which should result in EMULATION_FAILED. This patch fixes it by moving
the second part emulation context initialization into init_emulate_ctxt() and
before hardware breakpoints check. The ctxt->ud will be dropped by a follow-up
patch.
syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=134683fdd00000
Reported-by: syzbot+71271244f206d17f6441@syzkaller.appspotmail.com
Fixes: 4a1e10d5b5 (KVM: x86: handle hardware breakpoints during emulation)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <1622160097-37633-1-git-send-email-wanpengli@tencent.com>
The kvm_get_linear_rip() handles x86/long mode cases well and has
better readability, __kvm_set_rflags() also use the paired
function kvm_is_linear_rip() to check the vcpu->arch.singlestep_rip
set in kvm_arch_vcpu_ioctl_set_guest_debug(), so change the
"CS.BASE + RIP" code in kvm_arch_vcpu_ioctl_set_guest_debug() and
handle_exception_nmi() to this one.
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Message-Id: <20210526063828.1173-1-yuan.yao@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This comment was left over from a previous version of the patch that
introduced wrprot_gfn_range, when skip_4k was passed in instead of
min_level.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210526163227.3113557-1-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For VMX, when a vcpu enters HLT emulation, pi_post_block will:
1) Add vcpu to per-cpu list of blocked vcpus.
2) Program the posted-interrupt descriptor "notification vector"
to POSTED_INTR_WAKEUP_VECTOR
With interrupt remapping, an interrupt will set the PIR bit for the
vector programmed for the device on the CPU, test-and-set the
ON bit on the posted interrupt descriptor, and if the ON bit is clear
generate an interrupt for the notification vector.
This way, the target CPU wakes upon a device interrupt and wakes up
the target vcpu.
Problem is that pi_post_block only programs the notification vector
if kvm_arch_has_assigned_device() is true. Its possible for the
following to happen:
1) vcpu V HLTs on pcpu P, kvm_arch_has_assigned_device is false,
notification vector is not programmed
2) device is assigned to VM
3) device interrupts vcpu V, sets ON bit
(notification vector not programmed, so pcpu P remains in idle)
4) vcpu 0 IPIs vcpu V (in guest), but since pi descriptor ON bit is set,
kvm_vcpu_kick is skipped
5) vcpu 0 busy spins on vcpu V's response for several seconds, until
RCU watchdog NMIs all vCPUs.
To fix this, use the start_assignment kvm_x86_ops callback to kick
vcpus out of the halt loop, so the notification vector is
properly reprogrammed to the wakeup vector.
Reported-by: Pei Zhang <pezhang@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210526172014.GA29007@fuller.cnet>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_REQ_UNBLOCK will be used to exit a vcpu from
its inner vcpu halt emulation loop.
Rename KVM_REQ_PENDING_TIMER to KVM_REQ_UNBLOCK, switch
PowerPC to arch specific request bit.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210525134321.303768132@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a start_assignment hook to kvm_x86_ops, which is called when
kvm_arch_start_assignment is done.
The hook is required to update the wakeup vector of a sleeping vCPU
when a device is assigned to the guest.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20210525134321.254128742@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let's treat lapic_timer_advance_ns automatic tuning logic as hypervisor
overhead, move it before wait_lapic_expire instead of between wait_lapic_expire
and the world switch, the wait duration should be calculated by the
up-to-date guest_tsc after the overhead of automatic tuning logic. This
patch reduces ~30+ cycles for kvm-unit-tests/tscdeadline-latency when testing
busy waits.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1621339235-11131-5-git-send-email-wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARNING: suspicious RCU usage
5.13.0-rc1 #4 Not tainted
-----------------------------
./include/linux/kvm_host.h:710 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by hyperv_clock/8318:
#0: ffffb6b8cb05a7d8 (&hv->hv_lock){+.+.}-{3:3}, at: kvm_hv_invalidate_tsc_page+0x3e/0xa0 [kvm]
stack backtrace:
CPU: 3 PID: 8318 Comm: hyperv_clock Not tainted 5.13.0-rc1 #4
Call Trace:
dump_stack+0x87/0xb7
lockdep_rcu_suspicious+0xce/0xf0
kvm_write_guest_page+0x1c1/0x1d0 [kvm]
kvm_write_guest+0x50/0x90 [kvm]
kvm_hv_invalidate_tsc_page+0x79/0xa0 [kvm]
kvm_gen_update_masterclock+0x1d/0x110 [kvm]
kvm_arch_vm_ioctl+0x2a7/0xc50 [kvm]
kvm_vm_ioctl+0x123/0x11d0 [kvm]
__x64_sys_ioctl+0x3ed/0x9d0
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
kvm_memslots() will be called by kvm_write_guest(), so we should take the srcu lock.
Fixes: e880c6ea5 (KVM: x86: hyper-v: Prevent using not-yet-updated TSC page by secondary CPUs)
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1621339235-11131-4-git-send-email-wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 66570e966d (kvm: x86: only provide PV features if enabled in guest's
CPUID) avoids to access pv tlb shootdown host side logic when this pv feature
is not exposed to guest, however, kvm_steal_time.preempted not only leveraged
by pv tlb shootdown logic but also mitigate the lock holder preemption issue.
From guest's point of view, vCPU is always preempted since we lose the reset
of kvm_steal_time.preempted before vmentry if pv tlb shootdown feature is not
exposed. This patch fixes it by clearing kvm_steal_time.preempted before
vmentry.
Fixes: 66570e966d (kvm: x86: only provide PV features if enabled in guest's CPUID)
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1621339235-11131-3-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case of under-committed scenarios, vCPUs can be scheduled easily;
kvm_vcpu_yield_to adds extra overhead, and it is also common to see
when vcpu->ready is true but yield later failing due to p->state is
TASK_RUNNING.
Let's bail out in such scenarios by checking the length of current cpu
runqueue, which can be treated as a hint of under-committed instead of
guarantee of accuracy. 30%+ of directed-yield attempts can now avoid
the expensive lookups in kvm_sched_yield() in an under-committed scenario.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1621339235-11131-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make it consistent with kvm_intel.enable_apicv.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CONFIG_X86_LOCAL_APIC is always on when CONFIG_KVM (on x86) since
commit e42eef4ba3 ("KVM: add X86_LOCAL_APIC dependency").
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210518144339.1987982-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
AVIC dependency on CONFIG_X86_LOCAL_APIC is dead code since
commit e42eef4ba3 ("KVM: add X86_LOCAL_APIC dependency").
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210518144339.1987982-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
- Fix regression with irqbypass not restarting the guest on failed connect
- Fix regression with debug register decoding resulting in overlapping access
- Commit exception state on exit to usrspace
- Fix the MMU notifier return values
- Add missing 'static' qualifiers in the new host stage-2 code
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmCfmUoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDei8QAMOWMA9wFTydsMTyRwDDZzD9i3Vg4bYlTdj1
1C1FiHHGL37t44coo1eHtnydWBuhxhhwDHWQE8owFbDHyOnPzEX+NwhmJ4gVlUW5
51aSxfPgXzKiv17WyncqZO9SfA5/RFyA/C2gRq9/fMr/7CpQJjqrvdQXaWh4kPVa
9jFMVd1sCDUPd5c9Jyxd42CmVZjg6mCorOKaEwlI7NZkulRBlFW21A5y+M57sGTF
RLIuQcggFJaG17kZN4p6v55Yoclt8O4xVbDv8SZV3vO1gjpaF1LtXdsmAKvbDZrZ
lEtdumPHyD1maFhwXQFMOyvOgEaRhlhiNaTgKUOyX2LgeW1utCiYO/KwysflZvIC
oLsfx3x+G0nSxa+MWGL9m52Hrt4yyscfbKfBg6nqJB+AqD3teH20xfsEUHTEuYkW
kEgeWcJcWkadL5+ngs6S4PwFr88NyVBdUAagNd5VXE/KFhxCcr4B9oOXk5WdOaMi
ZvLG5IQfIH6k3w+h2wR2WSoxYwltriZ3PwrPIeJ2Se33bK15xtQy1k/IIqvZP/oK
0xxRVoY+nwuru0QZGwyI7zCFFvZzEKOXJ3qzJ2NeQxoTBky/e0bvUwnU8gXLXGPM
lx2Gzw6t+xlTfcF9oIaQq7WlOsrC7Zr4uiTurZGLZKWklso9tLdzW35zmdN6D3qx
sP2LC4iv
=57tg
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.13, take #1
- Fix regression with irqbypass not restarting the guest on failed connect
- Fix regression with debug register decoding resulting in overlapping access
- Commit exception state on exit to usrspace
- Fix the MMU notifier return values
- Add missing 'static' qualifiers in the new host stage-2 code
- Reorganize SEV code to streamline and simplify future development
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCg1XQACgkQEsHwGGHe
VUpRKA//dwzDD1QU16JucfhgFlv/9OTm48ukSwAb9lZjDEy4H1CtVL3xEHFd7L3G
LJp0LTW+OQf0/0aGlQp/cP6sBF6G9Bf4mydx70Id4SyCQt8eZDodB+ZOOWbeteWq
p92fJPbX8CzAglutbE+3v/MD8CCAllTiLZnJZPVj4Kux2/wF6EryDgF1+rb5q8jp
ObTT9817mHVwWVUYzbgceZtd43IocOlKZRmF1qivwScMGylQTe1wfMjunpD5pVt8
Zg4UDNknNfYduqpaG546E6e1zerGNaJK7SHnsuzHRUVU5icNqtgBk061CehP9Ksq
DvYXLUl4xF16j6xJAqIZPNrBkJGdQf4q1g5x2FiBm7rSQU5owzqh5rkVk4EBFFzn
UtzeXpqbStbsZHXycyxBNdq2HXxkFPf2NXZ+bkripPg+DifOGots1uwvAft+6iAE
GudK6qxAvr8phR1cRyy6BahGtgOStXbZYEz0ZdU6t7qFfZMz+DomD5Jimj0kAe6B
s6ras5xm8q3/Py87N/KNjKtSEpgsHv/7F+idde7ODtHhpRL5HCBqhkZOSRkMMZqI
ptX1oSTvBXwRKyi5x9YhkKHUFqfFSUTfJhiRFCWK+IEAv3Y7SipJtfkqxRbI6fEV
FfCeueKDDdViBtseaRceVLJ8Tlr6Qjy27fkPPTqJpthqPpCdoZ0=
=ENfF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
AFAICT KVM only relies on SCHED_INFO. Nothing uses the p->delays data
that belongs to TASK_DELAY_ACCT.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Link: https://lkml.kernel.org/r/20210505111525.187225172@infradead.org
* Fix virtualization of RDPID
* Virtualization of DR6_BUS_LOCK, which on bare metal is new in
the 5.13 merge window
* More nested virtualization migration fixes (nSVM and eVMCS)
* Fix for KVM guest hibernation
* Fix for warning in SEV-ES SRCU usage
* Block KVM from loading on AMD machines with 5-level page tables,
due to the APM not mentioning how host CR4.LA57 exactly impacts
the guest.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCZWwgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOE9wgAk7Io8cuvnhC9ogVqzZWrPweWqFg8
fJcPMB584JRnMqYHBVYbkTPGe8SsCHKR2MKsNdc4cEP111cyr3suWsxOdmjJn58i
7ahy6PcKx7wWeWwEt7O599l6CeoX5XB9ExvA6eiXAv7iZeOJHFa+Ny2GlWgauy6Y
DELryEomx1r4IUkZaSR+2fYjzvOWTXQixwU/jwx8NcTJz0DrzknzLE7XOciPBfn0
t0Q2rCXdL2nF1uPksZbntx8Qoa6t6GDVIyrH/ZCPQYJtAX6cjxNAh3zwCe+hMnOd
fW8ntBH1nZRiNnberA4IICAzqnUokgPWdKBrZT2ntWHBK+aqxXHznrlPJA==
=e+gD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Lots of bug fixes.
- Fix virtualization of RDPID
- Virtualization of DR6_BUS_LOCK, which on bare metal is new to this
release
- More nested virtualization migration fixes (nSVM and eVMCS)
- Fix for KVM guest hibernation
- Fix for warning in SEV-ES SRCU usage
- Block KVM from loading on AMD machines with 5-level page tables, due
to the APM not mentioning how host CR4.LA57 exactly impacts the
guest.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (48 commits)
KVM: SVM: Move GHCB unmapping to fix RCU warning
KVM: SVM: Invert user pointer casting in SEV {en,de}crypt helpers
kvm: Cap halt polling at kvm->max_halt_poll_ns
tools/kvm_stat: Fix documentation typo
KVM: x86: Prevent deadlock against tk_core.seq
KVM: x86: Cancel pvclock_gtod_work on module removal
KVM: x86: Prevent KVM SVM from loading on kernels with 5-level paging
KVM: X86: Expose bus lock debug exception to guest
KVM: X86: Add support for the emulation of DR6_BUS_LOCK bit
KVM: PPC: Book3S HV: Fix conversion to gfn-based MMU notifier callbacks
KVM: x86: Hide RDTSCP and RDPID if MSR_TSC_AUX probing failed
KVM: x86: Tie Intel and AMD behavior for MSR_TSC_AUX to guest CPU model
KVM: x86: Move uret MSR slot management to common x86
KVM: x86: Export the number of uret MSRs to vendor modules
KVM: VMX: Disable loading of TSX_CTRL MSR the more conventional way
KVM: VMX: Use common x86's uret MSR list as the one true list
KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list
KVM: VMX: Configure list of user return MSRs at module init
KVM: x86: Add support for RDPID without RDTSCP
KVM: SVM: Probe and load MSR_TSC_AUX regardless of RDTSCP support in host
...
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
The guest and the hypervisor contain separate macros to get and set
the GHCB MSR protocol and NAE event fields. Consolidate the GHCB
protocol definitions and helper macros in one place.
Leave the supported protocol version define in separate files to keep
the guest and hypervisor flexibility to support different GHCB version
in the same release.
There is no functional change intended.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-3-brijesh.singh@amd.com
When an SEV-ES guest is running, the GHCB is unmapped as part of the
vCPU run support. However, kvm_vcpu_unmap() triggers an RCU dereference
warning with CONFIG_PROVE_LOCKING=y because the SRCU lock is released
before invoking the vCPU run support.
Move the GHCB unmapping into the prepare_guest_switch callback, which is
invoked while still holding the SRCU lock, eliminating the RCU dereference
warning.
Fixes: 291bd20d5d ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b2f9b79d15166f2c3e4375c0d9bc3268b7696455.1620332081.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invert the user pointer params for SEV's helpers for encrypting and
decrypting guest memory so that they take a pointer and cast to an
unsigned long as necessary, as opposed to doing the opposite. Tagging a
non-pointer as __user is confusing and weird since a cast of some form
needs to occur to actually access the user data. This also fixes Sparse
warnings triggered by directly consuming the unsigned longs, which are
"noderef" due to the __user tag.
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210506231542.2331138-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
syzbot reported a possible deadlock in pvclock_gtod_notify():
CPU 0 CPU 1
write_seqcount_begin(&tk_core.seq);
pvclock_gtod_notify() spin_lock(&pool->lock);
queue_work(..., &pvclock_gtod_work) ktime_get()
spin_lock(&pool->lock); do {
seq = read_seqcount_begin(tk_core.seq)
...
} while (read_seqcount_retry(&tk_core.seq, seq);
While this is unlikely to happen, it's possible.
Delegate queue_work() to irq_work() which postpones it until the
tk_core.seq write held region is left and interrupts are reenabled.
Fixes: 16e8d74d2d ("KVM: x86: notifier for clocksource changes")
Reported-by: syzbot+6beae4000559d41d80f8@syzkaller.appspotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Message-Id: <87h7jgm1zy.ffs@nanos.tec.linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nothing prevents the following:
pvclock_gtod_notify()
queue_work(system_long_wq, &pvclock_gtod_work);
...
remove_module(kvm);
...
work_queue_run()
pvclock_gtod_work() <- UAF
Ditto for any other operation on that workqueue list head which touches
pvclock_gtod_work after module removal.
Cancel the work in kvm_arch_exit() to prevent that.
Fixes: 16e8d74d2d ("KVM: x86: notifier for clocksource changes")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Message-Id: <87czu4onry.ffs@nanos.tec.linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow loading KVM SVM if 5-level paging is supported. In theory, NPT
for L1 should simply work, but there unknowns with respect to how the
guest's MAXPHYADDR will be handled by hardware.
Nested NPT is more problematic, as running an L1 VMM that is using
2-level page tables requires stacking single-entry PDP and PML4 tables in
KVM's NPT for L2, as there are no equivalent entries in L1's NPT to
shadow. Barring hardware magic, for 5-level paging, KVM would need stack
another layer to handle PML5.
Opportunistically rename the lm_root pointer, which is used for the
aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to
call out that it's specifically for PML4.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210505204221.1934471-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bus lock debug exception is an ability to notify the kernel by an #DB
trap after the instruction acquires a bus lock and is executed when
CPL>0. This allows the kernel to enforce user application throttling or
mitigations.
Existence of bus lock debug exception is enumerated via
CPUID.(EAX=7,ECX=0).ECX[24]. Software can enable these exceptions by
setting bit 2 of the MSR_IA32_DEBUGCTL. Expose the CPUID to guest and
emulate the MSR handling when guest enables it.
Support for this feature was originally developed by Xiaoyao Li and
Chenyi Qiang, but code has since changed enough that this patch has
nothing in common with theirs, except for this commit message.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210202090433.13441-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bus lock debug exception introduces a new bit DR6_BUS_LOCK (bit 11 of
DR6) to indicate that bus lock #DB exception is generated. The set/clear
of DR6_BUS_LOCK is similar to the DR6_RTM. The processor clears
DR6_BUS_LOCK when the exception is generated. For all other #DB, the
processor sets this bit to 1. Software #DB handler should set this bit
before returning to the interrupted task.
In VMM, to avoid breaking the CPUs without bus lock #DB exception
support, activate the DR6_BUS_LOCK conditionally in DR6_FIXED_1 bits.
When intercepting the #DB exception caused by bus locks, bit 11 of the
exit qualification is set to identify it. The VMM should emulate the
exception by clearing the bit 11 of the guest DR6.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210202090433.13441-3-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If probing MSR_TSC_AUX failed, hide RDTSCP and RDPID, and WARN if either
feature was reported as supported. In theory, such a scenario should
never happen as both Intel and AMD state that MSR_TSC_AUX is available if
RDTSCP or RDPID is supported. But, KVM injects #GP on MSR_TSC_AUX
accesses if probing failed, faults on WRMSR(MSR_TSC_AUX) may be fatal to
the guest (because they happen during early CPU bringup), and KVM itself
has effectively misreported RDPID support in the past.
Note, this also has the happy side effect of omitting MSR_TSC_AUX from
the list of MSRs that are exposed to userspace if probing the MSR fails.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Squish the Intel and AMD emulation of MSR_TSC_AUX together and tie it to
the guest CPU model instead of the host CPU behavior. While not strictly
necessary to avoid guest breakage, emulating cross-vendor "architecture"
will provide consistent behavior for the guest, e.g. WRMSR fault behavior
won't change if the vCPU is migrated to a host with divergent behavior.
Note, the "new" kvm_is_supported_user_return_msr() checks do not add new
functionality on either SVM or VMX. On SVM, the equivalent was
"tsc_aux_uret_slot < 0", and on VMX the check was buried in the
vmx_find_uret_msr() call at the find_uret_msr label.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that SVM and VMX both probe MSRs before "defining" user return slots
for them, consolidate the code for probe+define into common x86 and
eliminate the odd behavior of having the vendor code define the slot for
a given MSR.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out and export the number of configured user return MSRs so that
VMX can iterate over the set of MSRs without having to do its own tracking.
Keep the list itself internal to x86 so that vendor code still has to go
through the "official" APIs to add/modify entries.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tag TSX_CTRL as not needing to be loaded when RTM isn't supported in the
host. Crushing the write mask to '0' has the same effect, but requires
more mental gymnastics to understand.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop VMX's global list of user return MSRs now that VMX doesn't resort said
list to isolate "active" MSRs, i.e. now that VMX's list and x86's list have
the same MSRs in the same order.
In addition to eliminating the redundant list, this will also allow moving
more of the list management into common x86.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly flag a uret MSR as needing to be loaded into hardware instead of
resorting the list of "active" MSRs and tracking how many MSRs in total
need to be loaded. The only benefit to sorting the list is that the loop
to load MSRs during vmx_prepare_switch_to_guest() doesn't need to iterate
over all supported uret MRS, only those that are active. But that is a
pointless optimization, as the most common case, running a 64-bit guest,
will load the vast majority of MSRs. Not to mention that a single WRMSR is
far more expensive than iterating over the list.
Providing a stable list order obviates the need to track a given MSR's
"slot" in the per-CPU list of user return MSRs; all lists simply use the
same ordering. Future patches will take advantage of the stable order to
further simplify the related code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Configure the list of user return MSRs that are actually supported at
module init instead of reprobing the list of possible MSRs every time a
vCPU is created. Curating the list on a per-vCPU basis is pointless; KVM
is completely hosed if the set of supported MSRs changes after module init,
or if the set of MSRs differs per physical PCU.
The per-vCPU lists also increase complexity (see __vmx_find_uret_msr()) and
creates corner cases that _should_ be impossible, but theoretically exist
in KVM, e.g. advertising RDTSCP to userspace without actually being able to
virtualize RDTSCP if probing MSR_TSC_AUX fails.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow userspace to enable RDPID for a guest without also enabling RDTSCP.
Aside from checking for RDPID support in the obvious flows, VMX also needs
to set ENABLE_RDTSCP=1 when RDPID is exposed.
For the record, there is no known scenario where enabling RDPID without
RDTSCP is desirable. But, both AMD and Intel architectures allow for the
condition, i.e. this is purely to make KVM more architecturally accurate.
Fixes: 41cd02c6f7 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
Cc: stable@vger.kernel.org
Reported-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Probe MSR_TSC_AUX whether or not RDTSCP is supported in the host, and
if probing succeeds, load the guest's MSR_TSC_AUX into hardware prior to
VMRUN. Because SVM doesn't support interception of RDPID, RDPID cannot
be disallowed in the guest (without resorting to binary translation).
Leaving the host's MSR_TSC_AUX in hardware would leak the host's value to
the guest if RDTSCP is not supported.
Note, there is also a kernel bug that prevents leaking the host's value.
The host kernel initializes MSR_TSC_AUX if and only if RDTSCP is
supported, even though the vDSO usage consumes MSR_TSC_AUX via RDPID.
I.e. if RDTSCP is not supported, there is no host value to leak. But,
if/when the host kernel bug is fixed, KVM would start leaking MSR_TSC_AUX
in the case where hardware supports RDPID but RDTSCP is unavailable for
whatever reason.
Probing MSR_TSC_AUX will also allow consolidating the probe and define
logic in common x86, and will make it simpler to condition the existence
of MSR_TSX_AUX (from the guest's perspective) on RDTSCP *or* RDPID.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.
Fixes: 4be5341026 ("KVM: VMX: Initialize vmx->guest_msrs[] right after allocation")
Cc: stable@vger.kernel.org
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-6-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated intercept enum for RDPID instead of piggybacking RDTSCP.
Unlike VMX's ENABLE_RDTSCP, RDPID is not bound to SVM's RDTSCP intercept.
Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-5-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intercept RDTSCP to inject #UD if RDTSC is disabled in the guest.
Note, SVM does not support intercepting RDPID. Unlike VMX's
ENABLE_RDTSCP control, RDTSCP interception does not apply to RDPID. This
is a benign virtualization hole as the host kernel (incorrectly) sets
MSR_TSC_AUX if RDTSCP is supported, and KVM loads the guest's MSR_TSC_AUX
into hardware if RDTSCP is supported in the host, i.e. KVM will not leak
the host's MSR_TSC_AUX to the guest.
But, when the kernel bug is fixed, KVM will start leaking the host's
MSR_TSC_AUX if RDPID is supported in hardware, but RDTSCP isn't available
for whatever reason. This leak will be remedied in a future commit.
Fixes: 46896c73c1 ("KVM: svm: add support for RDTSCP")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-4-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not advertise emulation support for RDPID if RDTSCP is unsupported.
RDPID emulation subtly relies on MSR_TSC_AUX to exist in hardware, as
both vmx_get_msr() and svm_get_msr() will return an error if the MSR is
unsupported, i.e. ctxt->ops->get_msr() will fail and the emulator will
inject a #UD.
Note, RDPID emulation also relies on RDTSCP being enabled in the guest,
but this is a KVM bug and will eventually be fixed.
Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-3-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear KVM's RDPID capability if the ENABLE_RDTSCP secondary exec control is
unsupported. Despite being enumerated in a separate CPUID flag, RDPID is
bundled under the same VMCS control as RDTSCP and will #UD in VMX non-root
if ENABLE_RDTSCP is not enabled.
Fixes: 41cd02c6f7 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-2-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While in most cases, when returning to use the VMCB01,
the exit reason stored in it will be SVM_EXIT_VMRUN,
on first VM exit after a nested migration this field
can contain anything since the VM entry did happen
before the migration.
Remove this warning to avoid the false positive.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210504143936.1644378-3-mlevitsk@redhat.com>
Fixes: 9a7de6ecc3 ("KVM: nSVM: If VMRUN is single-stepped, queue the #DB intercept in nested_svm_vmexit()")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While usually the L1's GIF is set while L2 runs, and usually
migration nested state is loaded after a vCPU reset which
also sets L1's GIF to true, this is not guaranteed.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210504143936.1644378-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In ioctl KVM_X86_SET_MSR_FILTER, input from user space is validated
after a memdup_user(). For invalid inputs we'd memdup and then call
kfree unnecessarily. Hoist input validation to avoid kfree altogether.
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <20210503122111.13775-1-sidcha@amazon.de>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When enlightened VMCS is in use and nested state is migrated with
vmx_get_nested_state()/vmx_set_nested_state() KVM can't map evmcs
page right away: evmcs gpa is not 'struct kvm_vmx_nested_state_hdr'
and we can't read it from VP assist page because userspace may decide
to restore HV_X64_MSR_VP_ASSIST_PAGE after restoring nested state
(and QEMU, for example, does exactly that). To make sure eVMCS is
mapped /vmx_set_nested_state() raises KVM_REQ_GET_NESTED_STATE_PAGES
request.
Commit f2c7ef3ba9 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
on nested vmexit") added KVM_REQ_GET_NESTED_STATE_PAGES clearing to
nested_vmx_vmexit() to make sure MSR permission bitmap is not switched
when an immediate exit from L2 to L1 happens right after migration (caused
by a pending event, for example). Unfortunately, in the exact same
situation we still need to have eVMCS mapped so
nested_sync_vmcs12_to_shadow() reflects changes in VMCS12 to eVMCS.
As a band-aid, restore nested_get_evmcs_page() when clearing
KVM_REQ_GET_NESTED_STATE_PAGES in nested_vmx_vmexit(). The 'fix' is far
from being ideal as we can't easily propagate possible failures and even if
we could, this is most likely already too late to do so. The whole
'KVM_REQ_GET_NESTED_STATE_PAGES' idea for mapping eVMCS after migration
seems to be fragile as we diverge too much from the 'native' path when
vmptr loading happens on vmx_set_nested_state().
Fixes: f2c7ef3ba9 ("KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES on nested vmexit")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210503150854.1144255-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the enter/exit logic in {svm,vmx}_vcpu_enter_exit() to common
helpers. Opportunistically update the somewhat stale comment about the
updates needing to occur immediately after VM-Exit.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210505002735.1684165-9-seanjc@google.com
Defer the call to account guest time until after servicing any IRQ(s)
that happened in the guest or immediately after VM-Exit. Tick-based
accounting of vCPU time relies on PF_VCPU being set when the tick IRQ
handler runs, and IRQs are blocked throughout the main sequence of
vcpu_enter_guest(), including the call into vendor code to actually
enter and exit the guest.
This fixes a bug where reported guest time remains '0', even when
running an infinite loop in the guest:
https://bugzilla.kernel.org/show_bug.cgi?id=209831
Fixes: 87fa7f3e98 ("x86/kvm: Move context tracking where it belongs")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210505002735.1684165-4-seanjc@google.com
In VMX, the host NMI handler needs to be invoked after NMI VM-Exit.
Before commit 1a5488ef0d ("KVM: VMX: Invoke NMI handler via indirect
call instead of INTn"), this was done by INTn ("int $2"). But INTn
microcode is relatively expensive, so the commit reworked NMI VM-Exit
handling to invoke the kernel handler by function call.
But this missed a detail. The NMI entry point for direct invocation is
fetched from the IDT table and called on the kernel stack. But on 64-bit
the NMI entry installed in the IDT expects to be invoked on the IST stack.
It relies on the "NMI executing" variable on the IST stack to work
correctly, which is at a fixed position in the IST stack. When the entry
point is unexpectedly called on the kernel stack, the RSP-addressed "NMI
executing" variable is obviously also on the kernel stack and is
"uninitialized" and can cause the NMI entry code to run in the wrong way.
Provide a non-ist entry point for VMX which shares the C-function with
the regular NMI entry and invoke the new asm entry point instead.
On 32-bit this just maps to the regular NMI entry point as 32-bit has no
ISTs and is not affected.
[ tglx: Made it independent for backporting, massaged changelog ]
Fixes: 1a5488ef0d ("KVM: VMX: Invoke NMI handler via indirect call instead of INTn")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lai Jiangshan <laijs@linux.alibaba.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87r1imi8i1.ffs@nanos.tec.linutronix.de
The fget can potentially return null, so the fput on the error return
path can cause a null pointer dereference. Fix this by checking for
a null source_kvm_file before doing a fput.
Addresses-Coverity: ("Dereference null return")
Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Message-Id: <20210430170303.131924-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function name of kdoc of __handle_changed_spte() should be itself,
rather than handle_changed_spte(). Fix the typo.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20210503042446.154695-1-kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows the KVM to load the nested state more than
once without warnings.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210503125446.1353307-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Define and use an invalid GPA (all ones) for init value of last
and current nested vmcb physical addresses.
* Reset the current vmcb12 gpa to the invalid value when leaving
the nested mode, similar to what is done on nested vmexit.
* Reset the last seen vmcb12 address when disabling the nested SVM,
as it relies on vmcb02 fields which are freed at that point.
Fixes: 4995a3685f ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210503125446.1353307-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When forcibly leaving the nested mode, we should switch to vmcb01
Fixes: 4995a3685f ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210503125446.1353307-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit ee66e453db (KVM: lapic: Busy wait for timer to expire when
using hv_timer) tries to set ktime->expired_tscdeadline by checking
ktime->hv_timer_in_use since lapic timer oneshot/periodic modes which
are emulated by vmx preemption timer also get advanced, they leverage
the same vmx preemption timer logic with tsc-deadline mode. However,
ktime->hv_timer_in_use is cleared before apic_timer_expired() handling,
let's delay this clearing in preemption-disabled region.
Fixes: ee66e453db ("KVM: lapic: Busy wait for timer to expire when using hv_timer")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1619608082-4187-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Large pages not being created properly may result in increased memory
access time. The 'lpages' kvm stat used to keep track of the current
number of large pages in the system, but with TDP MMU enabled the stat
is not showing the correct number.
This patch extends the lpages counter to cover the TDP case.
Signed-off-by: Md Shahadat Hossain Shahin <shahinmd@amazon.de>
Cc: Bartosz Szczepanek <bsz@amazon.de>
Message-Id: <1619783551459.35424@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In kvm_tdp_mmu_map(), while iterating TDP MMU page table entries, it is
possible SPTE has already been frozen by another thread but the frozen
is not done yet, for instance, when another thread is still in middle of
zapping large page. In this case, the !is_shadow_present_pte() check
for old SPTE in tdp_mmu_for_each_pte() may hit true, and in this case
allocating new page table is unnecessary since tdp_mmu_set_spte_atomic()
later will return false and page table will need to be freed. Add
is_removed_spte() check before allocating new page table to avoid this.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20210429041226.50279-1-kai.huang@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
Pull cgroup changes from Tejun Heo:
"The only notable change is Vipin's new misc cgroup controller.
This implements generic support for resources which can be controlled
by simply counting and limiting the number of resource instances - ie
there's X number of these on the system and this cgroup subtree can
have upto Y of those.
The first user is the address space IDs used for virtual machine
memory encryption and expected future usages are similar - niche
hardware features with concrete resource limits and simple usage
models"
* 'for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: use tsk->in_iowait instead of delayacct_is_task_waiting_on_io()
cgroup/cpuset: fix typos in comments
cgroup: misc: mark dummy misc_cg_res_total_usage() static inline
svm/sev: Register SEV and SEV-ES ASIDs to the misc controller
cgroup: Miscellaneous cgroup documentation.
cgroup: Add misc cgroup controller
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
+HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
/uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
=bO1i
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
Christopherson, Kai Huang and Jarkko Sakkinen. Along with the usual
fixes, cleanups and improvements.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGlgYACgkQEsHwGGHe
VUqbYA/+IgX7uBkATndzTBL6l/D3QQaMRUkOk5nO9sOzQaYJ/Qwarfakax61CZrl
dZFdF07T/kSpMXQ6HIjzEaRx6j12xMYksrm8xBBSfXjtkIYu4auVloX2ldKhHwaK
OyiKS+R0O/Q7XvozEiPsQCf7XwraZFO+iMJ0jMxbPO7ZvxDXDBv0Fx3d9yzPx9Qg
BbJuIEKMoFPR3P39CWw0cOXr12Z9mmFReBKoSV4dZbZMRmv7FrA/Qlc+uS+RNZFK
/5sCn7x27qVx8Ha/Lh42kQf+yqv1l3437aqmG2vAbHQPmnbDmBeApZ6jhaoX3jhD
9ylkcpWFFf26oSbYAdmztZENLXRWLH6OIPxtmbf2HMsROiNR/cV0s4d2aduN/dHz
s1VnaDFayoub9CPWtiv0RJJnwmB6d+wF2JbQGh+kPZMX3VaxVPwTVLWQdsAVaB8Y
y7A2vZeWWHvP1a7ATbTFRDlTKKV3qDpMTD1B+hFELLNjMvyDU5c/1GhrIh0o1Jo3
jGrauylSInMxDkpDTDhQqU+/CSnV03zdzq1DSzxgig2Q0Es6pKxQHbL0honTf0GJ
l+8nefsQqRguZ1rVeuuSYvGPF++eqfyOiTZgN4fWdtZWJKMabsPNUbc4U3sP0/Sn
oe3Ixo2F41E9++MODF1G80DKLD/mVLYxdzC91suOmgfB2gbRhSg=
=KFYo
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX updates from Borislav Petkov:
"Add the guest side of SGX support in KVM guests. Work by Sean
Christopherson, Kai Huang and Jarkko Sakkinen.
Along with the usual fixes, cleanups and improvements"
* tag 'x86_sgx_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/sgx: Mark sgx_vepc_vm_ops static
x86/sgx: Do not update sgx_nr_free_pages in sgx_setup_epc_section()
x86/sgx: Move provisioning device creation out of SGX driver
x86/sgx: Add helpers to expose ECREATE and EINIT to KVM
x86/sgx: Add helper to update SGX_LEPUBKEYHASHn MSRs
x86/sgx: Add encls_faulted() helper
x86/sgx: Add SGX2 ENCLS leaf definitions (EAUG, EMODPR and EMODT)
x86/sgx: Move ENCLS leaf definitions to sgx.h
x86/sgx: Expose SGX architectural definitions to the kernel
x86/sgx: Initialize virtual EPC driver even when SGX driver is disabled
x86/cpu/intel: Allow SGX virtualization without Launch Control support
x86/sgx: Introduce virtual EPC for use by KVM guests
x86/sgx: Add SGX_CHILD_PRESENT hardware error code
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page()
x86/cpufeatures: Add SGX1 and SGX2 sub-features
x86/cpufeatures: Make SGX_LC feature bit depend on SGX bit
x86/sgx: Remove unnecessary kmap() from sgx_ioc_enclave_init()
selftests/sgx: Use getauxval() to simplify test code
selftests/sgx: Improve error detection and messages
x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()
...
`kvm_arch_dy_runnable` checks the pending_interrupt as the code in
`kvm_arch_dy_has_pending_interrupt`. So take advantage of it.
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <20210421032513.1921-1-lihaiwei.kernel@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip SEV's expensive WBINVD and DF_FLUSH if there are no SEV ASIDs
waiting to be reclaimed, e.g. if SEV was never used. This "fixes" an
issue where the DF_FLUSH fails during hardware teardown if the original
SEV_INIT failed. Ideally, SEV wouldn't be marked as enabled in KVM if
SEV_INIT fails, but that's a problem for another day.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the forward declaration of sev_flush_asids(), which is only a few
lines above the function itself.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace calls to svm_sev_enabled() with direct checks on sev_enabled, or
in the case of svm_mem_enc_op, simply drop the call to svm_sev_enabled().
This effectively replaces checks against a valid max_sev_asid with checks
against sev_enabled. sev_enabled is forced off by sev_hardware_setup()
if max_sev_asid is invalid, all call sites are guaranteed to run after
sev_hardware_setup(), and all of the checks care about SEV being fully
enabled (as opposed to intentionally handling the scenario where
max_sev_asid is valid but SEV enabling fails due to OOM).
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the allocation of the SEV VMCB array to sev.c to help pave the way
toward encapsulating SEV enabling wholly within sev.c.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Query max_sev_asid directly after setting it instead of bouncing through
its wrapper, svm_sev_enabled(). Using the wrapper is unnecessary
obfuscation.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the redundant svm_sev_enabled() check when calling
sev_hardware_teardown(), the teardown helper itself does the check.
Removing the check from svm.c will eventually allow dropping
svm_sev_enabled() entirely.
No functional change intended.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enable the 'sev' and 'sev_es' module params by default instead of having
them conditioned on CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT. The extra
Kconfig is pointless as KVM SEV/SEV-ES support is already controlled via
CONFIG_KVM_AMD_SEV, and CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT has the
unfortunate side effect of enabling all the SEV-ES _guest_ code due to
it being dependent on CONFIG_AMD_MEM_ENCRYPT=y.
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define sev_enabled and sev_es_enabled as 'false' and explicitly #ifdef
out all of sev_hardware_setup() if CONFIG_KVM_AMD_SEV=n. This kills
three birds at once:
- Makes sev_enabled and sev_es_enabled off by default if
CONFIG_KVM_AMD_SEV=n. Previously, they could be on by default if
CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=y, regardless of KVM SEV
support.
- Hides the sev and sev_es modules params when CONFIG_KVM_AMD_SEV=n.
- Resolves a false positive -Wnonnull in __sev_recycle_asids() that is
currently masked by the equivalent IS_ENABLED(CONFIG_KVM_AMD_SEV)
check in svm_sev_enabled(), which will be dropped in a future patch.
Reviewed by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename sev and sev_es to sev_enabled and sev_es_enabled respectively to
better align with other KVM terminology, and to avoid pseudo-shadowing
when the variables are moved to sev.c in a future patch ('sev' is often
used for local struct kvm_sev_info pointers.
No functional change intended.
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a reverse-CPUID entry for the memory encryption word, 0x8000001F.EAX,
and use it to override the supported CPUID flags reported to userspace.
Masking the reported CPUID flags avoids over-reporting KVM support, e.g.
without the mask a SEV-SNP capable CPU may incorrectly advertise SNP
support to userspace.
Clear SEV/SEV-ES if their corresponding module parameters are disabled,
and clear the memory encryption leaf completely if SEV is not fully
supported in KVM. Advertise SME_COHERENT in addition to SEV and SEV-ES,
as the guest can use SME_COHERENT to avoid CLFLUSH operations.
Explicitly omit SME and VM_PAGE_FLUSH from the reporting. These features
are used by KVM, but are not exposed to the guest, e.g. guest access to
related MSRs will fault.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally invoke sev_hardware_setup() when configuring SVM and
handle clearing the module params/variable 'sev' and 'sev_es' in
sev_hardware_setup(). This allows making said variables static within
sev.c and reduces the odds of a collision with guest code, e.g. the guest
side of things has already laid claim to 'sev_enabled'.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable SEV and SEV-ES if NPT is disabled. While the APM doesn't clearly
state that NPT is mandatory, it's alluded to by:
The guest page tables, managed by the guest, may mark data memory pages
as either private or shared, thus allowing selected pages to be shared
outside the guest.
And practically speaking, shadow paging can't work since KVM can't read
the guest's page tables.
Fixes: e9df094289 ("KVM: SVM: Add sev module_param")
Cc: Brijesh Singh <brijesh.singh@amd.com
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free sev_asid_bitmap if the reclaim bitmap allocation fails, othwerise
KVM will unnecessarily keep the bitmap when SEV is not fully enabled.
Freeing the page is also necessary to avoid introducing a bug when a
future patch eliminates svm_sev_enabled() in favor of using the global
'sev' flag directly. While sev_hardware_enabled() checks max_sev_asid,
which is true even if KVM setup fails, 'sev' will be true if and only
if KVM setup fully succeeds.
Fixes: 33af3a7ef9 ("KVM: SVM: Reduce WBINVD/DF_FLUSH invocations")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zero out the array of VMCB pointers so that pre_sev_run() won't see
garbage when querying the array to detect when an SEV ASID is being
associated with a new VMCB. In practice, reading random values is all
but guaranteed to be benign as a false negative (which is extremely
unlikely on its own) can only happen on CPU0 on the first VMRUN and would
only cause KVM to skip the ASID flush. For anything bad to happen, a
previous instance of KVM would have to exit without flushing the ASID,
_and_ KVM would have to not flush the ASID at any time while building the
new SEV guest.
Cc: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Fixes: 70cd94e60c ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422021125.3417167-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out the reverse CPUID machinery to a dedicated header file
so that KVM selftests can reuse the reverse CPUID definitions without
introducing any '#ifdef __KERNEL__' pollution.
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Message-Id: <20210422005626.564163-2-ricarkol@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Append raw to the direct variants of kvm_register_read/write(), and
drop the "l" from the mode-aware variants. I.e. make the mode-aware
variants the default, and make the direct variants scary sounding so as
to discourage use. Accessing the full 64-bit values irrespective of
mode is rarely the desired behavior.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bits 63:32 of RAX when grabbing the address for INVLPGA emulation
outside of 64-bit mode to make KVM's emulation slightly less wrong. The
address for INVLPGA is determined by the effective address size, i.e.
it's not hardcoded to 64/32 bits for a given mode. Add a FIXME to call
out that the emulation is wrong.
Opportunistically tweak the ASID handling to make it clear that it's
defined by ECX, not rCX.
Per the APM:
The portion of rAX used to form the address is determined by the
effective address size (current execution mode and optional address
size prefix). The ASID is taken from ECX.
Fixes: ff092385e8 ("KVM: SVM: Implement INVLPGA")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Truncate RAX to 32 bits, i.e. consume EAX, when retrieving the hypecall
index for a Xen hypercall. Per Xen documentation[*], the index is EAX
when the vCPU is not in 64-bit mode.
[*] http://xenbits.xenproject.org/docs/sphinx-unstable/guest-guide/x86/hypercall-abi.html
Fixes: 23200b7a30 ("KVM: x86/xen: intercept xen hypercalls if enabled")
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bits 63:32 of the base and/or index GPRs when calculating the
effective address of a VMX instruction memory operand. Outside of 64-bit
mode, memory encodings are strictly limited to E*X and below.
Fixes: 064aea7747 ("KVM: nVMX: Decoding memory operands of VMX instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bits 63:32 of the VMCS field encoding when checking for a nested
VM-Exit on VMREAD/VMWRITE in !64-bit mode. VMREAD and VMWRITE always
use 32-bit operands outside of 64-bit mode.
The actual emulation of VMREAD/VMWRITE does the right thing, this bug is
purely limited to incorrectly causing a nested VM-Exit if a GPR happens
to have bits 63:32 set outside of 64-bit mode.
Fixes: a7cde481b6 ("KVM: nVMX: Do not forward VMREAD/VMWRITE VMExits to L1 if required so by vmcs12 vmread/vmwrite bitmaps")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bits 63:32 when storing a DR/CR to a GPR when the vCPU is not in
64-bit mode. Per the SDM:
The operand size for these instructions is always 32 bits in non-64-bit
modes, regardless of the operand-size attribute.
CR8 technically isn't affected as CR8 isn't accessible outside of 64-bit
mode, but fix it up for consistency and to allow for future cleanup.
Fixes: 6aa8b732ca ("[PATCH] kvm: userspace interface")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop bits 63:32 on loads/stores to/from DRs and CRs when the vCPU is not
in 64-bit mode. The APM states bits 63:32 are dropped for both DRs and
CRs:
In 64-bit mode, the operand size is fixed at 64 bits without the need
for a REX prefix. In non-64-bit mode, the operand size is fixed at 32
bits and the upper 32 bits of the destination are forced to 0.
Fixes: 7ff76d58a9 ("KVM: SVM: enhance MOV CR intercept handler")
Fixes: cae3797a46 ("KVM: SVM: enhance mov DR intercept handler")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check CR3 for an invalid GPA even if the vCPU isn't in long mode. For
bigger emulation flows, notably RSM, the vCPU mode may not be accurate
if CR0/CR4 are loaded after CR3. For MOV CR3 and similar flows, the
caller is responsible for truncating the value.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the emulator's checks for illegal CR0, CR3, and CR4 values, as
the checks are redundant, outdated, and in the case of SEV's C-bit,
broken. The emulator manually calculates MAXPHYADDR from CPUID and
neglects to mask off the C-bit. For all other checks, kvm_set_cr*() are
a superset of the emulator checks, e.g. see CR4.LA57.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Cc: Babu Moger <babu.moger@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422022128.3464144-2-seanjc@google.com>
Cc: stable@vger.kernel.org
[Unify check_cr_read and check_cr_write. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable pass-through of the FS and GS base MSRs for 32-bit KVM. Intel's
SDM unequivocally states that the MSRs exist if and only if the CPU
supports x86-64. FS_BASE and GS_BASE are mostly a non-issue; a clever
guest could opportunistically use the MSRs without issue. KERNEL_GS_BASE
is a bigger problem, as a clever guest would subtly be broken if it were
migrated, as KVM disallows software access to the MSRs, and unlike the
direct variants, KERNEL_GS_BASE needs to be explicitly migrated as it's
not captured in the VMCS.
Fixes: 25c5f225be ("KVM: VMX: Enable MSR Bitmap feature")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422023831.3473491-1-seanjc@google.com>
[*NOT* for stable kernels. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM's "user return MSRs" framework to defer restoring the host's
MSR_TSC_AUX until the CPU returns to userspace. Add/improve comments to
clarify why MSR_TSC_AUX is intercepted on both RDMSR and WRMSR, and why
it's safe for KVM to keep the guest's value loaded even if KVM is
scheduled out.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423223404.3860547-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Force clear bits 63:32 of MSR_TSC_AUX on write to emulate current AMD
CPUs, which completely ignore the upper 32 bits, including dropping them
on write. Emulating AMD hardware will also allow migrating a vCPU from
AMD hardware to Intel hardware without requiring userspace to manually
clear the upper bits, which are reserved on Intel hardware.
Presumably, MSR_TSC_AUX[63:32] are intended to be reserved on AMD, but
sadly the APM doesn't say _anything_ about those bits in the context of
MSR access. The RDTSCP entry simply states that RCX contains bits 31:0
of the MSR, zero extended. And even worse is that the RDPID description
implies that it can consume all 64 bits of the MSR:
RDPID reads the value of TSC_AUX MSR used by the RDTSCP instruction
into the specified destination register. Normal operand size prefixes
do not apply and the update is either 32 bit or 64 bit based on the
current mode.
Emulate current hardware behavior to give KVM the best odds of playing
nice with whatever the behavior of future AMD CPUs happens to be.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423223404.3860547-3-seanjc@google.com>
[Fix broken patch. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject #GP on guest accesses to MSR_TSC_AUX if RDTSCP is unsupported in
the guest's CPUID model.
Fixes: 46896c73c1 ("KVM: svm: add support for RDTSCP")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423223404.3860547-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invert the inline declarations of the MSR interception helpers between
the wrapper, vmx_set_intercept_for_msr(), and the core implementations,
vmx_{dis,en}able_intercept_for_msr(). Letting the compiler _not_
inline the implementation reduces KVM's code footprint by ~3k bytes.
Back when the helpers were added in commit 904e14fb7c ("KVM: VMX: make
MSR bitmaps per-VCPU"), both the wrapper and the implementations were
__always_inline because the end code distilled down to a few conditionals
and a bit operation. Today, the implementations involve a variety of
checks and bit ops in order to support userspace MSR filtering.
Furthermore, the vast majority of calls to manipulate MSR interception
are not performance sensitive, e.g. vCPU creation and x2APIC toggling.
On the other hand, the one path that is performance sensitive, dynamic
LBR passthrough, uses the wrappers, i.e. is largely untouched by
inverting the inlining.
In short, forcing the low level MSR interception code to be inlined no
longer makes sense.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210423221912.3857243-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under
SEV-ES") prevents hypervisor accesses guest register state when the guest is
running under SEV-ES. The initial value of vcpu->arch.guest_state_protected
is false, it will not be updated in preemption notifiers after this commit which
means that the kernel spinlock lock holder will always be skipped to boost. Let's
fix it by always treating preempted is in the guest kernel mode, false positive
is better than skip completely.
Fixes: f1c6366e30 (KVM: SVM: Add required changes to support intercepts under SEV-ES)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1619080459-30032-1-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Async PF 'page ready' event may happen when LAPIC is (temporary) disabled.
In particular, Sebastien reports that when Linux kernel is directly booted
by Cloud Hypervisor, LAPIC is 'software disabled' when APF mechanism is
initialized. On initialization KVM tries to inject 'wakeup all' event and
puts the corresponding token to the slot. It is, however, failing to inject
an interrupt (kvm_apic_set_irq() -> __apic_accept_irq() -> !apic_enabled())
so the guest never gets notified and the whole APF mechanism gets stuck.
The same issue is likely to happen if the guest temporary disables LAPIC
and a previously unavailable page becomes available.
Do two things to resolve the issue:
- Avoid dequeuing 'page ready' events from APF queue when LAPIC is
disabled.
- Trigger an attempt to deliver pending 'page ready' events when LAPIC
becomes enabled (SPIV or MSR_IA32_APICBASE).
Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210422092948.568327-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_memslots() will be called by kvm_write_guest_offset_cached() so we should
take the srcu lock. Let's pull the srcu lock operation from kvm_steal_time_set_preempted()
again to fix xen part.
Fixes: 30b5c851af ("KVM: x86/xen: Add support for vCPU runstate information")
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1619166200-9215-1-git-send-email-wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take "enum kvm_only_cpuid_leafs" in scattered specific CPUID helpers
(which is obvious in hindsight), and use "unsigned int" for leafs that
can be the kernel's standard "enum cpuid_leaf" or the aforementioned
KVM-only variant. Loss of the enum params is a bit disapponting, but
gcc obviously isn't providing any extra sanity checks, and the various
BUILD_BUG_ON() assertions ensure the input is in range.
This fixes implicit enum conversions that are detected by clang-11:
arch/x86/kvm/cpuid.c:499:29: warning: implicit conversion from enumeration type 'enum kvm_only_cpuid_leafs' to different enumeration type 'enum cpuid_leafs' [-Wenum-conversion]
kvm_cpu_cap_init_scattered(CPUID_12_EAX,
~~~~~~~~~~~~~~~~~~~~~~~~~~ ^~~~~~~~~~~~
arch/x86/kvm/cpuid.c:837:31: warning: implicit conversion from enumeration type 'enum kvm_only_cpuid_leafs' to different enumeration type 'enum cpuid_leafs' [-Wenum-conversion]
cpuid_entry_override(entry, CPUID_12_EAX);
~~~~~~~~~~~~~~~~~~~~ ^~~~~~~~~~~~
2 warnings generated.
Fixes: 4e66c0cb79 ("KVM: x86: Add support for reverse CPUID lookup of scattered features")
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210421010850.3009718-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use symbolic value, EPT_VIOLATION_GVA_TRANSLATED, instead of 0x100
in handle_ept_violation().
Signed-off-by: Yao Yuan <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <724e8271ea301aece3eb2afe286a9e2e92a70b18.1619136576.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the local stack to "allocate" the structures used to communicate with
the PSP. The largest struct used by KVM, sev_data_launch_secret, clocks
in at 52 bytes, well within the realm of reasonable stack usage. The
smallest structs are a mere 4 bytes, i.e. the pointer for the allocation
is larger than the allocation itself.
Now that the PSP driver plays nice with vmalloc pointers, putting the
data on a virtually mapped stack (CONFIG_VMAP_STACK=y) will not cause
explosions.
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406224952.4177376-9-seanjc@google.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
[Apply same treatment to PSP migration commands. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command finalize the guest receiving process and make the SEV guest
ready for the execution.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <d08914dc259644de94e29b51c3b68a13286fc5a3.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command is used for copying the incoming buffer into the
SEV guest memory space.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <c5d0e3e719db7bb37ea85d79ed4db52e9da06257.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command is used to create the encryption context for an incoming
SEV guest. The encryption context can be later used by the hypervisor
to import the incoming data into the SEV guest memory space.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <c7400111ed7458eee01007c4d8d57cdf2cbb0fc2.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After completion of SEND_START, but before SEND_FINISH, the source VMM can
issue the SEND_CANCEL command to stop a migration. This is necessary so
that a cancelled migration can restart with a new target later.
Reviewed-by: Nathan Tempelman <natet@google.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Steve Rutherford <srutherford@google.com>
Message-Id: <20210412194408.2458827-1-srutherford@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The command is used for encrypting the guest memory region using the encryption
context created with KVM_SEV_SEND_START.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by : Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <d6a6ea740b0c668b30905ae31eac5ad7da048bb3.1618498113.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both lock holder vCPU and IPI receiver that has halted are condidate for
boost. However, the PLE handler was originally designed to deal with the
lock holder preemption problem. The Intel PLE occurs when the spinlock
waiter is in kernel mode. This assumption doesn't hold for IPI receiver,
they can be in either kernel or user mode. the vCPU candidate in user mode
will not be boosted even if they should respond to IPIs. Some benchmarks
like pbzip2, swaptions etc do the TLB shootdown in kernel mode and most
of the time they are running in user mode. It can lead to a large number
of continuous PLE events because the IPI sender causes PLE events
repeatedly until the receiver is scheduled while the receiver is not
candidate for a boost.
This patch boosts the vCPU candidiate in user mode which is delivery
interrupt. We can observe the speed of pbzip2 improves 10% in 96 vCPUs
VM in over-subscribe scenario (The host machine is 2 socket, 48 cores,
96 HTs Intel CLX box). There is no performance regression for other
benchmarks like Unixbench spawn (most of the time contend read/write
lock in kernel mode), ebizzy (most of the time contend read/write sem
and TLB shoodtdown in kernel mode).
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1618542490-14756-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a capability for userspace to mirror SEV encryption context from
one vm to another. On our side, this is intended to support a
Migration Helper vCPU, but it can also be used generically to support
other in-guest workloads scheduled by the host. The intention is for
the primary guest and the mirror to have nearly identical memslots.
The primary benefits of this are that:
1) The VMs do not share KVM contexts (think APIC/MSRs/etc), so they
can't accidentally clobber each other.
2) The VMs can have different memory-views, which is necessary for post-copy
migration (the migration vCPUs on the target need to read and write to
pages, when the primary guest would VMEXIT).
This does not change the threat model for AMD SEV. Any memory involved
is still owned by the primary guest and its initial state is still
attested to through the normal SEV_LAUNCH_* flows. If userspace wanted
to circumvent SEV, they could achieve the same effect by simply attaching
a vCPU to the primary VM.
This patch deliberately leaves userspace in charge of the memslots for the
mirror, as it already has the power to mess with them in the primary guest.
This patch does not support SEV-ES (much less SNP), as it does not
handle handing off attested VMSAs to the mirror.
For additional context, we need a Migration Helper because SEV PSP
migration is far too slow for our live migration on its own. Using
an in-guest migrator lets us speed this up significantly.
Signed-off-by: Nathan Tempelman <natet@google.com>
Message-Id: <20210408223214.2582277-1-natet@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Canonicalization and Consistency Checks" in APM vol 2,
the following guest state is illegal:
"The MSR or IOIO intercept tables extend to a physical address that
is greater than or equal to the maximum supported physical address."
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210412215611.110095-5-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define the actual size of the IOPM and MSRPM tables so that the actual size
can be used when initializing them and when checking the consistency of their
physical address.
These #defines are placed in svm.h so that they can be shared.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210412215611.110095-2-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a capability, KVM_CAP_SGX_ATTRIBUTE, that can be used by userspace
to grant a VM access to a priveleged attribute, with args[0] holding a
file handle to a valid SGX attribute file.
The SGX subsystem restricts access to a subset of enclave attributes to
provide additional security for an uncompromised kernel, e.g. to prevent
malware from using the PROVISIONKEY to ensure its nodes are running
inside a geniune SGX enclave and/or to obtain a stable fingerprint.
To prevent userspace from circumventing such restrictions by running an
enclave in a VM, KVM restricts guest access to privileged attributes by
default.
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <0b099d65e933e068e3ea934b0523bab070cb8cea.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enable SGX virtualization now that KVM has the VM-Exit handlers needed
to trap-and-execute ENCLS to ensure correctness and/or enforce the CPU
model exposed to the guest. Add a KVM module param, "sgx", to allow an
admin to disable SGX virtualization independent of the kernel.
When supported in hardware and the kernel, advertise SGX1, SGX2 and SGX
LC to userspace via CPUID and wire up the ENCLS_EXITING bitmap based on
the guest's SGX capabilities, i.e. to allow ENCLS to be executed in an
SGX-enabled guest. With the exception of the provision key, all SGX
attribute bits may be exposed to the guest. Guest access to the
provision key, which is controlled via securityfs, will be added in a
future patch.
Note, KVM does not yet support exposing ENCLS_C leafs or ENCLV leafs.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <a99e9c23310c79f2f4175c1af4c4cbcef913c3e5.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a VM-Exit handler to trap-and-execute EINIT when SGX LC is enabled
in the host. When SGX LC is enabled, the host kernel may rewrite the
hardware values at will, e.g. to launch enclaves with different signers,
thus KVM needs to intercept EINIT to ensure it is executed with the
correct LE hash (even if the guest sees a hardwired hash).
Switching the LE hash MSRs on VM-Enter/VM-Exit is not a viable option as
writing the MSRs is prohibitively expensive, e.g. on SKL hardware each
WRMSR is ~400 cycles. And because EINIT takes tens of thousands of
cycles to execute, the ~1500 cycle overhead to trap-and-execute EINIT is
unlikely to be noticed by the guest, let alone impact its overall SGX
performance.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <57c92fa4d2083eb3be9e6355e3882fc90cffea87.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulate the four Launch Enclave public key hash MSRs (LE hash MSRs) that
exist on CPUs that support SGX Launch Control (LC). SGX LC modifies the
behavior of ENCLS[EINIT] to use the LE hash MSRs when verifying the key
used to sign an enclave. On CPUs without LC support, the LE hash is
hardwired into the CPU to an Intel controlled key (the Intel key is also
the reset value of the LE hash MSRs). Track the guest's desired hash so
that a future patch can stuff the hash into the hardware MSRs when
executing EINIT on behalf of the guest, when those MSRs are writable in
host.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <c58ef601ddf88f3a113add837969533099b1364a.1618196135.git.kai.huang@intel.com>
[Add a comment regarding the MSRs being available until SGX is locked.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an ECREATE handler that will be used to intercept ECREATE for the
purpose of enforcing and enclave's MISCSELECT, ATTRIBUTES and XFRM, i.e.
to allow userspace to restrict SGX features via CPUID. ECREATE will be
intercepted when any of the aforementioned masks diverges from hardware
in order to enforce the desired CPUID model, i.e. inject #GP if the
guest attempts to set a bit that hasn't been enumerated as allowed-1 in
CPUID.
Note, access to the PROVISIONKEY is not yet supported.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <c3a97684f1b71b4f4626a1fc3879472a95651725.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce sgx.c and sgx.h, along with the framework for handling ENCLS
VM-Exits. Add a bool, enable_sgx, that will eventually be wired up to a
module param to control whether or not SGX virtualization is enabled at
runtime.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <1c782269608b2f5e1034be450f375a8432fb705d.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for handling VM-Exits that originate from a guest SGX
enclave. In SGX, an "enclave" is a new CPL3-only execution environment,
wherein the CPU and memory state is protected by hardware to make the
state inaccesible to code running outside of the enclave. When exiting
an enclave due to an asynchronous event (from the perspective of the
enclave), e.g. exceptions, interrupts, and VM-Exits, the enclave's state
is automatically saved and scrubbed (the CPU loads synthetic state), and
then reloaded when re-entering the enclave. E.g. after an instruction
based VM-Exit from an enclave, vmcs.GUEST_RIP will not contain the RIP
of the enclave instruction that trigered VM-Exit, but will instead point
to a RIP in the enclave's untrusted runtime (the guest userspace code
that coordinates entry/exit to/from the enclave).
To help a VMM recognize and handle exits from enclaves, SGX adds bits to
existing VMCS fields, VM_EXIT_REASON.VMX_EXIT_REASON_FROM_ENCLAVE and
GUEST_INTERRUPTIBILITY_INFO.GUEST_INTR_STATE_ENCLAVE_INTR. Define the
new architectural bits, and add a boolean to struct vcpu_vmx to cache
VMX_EXIT_REASON_FROM_ENCLAVE. Clear the bit in exit_reason so that
checks against exit_reason do not need to account for SGX, e.g.
"if (exit_reason == EXIT_REASON_EXCEPTION_NMI)" continues to work.
KVM is a largely a passive observer of the new bits, e.g. KVM needs to
account for the bits when propagating information to a nested VMM, but
otherwise doesn't need to act differently for the majority of VM-Exits
from enclaves.
The one scenario that is directly impacted is emulation, which is for
all intents and purposes impossible[1] since KVM does not have access to
the RIP or instruction stream that triggered the VM-Exit. The inability
to emulate is a non-issue for KVM, as most instructions that might
trigger VM-Exit unconditionally #UD in an enclave (before the VM-Exit
check. For the few instruction that conditionally #UD, KVM either never
sets the exiting control, e.g. PAUSE_EXITING[2], or sets it if and only
if the feature is not exposed to the guest in order to inject a #UD,
e.g. RDRAND_EXITING.
But, because it is still possible for a guest to trigger emulation,
e.g. MMIO, inject a #UD if KVM ever attempts emulation after a VM-Exit
from an enclave. This is architecturally accurate for instruction
VM-Exits, and for MMIO it's the least bad choice, e.g. it's preferable
to killing the VM. In practice, only broken or particularly stupid
guests should ever encounter this behavior.
Add a WARN in skip_emulated_instruction to detect any attempt to
modify the guest's RIP during an SGX enclave VM-Exit as all such flows
should either be unreachable or must handle exits from enclaves before
getting to skip_emulated_instruction.
[1] Impossible for all practical purposes. Not truly impossible
since KVM could implement some form of para-virtualization scheme.
[2] PAUSE_LOOP_EXITING only affects CPL0 and enclaves exist only at
CPL3, so we also don't need to worry about that interaction.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <315f54a8507d09c292463ef29104e1d4c62e9090.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define a new KVM-only feature word for advertising and querying SGX
sub-features in CPUID.0x12.0x0.EAX. Because SGX1 and SGX2 are scattered
in the kernel's feature word, they need to be translated so that the
bit numbers match those of hardware.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <e797c533f4c71ae89265bbb15a02aef86b67cbec.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a scheme that allows KVM's CPUID magic to support features
that are scattered in the kernel's feature words. To advertise and/or
query guest support for CPUID-based features, KVM requires the bit
number of an X86_FEATURE_* to match the bit number in its associated
CPUID entry. For scattered features, this does not hold true.
Add a framework to allow defining KVM-only words, stored in
kvm_cpu_caps after the shared kernel caps, that can be used to gather
the scattered feature bits by translating X86_FEATURE_* flags into their
KVM-defined feature.
Note, because reverse_cpuid_check() effectively forces kvm_cpu_caps
lookups to be resolved at compile time, there is no runtime cost for
translating from kernel-defined to kvm-defined features.
More details here: https://lkml.kernel.org/r/X/jxCOLG+HUO4QlZ@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <16cad8d00475f67867fb36701fc7fb7c1ec86ce1.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Export the gva_to_gpa() helpers for use by SGX virtualization when
executing ENCLS[ECREATE] and ENCLS[EINIT] on behalf of the guest.
To execute ECREATE and EINIT, KVM must obtain the GPA of the target
Secure Enclave Control Structure (SECS) in order to get its
corresponding HVA.
Because the SECS must reside in the Enclave Page Cache (EPC), copying
the SECS's data to a host-controlled buffer via existing exported
helpers is not a viable option as the EPC is not readable or writable
by the kernel.
SGX virtualization will also use gva_to_gpa() to obtain HVAs for
non-EPC pages in order to pass user pointers directly to ECREATE and
EINIT, which avoids having to copy pages worth of data into the kernel.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <02f37708321bcdfaa2f9d41c8478affa6e84b04d.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add compile-time assertions in vmcs_check32() to disallow accesses to
64-bit and 64-bit high fields via vmcs_{read,write}32(). Upper level KVM
code should never do partial accesses to VMCS fields. KVM handles the
split accesses automatically in vmcs_{read,write}64() when running as a
32-bit kernel.
Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <20210409022456.23528-1-lihaiwei.kernel@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly document why a vmcb must be marked dirty and assigned a new
asid when it will be run on a different cpu. The "what" is relatively
obvious, whereas the "why" requires reading the APM and/or KVM code.
Opportunistically remove a spurious period and several unnecessary
newlines in the comment.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment above the declaration of vcpu_svm.vmcb to call out that it
is simply a shorthand for current_vmcb->ptr. The myriad accesses to
svm->vmcb are quite confusing without this crucial detail.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove vmcb_pa from vcpu_svm and simply read current_vmcb->pa directly in
the one path where it is consumed. Unlike svm->vmcb, use of the current
vmcb's address is very limited, as evidenced by the fact that its use
can be trimmed to a single dereference.
Opportunistically add a comment about using vmcb01 for VMLOAD/VMSAVE, at
first glance using vmcb01 instead of vmcb_pa looks wrong.
No functional change intended.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not update the new vmcb's last-run cpu when switching to a different
vmcb. If the vCPU is migrated between its last run and a vmcb switch,
e.g. for nested VM-Exit, then setting the cpu without marking the vmcb
dirty will lead to KVM running the vCPU on a different physical cpu with
stale clean bit settings.
vcpu->cpu current_vmcb->cpu hardware
pre_svm_run() cpu0 cpu0 cpu0,clean
kvm_arch_vcpu_load() cpu1 cpu0 cpu0,clean
svm_switch_vmcb() cpu1 cpu1 cpu0,clean
pre_svm_run() cpu1 cpu1 kaboom
Simply delete the offending code; unlike VMX, which needs to update the
cpu at switch time due to the need to do VMPTRLD, SVM only cares about
which cpu last ran the vCPU.
Fixes: af18fa775d ("KVM: nSVM: Track the physical cpu of the vmcb vmrun through the vmcb")
Cc: Cathy Avery <cavery@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210406171811.4043363-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Access to the GHCB is mainly in the VMGEXIT path and it is known that the
GHCB will be mapped. But there are two paths where it is possible the GHCB
might not be mapped.
The sev_vcpu_deliver_sipi_vector() routine will update the GHCB to inform
the caller of the AP Reset Hold NAE event that a SIPI has been delivered.
However, if a SIPI is performed without a corresponding AP Reset Hold,
then the GHCB might not be mapped (depending on the previous VMEXIT),
which will result in a NULL pointer dereference.
The svm_complete_emulated_msr() routine will update the GHCB to inform
the caller of a RDMSR/WRMSR operation about any errors. While it is likely
that the GHCB will be mapped in this situation, add a safe guard
in this path to be certain a NULL pointer dereference is not encountered.
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Fixes: 647daca25d ("KVM: SVM: Add support for booting APs in an SEV-ES guest")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Message-Id: <a5d3ebb600a91170fc88599d5a575452b3e31036.1617979121.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the target is self we do not need to yield, we can avoid malicious
guest to play this.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-3-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To analyze some performance issues with lock contention and scheduling,
it is nice to know when directed yield are successful or failing.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1617941911-5338-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid saddling a vCPU thread with the work of tearing down an entire
paging structure, take a reference on each root before they become
obsolete, so that the thread initiating the fast invalidation can tear
down the paging structure and (most likely) release the last reference.
As a bonus, this teardown can happen under the MMU lock in read mode so
as not to block the progress of vCPU threads.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a real mechanism for fast invalidation by marking roots as
invalid so that their reference count will quickly fall to zero
and they will be torn down.
One negative side affect of this approach is that a vCPU thread will
likely drop the last reference to a root and be saddled with the work of
tearing down an entire paging structure. This issue will be resolved in
a later commit.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-13-bgardon@google.com>
[Move the loop to tdp_mmu.c, otherwise compilation fails on 32-bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU functions which enable and disable dirty logging
to operate under the MMU read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce the impact of disabling dirty logging, change the TDP MMU
function which zaps collapsible SPTEs to run under the MMU read lock.
This way, page faults on zapped SPTEs can proceed in parallel with
kvm_mmu_zap_collapsible_sptes.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU function to zap a GFN range to operate under the MMU
read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protect the contents of the TDP MMU roots list with RCU in preparation
for a future patch which will allow the iterator macro to be used under
the MMU lock in read mode.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reduce dependence on the MMU write lock, don't rely on the assumption
that the atomic operation in kvm_tdp_mmu_get_root will always succeed.
By not relying on that assumption, threads do not need to hold the MMU
lock in write mode in order to take a reference on a TDP MMU root.
In the root iterator, this change means that some roots might have to be
skipped if they are found to have a zero refcount. This will still never
happen as of this patch, but a future patch will need that flexibility to
make the root iterator safe under the MMU read lock.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to parallelize more operations for the TDP MMU, make the
refcount on TDP MMU roots atomic, so that a future patch can allow
multiple threads to take a reference on the root concurrently, while
holding the MMU lock in read mode.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the yield safe TDP MMU root iterator to be more amenable to
changes in future commits which will allow it to be used under the MMU
lock in read mode. Currently the iterator requires a complicated dance
between the helper functions and different parts of the for loop which
makes it hard to reason about. Moving all the logic into a single function
simplifies the iterator substantially.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_tdp_mmu_put_root and kvm_tdp_mmu_free_root are always called
together, so merge the functions to simplify TDP MMU root refcounting /
freeing.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Minor cleanup to deduplicate the code used to free a struct kvm_mmu_page
in the TDP MMU.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU is almost the only user of kvm_mmu_get_root and
kvm_mmu_put_root. There is only one use of put_root in mmu.c for the
legacy / shadow MMU. Open code that one use and move the get / put
functions to the TDP MMU so they can be extended in future commits.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_tdp_mmu_zap_collapsible_sptes unnecessarily removes the const
qualifier from its memlsot argument, leading to a compiler warning. Add
the const annotation and pass it to subsequent functions.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Let the TDP MMU yield when unmapping a range in response to a MMU
notification, if yielding is allowed by said notification. There is no
reason to disallow yielding in this case, and in theory the range being
invalidated could be quite large.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the hva->gfn lookup for MMU notifiers into common code. Every arch
does a similar lookup, and some arch code is all but identical across
multiple architectures.
In addition to consolidating code, this will allow introducing
optimizations that will benefit all architectures without incurring
multiple walks of the memslots, e.g. by taking mmu_lock if and only if a
relevant range exists in the memslots.
The use of __always_inline to avoid indirect call retpolines, as done by
x86, may also benefit other architectures.
Consolidating the lookups also fixes a wart in x86, where the legacy MMU
and TDP MMU each do their own memslot walks.
Lastly, future enhancements to the memslot implementation, e.g. to add an
interval tree to track host address, will need to touch far less arch
specific code.
MIPS, PPC, and arm64 will be converted one at a time in future patches.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210402005658.3024832-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using manual protection of dirty pages, it is not necessary
to protect nested page tables down to the 4K level; instead KVM
can protect only hugepages in order to split them lazily, and
delay write protection at 4K-granularity until KVM_CLEAR_DIRTY_LOG.
This was overlooked in the TDP MMU, so do it there as well.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the supported bits into KVM_GUESTDBG_VALID_MASK
macro, similar to how arm does this.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401135451.1004564-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Injected interrupts/nmi should not block a pending exception,
but rather be either lost if nested hypervisor doesn't
intercept the pending exception (as in stock x86), or be delivered
in exitintinfo/IDT_VECTORING_INFO field, as a part of a VMexit
that corresponds to the pending exception.
The only reason for an exception to be blocked is when nested run
is pending (and that can't really happen currently
but still worth checking for).
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401143817.1030695-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While KVM's MMU should be fully reset by loading of nested CR0/CR3/CR4
by KVM_SET_SREGS, we are not in nested mode yet when we do it and therefore
only root_mmu is reset.
On regular nested entries we call nested_svm_load_cr3 which both updates
the guest's CR3 in the MMU when it is needed, and it also initializes
the mmu again which makes it initialize the walk_mmu as well when nested
paging is enabled in both host and guest.
Since we don't call nested_svm_load_cr3 on nested state load,
the walk_mmu can be left uninitialized, which can lead to a NULL pointer
dereference while accessing it if we happen to get a nested page fault
right after entering the nested guest first time after the migration and
we decide to emulate it, which leads to the emulator trying to access
walk_mmu->gva_to_gpa which is NULL.
Therefore we should call this function on nested state load as well.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401141814.1029036-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dumping the current VMCS state, include the MSRs that are being
automatically loaded/stored during VM entry/exit.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-6-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If EFER is not being loaded from the VMCS, show the effective value by
reference to the MSR autoload list or calculation.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-5-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When deciding whether to dump the GUEST_IA32_EFER and GUEST_IA32_PAT
fields of the VMCS, examine only the VM entry load controls, as saving
on VM exit has no effect on whether VM entry succeeds or fails.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-4-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Show EFER and PAT based on their individual entry/exit controls.
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the VM entry/exit controls for loading/saving MSR_EFER are either
not available (an older processor or explicitly disabled) or not
used (host and guest values are the same), reading GUEST_IA32_EFER
from the VMCS returns an inaccurate value.
Because of this, in dump_vmcs() don't use GUEST_IA32_EFER to decide
whether to print the PDPTRs - always do so if the fields exist.
Fixes: 4eb64dce8d ("KVM: x86: dump VMCS on invalid entry")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-2-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently to support Intel->AMD migration, if CPU vendor is GenuineIntel,
we emulate the full 64 value for MSR_IA32_SYSENTER_{EIP|ESP}
msrs, and we also emulate the sysenter/sysexit instruction in long mode.
(Emulator does still refuse to emulate sysenter in 64 bit mode, on the
ground that the code for that wasn't tested and likely has no users)
However when virtual vmload/vmsave is enabled, the vmload instruction will
update these 32 bit msrs without triggering their msr intercept,
which will lead to having stale values in kvm's shadow copy of these msrs,
which relies on the intercept to be up to date.
Fix/optimize this by doing the following:
1. Enable the MSR intercepts for SYSENTER MSRs iff vendor=GenuineIntel
(This is both a tiny optimization and also ensures that in case
the guest cpu vendor is AMD, the msrs will be 32 bit wide as
AMD defined).
2. Store only high 32 bit part of these msrs on interception and combine
it with hardware msr value on intercepted read/writes
iff vendor=GenuineIntel.
3. Disable vmload/vmsave virtualization if vendor=GenuineIntel.
(It is somewhat insane to set vendor=GenuineIntel and still enable
SVM for the guest but well whatever).
Then zero the high 32 bit parts when kvm intercepts and emulates vmload.
Thanks a lot to Paulo Bonzini for helping me with fixing this in the most
correct way.
This patch fixes nested migration of 32 bit nested guests, that was
broken because incorrect cached values of SYSENTER msrs were stored in
the migration stream if L1 changed these msrs with
vmload prior to L2 entry.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401111928.996871-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is similar to existing 'guest_cpuid_is_amd_or_hygon'
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210401111928.996871-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Switch to GFP_KERNEL_ACCOUNT for a handful of allocations that are
clearly associated with a single task/VM.
Note, there are a several SEV allocations that aren't accounted, but
those can (hopefully) be fixed by using the local stack for memory.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331023025.2485960-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reject KVM_SEV_INIT and KVM_SEV_ES_INIT if they are attempted after one
or more vCPUs have been created. KVM assumes a VM is tagged SEV/SEV-ES
prior to vCPU creation, e.g. init_vmcb() needs to mark the VMCB as SEV
enabled, and svm_create_vcpu() needs to allocate the VMSA. At best,
creating vCPUs before SEV/SEV-ES init will lead to unexpected errors
and/or behavior, and at worst it will crash the host, e.g.
sev_launch_update_vmsa() will dereference a null svm->vmsa pointer.
Fixes: 1654efcbc4 ("KVM: SVM: Add KVM_SEV_INIT command")
Fixes: ad73109ae7 ("KVM: SVM: Provide support to launch and run an SEV-ES guest")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331031936.2495277-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set sev->es_active only after the guts of KVM_SEV_ES_INIT succeeds. If
the command fails, e.g. because SEV is already active or there are no
available ASIDs, then es_active will be left set even though the VM is
not fully SEV-ES capable.
Refactor the code so that "es_active" is passed on the stack instead of
being prematurely shoved into sev_info, both to avoid having to unwind
sev_info and so that it's more obvious what actually consumes es_active
in sev_guest_init() and its helpers.
Fixes: ad73109ae7 ("KVM: SVM: Provide support to launch and run an SEV-ES guest")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331031936.2495277-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the kvm_for_each_vcpu() helper to iterate over vCPUs when encrypting
VMSAs for SEV, which effectively switches to use online_vcpus instead of
created_vcpus. This fixes a possible null-pointer dereference as
created_vcpus does not guarantee a vCPU exists, since it is updated at
the very beginning of KVM_CREATE_VCPU. created_vcpus exists to allow the
bulk of vCPU creation to run in parallel, while still correctly
restricting the max number of max vCPUs.
Fixes: ad73109ae7 ("KVM: SVM: Provide support to launch and run an SEV-ES guest")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331031936.2495277-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a basic NOT+AND sequence to clear the Accessed bit in TDP MMU SPTEs,
as opposed to the fancy ffs()+clear_bit() logic that was copied from the
legacy MMU. The legacy MMU uses clear_bit() because it is operating on
the SPTE itself, i.e. clearing needs to be atomic. The TDP MMU operates
on a local variable that it later writes to the SPTE, and so doesn't need
to be atomic or even resident in memory.
Opportunistically drop unnecessary initialization of new_spte, it's
guaranteed to be written before being accessed.
Using NOT+AND instead of ffs()+clear_bit() reduces the sequence from:
0x0000000000058be6 <+134>: test %rax,%rax
0x0000000000058be9 <+137>: je 0x58bf4 <age_gfn_range+148>
0x0000000000058beb <+139>: test %rax,%rdi
0x0000000000058bee <+142>: je 0x58cdc <age_gfn_range+380>
0x0000000000058bf4 <+148>: mov %rdi,0x8(%rsp)
0x0000000000058bf9 <+153>: mov $0xffffffff,%edx
0x0000000000058bfe <+158>: bsf %eax,%edx
0x0000000000058c01 <+161>: movslq %edx,%rdx
0x0000000000058c04 <+164>: lock btr %rdx,0x8(%rsp)
0x0000000000058c0b <+171>: mov 0x8(%rsp),%r15
to:
0x0000000000058bdd <+125>: test %rax,%rax
0x0000000000058be0 <+128>: je 0x58beb <age_gfn_range+139>
0x0000000000058be2 <+130>: test %rax,%r8
0x0000000000058be5 <+133>: je 0x58cc0 <age_gfn_range+352>
0x0000000000058beb <+139>: not %rax
0x0000000000058bee <+142>: and %r8,%rax
0x0000000000058bf1 <+145>: mov %rax,%r15
thus eliminating several memory accesses, including a locked access.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331004942.2444916-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't clear the dirty bit when aging a TDP MMU SPTE (in response to a MMU
notifier event). Prematurely clearing the dirty bit could cause spurious
PML updates if aging a page happened to coincide with dirty logging.
Note, tdp_mmu_set_spte_no_acc_track() flows into __handle_changed_spte(),
so the host PFN will be marked dirty, i.e. there is no potential for data
corruption.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331004942.2444916-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86's trace_kvm_age_page() tracepoint. It's mostly redundant with
the common trace_kvm_age_hva() tracepoint, and if there is a need for the
extra details, e.g. gfn, referenced, etc... those details should be added
to the common tracepoint so that all architectures and MMUs benefit from
the info.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the leaf-only TDP iterator when changing the SPTE in reaction to a
MMU notifier. Practically speaking, this is a nop since the guts of the
loop explicitly looks for 4k SPTEs, which are always leaf SPTEs. Switch
the iterator to match age_gfn_range() and test_age_gfn() so that a future
patch can consolidate the core iterating logic.
No real functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the address space ID check that is performed when iterating over
roots into the macro helpers to consolidate code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass the address space ID to TDP MMU's primary "zap gfn range" helper to
allow the MMU notifier paths to iterate over memslots exactly once.
Currently, both the legacy MMU and TDP MMU iterate over memslots when
looking for an overlapping hva range, which can be quite costly if there
are a large number of memslots.
Add a "flush" parameter so that iterating over multiple address spaces
in the caller will continue to do the right thing when yielding while a
flush is pending from a previous address space.
Note, this also has a functional change in the form of coalescing TLB
flushes across multiple address spaces in kvm_zap_gfn_range(), and also
optimizes the TDP MMU to utilize range-based flushing when running as L1
with Hyper-V enlightenments.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-6-seanjc@google.com>
[Keep separate for loops to prepare for other incoming patches. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Gather pending TLB flushes across both address spaces when zapping a
given gfn range. This requires feeding "flush" back into subsequent
calls, but on the plus side sets the stage for further batching
between the legacy MMU and TDP MMU. It also allows refactoring the
address space iteration to cover the legacy and TDP MMUs without
introducing truly ugly code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Gather pending TLB flushes across both the legacy and TDP MMUs when
zapping collapsible SPTEs to avoid multiple flushes if both the legacy
MMU (for nested guests) and TDP MMU have mappings for the memslot.
Note, this also optimizes the TDP MMU to flush only the relevant range
when running as L1 with Hyper-V enlightenments.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Place the onus on the caller of slot_handle_*() to flush the TLB, rather
than handling the flush in the helper, and rename parameters accordingly.
This will allow future patches to coalesce flushes between address spaces
and between the legacy and TDP MMUs.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping collapsible SPTEs across multiple roots, gather pending
flushes and perform a single remote TLB flush at the end, as opposed to
flushing after processing every root.
Note, flush may be cleared by the result of zap_collapsible_spte_range().
This is intended and correct, e.g. yielding may have serviced a prior
pending flush.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210326021957.1424875-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_F15H_PERF_CTL0-5, MSR_F15H_PERF_CTR0-5 MSRs have a CPUID bit assigned
to them (X86_FEATURE_PERFCTR_CORE) and when it wasn't exposed to the guest
the correct behavior is to inject #GP an not just return zero.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210329124804.170173-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to APM, the #DB intercept for a single-stepped VMRUN must happen
after the completion of that instruction, when the guest does #VMEXIT to
the host. However, in the current implementation of KVM, the #DB intercept
for a single-stepped VMRUN happens after the completion of the instruction
that follows the VMRUN instruction. When the #DB intercept handler is
invoked, it shows the RIP of the instruction that follows VMRUN, instead of
of VMRUN itself. This is an incorrect RIP as far as single-stepping VMRUN
is concerned.
This patch fixes the problem by checking, in nested_svm_vmexit(), for the
condition that the VMRUN instruction is being single-stepped and if so,
queues the pending #DB intercept so that the #DB is accounted for before
we execute L1's next instruction.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oraacle.com>
Message-Id: <20210323175006.73249-2-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On SVM, reading PDPTRs might access guest memory, which might fault
and thus might sleep. On the other hand, it is not possible to
release the lock after make_mmu_pages_available has been called.
Therefore, push the call to make_mmu_pages_available and the
mmu_lock critical section within mmu_alloc_direct_roots and
mmu_alloc_shadow_roots.
Reported-by: Wanpeng Li <wanpengli@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
__vmx_handle_exit() uses vcpu->run->internal.ndata as an index for
an array access. Since vcpu->run is (can be) mapped to a user address
space with a writer permission, the 'ndata' could be updated by the
user process at anytime (the user process can set it to outside the
bounds of the array).
So, it is not safe that __vmx_handle_exit() uses the 'ndata' that way.
Fixes: 1aa561b1a4 ("kvm: x86: Add "last CPU" to some KVM_EXIT information")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210413154739.490299-1-reijiw@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, if a call to kvm_tdp_mmu_zap_sp returns false, the caller
will skip the TLB flush, which is wrong. There are two ways to fix
it:
- since kvm_tdp_mmu_zap_sp will not yield and therefore will not flush
the TLB itself, we could change the call to kvm_tdp_mmu_zap_sp to
use "flush |= ..."
- or we can chain the flush argument through kvm_tdp_mmu_zap_sp down
to __kvm_tdp_mmu_zap_gfn_range. Note that kvm_tdp_mmu_zap_sp will
neither yield nor flush, so flush would never go from true to
false.
This patch does the former to simplify application to stable kernels,
and to make it further clearer that kvm_tdp_mmu_zap_sp will not flush.
Cc: seanjc@google.com
Fixes: 048f49809c ("KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping")
Cc: <stable@vger.kernel.org> # 5.10.x: 048f49809c: KVM: x86/mmu: Ensure TLBs are flushed for TDP MMU during NX zapping
Cc: <stable@vger.kernel.org> # 5.10.x: 33a3164161: KVM: x86/mmu: Don't allow TDP MMU to yield when recovering NX pages
Cc: <stable@vger.kernel.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a misc device /dev/sgx_vepc to allow userspace to allocate "raw"
Enclave Page Cache (EPC) without an associated enclave. The intended
and only known use case for raw EPC allocation is to expose EPC to a
KVM guest, hence the 'vepc' moniker, virt.{c,h} files and X86_SGX_KVM
Kconfig.
The SGX driver uses the misc device /dev/sgx_enclave to support
userspace in creating an enclave. Each file descriptor returned from
opening /dev/sgx_enclave represents an enclave. Unlike the SGX driver,
KVM doesn't control how the guest uses the EPC, therefore EPC allocated
to a KVM guest is not associated with an enclave, and /dev/sgx_enclave
is not suitable for allocating EPC for a KVM guest.
Having separate device nodes for the SGX driver and KVM virtual EPC also
allows separate permission control for running host SGX enclaves and KVM
SGX guests.
To use /dev/sgx_vepc to allocate a virtual EPC instance with particular
size, the hypervisor opens /dev/sgx_vepc, and uses mmap() with the
intended size to get an address range of virtual EPC. Then it may use
the address range to create one KVM memory slot as virtual EPC for
a guest.
Implement the "raw" EPC allocation in the x86 core-SGX subsystem via
/dev/sgx_vepc rather than in KVM. Doing so has two major advantages:
- Does not require changes to KVM's uAPI, e.g. EPC gets handled as
just another memory backend for guests.
- EPC management is wholly contained in the SGX subsystem, e.g. SGX
does not have to export any symbols, changes to reclaim flows don't
need to be routed through KVM, SGX's dirty laundry doesn't have to
get aired out for the world to see, and so on and so forth.
The virtual EPC pages allocated to guests are currently not reclaimable.
Reclaiming an EPC page used by enclave requires a special reclaim
mechanism separate from normal page reclaim, and that mechanism is not
supported for virutal EPC pages. Due to the complications of handling
reclaim conflicts between guest and host, reclaiming virtual EPC pages
is significantly more complex than basic support for SGX virtualization.
[ bp:
- Massage commit message and comments
- use cpu_feature_enabled()
- vertically align struct members init
- massage Virtual EPC clarification text
- move Kconfig prompt to Virtualization ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/0c38ced8c8e5a69872db4d6a1c0dabd01e07cad7.1616136308.git.kai.huang@intel.com
Secure Encrypted Virtualization (SEV) and Secure Encrypted
Virtualization - Encrypted State (SEV-ES) ASIDs are used to encrypt KVMs
on AMD platform. These ASIDs are available in the limited quantities on
a host.
Register their capacity and usage to the misc controller for tracking
via cgroups.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When guest time is reset with KVM_SET_CLOCK(0), it is possible for
'hv_clock->system_time' to become a small negative number. This happens
because in KVM_SET_CLOCK handling we set 'kvm->arch.kvmclock_offset' based
on get_kvmclock_ns(kvm) but when KVM_REQ_CLOCK_UPDATE is handled,
kvm_guest_time_update() does (masterclock in use case):
hv_clock.system_time = ka->master_kernel_ns + v->kvm->arch.kvmclock_offset;
And 'master_kernel_ns' represents the last time when masterclock
got updated, it can precede KVM_SET_CLOCK() call. Normally, this is not a
problem, the difference is very small, e.g. I'm observing
hv_clock.system_time = -70 ns. The issue comes from the fact that
'hv_clock.system_time' is stored as unsigned and 'system_time / 100' in
compute_tsc_page_parameters() becomes a very big number.
Use 'master_kernel_ns' instead of get_kvmclock_ns() when masterclock is in
use and get_kvmclock_base_ns() when it's not to prevent 'system_time' from
going negative.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210331124130.337992-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pvclock_gtod_sync_lock can be taken with interrupts disabled if the
preempt notifier calls get_kvmclock_ns to update the Xen
runstate information:
spin_lock include/linux/spinlock.h:354 [inline]
get_kvmclock_ns+0x25/0x390 arch/x86/kvm/x86.c:2587
kvm_xen_update_runstate+0x3d/0x2c0 arch/x86/kvm/xen.c:69
kvm_xen_update_runstate_guest+0x74/0x320 arch/x86/kvm/xen.c:100
kvm_xen_runstate_set_preempted arch/x86/kvm/xen.h:96 [inline]
kvm_arch_vcpu_put+0x2d8/0x5a0 arch/x86/kvm/x86.c:4062
So change the users of the spinlock to spin_lock_irqsave and
spin_unlock_irqrestore.
Reported-by: syzbot+b282b65c2c68492df769@syzkaller.appspotmail.com
Fixes: 30b5c851af ("KVM: x86/xen: Add support for vCPU runstate information")
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no need to include changes to vcpu->requests into
the pvclock_gtod_sync_lock critical section. The changes to
the shared data structures (in pvclock_update_vm_gtod_copy)
already occur under the lock.
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixing nested_vmcb_check_save to avoid all TOC/TOU races
is a bit harder in released kernels, so do the bare minimum
by avoiding that EFER.SVME is cleared. This is problematic
because svm_set_efer frees the data structures for nested
virtualization if EFER.SVME is cleared.
Also check that EFER.SVME remains set after a nested vmexit;
clearing it could happen if the bit is zero in the save area
that is passed to KVM_SET_NESTED_STATE (the save area of the
nested state corresponds to the nested hypervisor's state
and is restored on the next nested vmexit).
Cc: stable@vger.kernel.org
Fixes: 2fcf4876ad ("KVM: nSVM: implement on demand allocation of the nested state")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid races between check and use of the nested VMCB controls. This
for example ensures that the VMRUN intercept is always reflected to the
nested hypervisor, instead of being processed by the host. Without this
patch, it is possible to end up with svm->nested.hsave pointing to
the MSR permission bitmap for nested guests.
This bug is CVE-2021-29657.
Reported-by: Felix Wilhelm <fwilhelm@google.com>
Cc: stable@vger.kernel.org
Fixes: 2fcf4876ad ("KVM: nSVM: implement on demand allocation of the nested state")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prevent the TDP MMU from yielding when zapping a gfn range during NX
page recovery. If a flush is pending from a previous invocation of the
zapping helper, either in the TDP MMU or the legacy MMU, but the TDP MMU
has not accumulated a flush for the current invocation, then yielding
will release mmu_lock with stale TLB entries.
That being said, this isn't technically a bug fix in the current code, as
the TDP MMU will never yield in this case. tdp_mmu_iter_cond_resched()
will yield if and only if it has made forward progress, as defined by the
current gfn vs. the last yielded (or starting) gfn. Because zapping a
single shadow page is guaranteed to (a) find that page and (b) step
sideways at the level of the shadow page, the TDP iter will break its loop
before getting a chance to yield.
But that is all very, very subtle, and will break at the slightest sneeze,
e.g. zapping while holding mmu_lock for read would break as the TDP MMU
wouldn't be guaranteed to see the present shadow page, and thus could step
sideways at a lower level.
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-4-seanjc@google.com>
[Add lockdep assertion. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Honor the "flush needed" return from kvm_tdp_mmu_zap_gfn_range(), which
does the flush itself if and only if it yields (which it will never do in
this particular scenario), and otherwise expects the caller to do the
flush. If pages are zapped from the TDP MMU but not the legacy MMU, then
no flush will occur.
Fixes: 29cf0f5007 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-3-seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When flushing a range of GFNs across multiple roots, ensure any pending
flush from a previous root is honored before yielding while walking the
tables of the current root.
Note, kvm_tdp_mmu_zap_gfn_range() now intentionally overwrites its local
"flush" with the result to avoid redundant flushes. zap_gfn_range()
preserves and return the incoming "flush", unless of course the flush was
performed prior to yielding and no new flush was triggered.
Fixes: 1af4a96025 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Cc: stable@vger.kernel.org
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Building kvm module out-of-source with,
make -C $SRC O=$BIN M=arch/x86/kvm
fails to find "irq.h" as the include dir passed to cflags-y does not
prefix the source dir. Fix this by prefixing $(srctree) to the include
dir path.
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <20210324124347.18336-1-sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_F15H_PERF_CTL0-5, MSR_F15H_PERF_CTR0-5 MSRs are only available when
X86_FEATURE_PERFCTR_CORE CPUID bit was exposed to the guest. KVM, however,
allows these MSRs unconditionally because kvm_pmu_is_valid_msr() ->
amd_msr_idx_to_pmc() check always passes and because kvm_pmu_set_msr() ->
amd_pmu_set_msr() doesn't fail.
In case of a counter (CTRn), no big harm is done as we only increase
internal PMC's value but in case of an eventsel (CTLn), we go deep into
perf internals with a non-existing counter.
Note, kvm_get_msr_common() just returns '0' when these MSRs don't exist
and this also seems to contradict architectural behavior which is #GP
(I did check one old Opteron host) but changing this status quo is a bit
scarier.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210323084515.1346540-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_write_tsc() was renamed and made static since commit 0c899c25d7
("KVM: x86: do not attempt TSC synchronization on guest writes"). Remove
its unused declaration.
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Message-Id: <20210326070334.12310-1-dongli.zhang@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_msr_ignored_check function never uses vcpu argument. Clean up the
function and invokers.
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <20210313051032.4171-1-lihaiwei.kernel@gmail.com>
Reviewed-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>