Commit Graph

585 Commits

Author SHA1 Message Date
Emanuele Giuseppe Esposito
f2740a8d85 KVM: nSVM: introduce svm->nested.save to cache save area before checks
This is useful in the next patch, to keep a saved copy
of vmcb12 registers and pass it around more easily.

Instead of blindly copying everything, we just copy EFER, CR0, CR3, CR4,
DR6 and DR7 which are needed by the VMRUN checks.  If more fields will
need to be checked, it will be quite obvious to see that they must be added
in struct vmcb_save_area_cached and in nested_copy_vmcb_save_to_cache().

__nested_copy_vmcb_save_to_cache() takes a vmcb_save_area_cached
parameter, which is useful in order to save the state to a local
variable.

Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Message-Id: <20211103140527.752797-3-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:38 -05:00
Emanuele Giuseppe Esposito
907afa48e9 KVM: nSVM: move nested_vmcb_check_cr3_cr4 logic in nested_vmcb_valid_sregs
Inline nested_vmcb_check_cr3_cr4 as it is not called by anyone else.
Doing so simplifies next patches.

Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211103140527.752797-2-eesposit@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:38 -05:00
Marc Zyngier
46808a4cb8 KVM: Use 'unsigned long' as kvm_for_each_vcpu()'s index
Everywhere we use kvm_for_each_vpcu(), we use an int as the vcpu
index. Unfortunately, we're about to move rework the iterator,
which requires this to be upgrade to an unsigned long.

Let's bite the bullet and repaint all of it in one go.

Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20211116160403.4074052-7-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-08 04:24:15 -05:00
Tom Lendacky
ad5b353240 KVM: SVM: Do not terminate SEV-ES guests on GHCB validation failure
Currently, an SEV-ES guest is terminated if the validation of the VMGEXIT
exit code or exit parameters fails.

The VMGEXIT instruction can be issued from userspace, even though
userspace (likely) can't update the GHCB. To prevent userspace from being
able to kill the guest, return an error through the GHCB when validation
fails rather than terminating the guest. For cases where the GHCB can't be
updated (e.g. the GHCB can't be mapped, etc.), just return back to the
guest.

The new error codes are documented in the lasest update to the GHCB
specification.

Fixes: 291bd20d5d ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <b57280b5562893e2616257ac9c2d4525a9aeeb42.1638471124.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-05 03:02:04 -05:00
Sean Christopherson
a655276a59 KVM: SEV: Fall back to vmalloc for SEV-ES scratch area if necessary
Use kvzalloc() to allocate KVM's buffer for SEV-ES's GHCB scratch area so
that KVM falls back to __vmalloc() if physically contiguous memory isn't
available.  The buffer is purely a KVM software construct, i.e. there's
no need for it to be physically contiguous.

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109222350.2266045-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-05 03:02:03 -05:00
Sean Christopherson
75236f5f22 KVM: SEV: Return appropriate error codes if SEV-ES scratch setup fails
Return appropriate error codes if setting up the GHCB scratch area for an
SEV-ES guest fails.  In particular, returning -EINVAL instead of -ENOMEM
when allocating the kernel buffer could be confusing as userspace would
likely suspect a guest issue.

Fixes: 8f423a80d2 ("KVM: SVM: Support MMIO for an SEV-ES guest")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109222350.2266045-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-05 03:02:03 -05:00
Paolo Bonzini
ef8b4b7203 KVM: ensure APICv is considered inactive if there is no APIC
kvm_vcpu_apicv_active() returns false if a virtual machine has no in-kernel
local APIC, however kvm_apicv_activated might still be true if there are
no reasons to disable APICv; in fact it is quite likely that there is none
because APICv is inhibited by specific configurations of the local APIC
and those configurations cannot be programmed.  This triggers a WARN:

   WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));

To avoid this, introduce another cause for APICv inhibition, namely the
absence of an in-kernel local APIC.  This cause is enabled by default,
and is dropped by either KVM_CREATE_IRQCHIP or the enabling of
KVM_CAP_IRQCHIP_SPLIT.

Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Fixes: ee49a89329 ("KVM: x86: Move SVM's APICv sanity check to common x86", 2021-10-22)
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Ignat Korchagin <ignat@cloudflare.com>
Message-Id: <20211130123746.293379-1-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:12:11 -05:00
Like Xu
cb1d220da0 KVM: x86/pmu: Fix reserved bits for AMD PerfEvtSeln register
If we run the following perf command in an AMD Milan guest:

  perf stat \
  -e cpu/event=0x1d0/ \
  -e cpu/event=0x1c7/ \
  -e cpu/umask=0x1f,event=0x18e/ \
  -e cpu/umask=0x7,event=0x18e/ \
  -e cpu/umask=0x18,event=0x18e/ \
  ./workload

dmesg will report a #GP warning from an unchecked MSR access
error on MSR_F15H_PERF_CTLx.

This is because according to APM (Revision: 4.03) Figure 13-7,
the bits [35:32] of AMD PerfEvtSeln register is a part of the
event select encoding, which extends the EVENT_SELECT field
from 8 bits to 12 bits.

Opportunistically update pmu->reserved_bits for reserved bit 19.

Reported-by: Jim Mattson <jmattson@google.com>
Fixes: ca724305a2 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211118130320.95997-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-12-02 04:11:50 -05:00
Paolo Bonzini
7cfc5c653b KVM: fix avic_set_running for preemptable kernels
avic_set_running() passes the current CPU to avic_vcpu_load(), albeit
via vcpu->cpu rather than smp_processor_id().  If the thread is migrated
while avic_set_running runs, the call to avic_vcpu_load() can use a stale
value for the processor id.  Avoid this by blocking preemption over the
entire execution of avic_set_running().

Reported-by: Sean Christopherson <seanjc@google.com>
Fixes: 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 07:40:48 -05:00
Paolo Bonzini
c9d61dcb0b KVM: SEV: accept signals in sev_lock_two_vms
Generally, kvm->lock is not taken for a long time, but
sev_lock_two_vms is different: it takes vCPU locks
inside, so userspace can hold it back just by calling
a vCPU ioctl.  Play it safe and use mutex_lock_killable.

Message-Id: <20211123005036.2954379-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:15 -05:00
Paolo Bonzini
10a37929ef KVM: SEV: do not take kvm->lock when destroying
Taking the lock is useless since there are no other references,
and there are already accesses (e.g. to sev->enc_context_owner)
that do not take it.  So get rid of it.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-12-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:14 -05:00
Paolo Bonzini
17d44a96f0 KVM: SEV: Prohibit migration of a VM that has mirrors
VMs that mirror an encryption context rely on the owner to keep the
ASID allocated.  Performing a KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
would cause a dangling ASID:

1. copy context from A to B (gets ref to A)
2. move context from A to L (moves ASID from A to L)
3. close L (releases ASID from L, B still references it)

The right way to do the handoff instead is to create a fresh mirror VM
on the destination first:

1. copy context from A to B (gets ref to A)
[later] 2. close B (releases ref to A)
3. move context from A to L (moves ASID from A to L)
4. copy context from L to M

So, catch the situation by adding a count of how many VMs are
mirroring this one's encryption context.

Fixes: 0b020f5af0 ("KVM: SEV: Add support for SEV-ES intra host migration")
Message-Id: <20211123005036.2954379-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:14 -05:00
Paolo Bonzini
bf42b02b19 KVM: SEV: Do COPY_ENC_CONTEXT_FROM with both VMs locked
Now that we have a facility to lock two VMs with deadlock
protection, use it for the creation of mirror VMs as well.  One of
COPY_ENC_CONTEXT_FROM(dst, src) and COPY_ENC_CONTEXT_FROM(src, dst)
would always fail, so the combination is nonsensical and it is okay to
return -EBUSY if it is attempted.

This sidesteps the question of what happens if a VM is
MOVE_ENC_CONTEXT_FROM'd at the same time as it is
COPY_ENC_CONTEXT_FROM'd: the locking prevents that from
happening.

Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-10-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:13 -05:00
Paolo Bonzini
642525e3bd KVM: SEV: move mirror status to destination of KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
Allow intra-host migration of a mirror VM; the destination VM will be
a mirror of the same ASID as the source.

Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-8-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:12 -05:00
Paolo Bonzini
2b347a3878 KVM: SEV: initialize regions_list of a mirror VM
This was broken before the introduction of KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM,
but technically harmless because the region list was unused for a mirror
VM.  However, it is untidy and it now causes a NULL pointer access when
attempting to move the encryption context of a mirror VM.

Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context")
Message-Id: <20211123005036.2954379-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:12 -05:00
Paolo Bonzini
501b580c02 KVM: SEV: cleanup locking for KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
Encapsulate the handling of the migration_in_progress flag for both VMs in
two functions sev_lock_two_vms and sev_unlock_two_vms.  It does not matter
if KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM locks the destination struct kvm a bit
later, and this change 1) keeps the cleanup chain of labels smaller 2)
makes it possible for KVM_CAP_VM_COPY_ENC_CONTEXT_FROM to reuse the logic.

Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:11 -05:00
Paolo Bonzini
4674164f0a KVM: SEV: do not use list_replace_init on an empty list
list_replace_init cannot be used if the source is an empty list,
because "new->next->prev = new" will overwrite "old->next":

				new				old
				prev = new, next = new		prev = old, next = old
new->next = old->next		prev = new, next = old		prev = old, next = old
new->next->prev = new		prev = new, next = old		prev = old, next = new
new->prev = old->prev		prev = old, next = old		prev = old, next = old
new->next->prev = new		prev = old, next = old		prev = new, next = new

The desired outcome instead would be to leave both old and new the same
as they were (two empty circular lists).  Use list_cut_before, which
already has the necessary check and is documented to discard the
previous contents of the list that will hold the result.

Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:11 -05:00
Paolo Bonzini
37c4dbf337 KVM: x86: check PIR even for vCPUs with disabled APICv
The IRTE for an assigned device can trigger a POSTED_INTR_VECTOR even
if APICv is disabled on the vCPU that receives it.  In that case, the
interrupt will just cause a vmexit and leave the ON bit set together
with the PIR bit corresponding to the interrupt.

Right now, the interrupt would not be delivered until APICv is re-enabled.
However, fixing this is just a matter of always doing the PIR->IRR
synchronization, even if the vCPU has temporarily disabled APICv.

This is not a problem for performance, or if anything it is an
improvement.  First, in the common case where vcpu->arch.apicv_active is
true, one fewer check has to be performed.  Second, static_call_cond will
elide the function call if APICv is not present or disabled.  Finally,
in the case for AMD hardware we can remove the sync_pir_to_irr callback:
it is only needed for apic_has_interrupt_for_ppr, and that function
already has a fallback for !APICv.

Cc: stable@vger.kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:52:39 -05:00
Paolo Bonzini
817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Sean Christopherson
8e38e96a4e KVM: SEV: Fix typo in and tweak name of cmd_allowed_from_miror()
Rename cmd_allowed_from_miror() to is_cmd_allowed_from_mirror(), fixing
a typo and making it obvious that the result is a boolean where
false means "not allowed".

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:28 -05:00
Sean Christopherson
ea410ef4da KVM: SEV: Drop a redundant setting of sev->asid during initialization
Remove a fully redundant write to sev->asid during SEV/SEV-ES guest
initialization.  The ASID is set a few lines earlier prior to the call to
sev_platform_init(), which doesn't take "sev" as a param, i.e. can't
muck with the ASID barring some truly magical behind-the-scenes code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
1bd00a4257 KVM: SEV: WARN if SEV-ES is marked active but SEV is not
WARN if the VM is tagged as SEV-ES but not SEV.  KVM relies on SEV and
SEV-ES being set atomically, and guards common flows with "is SEV", i.e.
observing SEV-ES without SEV means KVM has a fatal bug.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
a41fb26e61 KVM: SEV: Set sev_info.active after initial checks in sev_guest_init()
Set sev_info.active during SEV/SEV-ES activation before calling any code
that can potentially consume sev_info.es_active, e.g. set "active" and
"es_active" as a pair immediately after the initial sanity checks.  KVM
generally expects that es_active can be true if and only if active is
true, e.g. sev_asid_new() deliberately avoids sev_es_guest() so that it
doesn't get a false negative.  This will allow WARNing in sev_es_guest()
if the VM is tagged as SEV-ES but not SEV.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
79b1114276 KVM: SEV: Disallow COPY_ENC_CONTEXT_FROM if target has created vCPUs
Reject COPY_ENC_CONTEXT_FROM if the destination VM has created vCPUs.
KVM relies on SEV activation to occur before vCPUs are created, e.g. to
set VMCB flags and intercepts correctly.

Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Nathan Tempelman <natet@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
db215756ae KVM: x86: More precisely identify NMI from guest when handling PMI
Differentiate between IRQ and NMI for KVM's PMC overflow callback, which
was originally invoked in response to an NMI that arrived while the guest
was running, but was inadvertantly changed to fire on IRQs as well when
support for perf without PMU/NMI was added to KVM.  In practice, this
should be a nop as the PMC overflow callback shouldn't be reached, but
it's a cheap and easy fix that also better documents the situation.

Note, this also doesn't completely prevent false positives if perf
somehow ends up calling into KVM, e.g. an NMI can arrive in host after
KVM sets its flag.

Fixes: dd60d21706 ("KVM: x86: Fix perf timer mode IP reporting")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-12-seanjc@google.com
2021-11-17 14:49:09 +01:00
Paolo Bonzini
501cfe0679 KVM: SEV: unify cgroup cleanup code for svm_vm_migrate_from
Use the same cleanup code independent of whether the cgroup to be
uncharged and unref'd is the source or the destination cgroup.  Use a
bool to track whether the destination cgroup has been charged, which also
fixes a bug in the error case: the destination cgroup must be uncharged
only if it does not match the source.

Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-12 04:37:51 -05:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Paolo Bonzini
1f05833193 Merge branch 'kvm-sev-move-context' into kvm-master
Add support for AMD SEV and SEV-ES intra-host migration support.  Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.

In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant.  As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next.  In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 11:02:58 -05:00
Vipin Sharma
796c83c58a KVM: Move INVPCID type check from vmx and svm to the common kvm_handle_invpcid()
Handle #GP on INVPCID due to an invalid type in the common switch
statement instead of relying on the callers (VMX and SVM) to manually
validate the type.

Unlike INVVPID and INVEPT, INVPCID is not explicitly documented to check
the type before reading the operand from memory, so deferring the
type validity check until after that point is architecturally allowed.

Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-3-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:24 -05:00
Maxim Levitsky
cae72dcc3b KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.

Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.

Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Jim Mattson
e6cd31f1a8 kvm: x86: Convert return type of *is_valid_rdpmc_ecx() to bool
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.

Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:19 -05:00
Peter Gonda
0b020f5af0 KVM: SEV: Add support for SEV-ES intra host migration
For SEV-ES to work with intra host migration the VMSAs, GHCB metadata,
and other SEV-ES info needs to be preserved along with the guest's
memory.

Signed-off-by: Peter Gonda <pgonda@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-4-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:27 -05:00
Peter Gonda
b56639318b KVM: SEV: Add support for SEV intra host migration
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.

Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:27 -05:00
Paolo Bonzini
91b692a03c KVM: SEV: provide helpers to charge/uncharge misc_cg
Avoid code duplication across all callers of misc_cg_try_charge and
misc_cg_uncharge.  The resource type for KVM is always derived from
sev->es_active, and the quantity is always 1.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:26 -05:00
Peter Gonda
b67a4cc35c KVM: SEV: Refactor out sev_es_state struct
Move SEV-ES vCPU metadata into new sev_es_state struct from vcpu_svm.

Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-2-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:26 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Linus Torvalds
6e5772c8d9 Add an interface called cc_platform_has() which is supposed to be used
by confidential computing solutions to query different aspects of the
 system. The intent behind it is to unify testing of such aspects instead
 of having each confidential computing solution add its own set of tests
 to code paths in the kernel, leading to an unwieldy mess.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/uLUACgkQEsHwGGHe
 VUqGbQ/+LOmz8hmL5vtbXw/lVonCSBRKI2KVefnN2VtQ3rjtCq8HlNoq/hAdi15O
 WntABFV8u4daNAcssp+H/p+c8Mt/NzQa60TRooC5ZIynSOCj4oZQxTWjcnR4Qxrf
 oABy4sp09zNW31qExtTVTwPC/Ejzv4hA0Vqt9TLQOSxp7oYVYKeDJNp79VJK64Yz
 Ky7epgg8Pauk0tAT76ATR4kyy9PLGe4/Ry0bOtAptO4NShL1RyRgI0ywUmptJHSw
 FV/MnoexdAs4V8+4zPwyOkf8YMDnhbJcvFcr7Yd9AEz2q9Z1wKCgi1M3aZIoW8lV
 YMXECMGe9DfxmEJbnP5zbnL6eF32x+tbq+fK8Ye4V2fBucpWd27zkcTXjoP+Y+zH
 NLg+9QykR9QCH75YCOXcAg1Q5hSmc4DaWuJymKjT+W7MKs89ywjq+ybIBpLBHbQe
 uN9FM/CEKXx8nQwpNQc7mdUE5sZeCQ875028RaLbLx3/b6uwT6rBlNJfxl/uxmcZ
 iF1kG7Cx4uO+7G1a9EWgxtWiJQ8GiZO7PMCqEdwIymLIrlNksAk7nX2SXTuH5jIZ
 YDuBj/Xz2UUVWYFm88fV5c4ogiFlm9Jeo140Zua/BPdDJd2VOP013rYxzFE/rVSF
 SM2riJxCxkva8Fb+8TNiH42AMhPMSpUt1Nmd1H2rcEABRiT83Ow=
 =Na0U
 -----END PGP SIGNATURE-----

Merge tag 'x86_cc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull generic confidential computing updates from Borislav Petkov:
 "Add an interface called cc_platform_has() which is supposed to be used
  by confidential computing solutions to query different aspects of the
  system.

  The intent behind it is to unify testing of such aspects instead of
  having each confidential computing solution add its own set of tests
  to code paths in the kernel, leading to an unwieldy mess"

* tag 'x86_cc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  treewide: Replace the use of mem_encrypt_active() with cc_platform_has()
  x86/sev: Replace occurrences of sev_es_active() with cc_platform_has()
  x86/sev: Replace occurrences of sev_active() with cc_platform_has()
  x86/sme: Replace occurrences of sme_active() with cc_platform_has()
  powerpc/pseries/svm: Add a powerpc version of cc_platform_has()
  x86/sev: Add an x86 version of cc_platform_has()
  arch/cc: Introduce a function to check for confidential computing features
  x86/ioremap: Selectively build arch override encryption functions
2021-11-01 15:16:52 -07:00
Linus Torvalds
8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
Linus Torvalds
43aa0a195f objtool updates:
- Improve retpoline code patching by separating it from alternatives which
    reduces memory footprint and allows to do better optimizations in the
    actual runtime patching.
 
  - Add proper retpoline support for x86/BPF
 
  - Address noinstr warnings in x86/kvm, lockdep and paravirtualization code
 
  - Add support to handle pv_opsindirect calls in the noinstr analysis
 
  - Classify symbols upfront and cache the result to avoid redundant
    str*cmp() invocations.
 
  - Add a CFI hash to reduce memory consumption which also reduces runtime
    on a allyesconfig by ~50%
 
  - Adjust XEN code to make objtool handling more robust and as a side
    effect to prevent text fragmentation due to placement of the hypercall
    page.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/GFgTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoc1JD/0Sz6seP2OUMxbMT3gCcFo9sMvYTdsM
 7WuGFbBbnCIo7g8JH7k0zRRBigptMp2eUtQXKkgaaIbWN4JbuVKf8KxN5/qXxLi4
 fJ12QnNTGH9N2jtzl5wKmpjaKJnnJMD9D10XwoR+T6gn6NHd+AgLEs7GxxuQUlgo
 eC9oEXhNHC8uNhiZc38EwfwmItI1bRgaLrnZWIL4rYGSMxfCK1/cEOpWrFfX9wmj
 /diB6oqMyPXZXMCtgpX7TniUr5XOTCcUkeO9mQv5bmyq/YM/8hrTbcVSJlsVYLvP
 EsBnUSHAcfLFiHXwa1RNiIGdbiPjbN+UYeXGAvqF58f3e5dTIHtN/UmWo7OH93If
 9rLMVNcMpsfPx7QRk2IxEPumLCkyfwjzfKrVDM6P6TKEIUzD1og4IK9gTlfykVsh
 56G5XiCOC/X2x8IMxKTLGuBiAVLFHXK/rSwoqhvNEWBFKDbP13QWs0LurBcW09Sa
 /kQI9pIBT1xFA/R+OY5Xy1cqNVVK1Gxmk8/bllCijA9pCFSCFM4hLZE5CevdrBCV
 h5SdqEK5hIlzFyypXfsCik/4p/+rfvlGfUKtFsPctxx29SPe+T0orx+l61jiWQok
 rZOflwMawK5lDuASHrvNHGJcWaTwoo3VcXMQDnQY0Wulc43J5IFBaPxkZzgyd+S1
 4lktHxatrCMUgw==
 =pfZi
 -----END PGP SIGNATURE-----

Merge tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull objtool updates from Thomas Gleixner:

 - Improve retpoline code patching by separating it from alternatives
   which reduces memory footprint and allows to do better optimizations
   in the actual runtime patching.

 - Add proper retpoline support for x86/BPF

 - Address noinstr warnings in x86/kvm, lockdep and paravirtualization
   code

 - Add support to handle pv_opsindirect calls in the noinstr analysis

 - Classify symbols upfront and cache the result to avoid redundant
   str*cmp() invocations.

 - Add a CFI hash to reduce memory consumption which also reduces
   runtime on a allyesconfig by ~50%

 - Adjust XEN code to make objtool handling more robust and as a side
   effect to prevent text fragmentation due to placement of the
   hypercall page.

* tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  bpf,x86: Respect X86_FEATURE_RETPOLINE*
  bpf,x86: Simplify computing label offsets
  x86,bugs: Unconditionally allow spectre_v2=retpoline,amd
  x86/alternative: Add debug prints to apply_retpolines()
  x86/alternative: Try inline spectre_v2=retpoline,amd
  x86/alternative: Handle Jcc __x86_indirect_thunk_\reg
  x86/alternative: Implement .retpoline_sites support
  x86/retpoline: Create a retpoline thunk array
  x86/retpoline: Move the retpoline thunk declarations to nospec-branch.h
  x86/asm: Fixup odd GEN-for-each-reg.h usage
  x86/asm: Fix register order
  x86/retpoline: Remove unused replacement symbols
  objtool,x86: Replace alternatives with .retpoline_sites
  objtool: Shrink struct instruction
  objtool: Explicitly avoid self modifying code in .altinstr_replacement
  objtool: Classify symbols
  objtool: Support pv_opsindirect calls for noinstr
  x86/xen: Rework the xen_{cpu,irq,mmu}_opsarrays
  x86/xen: Mark xen_force_evtchn_callback() noinstr
  x86/xen: Make irq_disable() noinstr
  ...
2021-11-01 13:24:43 -07:00
Linus Torvalds
ca5e83eddc * Fixes for s390 interrupt delivery
* Fixes for Xen emulator bugs showing up as debug kernel WARNs
 * Fix another issue with SEV/ES string I/O VMGEXITs
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmF6uGIUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNRagf/Srvk9lNcRh4cEzsczErKMyr3xOqA
 jgsTSqgl1ExJI9sBLMpVYBOFGILMaMSrhLPIltKPy0Bj/E+hw8WOQwPa44QjWlSD
 MAUxO1Nryt9Luc2L8uSd1c//g4fr4V1BhOaumk1lM14Q8EDfQBcDIMI2ZKueMU1+
 2Q+n8/AsG63jQIINwKNidof0dzRtbfcE30Wq/8QHttIPo5wt6l0YClOlOikqNY8N
 5+WSQFmuutHIXftq5Jb/Ldn/+HVukWZyZOEVwLnBpM9uBvIubNgcEakqvxsaVtAn
 FHdvnA+Bk99/Xuhl+wRLQo8ofzQIQ13RQv3HPArJAJv34oAJZx2rNObVlA==
 =6ofB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Fixes for s390 interrupt delivery

 - Fixes for Xen emulator bugs showing up as debug kernel WARNs

 - Fix another issue with SEV/ES string I/O VMGEXITs

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: Take srcu lock in post_kvm_run_save()
  KVM: SEV-ES: fix another issue with string I/O VMGEXITs
  KVM: x86/xen: Fix kvm_xen_has_interrupt() sleeping in kvm_vcpu_block()
  KVM: x86: switch pvclock_gtod_sync_lock to a raw spinlock
  KVM: s390: preserve deliverable_mask in __airqs_kick_single_vcpu
  KVM: s390: clear kicked_mask before sleeping again
2021-10-31 11:19:02 -07:00
Paolo Bonzini
9b0971ca7f KVM: SEV-ES: fix another issue with string I/O VMGEXITs
If the guest requests string I/O from the hypervisor via VMGEXIT,
SW_EXITINFO2 will contain the REP count.  However, sev_es_string_io
was incorrectly treating it as the size of the GHCB buffer in
bytes.

This fixes the "outsw" test in the experimental SEV tests of
kvm-unit-tests.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reported-by: Marc Orr <marcorr@google.com>
Tested-by: Marc Orr <marcorr@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-27 10:58:26 -04:00
David Edmondson
0a62a0319a KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
Thomas Gleixner
d69c1382e1 x86/kvm: Convert FPU handling to a single swap buffer
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().

With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.

Convert the KVM FPU code over to this new scheme.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
2021-10-23 16:13:29 +02:00
Sean Christopherson
ee49a89329 KVM: x86: Move SVM's APICv sanity check to common x86
Move SVM's assertion that vCPU's APICv state is consistent with its VM's
state out of svm_vcpu_run() and into x86's common inner run loop.  The
assertion and underlying logic is not unique to SVM, it's just that SVM
has more inhibiting conditions and thus is more likely to run headfirst
into any KVM bugs.

Add relevant comments to document exactly why the update path has unusual
ordering between the update the kick, why said ordering is safe, and also
the basic rules behind the assertion in the run loop.

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 11:20:16 -04:00
Sean Christopherson
9dadfc4a61 KVM: x86: Add vendor name to kvm_x86_ops, use it for error messages
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.

Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.

Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.

Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
Masahiro Kozuka
c8c340a9b4 KVM: SEV: Flush cache on non-coherent systems before RECEIVE_UPDATE_DATA
Flush the destination page before invoking RECEIVE_UPDATE_DATA, as the
PSP encrypts the data with the guest's key when writing to guest memory.
If the target memory was not previously encrypted, the cache may contain
dirty, unecrypted data that will persist on non-coherent systems.

Fixes: 15fb7de1a7 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Masahiro Kozuka <masa.koz@kozuka.jp>
[sean: converted bug report to changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210914210951.2994260-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 13:01:25 -04:00
Thomas Gleixner
d9d005f32a x86/fpu: Move mxcsr related code to core
No need to expose that to code which only needs the XCR0 accessors.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.740012411@linutronix.de
2021-10-20 15:27:28 +02:00
Paolo Bonzini
a25c78d04c Merge commit 'kvm-pagedata-alloc-fixes' into HEAD 2021-10-18 14:13:37 -04:00
Paolo Bonzini
9f1ee7b169 KVM: SEV-ES: reduce ghcb_sa_len to 32 bits
The size of the GHCB scratch area is limited to 16 KiB (GHCB_SCRATCH_AREA_LIMIT),
so there is no need for it to be a u64.  This fixes a build error on 32-bit
systems:

i686-linux-gnu-ld: arch/x86/kvm/svm/sev.o: in function `sev_es_string_io:
sev.c:(.text+0x110f): undefined reference to `__udivdi3'

Cc: stable@vger.kernel.org
Fixes: 019057bd73 ("KVM: SEV-ES: fix length of string I/O")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:07:19 -04:00
Peter Gonda
baa1e5ca17 KVM: SEV-ES: Set guest_state_protected after VMSA update
The refactoring in commit bb18a67774 ("KVM: SEV: Acquire
vcpu mutex when updating VMSA") left behind the assignment to
svm->vcpu.arch.guest_state_protected; add it back.

Signed-off-by: Peter Gonda <pgonda@google.com>
[Delta between v2 and v3 of Peter's patch, which had already been
 committed; the commit message is my own. - Paolo]
Fixes: bb18a67774 ("KVM: SEV: Acquire vcpu mutex when updating VMSA")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:07:17 -04:00
Paolo Bonzini
019057bd73 KVM: SEV-ES: fix length of string I/O
The size of the data in the scratch buffer is not divided by the size of
each port I/O operation, so vcpu->arch.pio.count ends up being larger
than it should be by a factor of size.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-15 04:47:36 -04:00
Peter Zijlstra
b08cadbd3b Merge branch 'objtool/urgent'
Fixup conflicts.

# Conflicts:
#	tools/objtool/check.c
2021-10-07 00:40:17 +02:00
Tom Lendacky
4d96f91091 x86/sev: Replace occurrences of sev_active() with cc_platform_has()
Replace uses of sev_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_GUEST_MEM_ENCRYPT
can be updated, as required.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-7-bp@alien8.de
2021-10-04 11:46:58 +02:00
Krish Sadhukhan
174a921b69 nSVM: Check for reserved encodings of TLB_CONTROL in nested VMCB
According to section "TLB Flush" in APM vol 2,

    "Support for TLB_CONTROL commands other than the first two, is
     optional and is indicated by CPUID Fn8000_000A_EDX[FlushByAsid].

     All encodings of TLB_CONTROL not defined in the APM are reserved."

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210920235134.101970-3-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:57 -04:00
Maxim Levitsky
5228eb96a4 KVM: x86: nSVM: implement nested TSC scaling
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.

Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.

The patch will be sent to the qemu mailing list soon.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Maxim Levitsky
f800650a4e KVM: x86: SVM: add module param to control TSC scaling
This allows to easily simulate a CPU without this feature.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Paolo Bonzini
36e8194dcd KVM: x86: SVM: don't set VMLOAD/VMSAVE intercepts on vCPU reset
Commit adc2a23734 ("KVM: nSVM: improve SYSENTER emulation on AMD"),
made init_vmcb set vmload/vmsave intercepts unconditionally,
and relied on svm_vcpu_after_set_cpuid to clear them when possible.

However init_vmcb is also called when the vCPU is reset, and it is
not followed by another call to svm_vcpu_after_set_cpuid because
the CPUID is already set.  This mistake makes the VMSAVE/VMLOAD intercept
to be set when it is not needed, and harms performance of the nested
guest.

Extract the relevant parts of svm_vcpu_after_set_cpuid so that they
can be called again on reset.

Fixes: adc2a23734 ("KVM: nSVM: improve SYSENTER emulation on AMD")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:37:34 -04:00
Maxim Levitsky
4c84926e22 KVM: x86: SVM: add module param to control LBR virtualization
This is useful for debug and also makes it consistent with
the rest of the SVM optional features.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:11 -04:00
Maxim Levitsky
0226a45c46 KVM: x86: nSVM: don't copy pause related settings
According to the SDM, the CPU never modifies these settings.
It loads them on VM entry and updates an internal copy instead.

Also don't load them from the vmcb12 as we don't expose these
features to the nested guest yet.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:11 -04:00
Sean Christopherson
9ebe530b9f KVM: SVM: Move RESET emulation to svm_vcpu_reset()
Move RESET emulation for SVM vCPUs to svm_vcpu_reset(), and drop an extra
init_vmcb() from svm_create_vcpu() in the process.  Hopefully KVM will
someday expose a dedicated RESET ioctl(), and in the meantime separating
"create" from "RESET" is a nice cleanup.

Keep the call to svm_switch_vmcb() so that misuse of svm->vmcb at worst
breaks the guest, e.g. premature accesses doesn't cause a NULL pointer
dereference.

Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:07 -04:00
Maxim Levitsky
faf6b75562 KVM: x86: nSVM: don't copy virt_ext from vmcb12
These field correspond to features that we don't expose yet to L2

While currently there are no CVE worthy features in this field,
if AMD adds more features to this field, that could allow guest
escapes similar to CVE-2021-3653 and CVE-2021-3656.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-6-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:06:46 -04:00
Maxim Levitsky
d1cba6c922 KVM: x86: nSVM: test eax for 4K alignment for GP errata workaround
GP SVM errata workaround made the #GP handler always emulate
the SVM instructions.

However these instructions #GP in case the operand is not 4K aligned,
but the workaround code didn't check this and we ended up
emulating these instructions anyway.

This is only an emulation accuracy check bug as there is no harm for
KVM to read/write unaligned vmcb images.

Fixes: 82a11e9c6f ("KVM: SVM: Add emulation support for #GP triggered by SVM instructions")

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:05:29 -04:00
Maxim Levitsky
aee77e1169 KVM: x86: nSVM: restore int_vector in svm_clear_vintr
In svm_clear_vintr we try to restore the virtual interrupt
injection that might be pending, but we fail to restore
the interrupt vector.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:04:40 -04:00
Maxim Levitsky
136a55c054 KVM: x86: nSVM: refactor svm_leave_smm and smm_enter_smm
Use return statements instead of nested if, and fix error
path to free all the maps that were allocated.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:47:43 -04:00
Maxim Levitsky
e85d3e7b49 KVM: x86: SVM: call KVM_REQ_GET_NESTED_STATE_PAGES on exit from SMM mode
Currently the KVM_REQ_GET_NESTED_STATE_PAGES on SVM only reloads PDPTRs,
and MSR bitmap, with former not really needed for SMM as SMM exit code
reloads them again from SMRAM'S CR3, and later happens to work
since MSR bitmap isn't modified while in SMM.

Still it is better to be consistient with VMX.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:17 -04:00
Maxim Levitsky
e2e6e449d6 KVM: x86: nSVM: restore the L1 host state prior to resuming nested guest on SMM exit
Otherwise guest entry code might see incorrect L1 state (e.g paging state).

Fixes: 37be407b2c ("KVM: nSVM: Fix L1 state corruption upon return from SMM")

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:16 -04:00
Peter Gonda
5b92b6ca92 KVM: SEV: Allow some commands for mirror VM
A mirrored SEV-ES VM will need to call KVM_SEV_LAUNCH_UPDATE_VMSA to
setup its vCPUs and have them measured, and their VMSAs encrypted. Without
this change, it is impossible to have mirror VMs as part of SEV-ES VMs.

Also allow the guest status check and debugging commands since they do
not change any guest state.

Signed-off-by: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Nathan Tempelman <natet@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context", 2021-04-21)
Message-Id: <20210921150345.2221634-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:13 -04:00
Peter Gonda
f43c887cb7 KVM: SEV: Update svm_vm_copy_asid_from for SEV-ES
For mirroring SEV-ES the mirror VM will need more then just the ASID.
The FD and the handle are required to all the mirror to call psp
commands. The mirror VM will need to call KVM_SEV_LAUNCH_UPDATE_VMSA to
setup its vCPUs' VMSAs for SEV-ES.

Signed-off-by: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Nathan Tempelman <natet@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context", 2021-04-21)
Message-Id: <20210921150345.2221634-2-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:13 -04:00
Sean Christopherson
50c038018d KVM: SEV: Pin guest memory for write for RECEIVE_UPDATE_DATA
Require the target guest page to be writable when pinning memory for
RECEIVE_UPDATE_DATA.  Per the SEV API, the PSP writes to guest memory:

  The result is then encrypted with GCTX.VEK and written to the memory
  pointed to by GUEST_PADDR field.

Fixes: 15fb7de1a7 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210914210951.2994260-2-seanjc@google.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:11 -04:00
Mingwei Zhang
f1815e0aa7 KVM: SVM: fix missing sev_decommission in sev_receive_start
DECOMMISSION the current SEV context if binding an ASID fails after
RECEIVE_START.  Per AMD's SEV API, RECEIVE_START generates a new guest
context and thus needs to be paired with DECOMMISSION:

     The RECEIVE_START command is the only command other than the LAUNCH_START
     command that generates a new guest context and guest handle.

The missing DECOMMISSION can result in subsequent SEV launch failures,
as the firmware leaks memory and might not able to allocate more SEV
guest contexts in the future.

Note, LAUNCH_START suffered the same bug, but was previously fixed by
commit 934002cd66 ("KVM: SVM: Call SEV Guest Decommission if ASID
binding fails").

Cc: Alper Gun <alpergun@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: David Rienjes <rientjes@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: John Allen <john.allen@amd.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vipin Sharma <vipinsh@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Marc Orr <marcorr@google.com>
Acked-by: Brijesh Singh <brijesh.singh@amd.com>
Fixes: af43cbbf95 ("KVM: SVM: Add support for KVM_SEV_RECEIVE_START command")
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210912181815.3899316-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:10 -04:00
Peter Gonda
bb18a67774 KVM: SEV: Acquire vcpu mutex when updating VMSA
The update-VMSA ioctl touches data stored in struct kvm_vcpu, and
therefore should not be performed concurrently with any VCPU ioctl
that might cause KVM or the processor to use the same data.

Adds vcpu mutex guard to the VMSA updating code. Refactors out
__sev_launch_update_vmsa() function to deal with per vCPU parts
of sev_launch_update_vmsa().

Fixes: ad73109ae7 ("KVM: SVM: Provide support to launch and run an SEV-ES guest")
Signed-off-by: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20210915171755.3773766-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:33:10 -04:00
Peter Zijlstra
aee045ed0a x86/kvm: Always inline to_svm()
vmlinux.o: warning: objtool: svm_vcpu_enter_exit()+0x13: call to to_svm() leaves .noinstr.text section

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210624095148.066347165@infradead.org
2021-09-15 15:51:46 +02:00
Peter Zijlstra
a168233a44 x86/kvm: Always inline vmload() / vmsave()
vmlinux.o: warning: objtool: svm_vcpu_enter_exit()+0xea: call to vmload() leaves .noinstr.text section
vmlinux.o: warning: objtool: svm_vcpu_enter_exit()+0x133: call to vmsave() leaves .noinstr.text section

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210624095147.942250748@infradead.org
2021-09-15 15:51:45 +02:00
Peter Zijlstra
2b2f72d4d8 x86/kvm: Always inline sev_*guest()
vmlinux.o: warning: objtool: svm_vcpu_enter_exit()+0x4d: call to sev_es_guest() leaves .noinstr.text section
vmlinux.o: warning: objtool: svm_vcpu_enter_exit()+0x50: call to sev_guest() leaves .noinstr.text section

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210624095147.880513802@infradead.org
2021-09-15 15:51:45 +02:00
Linus Torvalds
192ad3c27a ARM:
- Page ownership tracking between host EL1 and EL2
 
 - Rely on userspace page tables to create large stage-2 mappings
 
 - Fix incompatibility between pKVM and kmemleak
 
 - Fix the PMU reset state, and improve the performance of the virtual PMU
 
 - Move over to the generic KVM entry code
 
 - Address PSCI reset issues w.r.t. save/restore
 
 - Preliminary rework for the upcoming pKVM fixed feature
 
 - A bunch of MM cleanups
 
 - a vGIC fix for timer spurious interrupts
 
 - Various cleanups
 
 s390:
 
 - enable interpretation of specification exceptions
 
 - fix a vcpu_idx vs vcpu_id mixup
 
 x86:
 
 - fast (lockless) page fault support for the new MMU
 
 - new MMU now the default
 
 - increased maximum allowed VCPU count
 
 - allow inhibit IRQs on KVM_RUN while debugging guests
 
 - let Hyper-V-enabled guests run with virtualized LAPIC as long as they
   do not enable the Hyper-V "AutoEOI" feature
 
 - fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
 
 - tuning for the case when two-dimensional paging (EPT/NPT) is disabled
 
 - bugfixes and cleanups, especially with respect to 1) vCPU reset and
   2) choosing a paging mode based on CR0/CR4/EFER
 
 - support for 5-level page table on AMD processors
 
 Generic:
 
 - MMU notifier invalidation callbacks do not take mmu_lock unless necessary
 
 - improved caching of LRU kvm_memory_slot
 
 - support for histogram statistics
 
 - add statistics for halt polling and remote TLB flush requests
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
 MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
 DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
 UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
 +c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
 bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
 =FCAB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - Page ownership tracking between host EL1 and EL2
   - Rely on userspace page tables to create large stage-2 mappings
   - Fix incompatibility between pKVM and kmemleak
   - Fix the PMU reset state, and improve the performance of the virtual
     PMU
   - Move over to the generic KVM entry code
   - Address PSCI reset issues w.r.t. save/restore
   - Preliminary rework for the upcoming pKVM fixed feature
   - A bunch of MM cleanups
   - a vGIC fix for timer spurious interrupts
   - Various cleanups

  s390:
   - enable interpretation of specification exceptions
   - fix a vcpu_idx vs vcpu_id mixup

  x86:
   - fast (lockless) page fault support for the new MMU
   - new MMU now the default
   - increased maximum allowed VCPU count
   - allow inhibit IRQs on KVM_RUN while debugging guests
   - let Hyper-V-enabled guests run with virtualized LAPIC as long as
     they do not enable the Hyper-V "AutoEOI" feature
   - fixes and optimizations for the toggling of AMD AVIC (virtualized
     LAPIC)
   - tuning for the case when two-dimensional paging (EPT/NPT) is
     disabled
   - bugfixes and cleanups, especially with respect to vCPU reset and
     choosing a paging mode based on CR0/CR4/EFER
   - support for 5-level page table on AMD processors

  Generic:
   - MMU notifier invalidation callbacks do not take mmu_lock unless
     necessary
   - improved caching of LRU kvm_memory_slot
   - support for histogram statistics
   - add statistics for halt polling and remote TLB flush requests"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
  KVM: Drop unused kvm_dirty_gfn_invalid()
  KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
  KVM: MMU: mark role_regs and role accessors as maybe unused
  KVM: MIPS: Remove a "set but not used" variable
  x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
  KVM: stats: Add VM stat for remote tlb flush requests
  KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
  KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
  KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
  Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
  KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
  kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
  kvm: x86: Increase MAX_VCPUS to 1024
  kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
  KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
  KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
  KVM: s390: index kvm->arch.idle_mask by vcpu_idx
  KVM: s390: Enable specification exception interpretation
  KVM: arm64: Trim guest debug exception handling
  KVM: SVM: Add 5-level page table support for SVM
  ...
2021-09-07 13:40:51 -07:00
Wei Huang
43e540cc9f KVM: SVM: Add 5-level page table support for SVM
When the 5-level page table is enabled on host OS, the nested page table
for guest VMs must use 5-level as well. Update get_npt_level() function
to reflect this requirement. In the meanwhile, remove the code that
prevents kvm-amd driver from being loaded when 5-level page table is
detected.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-4-wei.huang2@amd.com>
[Tweak condition as suggested by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:56 -04:00
Wei Huang
746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Maxim Levitsky
7a4bca85b2 KVM: SVM: split svm_handle_invalid_exit
Split the check for having a vmexit handler to svm_check_exit_valid,
and make svm_handle_invalid_exit only handle a vmexit that is
already not valid.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:37 -04:00
Maxim Levitsky
73143035c2 KVM: SVM: AVIC: drop unsupported AVIC base relocation code
APIC base relocation is not supported anyway and won't work
correctly so just drop the code that handles it and keep AVIC
MMIO bar at the default APIC base.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-17-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:31 -04:00
Maxim Levitsky
df7e4827c5 KVM: SVM: call avic_vcpu_load/avic_vcpu_put when enabling/disabling AVIC
Currently it is possible to have the following scenario:

1. AVIC is disabled by svm_refresh_apicv_exec_ctrl
2. svm_vcpu_blocking calls avic_vcpu_put which does nothing
3. svm_vcpu_unblocking enables the AVIC (due to KVM_REQ_APICV_UPDATE)
   and then calls avic_vcpu_load
4. warning is triggered in avic_vcpu_load since
   AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK was never cleared

While it is possible to just remove the warning, it seems to be more robust
to fully disable/enable AVIC in svm_refresh_apicv_exec_ctrl by calling the
avic_vcpu_load/avic_vcpu_put

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-16-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:30 -04:00
Maxim Levitsky
bf5f6b9d7a KVM: SVM: move check for kvm_vcpu_apicv_active outside of avic_vcpu_{put|load}
No functional change intended.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-15-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:29 -04:00
Maxim Levitsky
30eed56a7e KVM: SVM: remove svm_toggle_avic_for_irq_window
Now that kvm_request_apicv_update doesn't need to drop the kvm->srcu lock,
we can call kvm_request_apicv_update directly.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:26 -04:00
Maxim Levitsky
4628efcd4e KVM: SVM: add warning for mistmatch between AVIC vcpu state and AVIC inhibition
It is never a good idea to enter a guest on a vCPU when the
AVIC inhibition state doesn't match the enablement of
the AVIC on the vCPU.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-11-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:24 -04:00
Maxim Levitsky
36222b117e KVM: x86: don't disable APICv memslot when inhibited
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky
c7dfa40099 KVM: nSVM: always intercept VMLOAD/VMSAVE when nested (CVE-2021-3656)
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.

Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.

Fixes: 89c8a4984f ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-16 09:48:37 -04:00
Maxim Levitsky
0f923e0712 KVM: nSVM: avoid picking up unsupported bits from L2 in int_ctl (CVE-2021-3653)
* Invert the mask of bits that we pick from L2 in
  nested_vmcb02_prepare_control

* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr

This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.

Fixes: 3d6368ef58 ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-16 09:48:27 -04:00
Uros Bizjak
65297341d8 KVM: x86: Move declaration of kvm_spurious_fault() to x86.h
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:16 -04:00
Sean Christopherson
ad0577c375 KVM: x86: Kill off __ex() and __kvm_handle_fault_on_reboot()
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic).  Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.

Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:16 -04:00
Paolo Bonzini
c3e9434c98 Merge branch 'kvm-vmx-secctl' into HEAD
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
2021-08-10 13:45:26 -04:00
Mingwei Zhang
bb2baeb214 KVM: SVM: improve the code readability for ASID management
KVM SEV code uses bitmaps to manage ASID states. ASID 0 was always skipped
because it is never used by VM. Thus, in existing code, ASID value and its
bitmap postion always has an 'offset-by-1' relationship.

Both SEV and SEV-ES shares the ASID space, thus KVM uses a dynamic range
[min_asid, max_asid] to handle SEV and SEV-ES ASIDs separately.

Existing code mixes the usage of ASID value and its bitmap position by
using the same variable called 'min_asid'.

Fix the min_asid usage: ensure that its usage is consistent with its name;
allocate extra size for ASID 0 to ensure that each ASID has the same value
with its bitmap position. Add comments on ASID bitmap allocation to clarify
the size change.

Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Marc Orr <marcorr@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Alper Gun <alpergun@google.com>
Cc: Dionna Glaze <dionnaglaze@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vipin Sharma <vipinsh@google.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20210802180903.159381-1-mizhang@google.com>
[Fix up sev_asid_free to also index by ASID, as suggested by Sean
 Christopherson, and use nr_asids in sev_cpu_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 09:43:03 -04:00
Sean Christopherson
179c6c27bf KVM: SVM: Fix off-by-one indexing when nullifying last used SEV VMCB
Use the raw ASID, not ASID-1, when nullifying the last used VMCB when
freeing an SEV ASID.  The consumer, pre_sev_run(), indexes the array by
the raw ASID, thus KVM could get a false negative when checking for a
different VMCB if KVM manages to reallocate the same ASID+VMCB combo for
a new VM.

Note, this cannot cause a functional issue _in the current code_, as
pre_sev_run() also checks which pCPU last did VMRUN for the vCPU, and
last_vmentry_cpu is initialized to -1 during vCPU creation, i.e. is
guaranteed to mismatch on the first VMRUN.  However, prior to commit
8a14fe4f0c ("kvm: x86: Move last_cpu into kvm_vcpu_arch as
last_vmentry_cpu"), SVM tracked pCPU on its own and zero-initialized the
last_cpu variable.  Thus it's theoretically possible that older versions
of KVM could miss a TLB flush if the first VMRUN is on pCPU0 and the ASID
and VMCB exactly match those of a prior VM.

Fixes: 70cd94e60c ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04 06:02:09 -04:00
Paolo Bonzini
db105fab8d KVM: nSVM: remove useless kvm_clear_*_queue
For an event to be in injected state when nested_svm_vmrun executes,
it must have come from exitintinfo when svm_complete_interrupts ran:

  vcpu_enter_guest
   static_call(kvm_x86_run) -> svm_vcpu_run
    svm_complete_interrupts
     // now the event went from "exitintinfo" to "injected"
   static_call(kvm_x86_handle_exit) -> handle_exit
    svm_invoke_exit_handler
      vmrun_interception
       nested_svm_vmrun

However, no event could have been in exitintinfo before a VMRUN
vmexit.  The code in svm.c is a bit more permissive than the one
in vmx.c:

        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)

but in any case, a VMRUN instruction would not even start to execute
during an attempted event delivery.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:02:00 -04:00
Sean Christopherson
46f4898b20 KVM: SVM: Drop redundant clearing of vcpu->arch.hflags at INIT/RESET
Drop redundant clears of vcpu->arch.hflags in init_vmcb() since
kvm_vcpu_reset() always clears hflags, and it is also always
zero at vCPU creation time.  And of course, the second clearing
in init_vmcb() was always redundant.

Suggested-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:59 -04:00
Sean Christopherson
265e43530c KVM: SVM: Emulate #INIT in response to triple fault shutdown
Emulate a full #INIT instead of simply initializing the VMCB if the
guest hits a shutdown.  Initializing the VMCB but not other vCPU state,
much of which is mirrored by the VMCB, results in incoherent and broken
vCPU state.

Ideally, KVM would not automatically init anything on shutdown, and
instead put the vCPU into e.g. KVM_MP_STATE_UNINITIALIZED and force
userspace to explicitly INIT or RESET the vCPU.  Even better would be to
add KVM_MP_STATE_SHUTDOWN, since technically NMI can break shutdown
(and SMI on Intel CPUs).

But, that ship has sailed, and emulating #INIT is the next best thing as
that has at least some connection with reality since there exist bare
metal platforms that automatically INIT the CPU if it hits shutdown.

Fixes: 46fe4ddd9d ("[PATCH] KVM: SVM: Propagate cpu shutdown events to userspace")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:59 -04:00
Sean Christopherson
f39e805ee1 KVM: x86: Move setting of sregs during vCPU RESET/INIT to common x86
Move the setting of CR0, CR4, EFER, RFLAGS, and RIP from vendor code to
common x86.  VMX and SVM now have near-identical sequences, the only
difference being that VMX updates the exception bitmap.  Updating the
bitmap on SVM is unnecessary, but benign.  Unfortunately it can't be left
behind in VMX due to the need to update exception intercepts after the
control registers are set.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:57 -04:00
Sean Christopherson
d0f9f826d8 KVM: SVM: Stuff save->dr6 at during VMSA sync, not at RESET/INIT
Move code to stuff vmcb->save.dr6 to its architectural init value from
svm_vcpu_reset() into sev_es_sync_vmsa().  Except for protected guests,
a.k.a. SEV-ES guests, vmcb->save.dr6 is set during VM-Enter, i.e. the
extra write is unnecessary.  For SEV-ES, stuffing save->dr6 handles a
theoretical case where the VMSA could be encrypted before the first
KVM_RUN.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:56 -04:00
Sean Christopherson
6cfe7b83ac KVM: SVM: Drop redundant writes to vmcb->save.cr4 at RESET/INIT
Drop direct writes to vmcb->save.cr4 during vCPU RESET/INIT, as the
values being written are fully redundant with respect to
svm_set_cr4(vcpu, 0) a few lines earlier.  Note, svm_set_cr4() also
correctly forces X86_CR4_PAE when NPT is disabled.

No functional change intended.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:56 -04:00
Sean Christopherson
ef8a0fa59b KVM: SVM: Tweak order of cr0/cr4/efer writes at RESET/INIT
Hoist svm_set_cr0() up in the sequence of register initialization during
vCPU RESET/INIT, purely to match VMX so that a future patch can move the
sequences to common x86.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:55 -04:00
Sean Christopherson
9e90e215d9 KVM: SVM: Don't bother writing vmcb->save.rip at vCPU RESET/INIT
Drop unnecessary initialization of vmcb->save.rip during vCPU RESET/INIT,
as svm_vcpu_run() unconditionally propagates VCPU_REGS_RIP to save.rip.

No true functional change intended.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:53 -04:00
Sean Christopherson
49d8665cc2 KVM: x86: Move EDX initialization at vCPU RESET to common code
Move the EDX initialization at vCPU RESET, which is now identical between
VMX and SVM, into common code.

No functional change intended.

Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-02 11:01:52 -04:00