The early ATAGS/DT mapping code uses SECTION_SHIFT to mask low order
bits of R2, and decides that no ATAGS/DTB were provided if the resulting
value is 0x0.
This means that on systems where DRAM starts at 0x0 (such as Raspberry
Pi), no explicit mapping of the DT will be created if R2 points into the
first 1 MB section of memory. This was not a problem before, because the
decompressed kernel is loaded at the base of DRAM and mapped using
sections as well, and so as long as the DT is referenced via a virtual
address that uses the same translation (the linear map, in this case),
things work fine.
However, commit 7a1be318f5 ("9012/1: move device tree mapping out of
linear region") changes this, and now the DT is referenced via a virtual
address that is disjoint from the linear mapping of DRAM, and so we need
the early code to create the DT mapping unconditionally.
So let's create the early DT mapping for any value of R2 != 0x0.
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Mapping between IPI type index and its string is direct without requiring
an additional offset. Hence the existing macro S(x, s) is now redundant
and can just be dropped. This also makes the code clean and simple.
Cc: Marc Zyngier <maz@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Commit aaac373317 ("ARM: kvm: replace open coded VA->PA calculations
with adr_l call") removed all uses of .L__boot_cpu_mode_offset, so there
is no longer a need to define it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl/YJxsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjpyEACBdW+YjenjTbkUPeEXzQgkBkTZUYw3g007
DPcUT1g8PQZXYXlQvBKCvGhhIr7/KVcjepKoowiNQfBNGcIPJTVopW58nzpqAfTQ
goI2WYGn5EKFFKBPvtH04cJD/Wo8muXdxynKtqyZbnGGgZjQxPrE259b8dpHjBSR
6L7HHkk0D1oU/5b6h6Ocpg9mc/0iIUCZylySAYY3eGO0JaVPJaXgZSJZYgHxCHll
Lb+/y/fXdtm/0PmQ3ko0ev54g3yEWqZIX0NsZW1asrButIy+KLzQ2Mz1xFLFDMag
prtIfwb8tzgc4dFPY090C/azjCh5CPpxqYS6FkRwS0p86n6OhkyXrqfily5Hs4/B
NC7CBPBSH/j+NKUK7CYZcpTzTpxPjUr9p0anUdlvMJz8FhTb/3YEEZ1UTeWOeHmk
Yo5SxnFghLeZZeZ1ok6rdymnVa7WEX12SCLGQX31BB2mld0tNbKb4b+FsBF6OUMk
IUaX6OjwDFVRaysC88BQ4hjcIP1HxsViG4/VZDX15gjAAH2Pvb+7tev+lcDcOhjz
TCD4GNFspTFzRhh9nT7oxQ679qCh9G9zHbzuIRewnrS6iqvo5SJQB3dR2yrWZRRH
ySkQFiHpYOlnLJYv0jg9COlGwo2FUdcvKhCvkjQKKBz48rzW/IC0LwKdRQWZDFk3
FKGzP/NBig==
=cadT
-----END PGP SIGNATURE-----
Merge tag 'tif-task_work.arch-2020-12-14' of git://git.kernel.dk/linux-block
Pull TIF_NOTIFY_SIGNAL updates from Jens Axboe:
"This sits on top of of the core entry/exit and x86 entry branch from
the tip tree, which contains the generic and x86 parts of this work.
Here we convert the rest of the archs to support TIF_NOTIFY_SIGNAL.
With that done, we can get rid of JOBCTL_TASK_WORK from task_work and
signal.c, and also remove a deadlock work-around in io_uring around
knowing that signal based task_work waking is invoked with the sighand
wait queue head lock.
The motivation for this work is to decouple signal notify based
task_work, of which io_uring is a heavy user of, from sighand. The
sighand lock becomes a huge contention point, particularly for
threaded workloads where it's shared between threads. Even outside of
threaded applications it's slower than it needs to be.
Roman Gershman <romger@amazon.com> reported that his networked
workload dropped from 1.6M QPS at 80% CPU to 1.0M QPS at 100% CPU
after io_uring was changed to use TIF_NOTIFY_SIGNAL. The time was all
spent hammering on the sighand lock, showing 57% of the CPU time there
[1].
There are further cleanups possible on top of this. One example is
TIF_PATCH_PENDING, where a patch already exists to use
TIF_NOTIFY_SIGNAL instead. Hopefully this will also lead to more
consolidation, but the work stands on its own as well"
[1] https://github.com/axboe/liburing/issues/215
* tag 'tif-task_work.arch-2020-12-14' of git://git.kernel.dk/linux-block: (28 commits)
io_uring: remove 'twa_signal_ok' deadlock work-around
kernel: remove checking for TIF_NOTIFY_SIGNAL
signal: kill JOBCTL_TASK_WORK
io_uring: JOBCTL_TASK_WORK is no longer used by task_work
task_work: remove legacy TWA_SIGNAL path
sparc: add support for TIF_NOTIFY_SIGNAL
riscv: add support for TIF_NOTIFY_SIGNAL
nds32: add support for TIF_NOTIFY_SIGNAL
ia64: add support for TIF_NOTIFY_SIGNAL
h8300: add support for TIF_NOTIFY_SIGNAL
c6x: add support for TIF_NOTIFY_SIGNAL
alpha: add support for TIF_NOTIFY_SIGNAL
xtensa: add support for TIF_NOTIFY_SIGNAL
arm: add support for TIF_NOTIFY_SIGNAL
microblaze: add support for TIF_NOTIFY_SIGNAL
hexagon: add support for TIF_NOTIFY_SIGNAL
csky: add support for TIF_NOTIFY_SIGNAL
openrisc: add support for TIF_NOTIFY_SIGNAL
sh: add support for TIF_NOTIFY_SIGNAL
um: add support for TIF_NOTIFY_SIGNAL
...
This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as
a result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one
Arm platform. These all do timer ticks slighly differently, and this
gets cleaned up to the point they at least all call the same helper
function. Instead of most platforms using 'select GENERIC_CLOCKEVENTS'
in Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl/Y1v8ACgkQmmx57+YA
GNmCvQ/9EDlgCt92r8SB+LGafDtgB8TUQZeIrs9S2mByzdxwnw0lxObIXFCnhQgh
RpG3dR+ONRDnC5eI149B377JOEFMZWe2+BtYHUHkFARtUEWatslQcz7yAGvVRK/l
TS/qReb6piKltlzuanF1bMZbjy2OhlaDRcm+OlC3y5mALR33M4emb+rJ6cSdfk3K
v1iZhrxtfQT77ztesh/oPkPiyQ6kNcz7SfpyYOb6f5VLlml2BZ7YwBSVyGY7urHk
RL3XqOUP4KKlMEAI8w0E2nvft6Fk+luziBhrMYWK0GvbmI1OESENuX/c6tgT2OQ1
DRaVHvcPG/EAY8adOKxxVyHhEJDSoz5GJV/EtjlOegsJk6RomczR1uuiT3Kvm7Ah
PktMKv4xQht1E15KPSKbOvNIEP18w2s5z6gw+jVDv8pw42pVEQManm1D+BICqrhl
fcpw6T1drf9UxAjwX4+zXtmNs+a+mqiFG8puU4VVgT4GpQ8umHvunXz2WUjZO0jc
3m8ErJHBvtJwW5TOHGyXnjl9SkwPzHOfF6IcXTYWEDU4/gQIK9TwUvCjLc0lE27t
FMCV2ds7/K1CXwRgpa5IrefSkb8yOXSbRZ56NqqF7Ekxw4J5bYRSaY7jb+qD/e+3
5O1y+iPxFrpH+16hSahvzrtcdFNbLQvBBuRtEQOYuHLt2UJrNoU=
=QpNs
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cross-architecture timer cleanup from Arnd Bergmann:
"This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as a
result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one Arm
platform. These all do timer ticks slighly differently, and this gets
cleaned up to the point they at least all call the same helper
function.
Instead of most platforms using 'select GENERIC_CLOCKEVENTS' in
Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead"
* tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
timekeeping: default GENERIC_CLOCKEVENTS to enabled
timekeeping: remove xtime_update
m68k: remove timer_interrupt() function
m68k: change remaining timers to legacy_timer_tick
m68k: m68328: use legacy_timer_tick()
m68k: sun3/sun3c: use legacy_timer_tick
m68k: split heartbeat out of timer function
m68k: coldfire: use legacy_timer_tick()
parisc: use legacy_timer_tick
ARM: rpc: use legacy_timer_tick
ia64: convert to legacy_timer_tick
timekeeping: add CONFIG_LEGACY_TIMER_TICK
timekeeping: remove arch_gettimeoffset
net: remove am79c961a driver
ARM: remove ebsa110 platform
Pull regset updates from Al Viro:
"Dead code removal, mostly.
The only exception is a bit of cleanups on itanic (getting rid of
redundant stack unwinds - each access_uarea() call does it and we call
that 7 times in a row in ptrace_[sg]etregs(), *after* having done it
ourselves in the caller; location where the user registers have been
spilled won't change under us, and we can bloody well just call
access_elf_reg() directly, giving it the unw_frame_info we'd
calculated for our own purposes)"
* 'regset.followup' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
c6x: kill ELF_CORE_COPY_FPREGS
whack-a-mole: USE_ELF_CORE_DUMP
[ia64] ptrace_[sg]etregs(): use access_elf_reg() instead of access_uarea()
[ia64] missed cleanups from switch to regset coredumps
arm: kill dump_task_regs()
Don't allow splitting of vm_special_mapping's. It affects vdso/vvar
areas. Uprobes have only one page in xol_area so they aren't affected.
Those restrictions were enforced by checks in .mremap() callbacks.
Restrict resizing with generic .split() callback.
Link: https://lkml.kernel.org/r/20201013013416.390574-7-dima@arista.com
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a couple of problems with the exception entry code that deals
with FP exceptions (which are reported as UND exceptions) when building
the kernel in Thumb2 mode:
- the conditional branch to vfp_kmode_exception in vfp_support_entry()
may be out of range for its target, depending on how the linker decides
to arrange the sections;
- when the UND exception is taken in kernel mode, the emulation handling
logic is entered via the 'call_fpe' label, which means we end up using
the wrong value/mask pairs to match and detect the NEON opcodes.
Since UND exceptions in kernel mode are unlikely to occur on a hot path
(as opposed to the user mode version which is invoked for VFP support
code and lazy restore), we can use the existing undef hook machinery for
any kernel mode instruction emulation that is needed, including calling
the existing vfp_kmode_exception() routine for unexpected cases. So drop
the call to call_fpe, and instead, install an undef hook that will get
called for NEON and VFP instructions that trigger an UND exception in
kernel mode.
While at it, make sure that the PC correction is accurate for the
execution mode where the exception was taken, by checking the PSR
Thumb bit.
Cc: Dmitry Osipenko <digetx@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Fixes: eff8728fe6 ("vmlinux.lds.h: Add PGO and AutoFDO input sections")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
This patch replaces 6 IWMMXT instructions Clang's integrated assembler
does not support in iwmmxt.S using macros, while making sure GNU
assembler still emit the same instructions. This should be easier than
providing full IWMMXT support in Clang. This is one of the last bits of
kernel code that could be compiled but not assembled with clang. Once
all of it works with IAS, we no longer need to special-case 32-bit Arm
in Kbuild, or turn off CONFIG_IWMMXT when build-testing.
"Intel Wireless MMX Technology - Developer Guide - August, 2002" should
be referenced for the encoding schemes of these extensions.
Link: https://github.com/ClangBuiltLinux/linux/issues/975
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Jian Cai <jiancai@google.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
KASAN uses the routines in stacktrace.c to capture the call stack each
time memory gets allocated or freed. Some of these routines are also
used to log CPU and memory context when exceptions are taken, and so
in some cases, memory accesses may be made that are not strictly in
line with the KASAN constraints, and may therefore trigger false KASAN
positives.
So follow the example set by other architectures, and simply disable
KASAN instrumentation for these routines.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Since
commit 0bddd227f3 ("Documentation: update for gcc 4.9 requirement")
the minimum supported version of GCC is gcc-4.9. It's now safe to remove
this code.
Link: https://github.com/ClangBuiltLinux/linux/issues/427
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
idle path. Similar to the entry path the low level idle functions have to
be non-instrumentable.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/DpAUTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoXSLD/9klc0YimnEnROW6Q5Svb2IcyIutmXF
bOIY1bYYoKILOBj3wyvDUhmdMuq5zh7H9yG11hO8MaVVWVQcLcOMLdHTYm9dcdmF
xQk33+xqjuhRShB+nEmC9ayYtWogtH6W6uZ6WDtF9ZltMKU85n5ddGJ/Fvo+HoCb
NbOdHGJdJ3/3ZCeHnxOnxM+5/GwjkBuccTV/tXmb3yXrfU9DBySyQ4/UchcpF43w
LcEb0kiQbpZsBTByKJOQV8+RR654S0sILlvRwVXpmj94vrgGwhlVk1/9rz7tkOhF
ksoo1mTVu75LMt22G/hXxE63787yRvFdHjapf0+kCOAuhl992NK+xlGDH8o9DXcu
9y73D4bI0HnDFs20w6vs20iLvxECJiYHJqlgR5ZwFUToceaNgtiYr8kzuD7Zbae1
KG2E7BuNSwHWMtf97fGn44GZknPEOaKdDn4Wv6/bvKHxLm77qe11RKF70Stcz2AI
am13KmQzzsHGF5qNWwpElRUxSdxfJMR66RnOdTQULGrRedaZTFol/y2pnVzTSe3k
SZnlpL5kE7y92UYDogPb5wWA7b+YkJN0OdSkRFy1FH26ZG8E4M7ZJ2tql5Sw7pGM
lsTjXpAUphnK5rz7QcYE8KAZWj//fIAcElIrvdklVcBnS3IqjfksYW27B64133vx
cT1B/lA1PHXj6Q==
=raED
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"Two more places which invoke tracing from RCU disabled regions in the
idle path.
Similar to the entry path the low level idle functions have to be
non-instrumentable"
* tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
intel_idle: Fix intel_idle() vs tracing
sched/idle: Fix arch_cpu_idle() vs tracing
We call arch_cpu_idle() with RCU disabled, but then use
local_irq_{en,dis}able(), which invokes tracing, which relies on RCU.
Switch all arch_cpu_idle() implementations to use
raw_local_irq_{en,dis}able() and carefully manage the
lockdep,rcu,tracing state like we do in entry.
(XXX: we really should change arch_cpu_idle() to not return with
interrupts enabled)
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20201120114925.594122626@infradead.org
Wire up TIF_NOTIFY_SIGNAL handling for arm.
Cc: linux-arm-kernel@lists.infradead.org
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As "u64" is equivalent to "unsigned long long", there is no need to cast
a "u64" parameter for printing it using the "0x%08llx" format specifier.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Fix a misspelling of the word "memory".
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
struct perf_sample_data lives on-stack, we should be careful about it's
size. Furthermore, the pt_regs copy in there is only because x86_64 is a
trainwreck, solve it differently.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201030151955.258178461@infradead.org
rpc is the only user of the timer_tick() function now, and can
just call the newly added generic version instead.
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Russell said that he is no longer using this machine, and it seems that
nobody else has in a long time, so it's time to say goodbye to it.
As this is the last platform using CONFIG_ARCH_USES_GETTIMEOFFSET,
there are some follow-up patches to remove that as well.
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Replace the open coded calculations of the actual physical address
of the KVM stub vector table with a single adr_l invocation.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Replace the open coded arithmetic with a simple adr_l/sub pair. This
removes some open coded arithmetic involving virtual addresses, avoids
literal pools on v7+, and slightly reduces the footprint of the code.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Replace the open coded PC relative offset calculations with adr_l and
ldr_l invocations. This removes some open coded PC relative arithmetic,
avoids literal pools on v7+, and slightly reduces the footprint of the
code. Note that ALT_SMP() expects a single instruction so move the macro
invocation after it.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now that calling __do_fixup_smp_on_up() can be done without passing
the physical-to-virtual offset in r3, we can replace the open coded
PC relative offset calculations with a pair of adr_l invocations. This
removes some open coded arithmetic involving virtual addresses, avoids
literal pools on v7+, and slightly reduces the footprint of the code.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Currently, the .alt.smp.init section contains the virtual addresses
of the patch sites. Since patching may occur both before and after
switching into virtual mode, this requires some manual handling of
the address when applying the UP alternative.
Let's simplify this by using relative offsets in the table entries:
this allows us to simply add each entry's address to its contents,
regardless of whether we are running in virtual mode or not.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Replace the open coded PC relative offset calculations with adr_l
and ldr_l invocations. This removes some open coded arithmetic
involving virtual addresses, avoids literal pools on v7+, and slightly
reduces the footprint of the code.
Note that it also removes a stale comment about the contents of r6.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Replace the open coded PC relative offset calculations involving
__turn_mmu_on and __turn_mmu_on_end with a pair of adr_l invocations.
This removes some open coded arithmetic involving virtual addresses,
avoids literal pools on v7+, and slightly reduces the footprint of the
code.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Replace the open coded PC relative offset calculations with a pair of
adr_l invocations. This removes some open coded arithmetic involving
virtual addresses, avoids literal pools on v7+, and slightly reduces
the footprint of the code.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The ARM kernel's linear map starts at PAGE_OFFSET, which maps to a
physical address (PHYS_OFFSET) that is platform specific, and is
discovered at boot. Since we don't want to slow down translations
between physical and virtual addresses by keeping the offset in a
variable in memory, we implement this by patching the code performing
the translation, and putting the offset between PAGE_OFFSET and the
start of physical RAM directly into the instruction opcodes.
As we only patch up to 8 bits of offset, yielding 4 GiB >> 8 == 16 MiB
of granularity, we have to round up PHYS_OFFSET to the next multiple if
the start of physical RAM is not a multiple of 16 MiB. This wastes some
physical RAM, since the memory that was skipped will now live below
PAGE_OFFSET, making it inaccessible to the kernel.
We can improve this by changing the patchable sequences and the patching
logic to carry more bits of offset: 11 bits gives us 4 GiB >> 11 == 2 MiB
of granularity, and so we will never waste more than that amount by
rounding up the physical start of DRAM to the next multiple of 2 MiB.
(Note that 2 MiB granularity guarantees that the linear mapping can be
created efficiently, whereas less than 2 MiB may result in the linear
mapping needing another level of page tables)
This helps Zhen Lei's scenario, where the start of DRAM is known to be
occupied. It also helps EFI boot, which relies on the firmware's page
allocator to allocate space for the decompressed kernel as low as
possible. And if the KASLR patches ever land for 32-bit, it will give
us 3 more bits of randomization of the placement of the kernel inside
the linear region.
For the ARM code path, it simply comes down to using two add/sub
instructions instead of one for the carryless version, and patching
each of them with the correct immediate depending on the rotation
field. For the LPAE calculation, which has to deal with a carry, it
patches the MOVW instruction with up to 12 bits of offset (but we only
need 11 bits anyway)
For the Thumb2 code path, patching more than 11 bits of displacement
would be somewhat cumbersome, but the 11 bits we need fit nicely into
the second word of the u16[2] opcode, so we simply update the immediate
assignment and the left shift to create an addend of the right magnitude.
Suggested-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In preparation for reducing the phys-to-virt minimum relative alignment
from 16 MiB to 2 MiB, switch to patchable sequences involving MOVW
instructions that can more easily be manipulated to carry a 12-bit
immediate. Note that the non-LPAE ARM sequence is not updated: MOVW
may not be supported on non-LPAE platforms, and the sequence itself
can be updated more easily to apply the 12 bits of displacement.
For Thumb2, which has many more versions of opcodes, switch to a sequence
that can be patched by the same patching code for both versions. Note
that the Thumb2 opcodes for MOVW and MVN are unambiguous, and have no
rotation bits in their immediate fields, so there is no need to use
placeholder constants in the asm blocks.
While at it, drop the 'volatile' qualifiers from the asm blocks: the
code does not have any side effects that are invisible to the compiler,
so it is free to omit these sequences if the outputs are not used.
Suggested-by: Russell King <linux@armlinux.org.uk>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Declutter the code in __fixup_pv_table() by using the new adr_l/str_l
macros to take PC relative references to external symbols, and by
using the value of PHYS_OFFSET passed in r8 to calculate the p2v
offset.
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Free up a register in the p2v patching code by switching to relative
references, which don't require keeping the phys-to-virt displacement
live in a register.
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The big and little endian versions of the ARM p2v patching routine only
differ in the values of the constants, so factor those out into macros
so that we only have one version of the logic sequence to maintain.
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The ARM and Thumb2 versions of the p2v patching loop have some overlap
at the end of the loop, so factor that out. As numeric labels are not
required to be unique, and may therefore be ambiguous, use named local
labels for the start and end of the loop instead.
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move the phys2virt patching code into a separate .S file before doing
some work on it.
Suggested-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When using the new adr_l/ldr_l/str_l macros to refer to external symbols
from modules, the linker may emit place relative ELF relocations that
need to be fixed up by the module loader. So add support for these.
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When running in BE mode on LPAE hardware with a PA-to-VA translation
that exceeds 4 GB, we patch bits 39:32 of the offset into the wrong
byte of the opcode. So fix that, by rotating the offset in r0 to the
right by 8 bits, which will put the 8-bit immediate in bits 31:24.
Note that this will also move bit #22 in its correct place when
applying the rotation to the constant #0x400000.
Fixes: d9a790df8e ("ARM: 7883/1: fix mov to mvn conversion in case of 64 bit phys_addr_t and BE")
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit
149a3ffe62b9dbc3 ("9012/1: move device tree mapping out of linear region")
created a permanent, read-only section mapping of the device tree blob
provided by the firmware, and added a set of macros to get the base and
size of the virtually mapped FDT based on the physical address. However,
while the mapping code uses the SECTION_SIZE macro correctly, the macros
use PMD_SIZE instead, which means something entirely different on ARM when
using short descriptors, and is therefore not the right quantity to use
here. So replace PMD_SIZE with SECTION_SIZE. While at it, change the names
of the macro and its parameter to clarify that it returns the virtual
address of the start of the FDT, based on the physical address in memory.
Tested-by: Joel Stanley <joel@jms.id.au>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
After turning on warnings for orphan section placement, enabling
CONFIG_UNWINDER_FRAME_POINTER instead of CONFIG_UNWINDER_ARM causes
thousands of warnings when clang + ld.lld are used:
$ scripts/config --file arch/arm/configs/multi_v7_defconfig \
-d CONFIG_UNWINDER_ARM \
-e CONFIG_UNWINDER_FRAME_POINTER
$ make -skj"$(nproc)" ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- LLVM=1 defconfig zImage
ld.lld: warning: init/built-in.a(main.o):(.ARM.extab) is being placed in '.ARM.extab'
ld.lld: warning: init/built-in.a(main.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(main.o):(.ARM.extab.ref.text) is being placed in '.ARM.extab.ref.text'
ld.lld: warning: init/built-in.a(do_mounts.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(do_mounts.o):(.ARM.extab) is being placed in '.ARM.extab'
ld.lld: warning: init/built-in.a(do_mounts_rd.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(do_mounts_rd.o):(.ARM.extab) is being placed in '.ARM.extab'
ld.lld: warning: init/built-in.a(do_mounts_initrd.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(initramfs.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(initramfs.o):(.ARM.extab) is being placed in '.ARM.extab'
ld.lld: warning: init/built-in.a(calibrate.o):(.ARM.extab.init.text) is being placed in '.ARM.extab.init.text'
ld.lld: warning: init/built-in.a(calibrate.o):(.ARM.extab) is being placed in '.ARM.extab'
These sections are handled by the ARM_UNWIND_SECTIONS define, which is
only added to the list of sections when CONFIG_ARM_UNWIND is set.
CONFIG_ARM_UNWIND is a hidden symbol that is only selected when
CONFIG_UNWINDER_ARM is set so CONFIG_UNWINDER_FRAME_POINTER never
handles these sections. According to the help text of
CONFIG_UNWINDER_ARM, these sections should be discarded so that the
kernel image size is not affected.
Fixes: 5a17850e25 ("arm/build: Warn on orphan section placement")
Link: https://github.com/ClangBuiltLinux/linux/issues/1152
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Review-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
[kees: Made the discard slightly more specific]
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200928224854.3224862-1-natechancellor@gmail.com
This patch initializes KASan shadow region's page table and memory.
There are two stage for KASan initializing:
1. At early boot stage the whole shadow region is mapped to just
one physical page (kasan_zero_page). It is finished by the function
kasan_early_init which is called by __mmap_switched(arch/arm/kernel/
head-common.S)
2. After the calling of paging_init, we use kasan_zero_page as zero
shadow for some memory that KASan does not need to track, and we
allocate a new shadow space for the other memory that KASan need to
track. These issues are finished by the function kasan_init which is
call by setup_arch.
When using KASan we also need to increase the THREAD_SIZE_ORDER
from 1 to 2 as the extra calls for shadow memory uses quite a bit
of stack.
As we need to make a temporary copy of the PGD when setting up
shadow memory we create a helpful PGD_SIZE definition for both
LPAE and non-LPAE setups.
The KASan core code unconditionally calls pud_populate() so this
needs to be changed from BUG() to do {} while (0) when building
with KASan enabled.
After the initial development by Andre Ryabinin several modifications
have been made to this code:
Abbott Liu <liuwenliang@huawei.com>
- Add support ARM LPAE: If LPAE is enabled, KASan shadow region's
mapping table need be copied in the pgd_alloc() function.
- Change kasan_pte_populate,kasan_pmd_populate,kasan_pud_populate,
kasan_pgd_populate from .meminit.text section to .init.text section.
Reported by Florian Fainelli <f.fainelli@gmail.com>
Linus Walleij <linus.walleij@linaro.org>:
- Drop the custom mainpulation of TTBR0 and just use
cpu_switch_mm() to switch the pgd table.
- Adopt to handle 4th level page tabel folding.
- Rewrite the entire page directory and page entry initialization
sequence to be recursive based on ARM64:s kasan_init.c.
Ard Biesheuvel <ardb@kernel.org>:
- Necessary underlying fixes.
- Crucial bug fixes to the memory set-up code.
Co-developed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Co-developed-by: Abbott Liu <liuwenliang@huawei.com>
Co-developed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Cc: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G
Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q
Reported-by: Russell King - ARM Linux <rmk+kernel@armlinux.org.uk>
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Abbott Liu <liuwenliang@huawei.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Define KASAN_SHADOW_OFFSET,KASAN_SHADOW_START and KASAN_SHADOW_END for
the Arm kernel address sanitizer. We are "stealing" lowmem (the 4GB
addressable by a 32bit architecture) out of the virtual address
space to use as shadow memory for KASan as follows:
+----+ 0xffffffff
| |
| | |-> Static kernel image (vmlinux) BSS and page table
| |/
+----+ PAGE_OFFSET
| |
| | |-> Loadable kernel modules virtual address space area
| |/
+----+ MODULES_VADDR = KASAN_SHADOW_END
| |
| | |-> The shadow area of kernel virtual address.
| |/
+----+-> TASK_SIZE (start of kernel space) = KASAN_SHADOW_START the
| | shadow address of MODULES_VADDR
| | |
| | |
| | |-> The user space area in lowmem. The kernel address
| | | sanitizer do not use this space, nor does it map it.
| | |
| | |
| | |
| | |
| |/
------ 0
0 .. TASK_SIZE is the memory that can be used by shared
userspace/kernelspace. It us used for userspace processes and for
passing parameters and memory buffers in system calls etc. We do not
need to shadow this area.
KASAN_SHADOW_START:
This value begins with the MODULE_VADDR's shadow address. It is the
start of kernel virtual space. Since we have modules to load, we need
to cover also that area with shadow memory so we can find memory
bugs in modules.
KASAN_SHADOW_END
This value is the 0x100000000's shadow address: the mapping that would
be after the end of the kernel memory at 0xffffffff. It is the end of
kernel address sanitizer shadow area. It is also the start of the
module area.
KASAN_SHADOW_OFFSET:
This value is used to map an address to the corresponding shadow
address by the following formula:
shadow_addr = (address >> 3) + KASAN_SHADOW_OFFSET;
As you would expect, >> 3 is equal to dividing by 8, meaning each
byte in the shadow memory covers 8 bytes of kernel memory, so one
bit shadow memory per byte of kernel memory is used.
The KASAN_SHADOW_OFFSET is provided in a Kconfig option depending
on the VMSPLIT layout of the system: the kernel and userspace can
split up lowmem in different ways according to needs, so we calculate
the shadow offset depending on this.
When kasan is enabled, the definition of TASK_SIZE is not an 8-bit
rotated constant, so we need to modify the TASK_SIZE access code in the
*.s file.
The kernel and modules may use different amounts of memory,
according to the VMSPLIT configuration, which in turn
determines the PAGE_OFFSET.
We use the following KASAN_SHADOW_OFFSETs depending on how the
virtual memory is split up:
- 0x1f000000 if we have 1G userspace / 3G kernelspace split:
- The kernel address space is 3G (0xc0000000)
- PAGE_OFFSET is then set to 0x40000000 so the kernel static
image (vmlinux) uses addresses 0x40000000 .. 0xffffffff
- On top of that we have the MODULES_VADDR which under
the worst case (using ARM instructions) is
PAGE_OFFSET - 16M (0x01000000) = 0x3f000000
so the modules use addresses 0x3f000000 .. 0x3fffffff
- So the addresses 0x3f000000 .. 0xffffffff need to be
covered with shadow memory. That is 0xc1000000 bytes
of memory.
- 1/8 of that is needed for its shadow memory, so
0x18200000 bytes of shadow memory is needed. We
"steal" that from the remaining lowmem.
- The KASAN_SHADOW_START becomes 0x26e00000, to
KASAN_SHADOW_END at 0x3effffff.
- Now we can calculate the KASAN_SHADOW_OFFSET for any
kernel address as 0x3f000000 needs to map to the first
byte of shadow memory and 0xffffffff needs to map to
the last byte of shadow memory. Since:
SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
0x26e00000 = (0x3f000000 >> 3) + KASAN_SHADOW_OFFSET
KASAN_SHADOW_OFFSET = 0x26e00000 - (0x3f000000 >> 3)
KASAN_SHADOW_OFFSET = 0x26e00000 - 0x07e00000
KASAN_SHADOW_OFFSET = 0x1f000000
- 0x5f000000 if we have 2G userspace / 2G kernelspace split:
- The kernel space is 2G (0x80000000)
- PAGE_OFFSET is set to 0x80000000 so the kernel static
image uses 0x80000000 .. 0xffffffff.
- On top of that we have the MODULES_VADDR which under
the worst case (using ARM instructions) is
PAGE_OFFSET - 16M (0x01000000) = 0x7f000000
so the modules use addresses 0x7f000000 .. 0x7fffffff
- So the addresses 0x7f000000 .. 0xffffffff need to be
covered with shadow memory. That is 0x81000000 bytes
of memory.
- 1/8 of that is needed for its shadow memory, so
0x10200000 bytes of shadow memory is needed. We
"steal" that from the remaining lowmem.
- The KASAN_SHADOW_START becomes 0x6ee00000, to
KASAN_SHADOW_END at 0x7effffff.
- Now we can calculate the KASAN_SHADOW_OFFSET for any
kernel address as 0x7f000000 needs to map to the first
byte of shadow memory and 0xffffffff needs to map to
the last byte of shadow memory. Since:
SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
0x6ee00000 = (0x7f000000 >> 3) + KASAN_SHADOW_OFFSET
KASAN_SHADOW_OFFSET = 0x6ee00000 - (0x7f000000 >> 3)
KASAN_SHADOW_OFFSET = 0x6ee00000 - 0x0fe00000
KASAN_SHADOW_OFFSET = 0x5f000000
- 0x9f000000 if we have 3G userspace / 1G kernelspace split,
and this is the default split for ARM:
- The kernel address space is 1GB (0x40000000)
- PAGE_OFFSET is set to 0xc0000000 so the kernel static
image uses 0xc0000000 .. 0xffffffff.
- On top of that we have the MODULES_VADDR which under
the worst case (using ARM instructions) is
PAGE_OFFSET - 16M (0x01000000) = 0xbf000000
so the modules use addresses 0xbf000000 .. 0xbfffffff
- So the addresses 0xbf000000 .. 0xffffffff need to be
covered with shadow memory. That is 0x41000000 bytes
of memory.
- 1/8 of that is needed for its shadow memory, so
0x08200000 bytes of shadow memory is needed. We
"steal" that from the remaining lowmem.
- The KASAN_SHADOW_START becomes 0xb6e00000, to
KASAN_SHADOW_END at 0xbfffffff.
- Now we can calculate the KASAN_SHADOW_OFFSET for any
kernel address as 0xbf000000 needs to map to the first
byte of shadow memory and 0xffffffff needs to map to
the last byte of shadow memory. Since:
SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
0xb6e00000 = (0xbf000000 >> 3) + KASAN_SHADOW_OFFSET
KASAN_SHADOW_OFFSET = 0xb6e00000 - (0xbf000000 >> 3)
KASAN_SHADOW_OFFSET = 0xb6e00000 - 0x17e00000
KASAN_SHADOW_OFFSET = 0x9f000000
- 0x8f000000 if we have 3G userspace / 1G kernelspace with
full 1 GB low memory (VMSPLIT_3G_OPT):
- The kernel address space is 1GB (0x40000000)
- PAGE_OFFSET is set to 0xb0000000 so the kernel static
image uses 0xb0000000 .. 0xffffffff.
- On top of that we have the MODULES_VADDR which under
the worst case (using ARM instructions) is
PAGE_OFFSET - 16M (0x01000000) = 0xaf000000
so the modules use addresses 0xaf000000 .. 0xaffffff
- So the addresses 0xaf000000 .. 0xffffffff need to be
covered with shadow memory. That is 0x51000000 bytes
of memory.
- 1/8 of that is needed for its shadow memory, so
0x0a200000 bytes of shadow memory is needed. We
"steal" that from the remaining lowmem.
- The KASAN_SHADOW_START becomes 0xa4e00000, to
KASAN_SHADOW_END at 0xaeffffff.
- Now we can calculate the KASAN_SHADOW_OFFSET for any
kernel address as 0xaf000000 needs to map to the first
byte of shadow memory and 0xffffffff needs to map to
the last byte of shadow memory. Since:
SHADOW_ADDR = (address >> 3) + KASAN_SHADOW_OFFSET
0xa4e00000 = (0xaf000000 >> 3) + KASAN_SHADOW_OFFSET
KASAN_SHADOW_OFFSET = 0xa4e00000 - (0xaf000000 >> 3)
KASAN_SHADOW_OFFSET = 0xa4e00000 - 0x15e00000
KASAN_SHADOW_OFFSET = 0x8f000000
- The default value of 0xffffffff for KASAN_SHADOW_OFFSET
is an error value. We should always match one of the
above shadow offsets.
When we do this, TASK_SIZE will sometimes get a bit odd values
that will not fit into immediate mov assembly instructions.
To account for this, we need to rewrite some assembly using
TASK_SIZE like this:
- mov r1, #TASK_SIZE
+ ldr r1, =TASK_SIZE
or
- cmp r4, #TASK_SIZE
+ ldr r0, =TASK_SIZE
+ cmp r4, r0
this is done to avoid the immediate #TASK_SIZE that need to
fit into a limited number of bits.
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Cc: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G
Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q
Reported-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Abbott Liu <liuwenliang@huawei.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Functions like memset()/memmove()/memcpy() do a lot of memory
accesses.
If a bad pointer is passed to one of these functions it is important
to catch this. Compiler instrumentation cannot do this since these
functions are written in assembly.
KASan replaces these memory functions with instrumented variants.
The original functions are declared as weak symbols so that
the strong definitions in mm/kasan/kasan.c can replace them.
The original functions have aliases with a '__' prefix in their
name, so we can call the non-instrumented variant if needed.
We must use __memcpy()/__memset() in place of memcpy()/memset()
when we copy .data to RAM and when we clear .bss, because
kasan_early_init cannot be called before the initialization of
.data and .bss.
For the kernel compression and EFI libstub's custom string
libraries we need a special quirk: even if these are built
without KASan enabled, they rely on the global headers for their
custom string libraries, which means that e.g. memcpy()
will be defined to __memcpy() and we get link failures.
Since these implementations are written i C rather than
assembly we use e.g. __alias(memcpy) to redirected any
users back to the local implementation.
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G
Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q
Reported-by: Russell King - ARM Linux <rmk+kernel@armlinux.org.uk>
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Abbott Liu <liuwenliang@huawei.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Disable instrumentation for arch/arm/boot/compressed/*
since that code is executed before the kernel has even
set up its mappings and definately out of scope for
KASan.
Disable instrumentation of arch/arm/vdso/* because that code
is not linked with the kernel image, so the KASan management
code would fail to link.
Disable instrumentation of arch/arm/mm/physaddr.c. See commit
ec6d06efb0 ("arm64: Add support for CONFIG_DEBUG_VIRTUAL")
for more details.
Disable kasan check in the function unwind_pop_register because
it does not matter that kasan checks failed when unwind_pop_register()
reads the stack memory of a task.
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kasan-dev@googlegroups.com
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G
Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs
Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Abbott Liu <liuwenliang@huawei.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
On ARM, setting up the linear region is tricky, given the constraints
around placement and alignment of the memblocks, and how the kernel
itself as well as the DT are placed in physical memory.
Let's simplify matters a bit, by moving the device tree mapping to the
top of the address space, right between the end of the vmalloc region
and the start of the the fixmap region, and create a read-only mapping
for it that is independent of the size of the linear region, and how it
is organized.
Since this region was formerly used as a guard region, which will now be
populated fully on LPAE builds by this read-only mapping (which will
still be able to function as a guard region for stray writes), bump the
start of the [underutilized] fixmap region by 512 KB as well, to ensure
that there is always a proper guard region here. Doing so still leaves
ample room for the fixmap space, even with NR_CPUS set to its maximum
value of 32.
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Before moving the DT mapping out of the linear region, let's prepare
for this change by removing all the phys-to-virt translations of the
__atags_pointer variable, and perform this translation only once at
setup time.
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+SOXIQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgptrcD/93VUDmRAn73ChKNd0TtXUicJlAlNLVjvfs
VFTXWBDnlJnGkZT7ElkDD9b8dsz8l4xGf/QZ5dzhC/th2OsfObQkSTfe0lv5cCQO
mX7CRSrDpjaHtW+WGPDa0oQsGgIfpqUz2IOg9NKbZZ1LJ2uzYfdOcf3oyRgwZJ9B
I3sh1vP6OzjZVVCMmtMTM+sYZEsDoNwhZwpkpiwMmj8tYtOPgKCYKpqCiXrGU0x2
ML5FtDIwiwU+O3zYYdCBWqvCb2Db0iA9Aov2whEBz/V2jnmrN5RMA/90UOh1E2zG
br4wM1Wt3hNrtj5qSxZGlF/HEMYJVB8Z2SgMjYu4vQz09qRVVqpGdT/dNvLAHQWg
w4xNCj071kVZDQdfwnqeWSKYUau9Xskvi8xhTT+WX8a5CsbVrM9vGslnS5XNeZ6p
h2D3Q+TAYTvT756icTl0qsYVP7PrPY7DdmQYu0q+Lc3jdGI+jyxO2h9OFBRLZ3p6
zFX2N8wkvvCCzP2DwVnnhIi/GovpSh7ksHnb039F36Y/IhZPqV1bGqdNQVdanv6I
8fcIDM6ltRQ7dO2Br5f1tKUZE9Pm6x60b/uRVjhfVh65uTEKyGRhcm5j9ztzvQfI
cCBg4rbVRNKolxuDEkjsAFXVoiiEEsb7pLf4pMO+Dr62wxFG589tQNySySneUIVZ
J9ILnGAAeQ==
=aVWo
-----END PGP SIGNATURE-----
Merge tag 'arch-cleanup-2020-10-22' of git://git.kernel.dk/linux-block
Pull arch task_work cleanups from Jens Axboe:
"Two cleanups that don't fit other categories:
- Finally get the task_work_add() cleanup done properly, so we don't
have random 0/1/false/true/TWA_SIGNAL confusing use cases. Updates
all callers, and also fixes up the documentation for
task_work_add().
- While working on some TIF related changes for 5.11, this
TIF_NOTIFY_RESUME cleanup fell out of that. Remove some arch
duplication for how that is handled"
* tag 'arch-cleanup-2020-10-22' of git://git.kernel.dk/linux-block:
task_work: cleanup notification modes
tracehook: clear TIF_NOTIFY_RESUME in tracehook_notify_resume()
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the module
linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl+RfS0VHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGG1QP/2hzoMzK1YXErPUhGrhYU1rxz7Nu
HkLTIkyKF1HPwSJf5XyNW/FTBI4SDlkNoVg/weEDCS1yFxxpvQLIck8ChzA1kIIM
P+1IfBWOTzqn91XsapU2zwSno3gylphVchVIvYAB3oLUotGeMSluy1cQtBRzyA5D
rj2Q7H8fzkzk3YoBcBC/BOKDlfo/usqQ1X/gsfRFwN/BJxeZSYoujNBE7KtHaDsd
8K/ggBIqmST4NBn+M8c11d8CxzvWbtG1gq3EkUL5nG8T13DsGn1EFC0SPt85bkvv
f9YywfJi37HixhZzK6tXYjN/PWoiEY6z90mhd0NtZghQT7kQMiTQ3sWrM8dX3ssf
phBzO94uFQDjhyxOaSSsCoI/TIciAPo4+G8PNjcaEtj63IEfhEz/dnlstYwY5Y9P
Pp3aZtVjSGJwGW2u2EUYj6paFVqjf6DXQjQKPNHnsYCEidIvFTjjguRGvx9gl6mx
yd8oseOsAtOEf0alRe9MMdvN17O3UrRAxgBdap7fktg02TLVRGxZIbuwKmBf29ho
ORl9zeFkYBn6XQFyuItJoXy/kYFyHDaBEPYCRQcY4dwqcjZIiAc/FhYbqYthJ59L
5vLN2etmDIVSuUv1J5nBqHHGCqJChykbqg7riQ651dCNKw4gZB8ctCay2lXhBXMg
1mqOcoG5WWL7//F+
=tZRN
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the
module linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
* tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (34 commits)
kbuild: Use uname for LINUX_COMPILE_HOST detection
kbuild: Only add -fno-var-tracking-assignments for old GCC versions
kbuild: remove leftover comment for filechk utility
treewide: remove DISABLE_LTO
kbuild: deb-pkg: clean up package name variables
kbuild: deb-pkg: do not build linux-headers package if CONFIG_MODULES=n
kbuild: enforce -Werror=return-type
scripts: remove namespace.pl
builddeb: Add support for all required debian/rules targets
builddeb: Enable rootless builds
builddeb: Pass -n to gzip for reproducible packages
kbuild: split the build log of kallsyms
kbuild: explicitly specify the build id style
scripts/setlocalversion: make git describe output more reliable
kbuild: remove cc-option test of -Werror=date-time
kbuild: remove cc-option test of -fno-stack-check
kbuild: remove cc-option test of -fno-strict-overflow
kbuild: move CFLAGS_{KASAN,UBSAN,KCSAN} exports to relevant Makefiles
kbuild: remove redundant CONFIG_KASAN check from scripts/Makefile.kasan
kbuild: do not create built-in objects for external module builds
...
All the callers currently do this, clean it up and move the clearing
into tracehook_notify_resume() instead.
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are several occurrences of the following pattern:
for_each_memblock(memory, reg) {
start = __pfn_to_phys(memblock_region_memory_base_pfn(reg);
end = __pfn_to_phys(memblock_region_memory_end_pfn(reg));
/* do something with start and end */
}
Using for_each_mem_range() iterator is more appropriate in such cases and
allows simpler and cleaner code.
[akpm@linux-foundation.org: fix arch/arm/mm/pmsa-v7.c build]
[rppt@linux.ibm.com: mips: fix cavium-octeon build caused by memblock refactoring]
Link: http://lkml.kernel.org/r/20200827124549.GD167163@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20200818151634.14343-13-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
because the heuristics that various linkers & compilers use to handle them
(include these bits into the output image vs discarding them silently)
are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook (et al)
adds build time asserts and build time warnings if there's any orphan section
in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix a metric
ton of dependencies and some outright bugs related to this, before we can
finally enable the checks on the x86, ARM and ARM64 platforms.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Edv4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hiKBAApdJEOaK7hMc3013DYNctklIxEPJL2mFJ
11YJRIh4pUJTF0TE+EHT/D+rSIuRsyuoSmOQBQ61/wVSnyG067GjjVJRqh/eYaJ1
fDhJi2FuHOjXl+CiN0KxzBjjp+V4NhF7jHT59tpQSvfZeg7FjteoxfztxaCp5ek3
S3wHB3CC4c4jE3lfjHem1E9/PwT4kwPYx1c3gAUdEqJdjkihjX9fWusfjLeqW6/d
Y5VkApi6bL9XiZUZj5l0dEIweLJJ86+PkKJqpo3spxxEak1LSn1MEix+lcJ8e1Kg
sb/bEEivDcmFlFWOJnn0QLquCR0Cx5bz1pwsL0tuf0yAd4+sXX5IMuGUysZlEdKM
BHL9h5HbevGF4BScwZwZH7lyEg7q67s5KnRu4hxy0Swfcj7y0oT/9lXqpbpZ2DqO
Hd+bRRQKIbqnTMp0hcit9LfpLp93vj0dBlaV5ocAJJlu62u9VnwGG5HQuZ5giLUr
kA1SLw63Y1wopFRxgFyER8les7eLsu0zxHeK44rRVlVnfI99OMTOgVNicmDFy3Fm
AfcnfJG0BqBEJGQz5es34uQQKKBwFPtC9NztopI62KiwOspYYZyrO1BNxdOc6DlS
mIHrmO89HMXuid5eolvLaFqUWirHoWO8TlycgZxUWVHc2txVPjAEU/axouU/dSSU
w/6GpzAa+7g=
=fXAw
-----END PGP SIGNATURE-----
Merge tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull orphan section checking from Ingo Molnar:
"Orphan link sections were a long-standing source of obscure bugs,
because the heuristics that various linkers & compilers use to handle
them (include these bits into the output image vs discarding them
silently) are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook
(et al) adds build time asserts and build time warnings if there's any
orphan section in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix
a metric ton of dependencies and some outright bugs related to this,
before we can finally enable the checks on the x86, ARM and ARM64
platforms"
* tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/boot/compressed: Warn on orphan section placement
x86/build: Warn on orphan section placement
arm/boot: Warn on orphan section placement
arm/build: Warn on orphan section placement
arm64/build: Warn on orphan section placement
x86/boot/compressed: Add missing debugging sections to output
x86/boot/compressed: Remove, discard, or assert for unwanted sections
x86/boot/compressed: Reorganize zero-size section asserts
x86/build: Add asserts for unwanted sections
x86/build: Enforce an empty .got.plt section
x86/asm: Avoid generating unused kprobe sections
arm/boot: Handle all sections explicitly
arm/build: Assert for unwanted sections
arm/build: Add missing sections
arm/build: Explicitly keep .ARM.attributes sections
arm/build: Refactor linker script headers
arm64/build: Assert for unwanted sections
arm64/build: Add missing DWARF sections
arm64/build: Use common DISCARDS in linker script
arm64/build: Remove .eh_frame* sections due to unwind tables
...
- Reorganize & clean up the SD* flags definitions and add a bunch
of sanity checks. These new checks caught quite a few bugs or at
least inconsistencies, resulting in another set of patches.
- Rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
- Add a new tracepoint to improve CPU capacity tracking
- Improve overloaded SMP system load-balancing behavior
- Tweak SMT balancing
- Energy-aware scheduling updates
- NUMA balancing improvements
- Deadline scheduler fixes and improvements
- CPU isolation fixes
- Misc cleanups, simplifications and smaller optimizations.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EWRERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hV8A/7BB0nt/zYVZ8Z3Di8V0b9hMtr0d1xtRM5
ZAvg4hcZl/fVgobFndxBw6KdlK8lSce9Mcq+bTTWeD46CS13cK5Vrpiaf7x7Q00P
m8YHeYEH13ME0pbBrhDoRCR4XzfXukzjkUl7LiyrTekAvRUtFikJ/uKl8MeJtYGZ
gANEkadqforxUW0v45iUEGepmCWAl8hSlSMb2mDKsVhw4DFMD+px0EBmmA0VDqjE
e0rkh6dEoUVNqlic2KoaXULld1rLg1xiaOcLUbTAXnucfhmuv5p/H11AC4ABuf+s
7d0zLrLEfZrcLJkthYxfMHs7DYMtARiQM9Db/a5hAq9Af4Z2bvvVAaHt3gCGvkV1
llB6BB2yWCki9Qv7oiGOAhANnyJHG/cU4r6WwMuHdlYi4dFT/iN5qkOMUL1IrDgi
a6ZzvECChXBeisQXHSlMd8Y5O+j0gRvDR7E18z2q0/PlmO8PGJq4w34mEWveWIg3
LaVF16bmvaARuNFJTQH/zaHhjqVQANSMx5OIv9swp0OkwvQkw21ICYHG0YxfzWCr
oa/FESEpOL9XdYp8UwMPI0bmVIsEfx79pmDMF3zInYTpJpwMUhV2yjHE8uYVMqEf
7U8rZv7gdbZ2us38Gjf2l73hY+recp/GrgZKnk0R98OUeMk1l/iVP6dwco6ITUV5
czGmKlIB1ec=
=bXy6
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- reorganize & clean up the SD* flags definitions and add a bunch of
sanity checks. These new checks caught quite a few bugs or at least
inconsistencies, resulting in another set of patches.
- rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
- add a new tracepoint to improve CPU capacity tracking
- improve overloaded SMP system load-balancing behavior
- tweak SMT balancing
- energy-aware scheduling updates
- NUMA balancing improvements
- deadline scheduler fixes and improvements
- CPU isolation fixes
- misc cleanups, simplifications and smaller optimizations
* tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
sched/deadline: Unthrottle PI boosted threads while enqueuing
sched/debug: Add new tracepoint to track cpu_capacity
sched/fair: Tweak pick_next_entity()
rseq/selftests: Test MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
rseq/selftests,x86_64: Add rseq_offset_deref_addv()
rseq/membarrier: Add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
sched/fair: Use dst group while checking imbalance for NUMA balancer
sched/fair: Reduce busy load balance interval
sched/fair: Minimize concurrent LBs between domain level
sched/fair: Reduce minimal imbalance threshold
sched/fair: Relax constraint on task's load during load balance
sched/fair: Remove the force parameter of update_tg_load_avg()
sched/fair: Fix wrong cpu selecting from isolated domain
sched: Remove unused inline function uclamp_bucket_base_value()
sched/rt: Disable RT_RUNTIME_SHARE by default
sched/deadline: Fix stale throttling on de-/boosted tasks
sched/numa: Use runnable_avg to classify node
sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
MAINTAINERS: Add myself as SCHED_DEADLINE reviewer
sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
...
As SMP-on-UP is a valid configuration on 32bit ARM, do not assume that
IPIs are populated in show_ipi_list().
Reported-by: Guillaume Tucker <guillaume.tucker@collabora.com>
Reported-by: kernelci.org bot <bot@kernelci.org>
Tested-by: Guillaume Tucker <guillaume.tucker@collabora.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
There was a request to preprocess the module linker script like we
do for the vmlinux one. (https://lkml.org/lkml/2020/8/21/512)
The difference between vmlinux.lds and module.lds is that the latter
is needed for external module builds, thus must be cleaned up by
'make mrproper' instead of 'make clean'. Also, it must be created
by 'make modules_prepare'.
You cannot put it in arch/$(SRCARCH)/kernel/, which is cleaned up by
'make clean'. I moved arch/$(SRCARCH)/kernel/module.lds to
arch/$(SRCARCH)/include/asm/module.lds.h, which is included from
scripts/module.lds.S.
scripts/module.lds is fine because 'make clean' keeps all the
build artifacts under scripts/.
You can add arch-specific sections in <asm/module.lds.h>.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
The msi_ctrl, io_optional and align_resource fields in struct hw_pci are
currently unused by arm/mach PCI host controller drivers and we won't
be adding any new users.
Remove them and related code.
Link: https://lore.kernel.org/r/20200904141607.4066-1-lorenzo.pieralisi@arm.com
Link: https://lore.kernel.org/r/20200916103045.28651-1-lorenzo.pieralisi@arm.com
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
ipi_teardown() is only used when CONFIG_HOTPLUG_CPU is enabled.
Move the function to a location guarded by this config option.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Let's switch the arm code to the core accounting, which already
does everything we need.
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The old IPI registration interface is now unused on arm, so let's
get rid of it.
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Instead of a flow control selection mechanism specifically for
8250, make this available for all debug UARTs. If the debug
UART supports waiting for CTS to be asserted, then this code
can be activated for terminals that need it.
We keep the defaults for EBSA110, Footbridge, Gemini and RPC
so that this still works as expected for these older platforms:
they assume that flow control shall be enabled for debug
prints.
I switch the location of the check for
ifdef CONFIG_DEBUG_UART_FLOW_CONTROL from the actual debug
UART drivers: the code would get compiled-out for 8250 and
Tegra unless their custom config (or passing -DFLOW_CONTROL
in the Tegra case) was not set. Instead this is conditional
at the three places where we print debug messages. The idea
is that debug UARTs can be implemented without this ifdef
boilerplate so they look cleaner, alas the ifdef has to be
somewhere.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
This patch was triggered by a remark from Russell that
introducing a call to the waituart (needed to fix debug prints
on the Qualcomm platforms) was dangerous because in some cases
this will involve waiting for a modem CTS (clear to send)
signal, and debug messages would maybe not work on platforms
with no modem connected to the UART port: they will just
hang waiting for the modem to assert CTS and this might never
happen.
Looking through all UART debug drivers implementing the waituart
macro I discovered that all users except two actually use this
macro to check if the UART is ready for TX, let's call this
TXRDY.
Only two debug UART drivers actually check for CTS:
- arch/arm/include/debug/8250.S
- arch/arm/include/debug/tegra.S
The former is very significant since the 8250 is possibly
the most common UART on the planet.
We have the following problem: the semantics of waituart are
ambiguous making it dangerous to introduce the macro to debug
code fixing debug prints for Qualcomm. To start to pry this
problem apart, this patch does the following:
- Convert all debug UART drivers to define two macros:
- waituartcts with the clear semantic to wait for CTS
to be asserted
- waituarttxrdy with the clear semantic to wait for the TX
capability of the UART to be ready
- When doing this take care to assign the right function to
each drivers macro, so they now do exactly the above.
- Update the three sites in the kernel invoking the waituart
macro to call waituartcts/waituarttxrdy in sequence, so that
the functional impact on the kernel should be zero.
After this we can start to change the code sites using this
code to do the right thing.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
In order to deal with IPIs as normal interrupts, let's add
a new way to register them with the architecture code.
set_smp_ipi_range() takes a range of interrupts, and allows
the arch code to request them as if the were normal interrupts.
A standard handler is then called by the core IRQ code to deal
with the IPI.
This means that we don't need to call irq_enter/irq_exit, and
that we don't need to deal with set_irq_regs either. So let's
move the dispatcher into its own function, and leave handle_IPI()
as a compatibility function.
On the sending side, let's make use of ipi_send_mask, which
already exists for this purpose.
One of the major difference is that we end up, in some cases
(such as when performing IRQ time accounting on the scheduler
IPI), end up with nested irq_enter()/irq_exit() pairs.
Other than the (relatively small) overhead, there should be
no consequences to it (these pairs are designed to nest
correctly, and the accounting shouldn't be off).
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In preparation for warning on orphan sections, enforce
expected-to-be-zero-sized sections (since discarding them might hide
problems with them suddenly gaining unexpected entries).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Link: https://lore.kernel.org/r/20200821194310.3089815-19-keescook@chromium.org
Add missing text stub sections .vfp11_veneer and .v4_bx, as well as
missing DWARF sections, when present in the build.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Russell King <linux@armlinux.org.uk>
Link: https://lore.kernel.org/r/20200821194310.3089815-18-keescook@chromium.org
In preparation for adding --orphan-handling=warn, refactor the linker
script header includes, and extract common macros.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Link: https://lore.kernel.org/r/20200821194310.3089815-16-keescook@chromium.org
The .comment section doesn't belong in STABS_DEBUG. Split it out into a
new macro named ELF_DETAILS. This will gain other non-debug sections
that need to be accounted for when linking with --orphan-handling=warn.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-arch@vger.kernel.org
Link: https://lore.kernel.org/r/20200821194310.3089815-5-keescook@chromium.org
The ARM-specific GMC level is meant to be built using the thread sibling
mask, but no devicetree in arch/arm/boot/dts uses the 'thread' cpu-map
binding. With SD_SHARE_POWERDOMAIN gone, this topology level can be
removed, at which point ARM no longer benefits from having a custom defined
topology table.
Delete the GMC topology level by making ARM use the default scheduler
topology table. This essentially reverts commit:
fb2aa85564 ("sched, ARM: Create a dedicated scheduler topology table")
No change in functionality is expected.
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-3-valentin.schneider@arm.com
This flag was introduced in 2014 by commit:
d77b3ed5c9 ("sched: Add a new SD_SHARE_POWERDOMAIN for sched_domain")
but AFAIA it was never leveraged by the scheduler. The closest thing I can
think of is EAS caring about frequency domains, and it does that by
leveraging performance domains.
Remove the flag. No change in functionality is expected.
Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200817113003.20802-2-valentin.schneider@arm.com
Patch series "clean up address limit helpers", v2.
In preparation for eventually phasing out direct use of set_fs(), this
series removes the segment_eq() arch helper that is only used to implement
or duplicate the uaccess_kernel() API, and then adds descriptive helpers
to force the kernel address limit.
This patch (of 6):
Use the uaccess_kernel helper instead of duplicating it.
[hch@lst.de: arm: don't call addr_limit_user_check for nommu]
Link: http://lkml.kernel.org/r/20200721045834.GA9613@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Link: http://lkml.kernel.org/r/20200714105505.935079-1-hch@lst.de
Link: http://lkml.kernel.org/r/20200710135706.537715-1-hch@lst.de
Link: http://lkml.kernel.org/r/20200710135706.537715-2-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull regset conversion fix from Al Viro:
"Fix a regression from an unnoticed bisect hazard in the regset series.
A bunch of old (aout, originally) primitives used by coredumps became
dead code after fdpic conversion to regsets. Removal of that dead code
had been the first commit in the followups to regset series;
unfortunately, it happened to hide the bisect hazard on sh (extern for
fpregs_get() had not been updated in the main series when it should
have been; followup simply made fpregs_get() static). And without that
followup commit this bisect hazard became breakage in the mainline"
Tested-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
kill unused dump_fpu() instances
Merge misc updates from Andrew Morton:
- a few MM hotfixes
- kthread, tools, scripts, ntfs and ocfs2
- some of MM
Subsystems affected by this patch series: kthread, tools, scripts, ntfs,
ocfs2 and mm (hofixes, pagealloc, slab-generic, slab, slub, kcsan,
debug, pagecache, gup, swap, shmem, memcg, pagemap, mremap, mincore,
sparsemem, vmalloc, kasan, pagealloc, hugetlb and vmscan).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
mm: vmscan: consistent update to pgrefill
mm/vmscan.c: fix typo
khugepaged: khugepaged_test_exit() check mmget_still_valid()
khugepaged: retract_page_tables() remember to test exit
khugepaged: collapse_pte_mapped_thp() protect the pmd lock
khugepaged: collapse_pte_mapped_thp() flush the right range
mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible
mm: thp: replace HTTP links with HTTPS ones
mm/page_alloc: fix memalloc_nocma_{save/restore} APIs
mm/page_alloc.c: skip setting nodemask when we are in interrupt
mm/page_alloc: fallbacks at most has 3 elements
mm/page_alloc: silence a KASAN false positive
mm/page_alloc.c: remove unnecessary end_bitidx for [set|get]_pfnblock_flags_mask()
mm/page_alloc.c: simplify pageblock bitmap access
mm/page_alloc.c: extract the common part in pfn_to_bitidx()
mm/page_alloc.c: replace the definition of NR_MIGRATETYPE_BITS with PB_migratetype_bits
mm/shuffle: remove dynamic reconfiguration
mm/memory_hotplug: document why shuffle_zone() is relevant
mm/page_alloc: remove nr_free_pagecache_pages()
mm: remove vm_total_pages
...
Patch series "mm: cleanup usage of <asm/pgalloc.h>"
Most architectures have very similar versions of pXd_alloc_one() and
pXd_free_one() for intermediate levels of page table. These patches add
generic versions of these functions in <asm-generic/pgalloc.h> and enable
use of the generic functions where appropriate.
In addition, functions declared and defined in <asm/pgalloc.h> headers are
used mostly by core mm and early mm initialization in arch and there is no
actual reason to have the <asm/pgalloc.h> included all over the place.
The first patch in this series removes unneeded includes of
<asm/pgalloc.h>
In the end it didn't work out as neatly as I hoped and moving
pXd_alloc_track() definitions to <asm-generic/pgalloc.h> would require
unnecessary changes to arches that have custom page table allocations, so
I've decided to move lib/ioremap.c to mm/ and make pgalloc-track.h local
to mm/.
This patch (of 8):
In most cases <asm/pgalloc.h> header is required only for allocations of
page table memory. Most of the .c files that include that header do not
use symbols declared in <asm/pgalloc.h> and do not require that header.
As for the other header files that used to include <asm/pgalloc.h>, it is
possible to move that include into the .c file that actually uses symbols
from <asm/pgalloc.h> and drop the include from the header file.
The process was somewhat automated using
sed -i -E '/[<"]asm\/pgalloc\.h/d' \
$(grep -L -w -f /tmp/xx \
$(git grep -E -l '[<"]asm/pgalloc\.h'))
where /tmp/xx contains all the symbols defined in
arch/*/include/asm/pgalloc.h.
[rppt@linux.ibm.com: fix powerpc warning]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200627143453.31835-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200627143453.31835-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull init and set_fs() cleanups from Al Viro:
"Christoph's 'getting rid of ksys_...() uses under KERNEL_DS' series"
* 'hch.init_path' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (50 commits)
init: add an init_dup helper
init: add an init_utimes helper
init: add an init_stat helper
init: add an init_mknod helper
init: add an init_mkdir helper
init: add an init_symlink helper
init: add an init_link helper
init: add an init_eaccess helper
init: add an init_chmod helper
init: add an init_chown helper
init: add an init_chroot helper
init: add an init_chdir helper
init: add an init_rmdir helper
init: add an init_unlink helper
init: add an init_umount helper
init: add an init_mount helper
init: mark create_dev as __init
init: mark console_on_rootfs as __init
init: initialize ramdisk_execute_command at compile time
devtmpfs: refactor devtmpfsd()
...
Pull ptrace regset updates from Al Viro:
"Internal regset API changes:
- regularize copy_regset_{to,from}_user() callers
- switch to saner calling conventions for ->get()
- kill user_regset_copyout()
The ->put() side of things will have to wait for the next cycle,
unfortunately.
The balance is about -1KLoC and replacements for ->get() instances are
a lot saner"
* 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
regset: kill user_regset_copyout{,_zero}()
regset(): kill ->get_size()
regset: kill ->get()
csky: switch to ->regset_get()
xtensa: switch to ->regset_get()
parisc: switch to ->regset_get()
nds32: switch to ->regset_get()
nios2: switch to ->regset_get()
hexagon: switch to ->regset_get()
h8300: switch to ->regset_get()
openrisc: switch to ->regset_get()
riscv: switch to ->regset_get()
c6x: switch to ->regset_get()
ia64: switch to ->regset_get()
arc: switch to ->regset_get()
arm: switch to ->regset_get()
sh: convert to ->regset_get()
arm64: switch to ->regset_get()
mips: switch to ->regset_get()
sparc: switch to ->regset_get()
...
- add arch/arm/Kbuild from Masahiro Yamada.
- simplify act_mm macro, since it contains an open-coded
get_thread_info.
- VFP updates for Clang from Stefan Agner.
- Fix unwinder for Clang from Nathan Huckleberry.
- Remove unused it8152 PCI host controller, used by the removed cm-x2xx
platforms from Mike Rapoport.
- Further explanation of __range_ok().
- Remove kimage_voffset that isn't used anymore from Marc Zyngier.
- Drop ancient Thumb-2 workaround for old binutils from Ard Biesheuvel.
- Documentation cleanup for mach-* from Pete Zaitcev.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEuNNh8scc2k/wOAE+9OeQG+StrGQFAl8sOXMACgkQ9OeQG+St
rGRFCBAAlBOdZmiB4/UW59LEdBRhNg4C0HNQmOxQqp6oMZLw9Whu3SDHeBePVvqA
gp8z3rJL6N6XhSmv0dplWxgX2FrBfscjlwa7wLcwtz1NCTeGT1xL6s2dwH2q8Ocw
swfcFhdFiJ+ewtylfYqogGPQyFXOPnTGv7B/cH+IX1kP0OcpgDb+pDy24MrrrD4r
6DC8fIkZtDcvABJGSEthiMx29Pn1jbGAZWW3acVDtnMgppzB6brMH/A1HirMo0G9
qGxejqJ+/DgsQciRBxfSI2N4U42XRVacW1vGdN19tFWYhHNStx9PnV9JHo61sQFM
UiI1fARat8dlY8qT72binE1gbDZ4HOLJ5181BjDEchoO/qnxxi0tOlOlFO6PB0fz
innRDC5TGLjBb/9B5YkHLSoDDo0erovJUV1m1pz/T9Dd6rO+1BV6Q2GI312dxLVR
IfRJ8PVI9WZaYjZgxp14m1l0tRNI0BJoRT6QjADwAxo5leRFho6KbsfAgNCm8/ni
lfqo3kHrLnd3pojljiuvW8/oBdqYTA86VAlfzyJ/rFOHMlROeFGCoCDqsBeqR1gZ
pX3zQU5Jf8pJXsXaM1hXO/CcK61Nr4/m18uyjLpJeyYNJWz3CZ/hndhLJR91cShT
hTP1bB/UQlprOP6CgjTPj1MCCA9HCRCo8k5y/s9VKpMZ8SM9Ghw=
=RWzO
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:
- add arch/arm/Kbuild from Masahiro Yamada.
- simplify act_mm macro, since it contains an open-coded
get_thread_info.
- VFP updates for Clang from Stefan Agner.
- Fix unwinder for Clang from Nathan Huckleberry.
- Remove unused it8152 PCI host controller, used by the removed cm-x2xx
platforms from Mike Rapoport.
- Further explanation of __range_ok().
- Remove kimage_voffset that isn't used anymore from Marc Zyngier.
- Drop ancient Thumb-2 workaround for old binutils from Ard Biesheuvel.
- Documentation cleanup for mach-* from Pete Zaitcev.
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8996/1: Documentation/Clean up the description of mach-<class>
ARM: 8995/1: drop Thumb-2 workaround for ancient binutils
ARM: 8994/1: mm: drop kimage_voffset which was only used by KVM
ARM: uaccess: add further explanation of __range_ok()
ARM: 8993/1: remove it8152 PCI controller driver
ARM: 8992/1: Fix unwind_frame for clang-built kernels
ARM: 8991/1: use VFP assembler mnemonics if available
ARM: 8990/1: use VFP assembler mnemonics in register load/store macros
ARM: 8989/1: use .fpu assembler directives instead of assembler arguments
ARM: 8982/1: mm: Simplify act_mm macro
ARM: 8981/1: add arch/arm/Kbuild
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXyge/QAKCRCRxhvAZXjc
oildAQCCWpnTeXm6hrIE3VZ36X5npFtbaEthdBVAUJM7mo0FYwEA8+Wbnubg6jCw
mztkXCnTfU7tApUdhKtQzcpEws45/Qk=
=REE/
-----END PGP SIGNATURE-----
Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull fork cleanups from Christian Brauner:
"This is cleanup series from when we reworked a chunk of the process
creation paths in the kernel and switched to struct
{kernel_}clone_args.
High-level this does two main things:
- Remove the double export of both do_fork() and _do_fork() where
do_fork() used the incosistent legacy clone calling convention.
Now we only export _do_fork() which is based on struct
kernel_clone_args.
- Remove the copy_thread_tls()/copy_thread() split making the
architecture specific HAVE_COYP_THREAD_TLS config option obsolete.
This switches all remaining architectures to select
HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
convention. The current split makes the process creation codepaths
more convoluted than they need to be. Each architecture has their own
copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
has a copy_thread_tls() function.
The split is not needed anymore nowadays, all architectures support
CLONE_SETTLS but quite a few of them never bothered to select
HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
and use the old calling convention. Removing this split cleans up the
process creation codepaths and paves the way for implementing clone3()
on such architectures since it requires the copy_thread_tls() calling
convention.
After having made each architectures support copy_thread_tls() this
series simply renames that function back to copy_thread(). It also
switches all architectures that call do_fork() directly over to
_do_fork() and the struct kernel_clone_args calling convention. This
is a corollary of switching the architectures that did not yet support
it over to copy_thread_tls() since do_fork() is conditional on not
supporting copy_thread_tls() (Mostly because it lacks a separate
argument for tls which is trivial to fix but there's no need for this
function to exist.).
The do_fork() removal is in itself already useful as it allows to to
remove the export of both do_fork() and _do_fork() we currently have
in favor of only _do_fork(). This has already been discussed back when
we added clone3(). The legacy clone() calling convention is - as is
probably well-known - somewhat odd:
#
# ABI hall of shame
#
config CLONE_BACKWARDS
config CLONE_BACKWARDS2
config CLONE_BACKWARDS3
that is aggravated by the fact that some architectures such as sparc
follow the CLONE_BACKWARDSx calling convention but don't really select
the corresponding config option since they call do_fork() directly.
So do_fork() enforces a somewhat arbitrary calling convention in the
first place that doesn't really help the individual architectures that
deviate from it. They can thus simply be switched to _do_fork()
enforcing a single calling convention. (I really hope that any new
architectures will __not__ try to implement their own calling
conventions...)
Most architectures already have made a similar switch (m68k comes to
mind).
Overall this removes more code than it adds even with a good portion
of added comments. It simplifies a chunk of arch specific assembly
either by moving the code into C or by simply rewriting the assembly.
Architectures that have been touched in non-trivial ways have all been
actually boot and stress tested: sparc and ia64 have been tested with
Debian 9 images. They are the two architectures which have been
touched the most. All non-trivial changes to architectures have seen
acks from the relevant maintainers. nios2 with a custom built
buildroot image. h8300 I couldn't get something bootable to test on
but the changes have been fairly automatic and I'm sure we'll hear
people yell if I broke something there.
All other architectures that have been touched in trivial ways have
been compile tested for each single patch of the series via git rebase
-x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
even though they have just been trivially touched (removal of the
HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
basically "core architectures" and since it is trivial to get your
hands on a useable image"
* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
arch: rename copy_thread_tls() back to copy_thread()
arch: remove HAVE_COPY_THREAD_TLS
unicore: switch to copy_thread_tls()
sh: switch to copy_thread_tls()
nds32: switch to copy_thread_tls()
microblaze: switch to copy_thread_tls()
hexagon: switch to copy_thread_tls()
c6x: switch to copy_thread_tls()
alpha: switch to copy_thread_tls()
fork: remove do_fork()
h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
sparc: unconditionally enable HAVE_COPY_THREAD_TLS
sparc: share process creation helpers between sparc and sparc64
sparc64: enable HAVE_COPY_THREAD_TLS
fork: fold legacy_clone_args_valid() into _do_fork()
Remove the special handling for multiple floppies in the initrd code.
No one should be using floppies for booting these days. (famous last
words..)
Includes a spelling fix from Colin Ian King <colin.king@canonical.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_fpu() is used only on the architectures that support elf
and have neither CORE_DUMP_USE_REGSET nor ELF_CORE_COPY_FPREGS
defined.
Currently that's csky, m68k, microblaze, nds32 and unicore32. The rest
of the instances are dead code.
NB: THIS MUST GO AFTER ELF_FDPIC CONVERSION
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The it8152 PCI host controller was only used by cm-x2xx platforms.
Since these platforms were removed, there is no point to keep it8152
driver.
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Since clang does not push pc and sp in function prologues, the current
implementation of unwind_frame does not work. By using the previous
frame's lr/fp instead of saved pc/sp we get valid unwinds on clang-built
kernels.
The bounds check on next frame pointer must be changed as well since
there are 8 less bytes between frames.
This fixes /proc/<pid>/stack.
Link: https://github.com/ClangBuiltLinux/linux/issues/912
Reported-by: Miles Chen <miles.chen@mediatek.com>
Tested-by: Miles Chen <miles.chen@mediatek.com>
Cc: stable@vger.kernel.org
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
__vdso_*() should be removed and fallback used if CNTCVT is not
available by cntvct_functional(). __vdso_clock_gettime64 when added
previous commit is using the incorrect CNTCVT value in that state.
__vdso_clock_gettime64 is also added to remove it's symbol.
Cc: stable@vger.kernel.org
Fixes: 74d06efb9c ("ARM: 8932/1: Add clock_gettime64 entry point")
Signed-off-by: Jaedon Shin <jaedon.shin@gmail.com>
Tested-by: Robin Murphy <robin.mruphy@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Unprivileged memory accesses generated by the so-called "translated"
instructions (e.g. LDRT) in kernel mode can cause user watchpoints to fire
unexpectedly. In such cases, the hw_breakpoint logic will invoke the user
overflow handler which will typically raise a SIGTRAP back to the current
task. This is futile when returning back to the kernel because (a) the
signal won't have been delivered and (b) userspace can't handle the thing
anyway.
Avoid invoking the user overflow handler for watchpoints triggered by
kernel uaccess routines, and instead single-step over the faulting
instruction as we would if no overflow handler had been installed.
Cc: <stable@vger.kernel.org>
Fixes: f81ef4a920 ("ARM: 6356/1: hw-breakpoint: add ARM backend for the hw-breakpoint framework")
Reported-by: Luis Machado <luis.machado@linaro.org>
Tested-by: Luis Machado <luis.machado@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
I realize that we fairly recently raised it to 4.8, but the fact is, 4.9
is a much better minimum version to target.
We have a number of workarounds for actual bugs in pre-4.9 gcc versions
(including things like internal compiler errors on ARM), but we also
have some syntactic workarounds for lacking features.
In particular, raising the minimum to 4.9 means that we can now just
assume _Generic() exists, which is likely the much better replacement
for a lot of very convoluted built-time magic with conditionals on
sizeof and/or __builtin_choose_expr() with same_type() etc.
Using _Generic also means that you will need to have a very recent
version of 'sparse', but thats easy to build yourself, and much less of
a hassle than some old gcc version can be.
The latest (in a long string) of reasons for minimum compiler version
upgrades was commit 5435f73d5c ("efi/x86: Fix build with gcc 4").
Ard points out that RHEL 7 uses gcc-4.8, but the people who stay back on
old RHEL versions persumably also don't build their own kernels anyway.
And maybe they should cross-built or just have a little side affair with
a newer compiler?
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Now that we've renamed probe_kernel_address() to get_kernel_nofault()
and made it look and behave more in line with get_user(), some of the
subtle type behavior differences end up being more obvious and possibly
dangerous.
When you do
get_user(val, user_ptr);
the type of the access comes from the "user_ptr" part, and the above
basically acts as
val = *user_ptr;
by design (except, of course, for the fact that the actual dereference
is done with a user access).
Note how in the above case, the type of the end result comes from the
pointer argument, and then the value is cast to the type of 'val' as
part of the assignment.
So the type of the pointer is ultimately the more important type both
for the access itself.
But 'get_kernel_nofault()' may now _look_ similar, but it behaves very
differently. When you do
get_kernel_nofault(val, kernel_ptr);
it behaves like
val = *(typeof(val) *)kernel_ptr;
except, of course, for the fact that the actual dereference is done with
exception handling so that a faulting access is suppressed and returned
as the error code.
But note how different the casting behavior of the two superficially
similar accesses are: one does the actual access in the size of the type
the pointer points to, while the other does the access in the size of
the target, and ignores the pointer type entirely.
Actually changing get_kernel_nofault() to act like get_user() is almost
certainly the right thing to do eventually, but in the meantime this
patch adds logit to at least verify that the pointer type is compatible
with the type of the result.
In many cases, this involves just casting the pointer to 'void *' to
make it obvious that the type of the pointer is not the important part.
It's not how 'get_user()' acts, but at least the behavioral difference
is now obvious and explicit.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Better describe what this helper does, and match the naming of
copy_from_kernel_nofault.
Also switch the argument order around, so that it acts and looks
like get_user().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now the last users of show_stack() got converted to use an explicit log
level, show_stack_loglvl() can drop it's redundant suffix and become once
again well known show_stack().
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-51-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Introduce show_stack_loglvl(), that eventually will substitute
show_stack().
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-9-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Now that c_backtrace() always emits correct loglvl, use it for printing.
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-8-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Add log level argument to dump_backtrace() as a preparation for
introducing show_stack_loglvl().
As a good side-effect __die() now prints not only "Stack:" header with
KERN_EMERG, but the backtrace itself.
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-7-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Add log level argument to unwind_backtrace() as a preparation for
introducing show_stack_loglvl().
As a good side-effect arm_syscall() is now printing errors with the same
log level as the backtrace.
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-6-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Add log level argument to c_backtrace() as a preparation for introducing
show_stack_loglvl().
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-5-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
flush_icache_user_range will be the name for a generic primitive. Move
the arm name so that arm already has an implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Russell King <linux@armlinux.org.uk>
Link: http://lkml.kernel.org/r/20200515143646.3857579-24-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "sort out the flush_icache_range mess", v2.
flush_icache_range is mostly used for kernel address, except for the
following cases:
- the nommu brk and mmap implementations
- the read_code helper that is only used for binfmt_flat,
binfmt_elf_fdpic, and binfmt_aout including the broken
ia32 compat version
- binfmt_flat itself
none of which really are used by a typical MMU enabled kernel, as a.out
can only be build for alpha and m68k to start with.
But strangely enough commit ae92ef8a44 ("PATCH] flush icache in
correct context") added a "set_fs(KERNEL_DS)" around the
flush_icache_range call in the module loader, because apparently m68k
assumed user pointers.
This series first cleans up the cacheflush implementations, largely by
switching as much as possible to the asm-generic version after a few
preparations, then moves the misnamed current flush_icache_user_range to
a new name, to finally introduce a real flush_icache_user_range to be
used for the above use cases to flush the instruction cache for a
userspace address range. The last patch then drops the set_fs in the
module code and moves it into the m68k implementation.
This patch (of 29):
The arguments passed look bogus, try to fix them to something that seems
to make sense.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Aurelien Jacquiot <jacquiot.aurelien@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Song Liu <songliubraving@fb.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200515143646.3857579-1-hch@lst.de
Link: http://lkml.kernel.org/r/20200515143646.3857579-2-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
now that toolchains long support PT_GNU_STACK marking and there's no
need anymore to force modern programs into having all its user mappings
executable instead of only the stack and the PROT_EXEC ones. Disable
that automatic READ_IMPLIES_EXEC forcing on x86-64 and arm64. Add tables
documenting how READ_IMPLIES_EXEC is handled on x86-64, arm and arm64.
By Kees Cook.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl7YFDIACgkQEsHwGGHe
VUpnzxAAmXdODNOb1gGQvt+KJthkfkWh2A2R+tWxCRmFtjFTcS/eRxFfvGu2KmFY
2b2AcJzuJeGjs7WIvQU0pkR2p6STyzuSBBLj5J/OJR9FonQ4pPah38df4A0fOgI6
GJyJV9Ie7O2Ph1w2iLOeWBdmR90CnYuabxsfipgOL+sjHlEI0RqLSDgARRQsxTEj
KM+JVAFD472KcUJnQKBVBOD1I1DOVBGu12r3y6chgsOtwshLNW/cO15cDgYrgnJZ
OlR3EIUukCEEc1KQzUCihsypLuGfrmdq1MyPN8CME8gLfmOBsJyGRDhvmdbS+Wxh
kAMYQ9BuNP/jMVtN950qV0qUtnZCeIPlj1sDb9STWz5fInLsXDSCS0eYi32yBFi+
7yviVU95ml6Mda1Qd5axItTHFAjKIn0qfMZszkLOtUszIzNinCgH7t3ThoXeV223
BqrpntRwiGZVpXDdcp0QFYBsWSMchR47yuhL8pB4SWxQzgNzXqAEg2KFQU0XMDKp
pdia9IzUozg/BrjG5cnRfZhq2lBra7fy3Dn6fw5+NR5vqhka0Wr8L6dyM1Rj74EU
HPk5bRXgt0OIiIFPi4139ApY7k+8j2nbf12qUchue1ZVVKzbvK996FDXbrGgW3zD
Wis1wglxB9urSUTmC1bMOeyOd+gebo3i/ACAjgSo+EbDN7qW0Qw=
=2L7y
-----END PGP SIGNATURE-----
Merge tag 'core_core_updates_for_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull READ_IMPLIES_EXEC changes from Borislav Petkov:
"Split the old READ_IMPLIES_EXEC workaround from executable
PT_GNU_STACK now that toolchains long support PT_GNU_STACK marking and
there's no need anymore to force modern programs into having all its
user mappings executable instead of only the stack and the PROT_EXEC
ones.
Disable that automatic READ_IMPLIES_EXEC forcing on x86-64 and
arm64.
Add tables documenting how READ_IMPLIES_EXEC is handled on x86-64, arm
and arm64.
By Kees Cook"
* tag 'core_core_updates_for_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm64/elf: Disable automatic READ_IMPLIES_EXEC for 64-bit address spaces
arm32/64/elf: Split READ_IMPLIES_EXEC from executable PT_GNU_STACK
arm32/64/elf: Add tables to document READ_IMPLIES_EXEC
x86/elf: Disable automatic READ_IMPLIES_EXEC on 64-bit
x86/elf: Split READ_IMPLIES_EXEC from executable PT_GNU_STACK
x86/elf: Add table to document READ_IMPLIES_EXEC
One new platform gets added, the Realtek RTD1195, which is an older
Cortex-a7 based relative of the RTD12xx chips that are already supported
in arch/arm64. The platform may also be extended to support running
32-bit kernels on those 64-bit chips for memory-constrained machines.
In the Renesas shmobile platform, we gain support for "RZ/G1H" or R8A7742,
an eight-core chip based on Cortex-A15 and Cortex-A7 cores, originally
released in 2016 as one of the last high-end 32-bit designs.
There is ongoing cleanup for the integrator, tegra, imx, and omap2
platforms, with integrator getting very close to the goal of having
zero code in arch/arm/, and omap2 moving more of the chip specifics
from old board code into device tree files.
The Versatile Express platform is made more modular, with built-in
drivers now becoming loadable modules. This is part of a greater effort
for the Android OS to have a common kernel binary for all platforms and
any platform specific code in loadable modules.
The PXA platform drops support for Compulab's pxa2xx boards that had
rather unusual flash and PCI drivers but no known users remaining.
All device drivers specific to those boards can now get removed as
well.
Across platforms, there is ongoing cleanup, with Geert and Rob
revisiting some a lot of Kconfig options.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl7XvmAACgkQmmx57+YA
GNk4vRAAs3TxlwLAUk5dknAi+UstlviNPG/ys6mViFuLqktPyhkA/v6nFOBI5Ldf
8xAsaSk3+oAX3Dd7aTaudl5WMFWFtzT5xA4gEI7CBZrBaAL0BVns1JfnVxpPRIcF
B09Sb3wv7++E/+AxYcoVLWd5wkc9tlMesrIV5FPHHasOp3rRjVI0cExXnXzqJU8M
TbwrWEOczZNVAm2q4Eh1ttbuSIvPd3s4NMnI755MRSQ7u/rYFSPf6Ay8/eFTqx1e
0SMWHRmrGeP6yhLy7+Li0x0jsK3ReZ9SkLXp3iEZ9huKbBTHIPBUeBB1RMnCYGe+
M2OL+9ySSe9UI9sjvsLGPDAnJaZI/UDUOVhatZCTvYB7CZY5nYNrYp+heYFONWm6
Up3e1t2iGPbgs8/1y78a9YPxAdsW0iavRtjVUYb+nwX+savYZgSBATA1pZqLc317
5FAGmTh//OLKYBSjfAxu9H8aInJPZA595lUiPHEQujzZH5Xz0QNtv4dapeNL2I4g
LO20PMvuEgmwlwj/Npnwdl0UQK3ztoeR2upCrk91VwtNWGiOWTzCMT/OkYAAjKuo
QYMGu3UvbbTCHPsIdrUz8gZ2T3VnJoeE3ldny2QbNAtVdpH/F8htJcilrBbyv1vI
IKB1oogf5zfUwXVwZRxCfI9s5hELUlAKMGTtNcybzdsKpN5xtTo=
=gzCp
-----END PGP SIGNATURE-----
Merge tag 'arm-soc-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull ARM SoC updates from Arnd Bergmann:
"One new platform gets added, the Realtek RTD1195, which is an older
Cortex-a7 based relative of the RTD12xx chips that are already
supported in arch/arm64. The platform may also be extended to support
running 32-bit kernels on those 64-bit chips for memory-constrained
machines.
In the Renesas shmobile platform, we gain support for "RZ/G1H" or
R8A7742, an eight-core chip based on Cortex-A15 and Cortex-A7 cores,
originally released in 2016 as one of the last high-end 32-bit
designs.
There is ongoing cleanup for the integrator, tegra, imx, and omap2
platforms, with integrator getting very close to the goal of having
zero code in arch/arm/, and omap2 moving more of the chip specifics
from old board code into device tree files.
The Versatile Express platform is made more modular, with built-in
drivers now becoming loadable modules. This is part of a greater
effort for the Android OS to have a common kernel binary for all
platforms and any platform specific code in loadable modules.
The PXA platform drops support for Compulab's pxa2xx boards that had
rather unusual flash and PCI drivers but no known users remaining. All
device drivers specific to those boards can now get removed as well.
Across platforms, there is ongoing cleanup, with Geert and Rob
revisiting some a lot of Kconfig options"
* tag 'arm-soc-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (94 commits)
ARM: omap2: fix omap5_realtime_timer_init definition
ARM: zynq: Don't select CONFIG_ICST
ARM: OMAP2+: Fix regression for using local timer on non-SMP SoCs
clk: versatile: Fix kconfig dependency on COMMON_CLK_VERSATILE
ARM: davinci: fix build failure without I2C
power: reset: vexpress: fix build issue
power: vexpress: cleanup: use builtin_platform_driver
power: vexpress: add suppress_bind_attrs to true
Revert "ARM: vexpress: Don't select VEXPRESS_CONFIG"
MAINTAINERS: pxa: remove Compulab arm/pxa support
ARM: pxa: remove Compulab pxa2xx boards
bus: arm-integrator-lm: Fix return value check in integrator_ap_lm_probe()
soc: imx: move cpu code to drivers/soc/imx
ARM: imx: move cpu definitions into a header
ARM: imx: use device_initcall for imx_soc_device_init
ARM: imx: pcm037: make pcm970_sja1000_platform_data static
bus: ti-sysc: Timers no longer need legacy quirk handling
ARM: OMAP2+: Drop old timer code for dmtimer and 32k counter
ARM: dts: Configure system timers for omap2
ARM: dts: Configure system timers for ti81xx
...
- remove a now unnecessary usage of the KERNEL_DS for
sys_oabi_epoll_ctl()
- update my email address in a number of drivers
- decompressor EFI updates from Ard Biesheuvel
- module unwind section handling updates
- sparsemem Kconfig cleanups
- make act_mm macro respect THREAD_SIZE
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEuNNh8scc2k/wOAE+9OeQG+StrGQFAl7VacAACgkQ9OeQG+St
rGRHaA//Z8m+8LnSd+sqwrlEZYVj6IdPoihOhVZRsEhp4Fb09ZENOxL06W4lynHy
tPcs4YAqLyp3Xmn+pk5NuH3SBoFGPOuUxseMpQKyT2ZnA126LB/3sW+xFPSbCayY
gBHT7QhX6MxJEwxCxgvp2McOs6F55rYENcjozQ+DQMiNY5MTm0fKgGgbn1kpzglz
7N2U7MR9ulXTCof3hZolQWBMOKa6LRldG7C3ajPITeOtk+vjyAPobqrkbzRDsIPV
09j6BruFQoUbuyxtycNC0x+BDotrS/NN5OyhR07eJR5R0QNDW+qn8iqrkkVQUQsr
mZpTR8CelzLL2+/1CDY2KrweY13eFbDoxiTVJl9aqCdlOsJKxwk1yv4HrEcpbBoK
vtKwPDxPIKxFeJSCJX3xFjg9g6mRrBJ5CItPOThVgEqNt/dsbogqXlX4UhIjXzPs
DBbeQ+EEZgNg7Ws/EwXIwtM8ZPc+bZZY8fskJd0gRCjbiCtstXXNjsHRd1vZ16KM
yytpDxEIB7A+6lxcnV80VSCjD++A//kVThZ5kBl+ec1HOxRSyYOGIMGUMZhuyfE8
f4xE3KVVsbqHGyh94C6tDLx73XgkmjfNx8YAgGRss+fQBoJbmwkJ0fDy4MhKlznD
UnVcOXSjs7Iqih7R+icAtbIkbo1EUF5Mwu2I3SEZ/FOJmzEbbCY=
=vMHE
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:
- remove a now unnecessary usage of the KERNEL_DS for
sys_oabi_epoll_ctl()
- update my email address in a number of drivers
- decompressor EFI updates from Ard Biesheuvel
- module unwind section handling updates
- sparsemem Kconfig cleanups
- make act_mm macro respect THREAD_SIZE
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8980/1: Allow either FLATMEM or SPARSEMEM on the multiplatform build
ARM: 8979/1: Remove redundant ARCH_SPARSEMEM_DEFAULT setting
ARM: 8978/1: mm: make act_mm() respect THREAD_SIZE
ARM: decompressor: run decompressor in place if loaded via UEFI
ARM: decompressor: move GOT into .data for EFI enabled builds
ARM: decompressor: defer loading of the contents of the LC0 structure
ARM: decompressor: split off _edata and stack base into separate object
ARM: decompressor: move headroom variable out of LC0
ARM: 8976/1: module: allow arch overrides for .init section names
ARM: 8975/1: module: fix handling of unwind init sections
ARM: 8974/1: use SPARSMEM_STATIC when SPARSEMEM is enabled
ARM: 8971/1: replace the sole use of a symbol with its definition
ARM: 8969/1: decompressor: simplify libfdt builds
Update rmk's email address in various drivers
ARM: compat: remove KERNEL_DS usage in sys_oabi_epoll_ctl()
Pull crypto updates from Herbert Xu:
"API:
- Introduce crypto_shash_tfm_digest() and use it wherever possible.
- Fix use-after-free and race in crypto_spawn_alg.
- Add support for parallel and batch requests to crypto_engine.
Algorithms:
- Update jitter RNG for SP800-90B compliance.
- Always use jitter RNG as seed in drbg.
Drivers:
- Add Arm CryptoCell driver cctrng.
- Add support for SEV-ES to the PSP driver in ccp"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (114 commits)
crypto: hisilicon - fix driver compatibility issue with different versions of devices
crypto: engine - do not requeue in case of fatal error
crypto: cavium/nitrox - Fix a typo in a comment
crypto: hisilicon/qm - change debugfs file name from qm_regs to regs
crypto: hisilicon/qm - add DebugFS for xQC and xQE dump
crypto: hisilicon/zip - add debugfs for Hisilicon ZIP
crypto: hisilicon/hpre - add debugfs for Hisilicon HPRE
crypto: hisilicon/sec2 - add debugfs for Hisilicon SEC
crypto: hisilicon/qm - add debugfs to the QM state machine
crypto: hisilicon/qm - add debugfs for QM
crypto: stm32/crc32 - protect from concurrent accesses
crypto: stm32/crc32 - don't sleep in runtime pm
crypto: stm32/crc32 - fix multi-instance
crypto: stm32/crc32 - fix run-time self test issue.
crypto: stm32/crc32 - fix ext4 chksum BUG_ON()
crypto: hisilicon/zip - Use temporary sqe when doing work
crypto: hisilicon - add device error report through abnormal irq
crypto: hisilicon - remove codes of directly report device errors through MSI
crypto: hisilicon - QM memory management optimization
crypto: hisilicon - unify initial value assignment into QM
...
Unwind information for init sections is placed in .ARM.exidx.init.text
and .ARM.extab.init.text. The module core doesn't know that these are
init sections so they are allocated along with the core sections, and if
the core and init sections get allocated in different memory regions
(which is possible with CONFIG_ARM_MODULE_PLTS=y) and they can't reach
each other, relocation fails:
final section addresses:
...
0x7f800000 .init.text
..
0xcbb54078 .ARM.exidx.init.text
..
section 16 reloc 0 sym '': relocation 42 out of range (0xcbb54078 ->
0x7f800000)
Fix this by informing the module core that these sections are init
sections, and by removing the init unwind tables before the module core
frees the init sections.
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
call_undef_hook() in traps.c applies the same instr_mask for both 16-bit
and 32-bit thumb instructions. If instr_mask then is only 16 bits wide
(0xffff as opposed to 0xffffffff), the first half-word of 32-bit thumb
instructions will be masked out. This makes the function match 32-bit
thumb instructions where the second half-word is equal to instr_val,
regardless of the first half-word.
The result in this case is that all undefined 32-bit thumb instructions
with the second half-word equal to 0xde01 (udf #1) work as breakpoints
and will raise a SIGTRAP instead of a SIGILL, instead of just the one
intended 16-bit instruction. An example of such an instruction is
0xeaa0de01, which is unallocated according to Arm ARM and should raise a
SIGILL, but instead raises a SIGTRAP.
This patch fixes the issue by setting all the bits in instr_mask, which
will still match the intended 16-bit thumb instruction (where the
upper half is always 0), but not any 32-bit thumb instructions.
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Fredrik Strupe <fredrik@strupe.net>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
The ARM time code is not a clock provider, and just needs to call
of_clk_init().
Hence it can include <linux/of_clk.h> instead of <linux/clk-provider.h>.
Link: https://lore.kernel.org/r/20200505154536.4099-2-geert+renesas@glider.be
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Most files that include this header don't actually need it. So in
preparation for removing it, remove all these unneeded includes of it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Before commit 874f9c7da9 ("printk: create pr_<level> functions"),
pr_*() calls without a trailing newline characters would be printed with
a newline character appended, both on the console and in the output of
the dmesg command.
After that commit, no new line character is appended, and the output of
the next pr_*() call of the same type may be appended:
-No ATAGs?
-hw-breakpoint: found 5 (+1 reserved) breakpoint and 4 watchpoint registers.
+No ATAGs?hw-breakpoint: found 5 (+1 reserved) breakpoint and 4 watchpoint registers.
While this commit has been reverted in commit a0cba2179e ("Revert
"printk: create pr_<level> functions""), it's still good practice to
terminate kernel messages with newlines.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Consolidate the user access assembly code to asm/uaccess-asm.h. This
moves the csdb, check_uaccess, uaccess_mask_range_ptr, uaccess_enable,
uaccess_disable, uaccess_save, uaccess_restore macros, and creates two
new ones for exception entry and exit - uaccess_entry and uaccess_exit.
This makes the uaccess_save and uaccess_restore macros private to
asm/uaccess-asm.h.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
We no longer need to switch to KERNEL_DS mode in sys_oabi_epoll_ctl()
as we can use do_epoll_ctl() to avoid the additional copy.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
The READ_IMPLIES_EXEC work-around was designed for old toolchains that
lacked the ELF PT_GNU_STACK marking under the assumption that toolchains
that couldn't specify executable permission flags for the stack may not
know how to do it correctly for any memory region.
This logic is sensible for having ancient binaries coexist in a system
with possibly NX memory, but was implemented in a way that equated having
a PT_GNU_STACK marked executable as being as "broken" as lacking the
PT_GNU_STACK marking entirely. Things like unmarked assembly and stack
trampolines may cause PT_GNU_STACK to need an executable bit, but they
do not imply all mappings must be executable.
This confusion has led to situations where modern programs with explicitly
marked executable stack are forced into the READ_IMPLIES_EXEC state when
no such thing is needed. (And leads to unexpected failures when mmap()ing
regions of device driver memory that wish to disallow VM_EXEC[1].)
In looking for other reasons for the READ_IMPLIES_EXEC behavior, Jann
Horn noted that glibc thread stacks have always been marked RWX (until
2003 when they started tracking the PT_GNU_STACK flag instead[2]). And
musl doesn't support executable stacks at all[3]. As such, no breakage
for multithreaded applications is expected from this change.
This changes arm32 and arm64 compat together, to keep behavior the same.
[1] https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com
[2] https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=54ee14b3882
[3] https://lkml.kernel.org/r/20190423192534.GN23599@brightrain.aerifal.cx
Suggested-by: Hector Marco-Gisbert <hecmargi@upv.es>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lkml.kernel.org/r/20200327064820.12602-6-keescook@chromium.org
Add tables to document the current behavior of READ_IMPLIES_EXEC in
preparation for changing the behavior for both arm64 and arm.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lkml.kernel.org/r/20200327064820.12602-5-keescook@chromium.org
Here are 3 SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your current
tree, that should be trivial to handle (one file modified by two things,
one file deleted.)
All 3 of these have been in linux-next for a while, with no reported
issues other than the merge conflict.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXodg5A8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykySQCgy9YDrkz7nWq6v3Gohl6+lW/L+rMAnRM4uTZm
m5AuCzO3Azt9KBi7NL+L
=2Lm5
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull SPDX updates from Greg KH:
"Here are three SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your
current tree, that should be trivial to handle (one file modified by
two things, one file deleted.)
All three of these have been in linux-next for a while, with no
reported issues other than the merge conflict"
* tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx:
ASoC: MT6660: make spdxcheck.py happy
.gitignore: add SPDX License Identifier
.gitignore: remove too obvious comments
* GICv4.1 support
* 32bit host removal
PPC:
* secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
* allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
* New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require bulk
modification of the page tables.
* Initial work on making nested SVM event injection more similar to VMX,
and less buggy.
* Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in function
names which occasionally means eptp, KVM too has standardized on "pgd".
* A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
* Some removal of pointer chasing from kvm_x86_ops, which will also be
switched to static calls as soon as they are available.
* New Tigerlake CPUID features.
* More bugfixes, optimizations and cleanups.
Generic:
* selftests: cleanups, new MMU notifier stress test, steal-time test
* CSV output for kvm_stat.
KVM/MIPS has been broken since 5.5, it does not compile due to a patch committed
by MIPS maintainers. I had already prepared a fix, but the MIPS maintainers
prefer to fix it in generic code rather than KVM so they are taking care of it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl6GOnIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMfxwf/ZKLZiRoaovXCOG71M/eHtQb8ZIqU
3MPy+On3eC5Sk/aBxWUL9EFZsbYG6kYdbZ1VOvG9XPBoLlnkDSm/IR0kaELHtnjj
oGVda/tvGn46Ne39y8xBptmb91WDcWH0vFthT/CwlMxAw3xjr+gG7Qyo+8F2CW6m
SSSuLiHSBnyO1cQKruBTHZ8qnR8LlnfXEqtd6Y4LFLic0LbLIoIdRcT3wjQrcZrm
Djd7wbTEYZjUfoqZ72ekwEDUsONcDLDSKcguDO9pSMSCGhpxCVT5Vy68KRpoIMs2
nzNWDKjvqQo5zb2+GWxJgkd12Hv+n7PCXZMbVrWBu1pQsewUns9m4mkpGw==
=6fGt
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low level
functions cpu_up/down() are now confined to the core code and not
longer accessible from random code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B9VQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodCyD/0WFYAe7LkOfNjkbLa0IeuyLjF9rnCi
ilcSXMLpaVwwoQvm7MopwkXUDdmEIyeJ0B641j3mC3AKCRap4+O36H2IEg2byrj7
twOvQNCfxpVVmCCD11FTH9aQa74LEB6AikTgjevhrRWj6eHsal7c2Ak26AzCgrt+
0eEkOAOWJbLAlbIiPdHlCZ3TMldcs3gg+lRSYd5QCGQVkZFnwpXzyOvpyJEUGGbb
R/JuvwJoLhRMiYAJDILoQQQg/J07ODuivse/R8PWaH2djkn+2NyRGrD794PhyyOg
QoTU0ZrYD3Z48ACXv+N3jLM7wXMcFzjYtr1vW1E3O/YGA7GVIC6XHGbMQ7tEihY0
ajtwq8DcnpKtuouviYnf7NuKgqdmJXkaZjz3Gms6n8nLXqqSVwuQELWV2CXkxNe6
9kgnnKK+xXMOGI4TUhN8bejvkXqRCmKMeQJcWyf+7RA9UIhAJw5o7WGo8gXfQWUx
tazCqDy/inYjqGxckW615fhi2zHfemlYTbSzIGOuMB1TEPKFcrgYAii/VMsYHQVZ
5amkYUXGQ5brlCOzOn38lzp5OkALBnFzD7xgvOcQgWT3ynVpdqADfBytXiEEHh4J
KSkSgSSRcS58397nIxnDcJgJouHLvAWYyPZ4UC6mfynuQIic31qMHGVqwdbEKMY3
4M5dGgqIfOBgYw==
=jwCg
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
"CPU (hotplug) updates:
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low
level functions cpu_up/down() are now confined to the core code and
not longer accessible from random code"
* tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus()
cpu/hotplug: Hide cpu_up/down()
cpu/hotplug: Move bringup of secondary CPUs out of smp_init()
torture: Replace cpu_up/down() with add/remove_cpu()
firmware: psci: Replace cpu_up/down() with add/remove_cpu()
xen/cpuhotplug: Replace cpu_up/down() with device_online/offline()
parisc: Replace cpu_up/down() with add/remove_cpu()
sparc: Replace cpu_up/down() with add/remove_cpu()
powerpc: Replace cpu_up/down() with add/remove_cpu()
x86/smp: Replace cpu_up/down() with add/remove_cpu()
arm64: hibernate: Use bringup_hibernate_cpu()
cpu/hotplug: Provide bringup_hibernate_cpu()
arm64: Use reboot_cpu instead of hardconding it to 0
arm64: Don't use disable_nonboot_cpus()
ARM: Use reboot_cpu instead of hardcoding it to 0
ARM: Don't use disable_nonboot_cpus()
ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus()
cpu/hotplug: Create a new function to shutdown nonboot cpus
cpu/hotplug: Add new {add,remove}_cpu() functions
sched/core: Remove rq.hrtick_csd_pending
...
Use `reboot_cpu` variable instead of hardcoding 0 as the reboot cpu in
machine_shutdown().
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@armlinux.org.uk>
Link: https://lkml.kernel.org/r/20200323135110.30522-6-qais.yousef@arm.com
disable_nonboot_cpus() is not safe to use when doing machine_down(),
because it relies on freeze_secondary_cpus() which in turn is
a suspend/resume related freeze and could abort if the logic detects any
pending activities that can prevent finishing the offlining process.
Beside disable_nonboot_cpus() is dependent on CONFIG_PM_SLEEP_SMP which
is an othogonal config to rely on to ensure this function works
correctly.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@armlinux.org.uk>
Link: https://lkml.kernel.org/r/20200323135110.30522-5-qais.yousef@arm.com
Although we have to bounce between HYP and SVC to decompress and
relocate the kernel, we don't need to be able to use it in the
kernel itself. So let's drop the functionnality.
Since the vectors are never changed, there is no need to reset them
either, and nobody calls that stub anyway. The last function
(SOFT_RESTART) is still present in order to support kexec.
Signed-off-by: Marc Zyngier <maz@kernel.org>
That's it. Remove all references to KVM itself, and document
that although it is no more, the ABI between SVC and HYP still
exists.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
The tst menomic has only a single #<const> argument in Thumb mode. There
is an ARM variant which allows to write #<const> as #<byte>, #<rot>
which probably is where the current syntax comes from.
It seems that binutils does not care about the additional parameter.
Clang however complains in Thumb2 mode:
arch/arm/kernel/relocate_kernel.S:28:12: error: too many operands for
instruction
tst r3,#1,0
^
Drop the unnecessary parameter. This fixes building this file in Thumb2
mode with the Clang integrated assembler.
Link: https://github.com/ClangBuiltLinux/linux/issues/770
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
It is possible for a system with an ARMv8 timer to run a 32-bit kernel.
When this happens we will unconditionally have the vDSO code remove the
__vdso_gettimeofday and __vdso_clock_gettime symbols because
cntvct_functional() returns false since it does not match that
compatibility string.
Fixes: ecf99a4391 ("ARM: 8331/1: VDSO initialization, mapping, and synchronization")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Allow the unwinder to unwind recursive functions if the stack makes
progress, even if the PC is the same. This allows tracing through
recursive __switchdev_handle_port_attr_set() and similar.
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Now that patch.o is unconditionally selected for ftrace, it can also
get compiled for !MMU kernels. These (obviously) lack
{set,clear}_fixmap() support.
Also remove the superfluous __acquire/__release nonsense.
Fixes: 42e51f187f86 ("arm/ftrace: Use __patch_text()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __patch_text() function already applies __opcode_to_mem_*(), so
when __opcode_to_mem_*() is not the identity (BE*), it is applied
twice, wrecking the instruction.
Fixes: 42e51f187f86 ("arm/ftrace: Use __patch_text()")
Reported-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Dmitry Osipenko <digetx@gmail.com>
Here are the big set of tty and serial driver updates for 5.6-rc1
Included in here are:
- dummy_con cleanups (touches lots of arch code)
- sysrq logic cleanups (touches lots of serial drivers)
- samsung driver fixes (wasn't really being built)
- conmakeshash move to tty subdir out of scripts
- lots of small tty/serial driver updates
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXjFRBg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yn2VACgkge7vTeUNeZFc+6F4NWphAQ5tCQAoK/MMbU6
0O8ef7PjFwCU4s227UTv
=6m40
-----END PGP SIGNATURE-----
Merge tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial driver updates from Greg KH:
"Here are the big set of tty and serial driver updates for 5.6-rc1
Included in here are:
- dummy_con cleanups (touches lots of arch code)
- sysrq logic cleanups (touches lots of serial drivers)
- samsung driver fixes (wasn't really being built)
- conmakeshash move to tty subdir out of scripts
- lots of small tty/serial driver updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (140 commits)
tty: n_hdlc: Use flexible-array member and struct_size() helper
tty: baudrate: SPARC supports few more baud rates
tty: baudrate: Synchronise baud_table[] and baud_bits[]
tty: serial: meson_uart: Add support for kernel debugger
serial: imx: fix a race condition in receive path
serial: 8250_bcm2835aux: Document struct bcm2835aux_data
serial: 8250_bcm2835aux: Use generic remapping code
serial: 8250_bcm2835aux: Allocate uart_8250_port on stack
serial: 8250_bcm2835aux: Suppress register_port error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Suppress clk_get error on -EPROBE_DEFER
serial: 8250_bcm2835aux: Fix line mismatch on driver unbind
serial_core: Remove unused member in uart_port
vt: Correct comment documenting do_take_over_console()
vt: Delete comment referencing non-existent unbind_con_driver()
arch/xtensa/setup: Drop dummy_con initialization
arch/x86/setup: Drop dummy_con initialization
arch/unicore32/setup: Drop dummy_con initialization
arch/sparc/setup: Drop dummy_con initialization
arch/sh/setup: Drop dummy_con initialization
arch/s390/setup: Drop dummy_con initialization
...
Pull scheduler updates from Ingo Molnar:
"These were the main changes in this cycle:
- More -rt motivated separation of CONFIG_PREEMPT and
CONFIG_PREEMPTION.
- Add more low level scheduling topology sanity checks and warnings
to filter out nonsensical topologies that break scheduling.
- Extend uclamp constraints to influence wakeup CPU placement
- Make the RT scheduler more aware of asymmetric topologies and CPU
capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y
- Make idle CPU selection more consistent
- Various fixes, smaller cleanups, updates and enhancements - please
see the git log for details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched/topology: Assert non-NUMA topology masks don't (partially) overlap
idle: fix spelling mistake "iterrupts" -> "interrupts"
sched/fair: Remove redundant call to cpufreq_update_util()
sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
sched/fair: calculate delta runnable load only when it's needed
sched/cputime: move rq parameter in irqtime_account_process_tick
stop_machine: Make stop_cpus() static
sched/debug: Reset watchdog on all CPUs while processing sysrq-t
sched/core: Fix size of rq::uclamp initialization
sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
sched/fair : Improve update_sd_pick_busiest for spare capacity case
watchdog: Remove soft_lockup_hrtimer_cnt and related code
sched/rt: Make RT capacity-aware
sched/fair: Make EAS wakeup placement consider uclamp restrictions
sched/fair: Make task_fits_capacity() consider uclamp restrictions
sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
sched/uclamp: Make uclamp util helpers use and return UL values
...
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Ftrace is one of the last W^X violators (after this only KLP is
left). These patches move it over to the generic text_poke()
interface and thereby get rid of this oddity. This requires a
surprising amount of surgery, by Peter Zijlstra.
- x86/AMD PMUs: add support for 'Large Increment per Cycle Events' to
count certain types of events that have a special, quirky hw ABI
(by Kim Phillips)
- kprobes fixes by Masami Hiramatsu
Lots of tooling updates as well, the following subcommands were
updated: annotate/report/top, c2c, clang, record, report/top TUI,
sched timehist, tests; plus updates were done to the gtk ui, libperf,
headers and the parser"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
perf/x86/amd: Add support for Large Increment per Cycle Events
perf/x86/amd: Constrain Large Increment per Cycle events
perf/x86/intel/rapl: Add Comet Lake support
tracing: Initialize ret in syscall_enter_define_fields()
perf header: Use last modification time for timestamp
perf c2c: Fix return type for histogram sorting comparision functions
perf beauty sockaddr: Fix augmented syscall format warning
perf/ui/gtk: Fix gtk2 build
perf ui gtk: Add missing zalloc object
perf tools: Use %define api.pure full instead of %pure-parser
libperf: Setup initial evlist::all_cpus value
perf report: Fix no libunwind compiled warning break s390 issue
perf tools: Support --prefix/--prefix-strip
perf report: Clarify in help that --children is default
tools build: Fix test-clang.cpp with Clang 8+
perf clang: Fix build with Clang 9
kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic
tools lib: Fix builds when glibc contains strlcpy()
perf report/top: Make 'e' visible in the help and make it toggle showing callchains
perf report/top: Do not offer annotation for symbols without samples
...
The stacktrace code can read beyond the stack size, when it attempts to
read pt_regs from exception frames.
This can happen on normal, non-corrupt stacks. Since the unwind
information in the extable is not correct for function prologues, the
unwinding code can return data from the stack which is not actually the
caller function address, and if in_entry_text() happens to succeed on
this value, we can end up reading data from outside the task's stack
when attempting to read pt_regs, since there is no bounds check.
Example:
[<8010e729>] (unwind_backtrace) from [<8010a9c9>] (show_stack+0x11/0x14)
[<8010a9c9>] (show_stack) from [<8057d8d7>] (dump_stack+0x87/0xac)
[<8057d8d7>] (dump_stack) from [<8012271d>] (tasklet_action_common.constprop.4+0xa5/0xa8)
[<8012271d>] (tasklet_action_common.constprop.4) from [<80102333>] (__do_softirq+0x11b/0x31c)
[<80102333>] (__do_softirq) from [<80122485>] (irq_exit+0xad/0xd8)
[<80122485>] (irq_exit) from [<8015f3d7>] (__handle_domain_irq+0x47/0x84)
[<8015f3d7>] (__handle_domain_irq) from [<8036a523>] (gic_handle_irq+0x43/0x78)
[<8036a523>] (gic_handle_irq) from [<80101a49>] (__irq_svc+0x69/0xb4)
Exception stack(0xeb491f58 to 0xeb491fa0)
1f40: 7eb14794 00000000
1f60: ffffffff 008dd32c 008dd324 ffffffff 008dd314 0000002a 801011e4 eb490000
1f80: 0000002a 7eb1478c 50c5387d eb491fa8 80101001 8023d09c 40080033 ffffffff
[<80101a49>] (__irq_svc) from [<8023d09c>] (do_pipe2+0x0/0xac)
[<8023d09c>] (do_pipe2) from [<ffffffff>] (0xffffffff)
Exception stack(0xeb491fc8 to 0xeb492010)
1fc0: 008dd314 0000002a 00511ad8 008de4c8 7eb14790 7eb1478c
1fe0: 00511e34 7eb14774 004c8557 76f44098 60080030 7eb14794 00000000 00000000
2000: 00000001 00000000 ea846c00 ea847cc0
In this example, the stack limit is 0xeb492000, but 16 bytes outside the
stack have been read.
Fix it by adding bounds checks.
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Updates to the Generic Timer architecture allow ID_PFR1.GenTimer to
have values other than 0 or 1 while still preserving backward
compatibility. At the moment, Linux is quite strict in the way it
handles this field at early boot and will not configure arch timer if
it doesn't find the value 1.
Since here use ubfx for arch timer version extraction (hyb-stub build
with -march=armv7-a, so it is safe)
To help backports (even though the code was correct at the time of writing)
Fixes: 8ec58be9f3 ("ARM: virt: arch_timers: enable access to physical timers")
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
con_init in tty/vt.c will now set conswitchp to dummy_con if it's unset.
Drop it from arch setup code.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20191218214506.49252-6-nivedita@alum.mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>