commit 1bdb897039 upstream.
If x86_vector_alloc_irq() fails x86_vector_free_irqs() is invoked to cleanup
the already allocated vectors. This subsequently calls clear_vector_irq().
The failed irq has no vector assigned, which triggers the BUG_ON(!vector) in
clear_vector_irq().
We cannot suppress the call to x86_vector_free_irqs() for the failed
interrupt, because the other data related to this irq must be cleaned up as
well. So calling clear_vector_irq() with vector == 0 is legitimate.
Remove the BUG_ON and return if vector is zero,
[ tglx: Massaged changelog ]
Fixes: b5dc8e6c21 "x86/irq: Use hierarchical irqdomain to manage CPU interrupt vectors"
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c3d266c8a9 upstream.
This patch tries to fix a PEBS warning found in my stress test. The
following perf command can easily trigger the pebs warning or spurious
NMI error on Skylake/Broadwell/Haswell platforms:
sudo perf record -e 'cpu/umask=0x04,event=0xc4/pp,cycles,branches,ref-cycles,cache-misses,cache-references' --call-graph fp -b -c1000 -a
Also the NMI watchdog must be enabled.
For this case, the events number is larger than counter number. So
perf has to do multiplexing.
In perf_mux_hrtimer_handler, it does perf_pmu_disable(), schedule out
old events, rotate_ctx, schedule in new events and finally
perf_pmu_enable().
If the old events include precise event, the MSR_IA32_PEBS_ENABLE
should be cleared when perf_pmu_disable(). The MSR_IA32_PEBS_ENABLE
should keep 0 until the perf_pmu_enable() is called and the new event is
precise event.
However, there is a corner case which could restore PEBS_ENABLE to
stale value during the above period. In perf_pmu_disable(), GLOBAL_CTRL
will be set to 0 to stop overflow and followed PMI. But there may be
pending PMI from an earlier overflow, which cannot be stopped. So even
GLOBAL_CTRL is cleared, the kernel still be possible to get PMI. At
the end of the PMI handler, __intel_pmu_enable_all() will be called,
which will restore the stale values if old events haven't scheduled
out.
Once the stale pebs value is set, it's impossible to be corrected if
the new events are non-precise. Because the pebs_enabled will be set
to 0. x86_pmu.enable_all() will ignore the MSR_IA32_PEBS_ENABLE
setting. As a result, the following NMI with stale PEBS_ENABLE
trigger pebs warning.
The pending PMI after enabled=0 will become harmless if the NMI handler
does not change the state. This patch checks cpuc->enabled in pmi and
only restore the state when PMU is active.
Here is the dump:
Call Trace:
<NMI> [<ffffffff813c3a2e>] dump_stack+0x63/0x85
[<ffffffff810a46f2>] warn_slowpath_common+0x82/0xc0
[<ffffffff810a483a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8100fe2e>] intel_pmu_drain_pebs_nhm+0x2be/0x320
[<ffffffff8100caa9>] intel_pmu_handle_irq+0x279/0x460
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff811f290d>] ? vunmap_page_range+0x20d/0x330
[<ffffffff811f2f11>] ? unmap_kernel_range_noflush+0x11/0x20
[<ffffffff8148379f>] ? ghes_copy_tofrom_phys+0x10f/0x2a0
[<ffffffff814839c8>] ? ghes_read_estatus+0x98/0x170
[<ffffffff81005a7d>] perf_event_nmi_handler+0x2d/0x50
[<ffffffff810310b9>] nmi_handle+0x69/0x120
[<ffffffff810316f6>] default_do_nmi+0xe6/0x100
[<ffffffff810317f2>] do_nmi+0xe2/0x130
[<ffffffff817aea71>] end_repeat_nmi+0x1a/0x1e
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
[<ffffffff810639b6>] ? native_write_msr_safe+0x6/0x40
<<EOE>> <IRQ> [<ffffffff81006df8>] ? x86_perf_event_set_period+0xd8/0x180
[<ffffffff81006eec>] x86_pmu_start+0x4c/0x100
[<ffffffff8100722d>] x86_pmu_enable+0x28d/0x300
[<ffffffff811994d7>] perf_pmu_enable.part.81+0x7/0x10
[<ffffffff8119cb70>] perf_mux_hrtimer_handler+0x200/0x280
[<ffffffff8119c970>] ? __perf_install_in_context+0xc0/0xc0
[<ffffffff8110f92d>] __hrtimer_run_queues+0xfd/0x280
[<ffffffff811100d8>] hrtimer_interrupt+0xa8/0x190
[<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff81051bd8>] local_apic_timer_interrupt+0x38/0x60
[<ffffffff817af01d>] smp_apic_timer_interrupt+0x3d/0x50
[<ffffffff817ad15c>] apic_timer_interrupt+0x8c/0xa0
<EOI> [<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff81123de5>] ? smp_call_function_single+0xd5/0x130
[<ffffffff81123ddb>] ? smp_call_function_single+0xcb/0x130
[<ffffffff81199080>] ? __perf_read_group_add.part.61+0x1a0/0x1a0
[<ffffffff8119765a>] event_function_call+0x10a/0x120
[<ffffffff8119c660>] ? ctx_resched+0x90/0x90
[<ffffffff811971e0>] ? cpu_clock_event_read+0x30/0x30
[<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60
[<ffffffff8119772b>] _perf_event_enable+0x5b/0x70
[<ffffffff81197388>] perf_event_for_each_child+0x38/0xa0
[<ffffffff811976d0>] ? _perf_event_disable+0x60/0x60
[<ffffffff811a0ffd>] perf_ioctl+0x12d/0x3c0
[<ffffffff8134d855>] ? selinux_file_ioctl+0x95/0x1e0
[<ffffffff8124a3a1>] do_vfs_ioctl+0xa1/0x5a0
[<ffffffff81036d29>] ? sched_clock+0x9/0x10
[<ffffffff8124a919>] SyS_ioctl+0x79/0x90
[<ffffffff817ac4b2>] entry_SYSCALL_64_fastpath+0x1a/0xa4
---[ end trace aef202839fe9a71d ]---
Uhhuh. NMI received for unknown reason 2d on CPU 2.
Do you have a strange power saving mode enabled?
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1457046448-6184-1-git-send-email-kan.liang@intel.com
[ Fixed various typos and other small details. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8077eca079 upstream.
This patch fixes an issue with the GLOBAL_OVERFLOW_STATUS bits on
Haswell, Broadwell and Skylake processors when using PEBS.
The SDM stipulates that when the PEBS iterrupt threshold is crossed,
an interrupt is posted and the kernel is interrupted. The kernel will
find GLOBAL_OVF_SATUS bit 62 set indicating there are PEBS records to
drain. But the bits corresponding to the actual counters should NOT be
set. The kernel follows the SDM and assumes that all PEBS events are
processed in the drain_pebs() callback. The kernel then checks for
remaining overflows on any other (non-PEBS) events and processes these
in the for_each_bit_set(&status) loop.
As it turns out, under certain conditions on HSW and later processors,
on PEBS buffer interrupt, bit 62 is set but the counter bits may be
set as well. In that case, the kernel drains PEBS and generates
SAMPLES with the EXACT tag, then it processes the counter bits, and
generates normal (non-EXACT) SAMPLES.
I ran into this problem by trying to understand why on HSW sampling on
a PEBS event was sometimes returning SAMPLES without the EXACT tag.
This should not happen on user level code because HSW has the
eventing_ip which always point to the instruction that caused the
event.
The workaround in this patch simply ensures that the bits for the
counters used for PEBS events are cleared after the PEBS buffer has
been drained. With this fix 100% of the PEBS samples on my user code
report the EXACT tag.
Before:
$ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase
$ perf report -D | fgrep SAMPLES
PERF_RECORD_SAMPLE(IP, 0x2): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y
\--- EXACT tag is missing
After:
$ perf record -e cpu/event=0xd0,umask=0x81/upp ./multichase
$ perf report -D | fgrep SAMPLES
PERF_RECORD_SAMPLE(IP, 0x4002): 11775/11775: 0x406de5 period: 73469 addr: 0 exact=Y
\--- EXACT tag is set
The problem tends to appear more often when multiple PEBS events are used.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: kan.liang@intel.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/1457034642-21837-3-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 551adc6057 upstream.
Harry reported, that he's able to trigger a system freeze with cpu hot
unplug. The freeze turned out to be a live lock caused by recent changes in
irq_force_complete_move().
When fixup_irqs() and from there irq_force_complete_move() is called on the
dying cpu, then all other cpus are in stop machine an wait for the dying cpu
to complete the teardown. If there is a move of an interrupt pending then
irq_force_complete_move() sends the cleanup IPI to the cpus in the old_domain
mask and waits for them to clear the mask. That's obviously impossible as
those cpus are firmly stuck in stop machine with interrupts disabled.
I should have known that, but I completely overlooked it being concentrated on
the locking issues around the vectors. And the existance of the call to
__irq_complete_move() in the code, which actually sends the cleanup IPI made
it reasonable to wait for that cleanup to complete. That call was bogus even
before the recent changes as it was just a pointless distraction.
We have to look at two cases:
1) The move_in_progress flag of the interrupt is set
This means the ioapic has been updated with the new vector, but it has not
fired yet. In theory there is a race:
set_ioapic(new_vector) <-- Interrupt is raised before update is effective,
i.e. it's raised on the old vector.
So if the target cpu cannot handle that interrupt before the old vector is
cleaned up, we get a spurious interrupt and in the worst case the ioapic
irq line becomes stale, but my experiments so far have only resulted in
spurious interrupts.
But in case of cpu hotplug this should be a non issue because if the
affinity update happens right before all cpus rendevouz in stop machine,
there is no way that the interrupt can be blocked on the target cpu because
all cpus loops first with interrupts enabled in stop machine, so the old
vector is not yet cleaned up when the interrupt fires.
So the only way to run into this issue is if the delivery of the interrupt
on the apic/system bus would be delayed beyond the point where the target
cpu disables interrupts in stop machine. I doubt that it can happen, but at
least there is a theroretical chance. Virtualization might be able to
expose this, but AFAICT the IOAPIC emulation is not as stupid as the real
hardware.
I've spent quite some time over the weekend to enforce that situation,
though I was not able to trigger the delayed case.
2) The move_in_progress flag is not set and the old_domain cpu mask is not
empty.
That means, that an interrupt was delivered after the change and the
cleanup IPI has been sent to the cpus in old_domain, but not all CPUs have
responded to it yet.
In both cases we can assume that the next interrupt will arrive on the new
vector, so we can cleanup the old vectors on the cpus in the old_domain cpu
mask.
Fixes: 98229aa36c "x86/irq: Plug vector cleanup race"
Reported-by: Harry Junior <harryjr@outlook.fr>
Tested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Ben Hutchings <ben@decadent.org.uk>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603140931430.3657@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 92f9e179a7 upstream.
Pause/unpause graph tracing around do_suspend_lowlevel as it has
inconsistent call/return info after it jumps to the wakeup vector.
The graph trace buffer will otherwise become misaligned and
may eventually crash and hang on suspend.
To reproduce the issue and test the fix:
Run a function_graph trace over suspend/resume and set the graph
function to suspend_devices_and_enter. This consistently hangs the
system without this fix.
Signed-off-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 98229aa36c upstream.
We still can end up with a stale vector due to the following:
CPU0 CPU1 CPU2
lock_vector()
data->move_in_progress=0
sendIPI()
unlock_vector()
set_affinity()
assign_irq_vector()
lock_vector() handle_IPI
move_in_progress = 1 lock_vector()
unlock_vector()
move_in_progress == 1
So we need to serialize the vector assignment against a pending cleanup. The
solution is rather simple now. We not only check for the move_in_progress flag
in assign_irq_vector(), we also check whether there is still a cleanup pending
in the old_domain cpumask. If so, we return -EBUSY to the caller and let him
deal with it. Though we have to be careful in the cpu unplug case. If the
cleanout has not yet completed then the following setaffinity() call would
return -EBUSY. Add code which prevents this.
Full context is here: http://lkml.kernel.org/r/5653B688.4050809@stratus.com
Reported-and-tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/20151231160107.207265407@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1684f5035 upstream.
send_cleanup_vector() fiddles with the old_domain mask unprotected because it
relies on the protection by the move_in_progress flag. But this is fatal, as
the flag is reset after the IPI has been sent. So a cpu which receives the IPI
can still see the flag set and therefor ignores the cleanup request. If no
other cleanup request happens then the vector stays stale on that cpu and in
case of an irq removal the vector still persists. That can lead to use after
free when the next cleanup IPI happens.
Protect the code with vector_lock and clear move_in_progress before sending
the IPI.
This does not plug the race which Joe reported because:
CPU0 CPU1 CPU2
lock_vector()
data->move_in_progress=0
sendIPI()
unlock_vector()
set_affinity()
assign_irq_vector()
lock_vector() handle_IPI
move_in_progress = 1 lock_vector()
unlock_vector()
move_in_progress == 1
The full fix comes with a later patch.
Reported-and-tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/20151231160106.892412198@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3716fd27a6 upstream.
__assign_irq_vector() uses the vector_cpumask which is assigned by
apic->vector_allocation_domain() without doing basic sanity checks. That can
result in a situation where the final assignement of a newly found vector
fails in apic->cpu_mask_to_apicid_and(). So we have to do rollbacks for no
reason.
apic->cpu_mask_to_apicid_and() only fails if
vector_cpumask & requested_cpumask & cpu_online_mask
is empty.
Check for this condition right away and if the result is empty try immediately
the next possible cpu in the requested mask. So in case of a failure the old
setting is unchanged and we can remove the rollback code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/20151231160106.561877324@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 111abeba67 upstream.
There's a race condition between
x86_vector_free_irqs()
{
free_apic_chip_data(irq_data->chip_data);
xxxxx //irq_data->chip_data has been freed, but the pointer
//hasn't been reset yet
irq_domain_reset_irq_data(irq_data);
}
and
smp_irq_move_cleanup_interrupt()
{
raw_spin_lock(&vector_lock);
data = apic_chip_data(irq_desc_get_irq_data(desc));
access data->xxxx // may access freed memory
raw_spin_unlock(&desc->lock);
}
which may cause smp_irq_move_cleanup_interrupt() to access freed memory.
Call irq_domain_reset_irq_data(), which clears the pointer with vector lock
held.
[ tglx: Free memory outside of lock held region. ]
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Tested-by: Joe Lawrence <joe.lawrence@stratus.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Cc: andy.shevchenko@gmail.com
Cc: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/1450880014-11741-3-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Adding the rtc platform device in non-privileged Xen PV guests causes
an IRQ conflict because these guests do not have legacy PIC and may
allocate irqs in the legacy range.
In a single VCPU Xen PV guest we should have:
/proc/interrupts:
CPU0
0: 4934 xen-percpu-virq timer0
1: 0 xen-percpu-ipi spinlock0
2: 0 xen-percpu-ipi resched0
3: 0 xen-percpu-ipi callfunc0
4: 0 xen-percpu-virq debug0
5: 0 xen-percpu-ipi callfuncsingle0
6: 0 xen-percpu-ipi irqwork0
7: 321 xen-dyn-event xenbus
8: 90 xen-dyn-event hvc_console
...
But hvc_console cannot get its interrupt because it is already in use
by rtc0 and the console does not work.
genirq: Flags mismatch irq 8. 00000000 (hvc_console) vs. 00000000 (rtc0)
We can avoid this problem by realizing that unprivileged PV guests (both
Xen and lguests) are not supposed to have rtc_cmos device and so
adding it is not necessary.
Privileged guests (i.e. Xen's dom0) do use it but they should not have
irq conflicts since they allocate irqs above legacy range (above
gsi_top, in fact).
Instead of explicitly testing whether the guest is privileged we can
extend pv_info structure to include information about guest's RTC
support.
Reported-and-tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: vkuznets@redhat.com
Cc: xen-devel@lists.xenproject.org
Cc: konrad.wilk@oracle.com
Cc: stable@vger.kernel.org # 4.2+
Link: http://lkml.kernel.org/r/1449842873-2613-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel's MCA implementation broadcasts MCEs to all CPUs on the
node. This poses a problem for offlined CPUs which cannot
participate in the rendezvous process:
Kernel panic - not syncing: Timeout: Not all CPUs entered broadcast exception handler
Kernel Offset: disabled
Rebooting in 100 seconds..
More specifically, Linux does a soft offline of a CPU when
writing a 0 to /sys/devices/system/cpu/cpuX/online, which
doesn't prevent the #MC exception from being broadcasted to that
CPU.
Ensure that offline CPUs don't participate in the MCE rendezvous
and clear the RIP valid status bit so that a second MCE won't
cause a shutdown.
Without the patch, mce_start() will increment mce_callin and
wait for all CPUs. Offlined CPUs should avoid participating in
the rendezvous process altogether.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1449742346-21470-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull perf fixes from Ingo Molnar:
"This tree includes four core perf fixes for misc bugs, three fixes to
x86 PMU drivers, and two updates to old email addresses"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Do not send exit event twice
perf/x86/intel: Fix INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA macro
perf/x86/intel: Make L1D_PEND_MISS.FB_FULL not constrained on Haswell
perf: Fix PERF_EVENT_IOC_PERIOD deadlock
treewide: Remove old email address
perf/x86: Fix LBR call stack save/restore
perf: Update email address in MAINTAINERS
perf/core: Robustify the perf_cgroup_from_task() RCU checks
perf/core: Fix RCU problem with cgroup context switching code
Pull x86 fixes from Thoma Gleixner:
"Another round of fixes for x86:
- Move the initialization of the microcode driver to late_initcall to
make sure everything that init function needs is available.
- Make sure that lockdep knows about interrupts being off in the
entry code before calling into c-code.
- Undo the cpu hotplug init delay regression.
- Use the proper conditionals in the mpx instruction decoder.
- Fixup restart_syscall for x32 tasks.
- Fix the hugepage regression on PAE kernels which was introduced
with the latest PAT changes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/signal: Fix restart_syscall number for x32 tasks
x86/mpx: Fix instruction decoder condition
x86/mm: Fix regression with huge pages on PAE
x86 smpboot: Re-enable init_udelay=0 by default on modern CPUs
x86/entry/64: Fix irqflag tracing wrt context tracking
x86/microcode: Initialize the driver late when facilities are up
When restarting a syscall with regs->ax == -ERESTART_RESTARTBLOCK,
regs->ax is assigned to a restart_syscall number. For x32 tasks, this
syscall number must have __X32_SYSCALL_BIT set, otherwise it will be
an x86_64 syscall number instead of a valid x32 syscall number. This
issue has been there since the introduction of x32.
Reported-by: strace/tests/restart_syscall.test
Reported-and-tested-by: Elvira Khabirova <lineprinter0@gmail.com>
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Cc: Elvira Khabirova <lineprinter0@gmail.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20151130215436.GA25996@altlinux.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If there are no persistent memory ranges present then don't bother
creating the platform device. Otherwise, it loads the full libnvdimm
sub-system only to discover no resources present.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pull x86 fixes from Thomas Gleixner:
"This update contains:
- MPX updates for handling 32bit processes
- A fix for a long standing bug in 32bit signal frame handling
related to FPU/XSAVE state
- Handle get_xsave_addr() correctly in KVM
- Fix SMAP check under paravirtualization
- Add a comment to the static function trace entry to avoid further
confusion about the difference to dynamic tracing"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Fix SMAP check in PVOPS environments
x86/ftrace: Add comment on static function tracing
x86/fpu: Fix get_xsave_addr() behavior under virtualization
x86/fpu: Fix 32-bit signal frame handling
x86/mpx: Fix 32-bit address space calculation
x86/mpx: Do proper get_user() when running 32-bit binaries on 64-bit kernels
There appears to be no formal statement of what pv_irq_ops.save_fl() is
supposed to return precisely. Native returns the full flags, while lguest and
Xen only return the Interrupt Flag, and both have comments by the
implementations stating that only the Interrupt Flag is looked at. This may
have been true when initially implemented, but no longer is.
To make matters worse, the Xen PVOP leaves the upper bits undefined, making
the BUG_ON() undefined behaviour. Experimentally, this now trips for 32bit PV
guests on Broadwell hardware. The BUG_ON() is consistent for an individual
build, but not consistent for all builds. It has also been a sitting timebomb
since SMAP support was introduced.
Use native_save_fl() instead, which will obtain an accurate view of the AC
flag.
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Tested-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: <lguest@lists.ozlabs.org>
Cc: Xen-devel <xen-devel@lists.xen.org>
CC: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1433323874-6927-1-git-send-email-andrew.cooper3@citrix.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull perf updates from Thomas Gleixner:
"Mostly updates to the perf tool plus two fixes to the kernel core code:
- Handle tracepoint filters correctly for inherited events (Peter
Zijlstra)
- Prevent a deadlock in perf_lock_task_context (Paul McKenney)
- Add missing newlines to some pr_err() calls (Arnaldo Carvalho de
Melo)
- Print full source file paths when using 'perf annotate --print-line
--full-paths' (Michael Petlan)
- Fix 'perf probe -d' when just one out of uprobes and kprobes is
enabled (Wang Nan)
- Add compiler.h to list.h to fix 'make perf-tar-src-pkg' generated
tarballs, i.e. out of tree building (Arnaldo Carvalho de Melo)
- Add the llvm-src-base.c and llvm-src-kbuild.c files, generated by
the 'perf test' LLVM entries, when running it in-tree, to
.gitignore (Yunlong Song)
- libbpf error reporting improvements, using a strerror interface to
more precisely tell the user about problems with the provided
scriptlet, be it in C or as a ready made object file (Wang Nan)
- Do not be case sensitive when searching for matching 'perf test'
entries (Arnaldo Carvalho de Melo)
- Inform the user about objdump failures in 'perf annotate' (Andi
Kleen)
- Improve the LLVM 'perf test' entry, introduce a new ones for BPF
and kbuild tests to check the environment used by clang to compile
.c scriptlets (Wang Nan)"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
perf/x86/intel/rapl: Remove the unused RAPL_EVENT_DESC() macro
tools include: Add compiler.h to list.h
perf probe: Verify parameters in two functions
perf session: Add missing newlines to some pr_err() calls
perf annotate: Support full source file paths for srcline fix
perf test: Add llvm-src-base.c and llvm-src-kbuild.c to .gitignore
perf: Fix inherited events vs. tracepoint filters
perf: Disable IRQs across RCU RS CS that acquires scheduler lock
perf test: Do not be case sensitive when searching for matching tests
perf test: Add 'perf test BPF'
perf test: Enhance the LLVM tests: add kbuild test
perf test: Enhance the LLVM test: update basic BPF test program
perf bpf: Improve BPF related error messages
perf tools: Make fetch_kernel_version() publicly available
bpf tools: Add new API bpf_object__get_kversion()
bpf tools: Improve libbpf error reporting
perf probe: Cleanup find_perf_probe_point_from_map to reduce redundancy
perf annotate: Inform the user about objdump failures in --stdio
perf stat: Make stat options global
perf sched latency: Fix thread pid reuse issue
...
Pull x86 fixes from Thomas Gleixner:
"A couple of fixes and updates related to x86:
- Fix the W+X check regression on XEN
- The real fix for the low identity map trainwreck
- Probe legacy PIC early instead of unconditionally allocating legacy
irqs
- Add cpu verification to long mode entry
- Adjust the cache topology to AMD Fam17H systems
- Let Merrifield use the TSC across S3"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Call verify_cpu() after having entered long mode too
x86/setup: Fix low identity map for >= 2GB kernel range
x86/mm: Skip the hypervisor range when walking PGD
x86/AMD: Fix last level cache topology for AMD Fam17h systems
x86/irq: Probe for PIC presence before allocating descs for legacy IRQs
x86/cpu/intel: Enable X86_FEATURE_NONSTOP_TSC_S3 for Merrifield
(This should have gone to LKML originally. Sorry for the extra
noise, folks on the cc.)
Background:
Signal frames on x86 have two formats:
1. For 32-bit executables (whether on a real 32-bit kernel or
under 32-bit emulation on a 64-bit kernel) we have a
'fpregset_t' that includes the "FSAVE" registers.
2. For 64-bit executables (on 64-bit kernels obviously), the
'fpregset_t' is smaller and does not contain the "FSAVE"
state.
When creating the signal frame, we have to be aware of whether
we are running a 32 or 64-bit executable so we create the
correct format signal frame.
Problem:
save_xstate_epilog() uses 'fx_sw_reserved_ia32' whenever it is
called for a 32-bit executable. This is for real 32-bit and
ia32 emulation.
But, fpu__init_prepare_fx_sw_frame() only initializes
'fx_sw_reserved_ia32' when emulation is enabled, *NOT* for real
32-bit kernels.
This leads to really wierd situations where 32-bit programs
lose their extended state when returning from a signal handler.
The kernel copies the uninitialized (zero) 'fx_sw_reserved_ia32'
out to userspace in save_xstate_epilog(). But when returning
from the signal, the kernel errors out in check_for_xstate()
when it does not see FP_XSTATE_MAGIC1 present (because it was
zeroed). This leads to the FPU/XSAVE state being initialized.
For MPX, this leads to the most permissive state and means we
silently lose bounds violations. I think this would also mean
that we could lose *ANY* FPU/SSE/AVX state. I'm not sure why
no one has spotted this bug.
I believe this was broken by:
72a671ced6 ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")
way back in 2012.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@sr71.net
Cc: fenghua.yu@intel.com
Cc: yu-cheng.yu@intel.com
Link: http://lkml.kernel.org/r/20151111002354.A0799571@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>