Pull trivial x86 branches from Ingo Molnar: small one-liners to fix up
details.
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove some noise from boot log when starting cpus
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, boot: Fix port argument to inl() function
* 'x86-cpufeature-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, cpufeature: Add CPU features from Intel document 319433-012A
* 'x86-process-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86_64: Record stack pointer before task execution begins
* 'x86-uv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/UV: Lower UV rtc clocksource rating
Pull x86/asm changes from Ingo Molnar
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Include probe_roms.h in probe_roms.c
x86/32: Print control and debug registers for kerenel context
x86: Tighten dependencies of CPU_SUP_*_32
x86/numa: Improve internode cache alignment
x86: Fix the NMI nesting comments
x86-64: Improve insn scheduling in SAVE_ARGS_IRQ
x86-64: Fix CFI annotations for NMI nesting code
bitops: Add missing parentheses to new get_order macro
bitops: Optimise get_order()
bitops: Adjust the comment on get_order() to describe the size==0 case
x86/spinlocks: Eliminate TICKET_MASK
x86-64: Handle byte-wise tail copying in memcpy() without a loop
x86-64: Fix memcpy() to support sizes of 4Gb and above
x86-64: Fix memset() to support sizes of 4Gb and above
x86-64: Slightly shorten copy_page()
Merge first batch of patches from Andrew Morton:
"A few misc things and all the MM queue"
* emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits)
memcg: avoid THP split in task migration
thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE
memcg: clean up existing move charge code
mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read()
mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event()
mm/memcontrol.c: s/stealed/stolen/
memcg: fix performance of mem_cgroup_begin_update_page_stat()
memcg: remove PCG_FILE_MAPPED
memcg: use new logic for page stat accounting
memcg: remove PCG_MOVE_LOCK flag from page_cgroup
memcg: simplify move_account() check
memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat)
memcg: kill dead prev_priority stubs
memcg: remove PCG_CACHE page_cgroup flag
memcg: let css_get_next() rely upon rcu_read_lock()
cgroup: revert ss_id_lock to spinlock
idr: make idr_get_next() good for rcu_read_lock()
memcg: remove unnecessary thp check in page stat accounting
memcg: remove redundant returns
memcg: enum lru_list lru
...
Without this fix the cpumask_of_node() for a fake=numa=2 is:
cpumask 0 ff
cpumask 1 ff
with the fix it's correct and it's set to:
cpumask 0 55
cpumask 1 aa
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After looking up the vma which covers or follows the cached search
address, the following condition is always true:
!prev_vma || (addr >= prev_vma->vm_end)
so we can stop checking the previous VMA altogether.
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the required size is bigger than cached_hole_size it is better to
search from free_area_cache - it is easier to get a free region,
specifically for the 64 bit process whose address space is large enough
Do it just as hugetlb_get_unmapped_area_topdown() in arch/x86/mm/hugetlbpage.c
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Search again only if some holes may be skipped in the first pass.
[akpm@linux-foundation.org: clean up crazy compound definition]
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode. In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.
It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds). The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().
Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously. This is
probably why it wasn't common to run into this. For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.
Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).
The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value. Even if the real pmd is changing under the
value we hold on the stack, we don't care. If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).
All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd. The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds). I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).
if (pmd_trans_huge(*pmd)) {
if (next-addr != HPAGE_PMD_SIZE) {
VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
split_huge_page_pmd(vma->vm_mm, pmd);
} else if (zap_huge_pmd(tlb, vma, pmd, addr))
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.
The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.
====== start quote =======
mapcount 0 page_mapcount 1
kernel BUG at mm/huge_memory.c:1384!
At some point prior to the panic, a "bad pmd ..." message similar to the
following is logged on the console:
mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).
The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
the page's PMD table entry.
143 void pmd_clear_bad(pmd_t *pmd)
144 {
-> 145 pmd_ERROR(*pmd);
146 pmd_clear(pmd);
147 }
After the PMD table entry has been cleared, there is an inconsistency
between the actual number of PMD table entries that are mapping the page
and the page's map count (_mapcount field in struct page). When the page
is subsequently reclaimed, __split_huge_page() detects this inconsistency.
1381 if (mapcount != page_mapcount(page))
1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1383 mapcount, page_mapcount(page));
-> 1384 BUG_ON(mapcount != page_mapcount(page));
The root cause of the problem is a race of two threads in a multithreaded
process. Thread B incurs a page fault on a virtual address that has never
been accessed (PMD entry is zero) while Thread A is executing an madvise()
system call on a virtual address within the same 2 MB (huge page) range.
virtual address space
.---------------------.
| |
| |
.-|---------------------|
| | |
| | |<-- B(fault)
| | |
2 MB | |/////////////////////|-.
huge < |/////////////////////| > A(range)
page | |/////////////////////|-'
| | |
| | |
'-|---------------------|
| |
| |
'---------------------'
- Thread A is executing an madvise(..., MADV_DONTNEED) system call
on the virtual address range "A(range)" shown in the picture.
sys_madvise
// Acquire the semaphore in shared mode.
down_read(¤t->mm->mmap_sem)
...
madvise_vma
switch (behavior)
case MADV_DONTNEED:
madvise_dontneed
zap_page_range
unmap_vmas
unmap_page_range
zap_pud_range
zap_pmd_range
//
// Assume that this huge page has never been accessed.
// I.e. content of the PMD entry is zero (not mapped).
//
if (pmd_trans_huge(*pmd)) {
// We don't get here due to the above assumption.
}
//
// Assume that Thread B incurred a page fault and
.---------> // sneaks in here as shown below.
| //
| if (pmd_none_or_clear_bad(pmd))
| {
| if (unlikely(pmd_bad(*pmd)))
| pmd_clear_bad
| {
| pmd_ERROR
| // Log "bad pmd ..." message here.
| pmd_clear
| // Clear the page's PMD entry.
| // Thread B incremented the map count
| // in page_add_new_anon_rmap(), but
| // now the page is no longer mapped
| // by a PMD entry (-> inconsistency).
| }
| }
|
v
- Thread B is handling a page fault on virtual address "B(fault)" shown
in the picture.
...
do_page_fault
__do_page_fault
// Acquire the semaphore in shared mode.
down_read_trylock(&mm->mmap_sem)
...
handle_mm_fault
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
// We get here due to the above assumption (PMD entry is zero).
do_huge_pmd_anonymous_page
alloc_hugepage_vma
// Allocate a new transparent huge page here.
...
__do_huge_pmd_anonymous_page
...
spin_lock(&mm->page_table_lock)
...
page_add_new_anon_rmap
// Here we increment the page's map count (starts at -1).
atomic_set(&page->_mapcount, 0)
set_pmd_at
// Here we set the page's PMD entry which will be cleared
// when Thread A calls pmd_clear_bad().
...
spin_unlock(&mm->page_table_lock)
The mmap_sem does not prevent the race because both threads are acquiring
it in shared mode (down_read). Thread B holds the page_table_lock while
the page's map count and PMD table entry are updated. However, Thread A
does not synchronize on that lock.
====== end quote =======
[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile 1 from Al Viro:
"This is _not_ all; in particular, Miklos' and Jan's stuff is not there
yet."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (64 commits)
ext4: initialization of ext4_li_mtx needs to be done earlier
debugfs-related mode_t whack-a-mole
hfsplus: add an ioctl to bless files
hfsplus: change finder_info to u32
hfsplus: initialise userflags
qnx4: new helper - try_extent()
qnx4: get rid of qnx4_bread/qnx4_getblk
take removal of PF_FORKNOEXEC to flush_old_exec()
trim includes in inode.c
um: uml_dup_mmap() relies on ->mmap_sem being held, but activate_mm() doesn't hold it
um: embed ->stub_pages[] into mmu_context
gadgetfs: list_for_each_safe() misuse
ocfs2: fix leaks on failure exits in module_init
ecryptfs: make register_filesystem() the last potential failure exit
ntfs: forgets to unregister sysctls on register_filesystem() failure
logfs: missing cleanup on register_filesystem() failure
jfs: mising cleanup on register_filesystem() failure
make configfs_pin_fs() return root dentry on success
configfs: configfs_create_dir() has parent dentry in dentry->d_parent
configfs: sanitize configfs_create()
...
This branch takes the PowerPC irq_host infrastructure (reverse mapping
from Linux IRQ numbers to hardware irq numbering), generalizes it,
renames it to irq_domain, and makes it available to all architectures.
Originally the plan has been to create an all-new irq_domain
implementation which addresses some of the powerpc shortcomings such
as not handling 1:1 mappings well, but doing that proved to be far
more difficult and invasive than generalizing the working code and
refactoring it in-place. So, this branch rips out the 'new'
irq_domain and replaces it with the modified powerpc version (in a
fully bisectable way of course). It converts all users over to the
new API and makes irq_domain selectable on any architecture.
No architecture is forced to enable irq_domain, but the infrastructure
is required for doing OpenFirmware style irq translations. It will
even work on SPARC even though SPARC has it's own mechanism for
translating irqs at boot time. MIPS, microblaze, embedded x86 and c6x
are converted too.
The resulting irq_domain code is probably still too verbose and can be
optimized more, but that can be done incrementally and is a task for
follow-on patches.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPZ1yiAAoJEEFnBt12D9kB4yIQAJvCfTPL65sCYVD6i9RnVHtR
ahwddtd0AtT+UYLU8Xg2fZgVi6cmupDGnqkBixzZD3xxSTERqm7Snqa0ugklfeAi
B6Zqf/K17H5hJNaoQ3fkNauow8m7ZYOeEH2vVUvkb3woWS9Wm7OGd+BvcIBgYSGe
Aaoumhu7kDxFkii0qz3x/+kvsb6DRp2HtSPWj+APL/kNjdiO4JBOihtcc/lX6d47
bsZLiEMzHUFV4ApJNwqmfDnf54oMrHmrRJxgQHIMjeJC5or9I3Do8wDGe/aTF5xO
5GVpxCQsTlJMjTBWlAFtpTwCJB6y76EHQrHc7WzLlq8OJSsxApOke8M0BzXFrfMy
CU7UUpTvNZTLpZibLCEQKemv1+oNOkfFylsHxfek2MCqx0W6W4FHEGV3qE/GtgV9
+vurA9hNNp7VM0FGRGigcUr3woYdHLdEVQrlnL7Z9AgBu1W44MZLaai7iRVZOeCT
ZQ9++v2PJJ8vHT8kdkgTdiRpnEhmv84MX/GBT7ilWFEMIVeT5zhGkIBojzNgyzGc
7cvermmM0P8h+unkDgmzmSbDxo0PboqVKeoO71AOBhA6MmR9iom7XkuNdHhoOwy2
4A5xT1srbhJDbuv15BBREBV24TywpZ4a1+4nwQT4L1fXe+HfCxeEWexGcKQMRcIt
dAelOHTQ+ZGkOKvXeW05
=ruGA
-----END PGP SIGNATURE-----
Merge tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6
Pull irq_domain support for all architectures from Grant Likely:
"Generialize powerpc's irq_host as irq_domain
This branch takes the PowerPC irq_host infrastructure (reverse mapping
from Linux IRQ numbers to hardware irq numbering), generalizes it,
renames it to irq_domain, and makes it available to all architectures.
Originally the plan has been to create an all-new irq_domain
implementation which addresses some of the powerpc shortcomings such
as not handling 1:1 mappings well, but doing that proved to be far
more difficult and invasive than generalizing the working code and
refactoring it in-place. So, this branch rips out the 'new'
irq_domain and replaces it with the modified powerpc version (in a
fully bisectable way of course). It converts all users over to the
new API and makes irq_domain selectable on any architecture.
No architecture is forced to enable irq_domain, but the infrastructure
is required for doing OpenFirmware style irq translations. It will
even work on SPARC even though SPARC has it's own mechanism for
translating irqs at boot time. MIPS, microblaze, embedded x86 and c6x
are converted too.
The resulting irq_domain code is probably still too verbose and can be
optimized more, but that can be done incrementally and is a task for
follow-on patches."
* tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6: (31 commits)
dt: fix twl4030 for non-dt compile on x86
mfd: twl-core: Add IRQ_DOMAIN dependency
devicetree: Add empty of_platform_populate() for !CONFIG_OF_ADDRESS (sparc)
irq_domain: Centralize definition of irq_dispose_mapping()
irq_domain/mips: Allow irq_domain on MIPS
irq_domain/x86: Convert x86 (embedded) to use common irq_domain
ppc-6xx: fix build failure in flipper-pic.c and hlwd-pic.c
irq_domain/microblaze: Convert microblaze to use irq_domains
irq_domain/powerpc: Replace custom xlate functions with library functions
irq_domain/powerpc: constify irq_domain_ops
irq_domain/c6x: Use library of xlate functions
irq_domain/c6x: constify irq_domain structures
irq_domain/c6x: Convert c6x to use generic irq_domain support.
irq_domain: constify irq_domain_ops
irq_domain: Create common xlate functions that device drivers can use
irq_domain: Remove irq_domain_add_simple()
irq_domain: Remove 'new' irq_domain in favour of the ppc one
mfd: twl-core.c: Fix the number of interrupts managed by twl4030
of/address: add empty static inlines for !CONFIG_OF
irq_domain: Add support for base irq and hwirq in legacy mappings
...
Assorted extensions and fixes including:
* Introduction of early/late suspend/hibernation device callbacks.
* Generic PM domains extensions and fixes.
* devfreq updates from Axel Lin and MyungJoo Ham.
* Device PM QoS updates.
* Fixes of concurrency problems with wakeup sources.
* System suspend and hibernation fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJPZww5AAoJEKhOf7ml8uNsiBYQAL9YGso7KypZhLspNxvAKuZr
iHyme2F7OdOiUfo40DVH5tRuEsQvLOl0S+9ukWLrzQotKBsMfym05jtbGN9m6Ygh
Z793sx3eRI3mltekJ9yrOxH6BOBDMWMkwY8ztU/X5aYDNirgJ/qtAjSK4BvWXBrz
APeaUReVnLdaNP8SnhHfne/KPsHk++NKZvAAva7E6RwtZn4KV6bfiBPGb8yvY8pP
m4cg1S5QEduMy+zQJ8+IlEHR91bt9spUyRwbhw6ZHCNzNeu4iEZT8DVt1O1sIRbO
LsNcClqsd40nr781SoF8N9GmGUxlUDr46bS3FSsDkYzn8uyxGEsv00edJZtPwIm5
7nPuYat3Ke1YsON0Kcd/wkBGXqw/Rjfp3F1bnHjpVx/0oM/6MPrFNnIwvpHspejG
kN3770idYJ17dLckhcsbYsLdy8yirITILDzvHT0AAaZ9z4Lr9Pm56WwFZLyb/lhR
2cqK8Bb8W9YvcVsKV8YqkyBVrygWMe+c56KoAoUBiSNxvW6LphmXFBj5QiFMs8s8
Xh8H7xU96FKbpNMIAZ1+bpI4zgulQG4xPXI9pKbhMfjaMUgj2zQeO8/t0WlB1M0z
+kEUcYHJnXrRrObQuHEFXZdIjy/E0fdUboMIrlLt0gm97OxnG6imPseQp6/leQkC
t+L4Aq6TOUofUU86d4cI
=IGhc
-----END PGP SIGNATURE-----
Merge tag 'pm-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates for 3.4 from Rafael Wysocki:
"Assorted extensions and fixes including:
* Introduction of early/late suspend/hibernation device callbacks.
* Generic PM domains extensions and fixes.
* devfreq updates from Axel Lin and MyungJoo Ham.
* Device PM QoS updates.
* Fixes of concurrency problems with wakeup sources.
* System suspend and hibernation fixes."
* tag 'pm-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (43 commits)
PM / Domains: Check domain status during hibernation restore of devices
PM / devfreq: add relation of recommended frequency.
PM / shmobile: Make MTU2 driver use pm_genpd_dev_always_on()
PM / shmobile: Make CMT driver use pm_genpd_dev_always_on()
PM / shmobile: Make TMU driver use pm_genpd_dev_always_on()
PM / Domains: Introduce "always on" device flag
PM / Domains: Fix hibernation restore of devices, v2
PM / Domains: Fix handling of wakeup devices during system resume
sh_mmcif / PM: Use PM QoS latency constraint
tmio_mmc / PM: Use PM QoS latency constraint
PM / QoS: Make it possible to expose PM QoS latency constraints
PM / Sleep: JBD and JBD2 missing set_freezable()
PM / Domains: Fix include for PM_GENERIC_DOMAINS=n case
PM / Freezer: Remove references to TIF_FREEZE in comments
PM / Sleep: Add more wakeup source initialization routines
PM / Hibernate: Enable usermodehelpers in hibernate() error path
PM / Sleep: Make __pm_stay_awake() delete wakeup source timers
PM / Sleep: Fix race conditions related to wakeup source timer function
PM / Sleep: Fix possible infinite loop during wakeup source destruction
PM / Hibernate: print physical addresses consistently with other parts of kernel
...
Pull kmap_atomic cleanup from Cong Wang.
It's been in -next for a long time, and it gets rid of the (no longer
used) second argument to k[un]map_atomic().
Fix up a few trivial conflicts in various drivers, and do an "evil
merge" to catch some new uses that have come in since Cong's tree.
* 'kmap_atomic' of git://github.com/congwang/linux: (59 commits)
feature-removal-schedule.txt: schedule the deprecated form of kmap_atomic() for removal
highmem: kill all __kmap_atomic() [swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename]
drbd: remove the second argument of k[un]map_atomic()
zcache: remove the second argument of k[un]map_atomic()
gma500: remove the second argument of k[un]map_atomic()
dm: remove the second argument of k[un]map_atomic()
tomoyo: remove the second argument of k[un]map_atomic()
sunrpc: remove the second argument of k[un]map_atomic()
rds: remove the second argument of k[un]map_atomic()
net: remove the second argument of k[un]map_atomic()
mm: remove the second argument of k[un]map_atomic()
lib: remove the second argument of k[un]map_atomic()
power: remove the second argument of k[un]map_atomic()
kdb: remove the second argument of k[un]map_atomic()
udf: remove the second argument of k[un]map_atomic()
ubifs: remove the second argument of k[un]map_atomic()
squashfs: remove the second argument of k[un]map_atomic()
reiserfs: remove the second argument of k[un]map_atomic()
ocfs2: remove the second argument of k[un]map_atomic()
ntfs: remove the second argument of k[un]map_atomic()
...
Pull trivial tree from Jiri Kosina:
"It's indeed trivial -- mostly documentation updates and a bunch of
typo fixes from Masanari.
There are also several linux/version.h include removals from Jesper."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (101 commits)
kcore: fix spelling in read_kcore() comment
constify struct pci_dev * in obvious cases
Revert "char: Fix typo in viotape.c"
init: fix wording error in mm_init comment
usb: gadget: Kconfig: fix typo for 'different'
Revert "power, max8998: Include linux/module.h just once in drivers/power/max8998_charger.c"
writeback: fix fn name in writeback_inodes_sb_nr_if_idle() comment header
writeback: fix typo in the writeback_control comment
Documentation: Fix multiple typo in Documentation
tpm_tis: fix tis_lock with respect to RCU
Revert "media: Fix typo in mixer_drv.c and hdmi_drv.c"
Doc: Update numastat.txt
qla4xxx: Add missing spaces to error messages
compiler.h: Fix typo
security: struct security_operations kerneldoc fix
Documentation: broken URL in libata.tmpl
Documentation: broken URL in filesystems.tmpl
mtd: simplify return logic in do_map_probe()
mm: fix comment typo of truncate_inode_pages_range
power: bq27x00: Fix typos in comment
...
Pull networking merge from David Miller:
"1) Move ixgbe driver over to purely page based buffering on receive.
From Alexander Duyck.
2) Add receive packet steering support to e1000e, from Bruce Allan.
3) Convert TCP MD5 support over to RCU, from Eric Dumazet.
4) Reduce cpu usage in handling out-of-order TCP packets on modern
systems, also from Eric Dumazet.
5) Support the IP{,V6}_UNICAST_IF socket options, making the wine
folks happy, from Erich Hoover.
6) Support VLAN trunking from guests in hyperv driver, from Haiyang
Zhang.
7) Support byte-queue-limtis in r8169, from Igor Maravic.
8) Outline code intended for IP_RECVTOS in IP_PKTOPTIONS existed but
was never properly implemented, Jiri Benc fixed that.
9) 64-bit statistics support in r8169 and 8139too, from Junchang Wang.
10) Support kernel side dump filtering by ctmark in netfilter
ctnetlink, from Pablo Neira Ayuso.
11) Support byte-queue-limits in gianfar driver, from Paul Gortmaker.
12) Add new peek socket options to assist with socket migration, from
Pavel Emelyanov.
13) Add sch_plug packet scheduler whose queue is controlled by
userland daemons using explicit freeze and release commands. From
Shriram Rajagopalan.
14) Fix FCOE checksum offload handling on transmit, from Yi Zou."
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1846 commits)
Fix pppol2tp getsockname()
Remove printk from rds_sendmsg
ipv6: fix incorrent ipv6 ipsec packet fragment
cpsw: Hook up default ndo_change_mtu.
net: qmi_wwan: fix build error due to cdc-wdm dependecy
netdev: driver: ethernet: Add TI CPSW driver
netdev: driver: ethernet: add cpsw address lookup engine support
phy: add am79c874 PHY support
mlx4_core: fix race on comm channel
bonding: send igmp report for its master
fs_enet: Add MPC5125 FEC support and PHY interface selection
net: bpf_jit: fix BPF_S_LDX_B_MSH compilation
net: update the usage of CHECKSUM_UNNECESSARY
fcoe: use CHECKSUM_UNNECESSARY instead of CHECKSUM_PARTIAL on tx
net: do not do gso for CHECKSUM_UNNECESSARY in netif_needs_gso
ixgbe: Fix issues with SR-IOV loopback when flow control is disabled
net/hyperv: Fix the code handling tx busy
ixgbe: fix namespace issues when FCoE/DCB is not enabled
rtlwifi: Remove unused ETH_ADDR_LEN defines
igbvf: Use ETH_ALEN
...
Fix up fairly trivial conflicts in drivers/isdn/gigaset/interface.c and
drivers/net/usb/{Kconfig,qmi_wwan.c} as per David.
Here's the big driver core merge for 3.4-rc1.
Lots of various things here, sysfs fixes/tweaks (with the nlink breakage
reverted), dynamic debugging updates, w1 drivers, hyperv driver updates,
and a variety of other bits and pieces, full information in the
shortlog.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iEYEABECAAYFAk9neCsACgkQMUfUDdst+ylyQwCfY2eizvzw5HhjQs8gOiBRDADe
yrgAnj1Zan2QkoCnQIFJNAoxqNX9yAhd
=biH6
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core patches for 3.4-rc1 from Greg KH:
"Here's the big driver core merge for 3.4-rc1.
Lots of various things here, sysfs fixes/tweaks (with the nlink
breakage reverted), dynamic debugging updates, w1 drivers, hyperv
driver updates, and a variety of other bits and pieces, full
information in the shortlog."
* tag 'driver-core-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (78 commits)
Tools: hv: Support enumeration from all the pools
Tools: hv: Fully support the new KVP verbs in the user level daemon
Drivers: hv: Support the newly introduced KVP messages in the driver
Drivers: hv: Add new message types to enhance KVP
regulator: Support driver probe deferral
Revert "sysfs: Kill nlink counting."
uevent: send events in correct order according to seqnum (v3)
driver core: minor comment formatting cleanups
driver core: move the deferred probe pointer into the private area
drivercore: Add driver probe deferral mechanism
DS2781 Maxim Stand-Alone Fuel Gauge battery and w1 slave drivers
w1_bq27000: Only one thread can access the bq27000 at a time.
w1_bq27000 - remove w1_bq27000_write
w1_bq27000: remove unnecessary NULL test.
sysfs: Fix memory leak in sysfs_sd_setsecdata().
intel_idle: Revert change of auto_demotion_disable_flags for Nehalem
w1: Fix w1_bq27000
driver-core: documentation: fix up Greg's email address
powernow-k6: Really enable auto-loading
powernow-k7: Fix CPU family number
...
Pull timer changes for v3.4 from Ingo Molnar
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
ntp: Fix integer overflow when setting time
math: Introduce div64_long
cs5535-clockevt: Allow the MFGPT IRQ to be shared
cs5535-clockevt: Don't ignore MFGPT on SMP-capable kernels
x86/time: Eliminate unused irq0_irqs counter
clocksource: scx200_hrt: Fix the build
x86/tsc: Reduce the TSC sync check time for core-siblings
timer: Fix bad idle check on irq entry
nohz: Remove ts->Einidle checks before restarting the tick
nohz: Remove update_ts_time_stat from tick_nohz_start_idle
clockevents: Leave the broadcast device in shutdown mode when not needed
clocksource: Load the ACPI PM clocksource asynchronously
clocksource: scx200_hrt: Convert scx200 to use clocksource_register_hz
clocksource: Get rid of clocksource_calc_mult_shift()
clocksource: dbx500: convert to clocksource_register_hz()
clocksource: scx200_hrt: use pr_<level> instead of printk
time: Move common updates to a function
time: Reorder so the hot data is together
time: Remove most of xtime_lock usage in timekeeping.c
ntp: Add ntp_lock to replace xtime_locking
...
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
Pull perf events changes for v3.4 from Ingo Molnar:
- New "hardware based branch profiling" feature both on the kernel and
the tooling side, on CPUs that support it. (modern x86 Intel CPUs
with the 'LBR' hardware feature currently.)
This new feature is basically a sophisticated 'magnifying glass' for
branch execution - something that is pretty difficult to extract from
regular, function histogram centric profiles.
The simplest mode is activated via 'perf record -b', and the result
looks like this in perf report:
$ perf record -b any_call,u -e cycles:u branchy
$ perf report -b --sort=symbol
52.34% [.] main [.] f1
24.04% [.] f1 [.] f3
23.60% [.] f1 [.] f2
0.01% [k] _IO_new_file_xsputn [k] _IO_file_overflow
0.01% [k] _IO_vfprintf_internal [k] _IO_new_file_xsputn
0.01% [k] _IO_vfprintf_internal [k] strchrnul
0.01% [k] __printf [k] _IO_vfprintf_internal
0.01% [k] main [k] __printf
This output shows from/to branch columns and shows the highest
percentage (from,to) jump combinations - i.e. the most likely taken
branches in the system. "branches" can also include function calls
and any other synchronous and asynchronous transitions of the
instruction pointer that are not 'next instruction' - such as system
calls, traps, interrupts, etc.
This feature comes with (hopefully intuitive) flat ascii and TUI
support in perf report.
- Various 'perf annotate' visual improvements for us assembly junkies.
It will now recognize function calls in the TUI and by hitting enter
you can follow the call (recursively) and back, amongst other
improvements.
- Multiple threads/processes recording support in perf record, perf
stat, perf top - which is activated via a comma-list of PIDs:
perf top -p 21483,21485
perf stat -p 21483,21485 -ddd
perf record -p 21483,21485
- Support for per UID views, via the --uid paramter to perf top, perf
report, etc. For example 'perf top --uid mingo' will only show the
tasks that I am running, excluding other users, root, etc.
- Jump label restructurings and improvements - this includes the
factoring out of the (hopefully much clearer) include/linux/static_key.h
generic facility:
struct static_key key = STATIC_KEY_INIT_FALSE;
...
if (static_key_false(&key))
do unlikely code
else
do likely code
...
static_key_slow_inc();
...
static_key_slow_inc();
...
The static_key_false() branch will be generated into the code with as
little impact to the likely code path as possible. the
static_key_slow_*() APIs flip the branch via live kernel code patching.
This facility can now be used more widely within the kernel to
micro-optimize hot branches whose likelihood matches the static-key
usage and fast/slow cost patterns.
- SW function tracer improvements: perf support and filtering support.
- Various hardenings of the perf.data ABI, to make older perf.data's
smoother on newer tool versions, to make new features integrate more
smoothly, to support cross-endian recording/analyzing workflows
better, etc.
- Restructuring of the kprobes code, the splitting out of 'optprobes',
and a corner case bugfix.
- Allow the tracing of kernel console output (printk).
- Improvements/fixes to user-space RDPMC support, allowing user-space
self-profiling code to extract PMU counts without performing any
system calls, while playing nice with the kernel side.
- 'perf bench' improvements
- ... and lots of internal restructurings, cleanups and fixes that made
these features possible. And, as usual this list is incomplete as
there were also lots of other improvements
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (120 commits)
perf report: Fix annotate double quit issue in branch view mode
perf report: Remove duplicate annotate choice in branch view mode
perf/x86: Prettify pmu config literals
perf report: Enable TUI in branch view mode
perf report: Auto-detect branch stack sampling mode
perf record: Add HEADER_BRANCH_STACK tag
perf record: Provide default branch stack sampling mode option
perf tools: Make perf able to read files from older ABIs
perf tools: Fix ABI compatibility bug in print_event_desc()
perf tools: Enable reading of perf.data files from different ABI rev
perf: Add ABI reference sizes
perf report: Add support for taken branch sampling
perf record: Add support for sampling taken branch
perf tools: Add code to support PERF_SAMPLE_BRANCH_STACK
x86/kprobes: Split out optprobe related code to kprobes-opt.c
x86/kprobes: Fix a bug which can modify kernel code permanently
x86/kprobes: Fix instruction recovery on optimized path
perf: Add callback to flush branch_stack on context switch
perf: Disable PERF_SAMPLE_BRANCH_* when not supported
perf/x86: Add LBR software filter support for Intel CPUs
...
Pull irq/core changes for v3.4 from Ingo Molnar
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Remove paranoid warnons and bogus fixups
genirq: Flush the irq thread on synchronization
genirq: Get rid of unnecessary IRQTF_DIED flag
genirq: No need to check IRQTF_DIED before stopping a thread handler
genirq: Get rid of unnecessary irqaction field in task_struct
genirq: Fix incorrect check for forced IRQ thread handler
softirq: Reduce invoke_softirq() code duplication
genirq: Fix long-term regression in genirq irq_set_irq_type() handling
x86-32/irq: Don't switch to irq stack for a user-mode irq
[swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename]
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Cong Wang <amwang@redhat.com>
* branch 'dcache-word-accesses':
vfs: use 'unsigned long' accesses for dcache name comparison and hashing
This does the name hashing and lookup using word-sized accesses when
that is efficient, namely on x86 (although any little-endian machine
with good unaligned accesses would do).
It does very much depend on little-endian logic, but it's a very hot
couple of functions under some real loads, and this patch improves the
performance of __d_lookup_rcu() and link_path_walk() by up to about 30%.
Giving a 10% improvement on some very pathname-heavy benchmarks.
Because we do make unaligned accesses past the filename, the
optimization is disabled when CONFIG_DEBUG_PAGEALLOC is active, and we
effectively depend on the fact that on x86 we don't really ever have the
last page of usable RAM followed immediately by any IO memory (due to
ACPI tables, BIOS buffer areas etc).
Some of the bit operations we do are a bit "subtle". It's commented,
but you do need to really think about the code. Or just consider it
black magic.
Thanks to people on G+ for some of the optimized bit tricks.
Matt Evans spotted that x86 bpf_jit was incorrectly handling negative
constant offsets in BPF_S_LDX_B_MSH instruction.
We need to abort JIT compilation like we do in common_load so that
filter uses the interpreter code and can call __load_pointer()
Reference: http://lists.openwall.net/netdev/2011/07/19/11
Thanks to Indan Zupancic to bring back this issue.
Reported-by: Matt Evans <matt@ozlabs.org>
Reported-by: Indan Zupancic <indan@nul.nu>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix the following section warnings :
WARNING: vmlinux.o(.text+0x49dbc): Section mismatch in reference
from the function acpi_map_cpu2node() to the variable
.cpuinit.data:__apicid_to_node The function acpi_map_cpu2node()
references the variable __cpuinitdata __apicid_to_node. This is
often because acpi_map_cpu2node lacks a __cpuinitdata
annotation or the annotation of __apicid_to_node is wrong.
WARNING: vmlinux.o(.text+0x49dc1): Section mismatch in reference
from the function acpi_map_cpu2node() to the function
.cpuinit.text:numa_set_node() The function acpi_map_cpu2node()
references the function __cpuinit numa_set_node(). This is often
because acpi_map_cpu2node lacks a __cpuinit annotation or the
annotation of numa_set_node is wrong.
WARNING: vmlinux.o(.text+0x526e77): Section mismatch in
reference from the function prealloc_protection_domains() to the
function .init.text:alloc_passthrough_domain() The function
prealloc_protection_domains() references the function __init
alloc_passthrough_domain(). This is often because
prealloc_protection_domains lacks a __init annotation or the annotation of alloc_passthrough_domain is wrong.
Signed-off-by: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1331810188-24785-1-git-send-email-sp@numascale.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a machine boots up, the TSC generally gets reset. However,
when kexec is used to boot into a kernel, the TSC value would be
carried over from the previous kernel. The computation of
cycns_offset in set_cyc2ns_scale is prone to an overflow, if the
machine has been up more than 208 days prior to the kexec. The
overflow happens when we multiply *scale, even though there is
enough room to store the final answer.
We fix this issue by decomposing tsc_now into the quotient and
remainder of division by CYC2NS_SCALE_FACTOR and then performing
the multiplication separately on the two components.
Refactor code to share the calculation with the previous
fix in __cycles_2_ns().
Signed-off-by: Salman Qazi <sqazi@google.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20120310004027.19291.88460.stgit@dungbeetle.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
I got somewhat tired of having to decode hex numbers..
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Link: http://lkml.kernel.org/n/tip-0vsy1sgywc4uar3mu1szm0rg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Stepan found:
CPU0 CPUn
_cpu_up()
__cpu_up()
boostrap()
notify_cpu_starting()
set_cpu_online()
while (!cpu_active())
cpu_relax()
<PREEMPT-out>
smp_call_function(.wait=1)
/* we find cpu_online() is true */
arch_send_call_function_ipi_mask()
/* wait-forever-more */
<PREEMPT-in>
local_irq_enable()
cpu_notify(CPU_ONLINE)
sched_cpu_active()
set_cpu_active()
Now the purpose of cpu_active is mostly with bringing down a cpu, where
we mark it !active to avoid the load-balancer from moving tasks to it
while we tear down the cpu. This is required because we only update the
sched_domain tree after we brought the cpu-down. And this is needed so
that some tasks can still run while we bring it down, we just don't want
new tasks to appear.
On cpu-up however the sched_domain tree doesn't yet include the new cpu,
so its invisible to the load-balancer, regardless of the active state.
So instead of setting the active state after we boot the new cpu (and
consequently having to wait for it before enabling interrupts) set the
cpu active before we set it online and avoid the whole mess.
Reported-by: Stepan Moskovchenko <stepanm@codeaurora.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1323965362.18942.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit f0fbf0abc0 ("x86: integrate delay functions") converted
delay_tsc() into a random delay generator for 64 bit. The reason is
that it merged the mostly identical versions of delay_32.c and
delay_64.c. Though the subtle difference of the result was:
static void delay_tsc(unsigned long loops)
{
- unsigned bclock, now;
+ unsigned long bclock, now;
Now the function uses rdtscl() which returns the lower 32bit of the
TSC. On 32bit that's not problematic as unsigned long is 32bit. On 64
bit this fails when the lower 32bit are close to wrap around when
bclock is read, because the following check
if ((now - bclock) >= loops)
break;
evaluated to true on 64bit for e.g. bclock = 0xffffffff and now = 0
because the unsigned long (now - bclock) of these values results in
0xffffffff00000001 which is definitely larger than the loops
value. That explains Tvortkos observation:
"Because I am seeing udelay(500) (_occasionally_) being short, and
that by delaying for some duration between 0us (yep) and 491us."
Make those variables explicitely u32 again, so this works for both 32
and 64 bit.
Reported-by: Tvrtko Ursulin <tvrtko.ursulin@onelan.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # >= 2.6.27
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ok, this is hacky, and only works on little-endian machines with goo
unaligned handling. And even then only with CONFIG_DEBUG_PAGEALLOC
disabled, since it can access up to 7 bytes after the pathname.
But it runs like a bat out of hell.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While for a user mode register dump it may be reasonable to skip
those (albeit x86-64 doesn't do so), for kernel mode dumps these
should be printed to make sure all information possibly
necessary for analysis is available.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/4F58889202000078000770E7@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Building in support for either of these CPUs is pointless when
e.g. M686 was selected (since such a kernel would use cmov
instructions, which aren't available on these older CPUs).
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/4F58875A02000078000770E0@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It turns out that test-compiling this file on x86-64 doesn't really
help, because much of it is x86-32-specific. And so I hadn't noticed
the slightly over-eager removal of the 'r' from 'addr' variable despite
thinking I had tested it.
Signed-off-by: Linus "oopsie" Torvalds <torvalds@linux-foundation.org>
Several users of "find_vma_prev()" were not in fact interested in the
previous vma if there was no primary vma to be found either. And in
those cases, we're much better off just using the regular "find_vma()",
and then "prev" can be looked up by just checking vma->vm_prev.
The find_vma_prev() semantics are fairly subtle (see Mikulas' recent
commit 83cd904d27: "mm: fix find_vma_prev"), and the whole "return
prev by reference" means that it generates worse code too.
Thus this "let's avoid using this inconvenient and clearly too subtle
interface when we don't really have to" patch.
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a bug in kprobes which can modify kernel code
permanently at run-time. In the result, kernel can
crash when it executes the modified code.
This bug can happen when we put two probes enough near
and the first probe is optimized. When the second probe
is set up, it copies a byte which is already modified
by the first probe, and executes it when the probe is hit.
Even worse, the first probe and the second probe are removed
respectively, the second probe writes back the copied
(modified) instruction.
To fix this bug, kprobes always recovers the original
code and copies the first byte from recovered instruction.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: systemtap@sourceware.org
Cc: anderson@redhat.com
Link: http://lkml.kernel.org/r/20120305133215.5982.31991.stgit@localhost.localdomain
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current probed-instruction recovery expects that only breakpoint
instruction modifies instruction. However, since kprobes jump
optimization can replace original instructions with a jump,
that expectation is not enough. And it may cause instruction
decoding failure on the function where an optimized probe
already exists.
This bug can reproduce easily as below:
1) find a target function address (any kprobe-able function is OK)
$ grep __secure_computing /proc/kallsyms
ffffffff810c19d0 T __secure_computing
2) decode the function
$ objdump -d vmlinux --start-address=0xffffffff810c19d0 --stop-address=0xffffffff810c19eb
vmlinux: file format elf64-x86-64
Disassembly of section .text:
ffffffff810c19d0 <__secure_computing>:
ffffffff810c19d0: 55 push %rbp
ffffffff810c19d1: 48 89 e5 mov %rsp,%rbp
ffffffff810c19d4: e8 67 8f 72 00 callq
ffffffff817ea940 <mcount>
ffffffff810c19d9: 65 48 8b 04 25 40 b8 mov %gs:0xb840,%rax
ffffffff810c19e0: 00 00
ffffffff810c19e2: 83 b8 88 05 00 00 01 cmpl $0x1,0x588(%rax)
ffffffff810c19e9: 74 05 je ffffffff810c19f0 <__secure_computing+0x20>
3) put a kprobe-event at an optimize-able place, where no
call/jump places within the 5 bytes.
$ su -
# cd /sys/kernel/debug/tracing
# echo p __secure_computing+0x9 > kprobe_events
4) enable it and check it is optimized.
# echo 1 > events/kprobes/p___secure_computing_9/enable
# cat ../kprobes/list
ffffffff810c19d9 k __secure_computing+0x9 [OPTIMIZED]
5) put another kprobe on an instruction after previous probe in
the same function.
# echo p __secure_computing+0x12 >> kprobe_events
bash: echo: write error: Invalid argument
# dmesg | tail -n 1
[ 1666.500016] Probing address(0xffffffff810c19e2) is not an instruction boundary.
6) however, if the kprobes optimization is disabled, it works.
# echo 0 > /proc/sys/debug/kprobes-optimization
# cat ../kprobes/list
ffffffff810c19d9 k __secure_computing+0x9
# echo p __secure_computing+0x12 >> kprobe_events
(no error)
This is because kprobes doesn't recover the instruction
which is overwritten with a relative jump by another kprobe
when finding instruction boundary.
It only recovers the breakpoint instruction.
This patch fixes kprobes to recover such instructions.
With this fix:
# echo p __secure_computing+0x9 > kprobe_events
# echo 1 > events/kprobes/p___secure_computing_9/enable
# cat ../kprobes/list
ffffffff810c1aa9 k __secure_computing+0x9 [OPTIMIZED]
# echo p __secure_computing+0x12 >> kprobe_events
# cat ../kprobes/list
ffffffff810c1aa9 k __secure_computing+0x9 [OPTIMIZED]
ffffffff810c1ab2 k __secure_computing+0x12 [DISABLED]
Changes in v4:
- Fix a bug to ensure optimized probe is really optimized
by jump.
- Remove kprobe_optready() dependency.
- Cleanup code for preparing optprobe separation.
Changes in v3:
- Fix a build error when CONFIG_OPTPROBE=n. (Thanks, Ingo!)
To fix the error, split optprobe instruction recovering
path from kprobes path.
- Cleanup comments/styles.
Changes in v2:
- Fix a bug to recover original instruction address in
RIP-relative instruction fixup.
- Moved on tip/master.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: systemtap@sourceware.org
Cc: anderson@redhat.com
Link: http://lkml.kernel.org/r/20120305133209.5982.36568.stgit@localhost.localdomain
Signed-off-by: Ingo Molnar <mingo@elte.hu>