1) Always spin_lock_init() in init_context(). The caller essentially
clears it out, or copies the mm info from the parent. In both
cases we need to explicitly initialize the spinlock.
2) Always do explicit IRQ disabling while taking mm->context.lock
and ctx_alloc_lock.
Signed-off-by: David S. Miller <davem@davemloft.net>
If we were aligned, but didn't have at least 256MB left
to process, we would loop forever.
Thanks to fabbione for the report and testing the fix.
Signed-off-by: David S. Miller <davem@davemloft.net>
Don't try to avoid putting non-base page sized entries
into the user TSB. It actually costs us more to check
this than it helps.
Eventually we'll have a multiple TSB scheme for user
processes. Once a process starts using larger pages,
we'll allocate and use such a TSB.
Signed-off-by: David S. Miller <davem@davemloft.net>
The context allocation scheme we use depends upon there being a 1<-->1
mapping from cpu to physical TLB for correctness. Chips like Niagara
break this assumption.
So what we do is notify all cpus with a cross call when the context
version number changes, and if necessary this makes them allocate
a valid context for the address space they are running at the time.
Stress tested with make -j1024, make -j2048, and make -j4096 kernel
builds on a 32-strand, 8 core, T2000 with 16GB of ram.
Signed-off-by: David S. Miller <davem@davemloft.net>
It can map all of the linear kernel mappings with zero TSB hash
conflicts for systems with 16GB or less ram. In such cases, on
SUN4V, once we load up this TSB the first time with all the
mappings, we never take a linear kernel mapping TLB miss ever
again, the hypervisor handles them all.
Signed-off-by: David S. Miller <davem@davemloft.net>
We use a bitmap, one bit for every 256MB of memory. If the
bit is set we can use a 256MB PTE for linear mappings, else
we have to use a 4MB PTE.
SUN4V support is there, and we can very easily add support
for Panther cpu 256MB PTEs in the future.
Signed-off-by: David S. Miller <davem@davemloft.net>
The SUN4V convention with non-shared TSBs is that the context
bit of the TAG is clear. So we have to choose an "invalid"
bit and initialize new TSBs appropriately. Otherwise a zero
TAG looks "valid".
Make sure, for the window fixup cases, that we use the right
global registers and that we don't potentially trample on
the live global registers in etrap/rtrap handling (%g2 and
%g6) and that we put the missing virtual address properly
in %g5.
Signed-off-by: David S. Miller <davem@davemloft.net>
Yes, you heard it right, they changed the PTE layout for
SUN4V. Ho hum...
This is the simple and inefficient way to support this.
It'll get optimized, don't worry.
Signed-off-by: David S. Miller <davem@davemloft.net>
This is where the virtual address of the fault status
area belongs.
To set it up we don't make a hypervisor call, instead
we call OBP's SUNW,set-trap-table with the real address
of the fault status area as the second argument. And
right before that call we write the virtual address into
ASI_SCRATCHPAD vaddr 0x0.
Signed-off-by: David S. Miller <davem@davemloft.net>
We look for "SUNW,sun4v" in the 'compatible' property
of the root OBP device tree node.
Protect every %ver register access, to make sure it is
not touched on sun4v, as %ver is hyperprivileged there.
Lock kernel TLB entries using hypervisor calls instead of
calls into OBP.
Signed-off-by: David S. Miller <davem@davemloft.net>
Things are a little tricky because, unlike sun4u, we have
to:
1) do a hypervisor trap to do the TLB load.
2) do the TSB lookup calculations by hand
Signed-off-by: David S. Miller <davem@davemloft.net>
And more consistently check cheetah{,_plus} instead
of assuming anything not spitfire is cheetah{,_plus}.
Signed-off-by: David S. Miller <davem@davemloft.net>
There are several tricky races involved with growing the TSB. So just
use base-size TSBs for user contexts and we can revisit enabling this
later.
One part of the SMP problems is that tsb_context_switch() can see
partially updated TSB configuration state if tsb_grow() is running in
parallel. That's easily solved with a seqlock taken as a writer by
tsb_grow() and taken as a reader to capture all the TSB config state
in tsb_context_switch().
Then there is flush_tsb_user() running in parallel with a tsb_grow().
In theory we could take the seqlock as a reader there too, and just
resample the TSB pointer and reflush but that looks really ugly.
Lastly, I believe there is a case with threads that results in a TSB
entry lock bit being set spuriously which will cause the next access
to that TSB entry to wedge the cpu (since the TSB entry lock bit will
never clear). It's either copy_tsb() or some bug elsewhere in the TSB
assembly.
Signed-off-by: David S. Miller <davem@davemloft.net>
This way we don't need to lock the TSB into the TLB.
The trick is that every TSB load/store is registered into
a special instruction patch section. The default uses
virtual addresses, and the patch instructions use physical
address load/stores.
We can't do this on all chips because only cheetah+ and later
have the physical variant of the atomic quad load.
Signed-off-by: David S. Miller <davem@davemloft.net>
It is totally unnecessary complexity. After we take over
the trap table, we handle all PROM tlb misses fully.
Signed-off-by: David S. Miller <davem@davemloft.net>
As the RSS grows, grow the TSB in order to reduce the likelyhood
of hash collisions and thus poor hit rates in the TSB.
This definitely needs some serious tuning.
Signed-off-by: David S. Miller <davem@davemloft.net>
Taking a nod from the powerpc port.
With the per-cpu caching of both the page allocator and SLAB, the
pgtable quicklist scheme becomes relatively silly and primitive.
Signed-off-by: David S. Miller <davem@davemloft.net>
We now use the TSB hardware assist features of the UltraSPARC
MMUs.
SMP is currently knowingly broken, we need to find another place
to store the per-cpu base pointers. We hid them away in the TSB
base register, and that obviously will not work any more :-)
Another known broken case is non-8KB base page size.
Also noticed that flush_tlb_all() is not referenced anywhere, only
the internal __flush_tlb_all() (local cpu only) is used by the
sparc64 port, so we can get rid of flush_tlb_all().
The kernel gets it's own 8KB TSB (swapper_tsb) and each address space
gets it's own private 8K TSB. Later we can add code to dynamically
increase the size of per-process TSB as the RSS grows. An 8KB TSB is
good enough for up to about a 4MB RSS, after which the TSB starts to
incur many capacity and conflict misses.
We even accumulate OBP translations into the kernel TSB.
Another area for refinement is large page size support. We could use
a secondary address space TSB to handle those.
Signed-off-by: David S. Miller <davem@davemloft.net>
The sequence to move over to the Linux trap tables from
the firmware ones needs to be more air tight. It turns
out that to be %100 safe we do need to be able to translate
OBP mappings in our TLB miss handlers early.
In order not to eat up a lot of kernel image memory with
static page tables, just use the translations array in
the OBP TLB miss handlers. That solves the bulk of the
problem.
Furthermore, to make sure the OBP TLB miss path will work
even before the fixed MMU globals are loaded, explicitly
load %g1 to TLB_SFSR at the beginning of the i-TLB and
d-TLB miss handlers.
To ease the OBP TLB miss walking of the prom_trans[] array,
we sort it then delete all of the non-OBP entries in there
(for example, there are entries for the kernel image itself
which we're not interested in at all).
We also save about 32K of kernel image size with this change.
Not a bad side effect :-)
There are still some reasons why trampoline.S can't use the
setup_trap_table() yet. The most noteworthy are:
1) OBP boots secondary processors with non-bias'd stack for
some reason. This is easily fixed by using a small bootup
stack in the kernel image explicitly for this purpose.
2) Doing a firmware call via the normal C call prom_set_trap_table()
goes through the whole OBP enter/exit sequence that saves and
restores OBP and Linux kernel state in the MMUs. This path
unfortunately does a "flush %g6" while loading up the OBP locked
TLB entries for the firmware call.
If we setup the %g6 in the trampoline.S code properly, that
is in the PAGE_OFFSET linear mapping, but we're not on the
kernel trap table yet so those addresses won't translate properly.
One idea is to do a by-hand firmware call like we do in the
early bootup code and elsewhere here in trampoline.S But this
fails as well, as aparently the secondary processors are not
booted with OBP's special locked TLB entries loaded. These
are necessary for the firwmare to processes TLB misses correctly
up until the point where we take over the trap table.
This does need to be resolved at some point.
Signed-off-by: David S. Miller <davem@davemloft.net>
By allocating early memory for the firmware page tables, we
can write over the beginning of the initrd image.
So what we do now is:
1) Read in firmware translations table while still on the
firmware's trap table.
2) Switch to Linux trap table.
3) Init bootmem.
4) Build firmware page tables using __alloc_bootmem().
And this keeps the initrd from being clobbered.
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of code patching to handle the page size fields in
the context registers, just use variables from which we get
the proper values.
Signed-off-by: David S. Miller <davem@davemloft.net>
Delete all of the code working with sp_banks[] and replace
with clean acquisition and sorting of physical memory
parameters from the firmware.
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to do it correctly on UltraSPARC-III+ and later we'd
need to add some complicated code to set the TAG access extension
register before loading the TLB.
Since this optimization gives questionable gains, it's best to
just remove it for now instead of adding the fix for Ultra-III+
Signed-off-by: David S. Miller <davem@davemloft.net>
The trick is that we do the kernel linear mapping TLB miss starting
with an instruction sequence like this:
ba,pt %xcc, kvmap_load
xor %g2, %g4, %g5
succeeded by an instruction sequence which performs a full page table
walk starting at swapper_pg_dir.
We first take over the trap table from the firmware. Then, using this
constant PTE generation for the linear mapping area above, we build
the kernel page tables for the linear mapping.
After this is setup, we patch that branch above into a "nop", which
will cause TLB misses to fall through to the full page table walk.
With this, the page unmapping for CONFIG_DEBUG_PAGEALLOC is trivial.
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of all of this cpu-specific code to remap the kernel
to the correct location, use portable firmware calls to do
this instead.
What we do now is the following in position independant
assembler:
chosen_node = prom_finddevice("/chosen");
prom_mmu_ihandle_cache = prom_getint(chosen_node, "mmu");
vaddr = 4MB_ALIGN(current_text_addr());
prom_translate(vaddr, &paddr_high, &paddr_low, &mode);
prom_boot_mapping_mode = mode;
prom_boot_mapping_phys_high = paddr_high;
prom_boot_mapping_phys_low = paddr_low;
prom_map(-1, 8 * 1024 * 1024, KERNBASE, paddr_low);
and that replaces the massive amount of by-hand TLB probing and
programming we used to do here.
The new code should also handle properly the case where the kernel
is mapped at the correct address already (think: future kexec
support).
Consequently, the bulk of remap_kernel() dies as does the entirety
of arch/sparc64/prom/map.S
We try to share some strings in the PROM library with the ones used
at bootup, and while we're here mark input strings to oplib.h routines
with "const" when appropriate.
There are many more simplifications now possible. For one thing, we
can consolidate the two copies we now have of a lot of cpu setup code
sitting in head.S and trampoline.S.
This is a significant step towards CONFIG_DEBUG_PAGEALLOC support.
Signed-off-by: David S. Miller <davem@davemloft.net>
Because we don't access the PAGE_OFFSET linear mappings
any longer before we take over the trap table from the
firmware, we don't need to load dummy mappings there
into the TLB and we don't need the bootmap_base hack
any longer either.
While we are here, check for a larger than 8MB kernel
and halt the boot with an error message. We know that
doesn't work, so instead of failing mysteriously we
should let the user know exactly what's wrong.
Signed-off-by: David S. Miller <davem@davemloft.net>
Just allocate them physically starting from the end of
the kernel image. This incredibly simplifies our MM
bootstrap in that we don't need any mappings in the linear
PAGE_OFFSET area working in order to bootstrap ourselves and
take over the trap table from the firmware.
Many further simplifications are possible now, and this also
sets the stage for CONFIG_DEBUG_PAGEALLOC support.
Signed-off-by: David S. Miller <davem@davemloft.net>
This was kind of ugly, and actually buggy. The bug was that
we didn't handle a machine with memory starting > 4GB. If
the 'prompmd' was allocated in physical memory > 4GB we'd
croak because the obp_iaddr_patch and obp_daddr_patch things
only supported a 32-bit physical address.
So fix this by just loading the appropriate values from two
variables in the kernel image, which is locked into the TLB
and thus accesses to them can't cause a recursive TLB miss.
Signed-off-by: David S. Miller <davem@davemloft.net>