e975de998b
7416 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Michal Hocko
|
e975de998b |
memcg, vmscan: do not fall into reclaim-all pass too quickly
shrink_zone starts with soft reclaim pass first and then falls back to regular reclaim if nothing has been scanned. This behavior is natural but there is a catch. Memcg iterators, when used with the reclaim cookie, are designed to help to prevent from over reclaim by interleaving reclaimers (per node-zone-priority) so the tree walk might miss many (even all) nodes in the hierarchy e.g. when there are direct reclaimers racing with each other or with kswapd in the global case or multiple allocators reaching the limit for the target reclaim case. To make it even more complicated, targeted reclaim doesn't do the whole tree walk because it stops reclaiming once it reclaims sufficient pages. As a result groups over the limit might be missed, thus nothing is scanned, and reclaim would fall back to the reclaim all mode. This patch checks for the incomplete tree walk in shrink_zone. If no group has been visited and the hierarchy is soft reclaimable then we must have missed some groups, in which case the __shrink_zone is called again. This doesn't guarantee there will be some progress of course because the current reclaimer might be still racing with others but it would at least give a chance to start the walk without a big risk of reclaim latencies. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1be171d60b |
memcg: track all children over limit in the root
Children in soft limit excess are currently tracked up the hierarchy in memcg->children_in_excess. Nevertheless there still might exist tons of groups that are not in hierarchy relation to the root cgroup (e.g. all first level groups if root_mem_cgroup->use_hierarchy == false). As the whole tree walk has to be done when the iteration starts at root_mem_cgroup the iterator should be able to skip the walk if there is no child above the limit without iterating them. This can be done easily if the root tracks all children rather than only hierarchical children. This is done by this patch which updates root_mem_cgroup children_in_excess if root_mem_cgroup->use_hierarchy == false so the root knows about all children in excess. Please note that this is not an issue for inner memcgs which have use_hierarchy == false because then only the single group is visited so no special optimization is necessary. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
e839b6a1c8 |
memcg, vmscan: do not attempt soft limit reclaim if it would not scan anything
mem_cgroup_should_soft_reclaim controls whether soft reclaim pass is done and it always says yes currently. Memcg iterators are clever to skip nodes that are not soft reclaimable quite efficiently but mem_cgroup_should_soft_reclaim can be more clever and do not start the soft reclaim pass at all if it knows that nothing would be scanned anyway. In order to do that, simply reuse mem_cgroup_soft_reclaim_eligible for the target group of the reclaim and allow the pass only if the whole subtree wouldn't be skipped. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
7d910c054b |
memcg: track children in soft limit excess to improve soft limit
Soft limit reclaim has to check the whole reclaim hierarchy while doing the first pass of the reclaim. This leads to a higher system time which can be visible especially when there are many groups in the hierarchy. This patch adds a per-memcg counter of children in excess. It also restores MEM_CGROUP_TARGET_SOFTLIMIT into mem_cgroup_event_ratelimit for a proper batching. If a group crosses soft limit for the first time it increases parent's children_in_excess up the hierarchy. The similarly if a group gets below the limit it will decrease the counter. The transition phase is recorded in soft_contributed flag. mem_cgroup_soft_reclaim_eligible then uses this information to better decide whether to skip the node or the whole subtree. The rule is simple. Skip the node with a children in excess or skip the whole subtree otherwise. This has been tested by a stream IO (dd if=/dev/zero of=file with 4*MemTotal size) which is quite sensitive to overhead during reclaim. The load is running in a group with soft limit set to 0 and without any limit. Apart from that there was a hierarchy with ~500, 2k and 8k groups (two groups on each level) without any pages in them. base denotes to the kernel on which the whole series is based on, rework is the kernel before this patch and reworkoptim is with this patch applied: * Run with soft limit set to 0 Elapsed 0-0-limit/base: min: 88.21 max: 94.61 avg: 91.73 std: 2.65 runs: 3 0-0-limit/rework: min: 76.05 [86.2%] max: 79.08 [83.6%] avg: 77.84 [84.9%] std: 1.30 runs: 3 0-0-limit/reworkoptim: min: 77.98 [88.4%] max: 80.36 [84.9%] avg: 78.92 [86.0%] std: 1.03 runs: 3 System 0.5k-0-limit/base: min: 34.86 max: 36.42 avg: 35.89 std: 0.73 runs: 3 0.5k-0-limit/rework: min: 43.26 [124.1%] max: 48.95 [134.4%] avg: 46.09 [128.4%] std: 2.32 runs: 3 0.5k-0-limit/reworkoptim: min: 46.98 [134.8%] max: 50.98 [140.0%] avg: 48.49 [135.1%] std: 1.77 runs: 3 Elapsed 0.5k-0-limit/base: min: 88.50 max: 97.52 avg: 93.92 std: 3.90 runs: 3 0.5k-0-limit/rework: min: 75.92 [85.8%] max: 78.45 [80.4%] avg: 77.34 [82.3%] std: 1.06 runs: 3 0.5k-0-limit/reworkoptim: min: 75.79 [85.6%] max: 79.37 [81.4%] avg: 77.55 [82.6%] std: 1.46 runs: 3 System 2k-0-limit/base: min: 34.57 max: 37.65 avg: 36.34 std: 1.30 runs: 3 2k-0-limit/rework: min: 64.17 [185.6%] max: 68.20 [181.1%] avg: 66.21 [182.2%] std: 1.65 runs: 3 2k-0-limit/reworkoptim: min: 49.78 [144.0%] max: 52.99 [140.7%] avg: 51.00 [140.3%] std: 1.42 runs: 3 Elapsed 2k-0-limit/base: min: 92.61 max: 97.83 avg: 95.03 std: 2.15 runs: 3 2k-0-limit/rework: min: 78.33 [84.6%] max: 84.08 [85.9%] avg: 81.09 [85.3%] std: 2.35 runs: 3 2k-0-limit/reworkoptim: min: 75.72 [81.8%] max: 78.57 [80.3%] avg: 76.73 [80.7%] std: 1.30 runs: 3 System 8k-0-limit/base: min: 39.78 max: 42.09 avg: 41.09 std: 0.97 runs: 3 8k-0-limit/rework: min: 200.86 [504.9%] max: 265.42 [630.6%] avg: 241.80 [588.5%] std: 29.06 runs: 3 8k-0-limit/reworkoptim: min: 53.70 [135.0%] max: 54.89 [130.4%] avg: 54.43 [132.5%] std: 0.52 runs: 3 Elapsed 8k-0-limit/base: min: 95.11 max: 98.61 avg: 96.81 std: 1.43 runs: 3 8k-0-limit/rework: min: 246.96 [259.7%] max: 331.47 [336.1%] avg: 301.32 [311.2%] std: 38.52 runs: 3 8k-0-limit/reworkoptim: min: 76.79 [80.7%] max: 81.71 [82.9%] avg: 78.97 [81.6%] std: 2.05 runs: 3 System time is increased by 30-40% but it is reduced a lot comparing to kernel without this patch. The higher time can be explained by the fact that the original soft reclaim scanned at priority 0 so it was much more effective for this workload (which is basically touch once and writeback). The Elapsed time looks better though (~20%). * Run with no soft limit set System 0-no-limit/base: min: 42.18 max: 50.38 avg: 46.44 std: 3.36 runs: 3 0-no-limit/rework: min: 40.57 [96.2%] max: 47.04 [93.4%] avg: 43.82 [94.4%] std: 2.64 runs: 3 0-no-limit/reworkoptim: min: 40.45 [95.9%] max: 45.28 [89.9%] avg: 42.10 [90.7%] std: 2.25 runs: 3 Elapsed 0-no-limit/base: min: 75.97 max: 78.21 avg: 76.87 std: 0.96 runs: 3 0-no-limit/rework: min: 75.59 [99.5%] max: 80.73 [103.2%] avg: 77.64 [101.0%] std: 2.23 runs: 3 0-no-limit/reworkoptim: min: 77.85 [102.5%] max: 82.42 [105.4%] avg: 79.64 [103.6%] std: 1.99 runs: 3 System 0.5k-no-limit/base: min: 44.54 max: 46.93 avg: 46.12 std: 1.12 runs: 3 0.5k-no-limit/rework: min: 42.09 [94.5%] max: 46.16 [98.4%] avg: 43.92 [95.2%] std: 1.69 runs: 3 0.5k-no-limit/reworkoptim: min: 42.47 [95.4%] max: 45.67 [97.3%] avg: 44.06 [95.5%] std: 1.31 runs: 3 Elapsed 0.5k-no-limit/base: min: 78.26 max: 81.49 avg: 79.65 std: 1.36 runs: 3 0.5k-no-limit/rework: min: 77.01 [98.4%] max: 80.43 [98.7%] avg: 78.30 [98.3%] std: 1.52 runs: 3 0.5k-no-limit/reworkoptim: min: 76.13 [97.3%] max: 77.87 [95.6%] avg: 77.18 [96.9%] std: 0.75 runs: 3 System 2k-no-limit/base: min: 62.96 max: 69.14 avg: 66.14 std: 2.53 runs: 3 2k-no-limit/rework: min: 76.01 [120.7%] max: 81.06 [117.2%] avg: 78.17 [118.2%] std: 2.12 runs: 3 2k-no-limit/reworkoptim: min: 62.57 [99.4%] max: 66.10 [95.6%] avg: 64.53 [97.6%] std: 1.47 runs: 3 Elapsed 2k-no-limit/base: min: 76.47 max: 84.22 avg: 79.12 std: 3.60 runs: 3 2k-no-limit/rework: min: 89.67 [117.3%] max: 93.26 [110.7%] avg: 91.10 [115.1%] std: 1.55 runs: 3 2k-no-limit/reworkoptim: min: 76.94 [100.6%] max: 79.21 [94.1%] avg: 78.45 [99.2%] std: 1.07 runs: 3 System 8k-no-limit/base: min: 104.74 max: 151.34 avg: 129.21 std: 19.10 runs: 3 8k-no-limit/rework: min: 205.23 [195.9%] max: 285.94 [188.9%] avg: 258.98 [200.4%] std: 38.01 runs: 3 8k-no-limit/reworkoptim: min: 161.16 [153.9%] max: 184.54 [121.9%] avg: 174.52 [135.1%] std: 9.83 runs: 3 Elapsed 8k-no-limit/base: min: 125.43 max: 181.00 avg: 154.81 std: 22.80 runs: 3 8k-no-limit/rework: min: 254.05 [202.5%] max: 355.67 [196.5%] avg: 321.46 [207.6%] std: 47.67 runs: 3 8k-no-limit/reworkoptim: min: 193.77 [154.5%] max: 222.72 [123.0%] avg: 210.18 [135.8%] std: 12.13 runs: 3 Both System and Elapsed are in stdev with the base kernel for all configurations except for 8k where both System and Elapsed are up by 35%. I do not have a good explanation for this because there is no soft reclaim pass going on as no group is above the limit which is checked in mem_cgroup_should_soft_reclaim. Then I have tested kernel build with the same configuration to see the behavior with a more general behavior. * Soft limit set to 0 for the build System 0-0-limit/base: min: 242.70 max: 245.17 avg: 243.85 std: 1.02 runs: 3 0-0-limit/rework min: 237.86 [98.0%] max: 240.22 [98.0%] avg: 239.00 [98.0%] std: 0.97 runs: 3 0-0-limit/reworkoptim: min: 241.11 [99.3%] max: 243.53 [99.3%] avg: 242.01 [99.2%] std: 1.08 runs: 3 Elapsed 0-0-limit/base: min: 348.48 max: 360.86 avg: 356.04 std: 5.41 runs: 3 0-0-limit/rework min: 286.95 [82.3%] max: 290.26 [80.4%] avg: 288.27 [81.0%] std: 1.43 runs: 3 0-0-limit/reworkoptim: min: 286.55 [82.2%] max: 289.00 [80.1%] avg: 287.69 [80.8%] std: 1.01 runs: 3 System 0.5k-0-limit/base: min: 251.77 max: 254.41 avg: 252.70 std: 1.21 runs: 3 0.5k-0-limit/rework min: 286.44 [113.8%] max: 289.30 [113.7%] avg: 287.60 [113.8%] std: 1.23 runs: 3 0.5k-0-limit/reworkoptim: min: 252.18 [100.2%] max: 253.16 [99.5%] avg: 252.62 [100.0%] std: 0.41 runs: 3 Elapsed 0.5k-0-limit/base: min: 347.83 max: 353.06 avg: 350.04 std: 2.21 runs: 3 0.5k-0-limit/rework min: 290.19 [83.4%] max: 295.62 [83.7%] avg: 293.12 [83.7%] std: 2.24 runs: 3 0.5k-0-limit/reworkoptim: min: 293.91 [84.5%] max: 294.87 [83.5%] avg: 294.29 [84.1%] std: 0.42 runs: 3 System 2k-0-limit/base: min: 263.05 max: 271.52 avg: 267.94 std: 3.58 runs: 3 2k-0-limit/rework min: 458.99 [174.5%] max: 468.31 [172.5%] avg: 464.45 [173.3%] std: 3.97 runs: 3 2k-0-limit/reworkoptim: min: 267.10 [101.5%] max: 279.38 [102.9%] avg: 272.78 [101.8%] std: 5.05 runs: 3 Elapsed 2k-0-limit/base: min: 372.33 max: 379.32 avg: 375.47 std: 2.90 runs: 3 2k-0-limit/rework min: 334.40 [89.8%] max: 339.52 [89.5%] avg: 337.44 [89.9%] std: 2.20 runs: 3 2k-0-limit/reworkoptim: min: 301.47 [81.0%] max: 319.19 [84.1%] avg: 307.90 [82.0%] std: 8.01 runs: 3 System 8k-0-limit/base: min: 320.50 max: 332.10 avg: 325.46 std: 4.88 runs: 3 8k-0-limit/rework min: 1115.76 [348.1%] max: 1165.66 [351.0%] avg: 1132.65 [348.0%] std: 23.34 runs: 3 8k-0-limit/reworkoptim: min: 403.75 [126.0%] max: 409.22 [123.2%] avg: 406.16 [124.8%] std: 2.28 runs: 3 Elapsed 8k-0-limit/base: min: 475.48 max: 585.19 avg: 525.54 std: 45.30 runs: 3 8k-0-limit/rework min: 616.25 [129.6%] max: 625.90 [107.0%] avg: 620.68 [118.1%] std: 3.98 runs: 3 8k-0-limit/reworkoptim: min: 420.18 [88.4%] max: 428.28 [73.2%] avg: 423.05 [80.5%] std: 3.71 runs: 3 Apart from 8k the system time is comparable with the base kernel while Elapsed is up to 20% better with all configurations. * No soft limit set System 0-no-limit/base: min: 234.76 max: 237.42 avg: 236.25 std: 1.11 runs: 3 0-no-limit/rework min: 233.09 [99.3%] max: 238.65 [100.5%] avg: 236.09 [99.9%] std: 2.29 runs: 3 0-no-limit/reworkoptim: min: 236.12 [100.6%] max: 240.53 [101.3%] avg: 237.94 [100.7%] std: 1.88 runs: 3 Elapsed 0-no-limit/base: min: 288.52 max: 295.42 avg: 291.29 std: 2.98 runs: 3 0-no-limit/rework min: 283.17 [98.1%] max: 284.33 [96.2%] avg: 283.78 [97.4%] std: 0.48 runs: 3 0-no-limit/reworkoptim: min: 288.50 [100.0%] max: 290.79 [98.4%] avg: 289.78 [99.5%] std: 0.95 runs: 3 System 0.5k-no-limit/base: min: 286.51 max: 293.23 avg: 290.21 std: 2.78 runs: 3 0.5k-no-limit/rework min: 291.69 [101.8%] max: 294.38 [100.4%] avg: 292.97 [101.0%] std: 1.10 runs: 3 0.5k-no-limit/reworkoptim: min: 277.05 [96.7%] max: 288.76 [98.5%] avg: 284.17 [97.9%] std: 5.11 runs: 3 Elapsed 0.5k-no-limit/base: min: 294.94 max: 298.92 avg: 296.47 std: 1.75 runs: 3 0.5k-no-limit/rework min: 292.55 [99.2%] max: 294.21 [98.4%] avg: 293.55 [99.0%] std: 0.72 runs: 3 0.5k-no-limit/reworkoptim: min: 294.41 [99.8%] max: 301.67 [100.9%] avg: 297.78 [100.4%] std: 2.99 runs: 3 System 2k-no-limit/base: min: 443.41 max: 466.66 avg: 457.66 std: 10.19 runs: 3 2k-no-limit/rework min: 490.11 [110.5%] max: 516.02 [110.6%] avg: 501.42 [109.6%] std: 10.83 runs: 3 2k-no-limit/reworkoptim: min: 435.25 [98.2%] max: 458.11 [98.2%] avg: 446.73 [97.6%] std: 9.33 runs: 3 Elapsed 2k-no-limit/base: min: 330.85 max: 333.75 avg: 332.52 std: 1.23 runs: 3 2k-no-limit/rework min: 343.06 [103.7%] max: 349.59 [104.7%] avg: 345.95 [104.0%] std: 2.72 runs: 3 2k-no-limit/reworkoptim: min: 330.01 [99.7%] max: 333.92 [100.1%] avg: 332.22 [99.9%] std: 1.64 runs: 3 System 8k-no-limit/base: min: 1175.64 max: 1259.38 avg: 1222.39 std: 34.88 runs: 3 8k-no-limit/rework min: 1226.31 [104.3%] max: 1241.60 [98.6%] avg: 1233.74 [100.9%] std: 6.25 runs: 3 8k-no-limit/reworkoptim: min: 1023.45 [87.1%] max: 1056.74 [83.9%] avg: 1038.92 [85.0%] std: 13.69 runs: 3 Elapsed 8k-no-limit/base: min: 613.36 max: 619.60 avg: 616.47 std: 2.55 runs: 3 8k-no-limit/rework min: 627.56 [102.3%] max: 642.33 [103.7%] avg: 633.44 [102.8%] std: 6.39 runs: 3 8k-no-limit/reworkoptim: min: 545.89 [89.0%] max: 555.36 [89.6%] avg: 552.06 [89.6%] std: 4.37 runs: 3 and these numbers look good as well. System time is around 100% (suprisingly better for the 8k case) and Elapsed is copies that trend. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
de57780dc6 |
memcg: enhance memcg iterator to support predicates
The caller of the iterator might know that some nodes or even subtrees should be skipped but there is no way to tell iterators about that so the only choice left is to let iterators to visit each node and do the selection outside of the iterating code. This, however, doesn't scale well with hierarchies with many groups where only few groups are interesting. This patch adds mem_cgroup_iter_cond variant of the iterator with a callback which gets called for every visited node. There are three possible ways how the callback can influence the walk. Either the node is visited, it is skipped but the tree walk continues down the tree or the whole subtree of the current group is skipped. [hughd@google.com: fix memcg-less page reclaim] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
a5b7c87f92 |
vmscan, memcg: do softlimit reclaim also for targeted reclaim
Soft reclaim has been done only for the global reclaim (both background and direct). Since "memcg: integrate soft reclaim tighter with zone shrinking code" there is no reason for this limitation anymore as the soft limit reclaim doesn't use any special code paths and it is a part of the zone shrinking code which is used by both global and targeted reclaims. From the semantic point of view it is natural to consider soft limit before touching all groups in the hierarchy tree which is touching the hard limit because soft limit tells us where to push back when there is a memory pressure. It is not important whether the pressure comes from the limit or imbalanced zones. This patch simply enables soft reclaim unconditionally in mem_cgroup_should_soft_reclaim so it is enabled for both global and targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn about the root of the reclaim to know where to stop checking soft limit state of parents up the hierarchy. Say we have A (over soft limit) \ B (below s.l., hit the hard limit) / \ C D (below s.l.) B is the source of the outside memory pressure now for D but we shouldn't soft reclaim it because it is behaving well under B subtree and we can still reclaim from C (pressumably it is over the limit). mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the hierarchy at B (root of the memory pressure). Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
e883110aad |
memcg: get rid of soft-limit tree infrastructure
Now that the soft limit is integrated to the reclaim directly the whole soft-limit tree infrastructure is not needed anymore. Rip it out. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
3b38722efd |
memcg, vmscan: integrate soft reclaim tighter with zone shrinking code
This patchset is sitting out of tree for quite some time without any objections. I would be really happy if it made it into 3.12. I do not want to push it too hard but I think this work is basically ready and waiting more doesn't help. The basic idea is quite simple. Pull soft reclaim into shrink_zone in the first step and get rid of the previous soft reclaim infrastructure. shrink_zone is done in two passes now. First it tries to do the soft limit reclaim and it falls back to reclaim-all mode if no group is over the limit or no pages have been scanned. The second pass happens at the same priority so the only time we waste is the memcg tree walk which has been updated in the third step to have only negligible overhead. As a bonus we will get rid of a _lot_ of code by this and soft reclaim will not stand out like before when it wasn't integrated into the zone shrinking code and it reclaimed at priority 0 (the testing results show that some workloads suffers from such an aggressive reclaim). The clean up is in a separate patch because I felt it would be easier to review that way. The second step is soft limit reclaim integration into targeted reclaim. It should be rather straight forward. Soft limit has been used only for the global reclaim so far but it makes sense for any kind of pressure coming from up-the-hierarchy, including targeted reclaim. The third step (patches 4-8) addresses the tree walk overhead by enhancing memcg iterators to enable skipping whole subtrees and tracking number of over soft limit children at each level of the hierarchy. This information is updated same way the old soft limit tree was updated (from memcg_check_events) so we shouldn't see an additional overhead. In fact mem_cgroup_update_soft_limit is much simpler than tree manipulation done previously. __shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for mem_cgroup_iter so the decision whether a particular group should be visited is done at the iterator level which allows us to decide to skip the whole subtree as well (if there is no child in excess). This reduces the tree walk overhead considerably. * TEST 1 ======== My primary test case was a parallel kernel build with 2 groups (make is running with -j8 with a distribution .config in a separate cgroup without any hard limit) on a 32 CPU machine booted with 1GB memory and both builds run taskset to Node 0 cpus. I was mostly interested in 2 setups. Default - no soft limit set and - and 0 soft limit set to both groups. The first one should tell us whether the rework regresses the default behavior while the second one should show us improvements in an extreme case where both workloads are always over the soft limit. /usr/bin/time -v has been used to collect the statistics and each configuration had 3 runs after fresh boot without any other load on the system. base is mmotm-2013-07-18-16-40 rework all 8 patches applied on top of base * No-limit User no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6 no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6 System no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6 no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6 Elapsed no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6 no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6 The results are within noise. Elapsed time has a bigger variance but the average looks good. * 0-limit User 0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6 0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6 System 0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6 0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6 Elapsed 0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6 0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6 The improvement is really huge here (even bigger than with my previous testing and I suspect that this highly depends on the storage). Page fault statistics tell us at least part of the story: Minor 0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6 0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6 Major 0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6 0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6 Same as with my previous testing Minor faults are more or less within noise but Major fault count is way bellow the base kernel. While this looks as a nice win it is fair to say that 0-limit configuration is quite artificial. So I was playing with 0-no-limit loads as well. * TEST 2 ======== The following results are from 2 groups configuration on a 16GB machine (single NUMA node). - A running stream IO (dd if=/dev/zero of=local.file bs=1024) with 2*TotalMem with 0 soft limit. - B running a mem_eater which consumes TotalMem-1G without any limit. The mem_eater consumes the memory in 100 chunks with 1s nap after each mmap+poppulate so that both loads have chance to fight for the memory. The expected result is that B shouldn't be reclaimed and A shouldn't see a big dropdown in elapsed time. User base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3 rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3 System base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3 rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3 Elapsed base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3 rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3 System time improved slightly as well as Elapsed. My previous testing has shown worse numbers but this again seem to depend on the storage speed. My theory is that the writeback doesn't catch up and prio-0 soft reclaim falls into wait on writeback page too often in the base kernel. The patched kernel doesn't do that because the soft reclaim is done from the kswapd/direct reclaim context. This can be seen on the following graph nicely. The A's group usage_in_bytes regurarly drops really low very often. All 3 runs http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png resp. a detail of the single run http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png mem_eater seems to be doing better as well. It gets to the full allocation size faster as can be seen on the following graph: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png /proc/meminfo collected during the test also shows that rework kernel hasn't swapped that much (well almost not at all): base: max: 123900 K avg: 56388.29 K rework: max: 300 K avg: 128.68 K kswapd and direct reclaim statistics are of no use unfortunatelly because soft reclaim is not accounted properly as the counters are hidden by global_reclaim() checks in the base kernel. * TEST 3 ======== Another test was the same configuration as TEST2 except the stream IO was replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB left. Kbuild did better with the rework kernel here as well: User base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3 rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3 System base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3 rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3 Elapsed base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3 rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3 Minor base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3 rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3 Major base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3 rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3 Again we can see a significant improvement in Elapsed (it also seems to be more stable), there is a huge dropdown for the Major page faults and much more swapping: base: max: 583736 K avg: 112547.43 K rework: max: 4012 K avg: 124.36 K Graphs from all three runs show the variability of the kbuild quite nicely. It even seems that it took longer after every run with the base kernel which would be quite surprising as the source tree for the build is removed and caches are dropped after each run so the build operates on a freshly extracted sources everytime. http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png My other testing shows that this is just a matter of timing and other runs behave differently the std for Elapsed time is similar ~50. Example of other three runs: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png So to wrap this up. The series is still doing good and improves the soft limit. The testing results for bunch of cgroups with both stream IO and kbuild loads can be found in "memcg: track children in soft limit excess to improve soft limit". This patch: Memcg soft reclaim has been traditionally triggered from the global reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim then picked up a group which exceeds the soft limit the most and reclaimed it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages. The infrastructure requires per-node-zone trees which hold over-limit groups and keep them up-to-date (via memcg_check_events) which is not cost free. Although this overhead hasn't turned out to be a bottle neck the implementation is suboptimal because mem_cgroup_update_tree has no idea which zones consumed memory over the limit so we could easily end up having a group on a node-zone tree having only few pages from that node-zone. This patch doesn't try to fix node-zone trees management because it seems that integrating soft reclaim into zone shrinking sounds much easier and more appropriate for several reasons. First of all 0 priority reclaim was a crude hack which might lead to big stalls if the group's LRUs are big and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim should be applicable also to the targeted reclaim which is awkward right now without additional hacks. Last but not least the whole infrastructure eats quite some code. After this patch shrink_zone is done in 2 passes. First it tries to do the soft reclaim if appropriate (only for global reclaim for now to keep compatible with the original state) and fall back to ignoring soft limit if no group is eligible to soft reclaim or nothing has been scanned during the first pass. Only groups which are over their soft limit or any of their parents up the hierarchy is over the limit are considered eligible during the first pass. Soft limit tree which is not necessary anymore will be removed in the follow up patch to make this patch smaller and easier to review. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Li Zefan
|
c33bd8354f |
memcg: remove redundant code in mem_cgroup_force_empty_write()
vfs guarantees the cgroup won't be destroyed, so it's redundant to get a css reference. Signed-off-by: Li Zefan <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rob Landley
|
16203a7a94 |
initmpfs: make rootfs use tmpfs when CONFIG_TMPFS enabled
Conditionally call the appropriate fs_init function and fill_super functions. Add a use once guard to shmem_init() to simply succeed on a second call. (Note that IS_ENABLED() is a compile time constant so dead code elimination removes unused function calls when CONFIG_TMPFS is disabled.) Signed-off-by: Rob Landley <rob@landley.net> Cc: Jeff Layton <jlayton@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Stephen Warren <swarren@nvidia.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jim Cromie <jim.cromie@gmail.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
5e4c0d9741 |
lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is one such possible user), the following race can happen: radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; <interrupt> ... radix_tree_preload() ... radix_tree_insert() radix_tree_node_alloc() if (rtp->nr) { ret = rtp->nodes[rtp->nr - 1]; And we give out one radix tree node twice. That clearly results in radix tree corruption with different results (usually OOPS) depending on which two users of radix tree race. We fix the problem by making radix_tree_node_alloc() always allocate fresh radix tree nodes when in interrupt. Using preloading when in interrupt doesn't make sense since all the allocations have to be atomic anyway and we cannot steal nodes from process-context users because some users rely on radix_tree_insert() succeeding after radix_tree_preload(). in_interrupt() check is somewhat ugly but we cannot simply key off passed gfp_mask as that is acquired from root_gfp_mask() and thus the same for all preload users. Another part of the fix is to avoid node preallocation in radix_tree_preload() when passed gfp_mask doesn't allow waiting. Again, preallocation in such case doesn't make sense and when preallocation would happen in interrupt we could possibly leak some allocated nodes. However, some users of radix_tree_preload() require following radix_tree_insert() to succeed. To avoid unexpected effects for these users, radix_tree_preload() only warns if passed gfp mask doesn't allow waiting and we provide a new function radix_tree_maybe_preload() for those users which get different gfp mask from different call sites and which are prepared to handle radix_tree_insert() failure. Signed-off-by: Jan Kara <jack@suse.cz> Cc: Jens Axboe <jaxboe@fusionio.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Cody P Schafer
|
0bd42136f7 |
mm/zswap: use postorder iteration when destroying rbtree
Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Reviewed-by: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: David Woodhouse <David.Woodhouse@intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
2bff24a370 |
memcg: fix multiple large threshold notifications
A memory cgroup with (1) multiple threshold notifications and (2) at least one threshold >=2G was not reliable. Specifically the notifications would either not fire or would not fire in the proper order. The __mem_cgroup_threshold() signaling logic depends on keeping 64 bit thresholds in sorted order. mem_cgroup_usage_register_event() sorts them with compare_thresholds(), which returns the difference of two 64 bit thresholds as an int. If the difference is positive but has bit[31] set, then sort() treats the difference as negative and breaks sort order. This fix compares the two arbitrary 64 bit thresholds returning the classic -1, 0, 1 result. The test below sets two notifications (at 0x1000 and 0x81001000): cd /sys/fs/cgroup/memory mkdir x for x in 4096 2164264960; do cgroup_event_listener x/memory.usage_in_bytes $x | sed "s/^/$x listener:/" & done echo $$ > x/cgroup.procs anon_leaker 500M v3.11-rc7 fails to signal the 4096 event listener: Leaking... Done leaking pages. Patched v3.11-rc7 properly notifies: Leaking... 4096 listener:2013:8:31:14:13:36 Done leaking pages. The fixed bug is old. It appears to date back to the introduction of memcg threshold notifications in v2.6.34-rc1-116-g2e72b6347c94 "memcg: implement memory thresholds" Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joe Perches
|
7b5219db00 |
mm/mempool.c: convert kmalloc_node(...GFP_ZERO...) to kzalloc_node(...)
Use the helper function instead of __GFP_ZERO. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yanchuan Nian
|
2d8a17813e |
mm/mmap: remove unnecessary assignment
pgoff is not used after the statement "pgoff = vma->vm_pgoff;", so the assignment is redundant. Signed-off-by: Yanchuan Nian <ycnian@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
325c4ef5c4 |
mm/madvise.c:madvise_hwpoison(): remove local `ret'
madvise_hwpoison() has two locals called "ret". Fix it all up. Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
8302423b8e |
mm/madvise.c: fix return value of madvise_hwpoison()
The return value outside for loop is always zero which means madvise_hwpoison return success, however, this is not truth for soft_offline_page w/ failure return value. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
3ba5eebc40 |
mm/memory-failure.c: fix bug triggered by unpoisoning empty zero page
Injecting memory failure for page 0x19d0 at 0xb77d2000 MCE 0x19d0: non LRU page recovery: Ignored MCE: Software-unpoisoned page 0x19d0 BUG: Bad page state in process bash pfn:019d0 page:f3461a00 count:0 mapcount:0 mapping: (null) index:0x0 page flags: 0x40000404(referenced|reserved) Modules linked in: nfsd auth_rpcgss i915 nfs_acl nfs lockd video drm_kms_helper drm bnep rfcomm sunrpc bluetooth psmouse parport_pc ppdev lp serio_raw fscache parport gpio_ich lpc_ich mac_hid i2c_algo_bit tpm_tis wmi usb_storage hid_generic usbhid hid e1000e firewire_ohci firewire_core ahci ptp libahci pps_core crc_itu_t CPU: 3 PID: 2123 Comm: bash Not tainted 3.11.0-rc6+ #12 Hardware name: LENOVO 7034DD7/ , BIOS 9HKT47AUS 01//2012 00000000 00000000 e9625ea0 c15ec49b f3461a00 e9625eb8 c15ea119 c17cbf18 ef084314 000019d0 f3461a00 e9625ed8 c110dc8a f3461a00 00000001 00000000 f3461a00 40000404 00000000 e9625ef8 c110dcc1 f3461a00 f3461a00 000019d0 Call Trace: dump_stack+0x41/0x52 bad_page+0xcf/0xeb free_pages_prepare+0x12a/0x140 free_hot_cold_page+0x21/0x110 __put_single_page+0x21/0x30 put_page+0x25/0x40 unpoison_memory+0x107/0x200 hwpoison_unpoison+0x20/0x30 simple_attr_write+0xb6/0xd0 vfs_write+0xa0/0x1b0 SyS_write+0x4f/0x90 sysenter_do_call+0x12/0x22 Disabling lock debugging due to kernel taint Testcase: #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> #include <errno.h> #define PAGES_TO_TEST 1 #define PAGE_SIZE 4096 int main(void) { char *mem; mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1) return -1; munmap(mem, PAGES_TO_TEST * PAGE_SIZE); return 0; } There is one page reference count for default empty zero page, madvise_hwpoison add another one by get_user_pages_fast. memory_hwpoison reduce one page reference count since it's a non LRU page. unpoison_memory release the last page reference count and free empty zero page to buddy system which is not correct since empty zero page has PG_reserved flag. This patch fix it by don't reduce the page reference count under 1 against empty zero page. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
2d1e8b3f1a |
mm/hwpoison-inject.c: change permission of corrupt-pfn/unpoison-pfn to 0200
Hwpoison injection doesn't implement read method for corrupt-pfn/unpoison-pfn attributes: # cat /sys/kernel/debug/hwpoison/corrupt-pfn cat: /sys/kernel/debug/hwpoison/corrupt-pfn: Permission denied # cat /sys/kernel/debug/hwpoison/unpoison-pfn cat: /sys/kernel/debug/hwpoison/unpoison-pfn: Permission denied This patch changes the permission of corrupt-pfn/unpoison-pfn to 0200. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
29b4eedee6 |
mm/hwpoison.c: fix held reference count after unpoisoning empty zero page
madvise hwpoison inject will poison the read-only empty zero page if there is no write access before poison. Empty zero page reference count will be increased for hwpoison, subsequent poison zero page will return directly since page has already been set PG_hwpoison, however, page reference count is still increased by get_user_pages_fast. The unpoison process will unpoison the empty zero page and decrease the reference count successfully for the fist time, however, subsequent unpoison empty zero page will return directly since page has already been unpoisoned and without decrease the page reference count of empty zero page. This patch fixes it by make madvise_hwpoison() put a page and return immediately (without calling memory_failure() or soft_offline_page()) when the page is already hwpoisoned. Testcase: #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> #include <errno.h> #define PAGES_TO_TEST 3 #define PAGE_SIZE 4096 int main(void) { char *mem; int i; mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1) return -1; munmap(mem, PAGES_TO_TEST * PAGE_SIZE); return 0; } Add printk to dump page reference count: [ 93.075959] Injecting memory failure for page 0x19d0 at 0xb77d8000 [ 93.076207] MCE 0x19d0: non LRU page recovery: Ignored [ 93.076209] pfn 0x19d0, page count = 1 after memory failure [ 93.076220] Injecting memory failure for page 0x19d0 at 0xb77d9000 [ 93.076221] MCE 0x19d0: already hardware poisoned [ 93.076222] pfn 0x19d0, page count = 2 after memory failure [ 93.076224] Injecting memory failure for page 0x19d0 at 0xb77da000 [ 93.076224] MCE 0x19d0: already hardware poisoned [ 93.076225] pfn 0x19d0, page count = 3 after memory failure Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
b194b8cdb8 |
mm/hwpoison: add '#' to madvise_hwpoison
Add '#' to madvise_hwpoison. Before patch: [ 95.892866] Injecting memory failure for page 19d0 at b7786000 [ 95.893151] MCE 0x19d0: non LRU page recovery: Ignored After patch: [ 95.892866] Injecting memory failure for page 0x19d0 at 0xb7786000 [ 95.893151] MCE 0x19d0: non LRU page recovery: Ignored Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
86e057734b |
mm/hwpoison: drop forward reference declarations __soft_offline_page()
Drop forward reference declarations __soft_offline_page. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
0be35096a1 |
mm/hwpoison: don't set migration type twice to avoid holding heavily contend zone->lock
Set pageblock migration type will hold zone->lock which is heavy contended in system to avoid race. However, soft offline page will set pageblock migration type twice during get page if the page is in used, not hugetlbfs page and not on lru list. There is unnecessary to set the pageblock migration type and hold heavy contended zone->lock again if the first round get page have already set the pageblock to right migration type. The trick here is migration type is MIGRATE_ISOLATE. There are other two parts can change MIGRATE_ISOLATE except hwpoison. One is memory hoplug, however, we hold lock_memory_hotplug() which avoid race. The second is CMA which umovable page allocation requst can't fallback to. So it's safe here. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
dd9538a597 |
mm/hwpoison: replace atomic_long_sub() with atomic_long_dec()
Replace atomic_long_sub() with atomic_long_dec() since the page is normal page instead of hugetlbfs page or thp. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
0cea3fdc41 |
mm/hwpoison: fix race against poison thp
There is a race between hwpoison page and unpoison page, memory_failure set the page hwpoison and increase num_poisoned_pages without hold page lock, and one page count will be accounted against thp for num_poisoned_pages. However, unpoison can occur before memory_failure hold page lock and split transparent hugepage, unpoison will decrease num_poisoned_pages by 1 << compound_order since memory_failure has not yet split transparent hugepage with page lock held. That means we account one page for hwpoison and 1 << compound_order for unpoison. This patch fix it by inserting a PageTransHuge check before doing TestClearPageHWPoison, unpoison failed without clearing PageHWPoison and decreasing num_poisoned_pages. A B memory_failue TestSetPageHWPoison(p); if (PageHuge(p)) nr_pages = 1 << compound_order(hpage); else nr_pages = 1; atomic_long_add(nr_pages, &num_poisoned_pages); unpoison_memory nr_pages = 1<< compound_trans_order(page); if(TestClearPageHWPoison(p)) atomic_long_sub(nr_pages, &num_poisoned_pages); lock page if (!PageHWPoison(p)) unlock page and return hwpoison_user_mappings if (PageTransHuge(hpage)) split_huge_page(hpage); Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
f9121153fd |
mm/hwpoison: don't need to hold compound lock for hugetlbfs page
compound lock is introduced by commit e9da73d67("thp: compound_lock."), it is used to serialize put_page against __split_huge_page_refcount(). In addition, transparent hugepages will be splitted in hwpoison handler and just one subpage will be poisoned. There is unnecessary to hold compound lock for hugetlbfs page. This patch replace compound_trans_order by compond_order in the place where the page is hugetlbfs page. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
841fcc583f |
mm/hwpoison: fix loss of PG_dirty for errors on mlocked pages
memory_failure() store the page flag of the error page before doing unmap, and (only) if the first check with page flags at the time decided the error page is unknown, it do the second check with the stored page flag since memory_failure() does unmapping of the error pages before doing page_action(). This unmapping changes the page state, especially page_remove_rmap() (called from try_to_unmap_one()) clears PG_mlocked, so page_action() can't catch mlocked pages after that. However, memory_failure() can't handle memory errors on dirty mlocked pages correctly. try_to_unmap_one will move the dirty bit from pte to the physical page, the second check lose it since it check the stored page flag. This patch fix it by restore PG_dirty flag to stored page flag if the page is dirty. Testcase: #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <sys/mman.h> #include <sys/types.h> #include <errno.h> #define PAGES_TO_TEST 2 #define PAGE_SIZE 4096 int main(void) { char *mem; int i; mem = mmap(NULL, PAGES_TO_TEST * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, 0, 0); for (i = 0; i < PAGES_TO_TEST; i++) mem[i * PAGE_SIZE] = 'a'; if (madvise(mem, PAGES_TO_TEST * PAGE_SIZE, MADV_HWPOISON) == -1) return -1; return 0; } Before patch: [ 912.839247] Injecting memory failure for page 7dfb8 at 7f6b4e37b000 [ 912.839257] MCE 0x7dfb8: clean mlocked LRU page recovery: Recovered [ 912.845550] MCE 0x7dfb8: clean mlocked LRU page still referenced by 1 users [ 912.852586] Injecting memory failure for page 7e6aa at 7f6b4e37c000 [ 912.852594] MCE 0x7e6aa: clean mlocked LRU page recovery: Recovered [ 912.858936] MCE 0x7e6aa: clean mlocked LRU page still referenced by 1 users After patch: [ 163.590225] Injecting memory failure for page 91bc2f at 7f9f5b0e5000 [ 163.590264] MCE 0x91bc2f: dirty mlocked LRU page recovery: Recovered [ 163.596680] MCE 0x91bc2f: dirty mlocked LRU page still referenced by 1 users [ 163.603831] Injecting memory failure for page 91cdd3 at 7f9f5b0e6000 [ 163.603852] MCE 0x91cdd3: dirty mlocked LRU page recovery: Recovered [ 163.610305] MCE 0x91cdd3: dirty mlocked LRU page still referenced by 1 users Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
0d6fdbdb2a |
hwpoison: always unset MIGRATE_ISOLATE before returning from soft_offline_page()
Soft offline code expects that MIGRATE_ISOLATE is set on the target page only during soft offlining work. But currenly it doesn't work as expected when get_any_page() fails and returns negative value. In the result, end users can have unexpectedly isolated pages. This patch just fixes it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wang Sheng-Hui
|
cf6fe94538 |
mm: correct the comment about the value for buddy _mapcount
Set _mapcount PAGE_BUDDY_MAPCOUNT_VALUE to make the page buddy. Not the magic number -2. Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Maxim Patlasov
|
5a53748568 |
mm/page-writeback.c: add strictlimit feature
The feature prevents mistrusted filesystems (ie: FUSE mounts created by unprivileged users) to grow a large number of dirty pages before throttling. For such filesystems balance_dirty_pages always check bdi counters against bdi limits. I.e. even if global "nr_dirty" is under "freerun", it's not allowed to skip bdi checks. The only use case for now is fuse: it sets bdi max_ratio to 1% by default and system administrators are supposed to expect that this limit won't be exceeded. The feature is on if a BDI is marked by BDI_CAP_STRICTLIMIT flag. A filesystem may set the flag when it initializes its BDI. The problematic scenario comes from the fact that nobody pays attention to the NR_WRITEBACK_TEMP counter (i.e. number of pages under fuse writeback). The implementation of fuse writeback releases original page (by calling end_page_writeback) almost immediately. A fuse request queued for real processing bears a copy of original page. Hence, if userspace fuse daemon doesn't finalize write requests in timely manner, an aggressive mmap writer can pollute virtually all memory by those temporary fuse page copies. They are carefully accounted in NR_WRITEBACK_TEMP, but nobody cares. To make further explanations shorter, let me use "NR_WRITEBACK_TEMP problem" as a shortcut for "a possibility of uncontrolled grow of amount of RAM consumed by temporary pages allocated by kernel fuse to process writeback". The problem was very easy to reproduce. There is a trivial example filesystem implementation in fuse userspace distribution: fusexmp_fh.c. I added "sleep(1);" to the write methods, then recompiled and mounted it. Then created a huge file on the mount point and run a simple program which mmap-ed the file to a memory region, then wrote a data to the region. An hour later I observed almost all RAM consumed by fuse writeback. Since then some unrelated changes in kernel fuse made it more difficult to reproduce, but it is still possible now. Putting this theoretical happens-in-the-lab thing aside, there is another thing that really hurts real world (FUSE) users. This is write-through page cache policy FUSE currently uses. I.e. handling write(2), kernel fuse populates page cache and flushes user data to the server synchronously. This is excessively suboptimal. Pavel Emelyanov's patches ("writeback cache policy") solve the problem, but they also make resolving NR_WRITEBACK_TEMP problem absolutely necessary. Otherwise, simply copying a huge file to a fuse mount would result in memory starvation. Miklos, the maintainer of FUSE, believes strictlimit feature the way to go. And eventually putting FUSE topics aside, there is one more use-case for strictlimit feature. Using a slow USB stick (mass storage) in a machine with huge amount of RAM installed is a well-known pain. Let's make simple computations. Assuming 64GB of RAM installed, existing implementation of balance_dirty_pages will start throttling only after 9.6GB of RAM becomes dirty (freerun == 15% of total RAM). So, the command "cp 9GB_file /media/my-usb-storage/" may return in a few seconds, but subsequent "umount /media/my-usb-storage/" will take more than two hours if effective throughput of the storage is, to say, 1MB/sec. After inclusion of strictlimit feature, it will be trivial to add a knob (e.g. /sys/devices/virtual/bdi/x:y/strictlimit) to enable it on demand. Manually or via udev rule. May be I'm wrong, but it seems to be quite a natural desire to limit the amount of dirty memory for some devices we are not fully trust (in the sense of sustainable throughput). [akpm@linux-foundation.org: fix warning in page-writeback.c] Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com> Cc: Jan Kara <jack@suse.cz> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chen Gang
|
4c3bffc272 |
mm/backing-dev.c: check user buffer length before copying data to the related user buffer
'*lenp' may be less than "sizeof(kbuf)" so we must check this before the next copy_to_user(). pdflush_proc_obsolete() is called by sysctl which 'procname' is "nr_pdflush_threads", if the user passes buffer length less than "sizeof(kbuf)", it will cause issue. Signed-off-by: Chen Gang <gang.chen@asianux.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Jeff Moyer <jmoyer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chen Gang
|
1ecfd533f4 |
mm/mremap.c: call pud_free() after fail calling pmd_alloc()
In alloc_new_pmd(), if pud_alloc() was called successfully, but pmd_alloc() fails, avoid leaking `pud'. Signed-off-by: Chen Gang <gang.chen@asianux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
762216ab4e |
mm/vmalloc: use wrapper function get_vm_area_size to caculate size of vm area
Use wrapper function get_vm_area_size to calculate size of vm area. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wanpeng Li
|
187320932d |
mm/sparse: introduce alloc_usemap_and_memmap
After commit
|
||
Lisa Du
|
6e543d5780 |
mm: vmscan: fix do_try_to_free_pages() livelock
This patch is based on KOSAKI's work and I add a little more description, please refer https://lkml.org/lkml/2012/6/14/74. Currently, I found system can enter a state that there are lots of free pages in a zone but only order-0 and order-1 pages which means the zone is heavily fragmented, then high order allocation could make direct reclaim path's long stall(ex, 60 seconds) especially in no swap and no compaciton enviroment. This problem happened on v3.4, but it seems issue still lives in current tree, the reason is do_try_to_free_pages enter live lock: kswapd will go to sleep if the zones have been fully scanned and are still not balanced. As kswapd thinks there's little point trying all over again to avoid infinite loop. Instead it changes order from high-order to 0-order because kswapd think order-0 is the most important. Look at |
||
Vlastimil Babka
|
7a8010cd36 |
mm: munlock: manual pte walk in fast path instead of follow_page_mask()
Currently munlock_vma_pages_range() calls follow_page_mask() to obtain each individual struct page. This entails repeated full page table translations and page table lock taken for each page separately. This patch avoids the costly follow_page_mask() where possible, by iterating over ptes within single pmd under single page table lock. The first pte is obtained by get_locked_pte() for non-THP page acquired by the initial follow_page_mask(). The rest of the on-stack pagevec for munlock is filled up using pte_walk as long as pte_present() and vm_normal_page() are sufficient to obtain the struct page. After this patch, a 14% speedup was measured for munlocking a 56GB large memory area with THP disabled. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jörn Engel <joern@logfs.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
5b40998ae3 |
mm: munlock: remove redundant get_page/put_page pair on the fast path
The performance of the fast path in munlock_vma_range() can be further improved by avoiding atomic ops of a redundant get_page()/put_page() pair. When calling get_page() during page isolation, we already have the pin from follow_page_mask(). This pin will be then returned by __pagevec_lru_add(), after which we do not reference the pages anymore. After this patch, an 8% speedup was measured for munlocking a 56GB large memory area with THP disabled. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
56afe477df |
mm: munlock: bypass per-cpu pvec for putback_lru_page
After introducing batching by pagevecs into munlock_vma_range(), we can further improve performance by bypassing the copying into per-cpu pagevec and the get_page/put_page pair associated with that. Instead we perform LRU putback directly from our pagevec. However, this is possible only for single-mapped pages that are evictable after munlock. Unevictable pages require rechecking after putting on the unevictable list, so for those we fallback to putback_lru_page(), hich handles that. After this patch, a 13% speedup was measured for munlocking a 56GB large memory area with THP disabled. [akpm@linux-foundation.org:clarify comment] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
1ebb7cc6a5 |
mm: munlock: batch NR_MLOCK zone state updates
Depending on previous batch which introduced batched isolation in munlock_vma_range(), we can batch also the updates of NR_MLOCK page stats. After the whole pagevec is processed for page isolation, the stats are updated only once with the number of successful isolations. There were however no measurable perfomance gains. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7225522bb4 |
mm: munlock: batch non-THP page isolation and munlock+putback using pagevec
Currently, munlock_vma_range() calls munlock_vma_page on each page in a loop, which results in repeated taking and releasing of the lru_lock spinlock for isolating pages one by one. This patch batches the munlock operations using an on-stack pagevec, so that isolation is done under single lru_lock. For THP pages, the old behavior is preserved as they might be split while putting them into the pagevec. After this patch, a 9% speedup was measured for munlocking a 56GB large memory area with THP disabled. A new function __munlock_pagevec() is introduced that takes a pagevec and: 1) It clears PageMlocked and isolates all pages under lru_lock. Zone page stats can be also updated using the variant which assumes disabled interrupts. 2) It finishes the munlock and lru putback on all pages under their lock_page. Note that previously, lock_page covered also the PageMlocked clearing and page isolation, but it is not needed for those operations. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
586a32ac1d |
mm: munlock: remove unnecessary call to lru_add_drain()
In munlock_vma_range(), lru_add_drain() is currently called in a loop before each munlock_vma_page() call. This is suboptimal for performance when munlocking many pages. The benefits of per-cpu pagevec for batching the LRU putback are removed since the pagevec only holds at most one page from the previous loop's iteration. The lru_add_drain() call also does not serve any purposes for correctness - it does not even drain pagavecs of all cpu's. The munlock code already expects and handles situations where a page cannot be isolated from the LRU (e.g. because it is on some per-cpu pagevec). The history of the (not commented) call also suggest that it appears there as an oversight rather than intentionally. Before commit |
||
Vlastimil Babka
|
0ec3b74c7f |
mm: putback_lru_page: remove unnecessary call to page_lru_base_type()
The goal of this patch series is to improve performance of munlock() of
large mlocked memory areas on systems without THP. This is motivated by
reported very long times of crash recovery of processes with such areas,
where munlock() can take several seconds. See
http://lwn.net/Articles/548108/
The work was driven by a simple benchmark (to be included in mmtests) that
mmaps() e.g. 56GB with MAP_LOCKED | MAP_POPULATE and measures the time of
munlock(). Profiling was performed by attaching operf --pid to the
process and sending a signal to trigger the munlock() part and then notify
bach the monitoring wrapper to stop operf, so that only munlock() appears
in the profile.
The profiles have shown that CPU time is spent mostly by atomic operations
and repeated locking per single pages. This series aims to reduce both, starting
from simpler to more complex changes.
Patch 1 performs a simple cleanup in putback_lru_page() so that page lru base
type is not determined without being actually needed.
Patch 2 removes an unnecessary call to lru_add_drain() which drains the per-cpu
pagevec after each munlocked page is put there.
Patch 3 changes munlock_vma_range() to use an on-stack pagevec for isolating
multiple non-THP pages under a single lru_lock instead of locking and
processing each page separately.
Patch 4 changes the NR_MLOCK accounting to be called only once per the pvec
introduced by previous patch.
Patch 5 uses the introduced pagevec to batch also the work of putback_lru_page
when possible, bypassing the per-cpu pvec and associated overhead.
Patch 6 removes a redundant get_page/put_page pair which saves costly atomic
operations.
Patch 7 avoids calling follow_page_mask() on each individual page, and obtains
multiple page references under a single page table lock where possible.
Measurements were made using 3.11-rc3 as a baseline. The first set of
measurements shows the possibly ideal conditions where batching should
help the most. All memory is allocated from a single NUMA node and THP is
disabled.
timedmunlock
3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3
0 1 2 3 4 5 6 7
Elapsed min 3.38 ( 0.00%) 3.39 ( -0.13%) 3.00 ( 11.33%) 2.70 ( 20.20%) 2.67 ( 21.11%) 2.37 ( 29.88%) 2.20 ( 34.91%) 1.91 ( 43.59%)
Elapsed mean 3.39 ( 0.00%) 3.40 ( -0.23%) 3.01 ( 11.33%) 2.70 ( 20.26%) 2.67 ( 21.21%) 2.38 ( 29.88%) 2.21 ( 34.93%) 1.92 ( 43.46%)
Elapsed stddev 0.01 ( 0.00%) 0.01 (-43.09%) 0.01 ( 15.42%) 0.01 ( 23.42%) 0.00 ( 89.78%) 0.01 ( -7.15%) 0.00 ( 76.69%) 0.02 (-91.77%)
Elapsed max 3.41 ( 0.00%) 3.43 ( -0.52%) 3.03 ( 11.29%) 2.72 ( 20.16%) 2.67 ( 21.63%) 2.40 ( 29.50%) 2.21 ( 35.21%) 1.96 ( 42.39%)
Elapsed range 0.03 ( 0.00%) 0.04 (-51.16%) 0.02 ( 6.27%) 0.02 ( 14.67%) 0.00 ( 88.90%) 0.03 (-19.18%) 0.01 ( 73.70%) 0.06 (-113.35%
The second set of measurements simulates the worst possible conditions for
batching by using numactl --interleave, so that there is in fact only one
page per pagevec. Even in this case the series seems to improve
performance thanks to reduced atomic operations and removal of
lru_add_drain().
timedmunlock
3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3
0 1 2 3 4 5 6 7
Elapsed min 4.00 ( 0.00%) 4.04 ( -0.93%) 3.87 ( 3.37%) 3.72 ( 6.94%) 3.81 ( 4.72%) 3.69 ( 7.82%) 3.64 ( 8.92%) 3.41 ( 14.81%)
Elapsed mean 4.17 ( 0.00%) 4.15 ( 0.51%) 4.03 ( 3.49%) 3.89 ( 6.84%) 3.86 ( 7.48%) 3.89 ( 6.69%) 3.70 ( 11.27%) 3.48 ( 16.59%)
Elapsed stddev 0.16 ( 0.00%) 0.08 ( 50.76%) 0.10 ( 41.58%) 0.16 ( 4.59%) 0.05 ( 72.38%) 0.19 (-12.91%) 0.05 ( 68.09%) 0.06 ( 66.03%)
Elapsed max 4.34 ( 0.00%) 4.32 ( 0.56%) 4.19 ( 3.62%) 4.12 ( 5.15%) 3.91 ( 9.88%) 4.12 ( 5.25%) 3.80 ( 12.58%) 3.56 ( 18.08%)
Elapsed range 0.34 ( 0.00%) 0.28 ( 17.91%) 0.32 ( 6.45%) 0.40 (-15.73%) 0.10 ( 70.06%) 0.43 (-24.84%) 0.15 ( 55.32%) 0.15 ( 56.16%)
For completeness, a third set of measurements shows the situation where
THP is enabled and allocations are again done on a single NUMA node. Here
munlock() is already very fast thanks to huge pages, and this series does
not compromise that performance. It seems that the removal of call to
lru_add_drain() still helps a bit.
timedmunlock
3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3 3.11-rc3
0 1 2 3 4 5 6 7
Elapsed min 0.01 ( 0.00%) 0.01 ( -0.11%) 0.01 ( 6.59%) 0.01 ( 5.41%) 0.01 ( 5.45%) 0.01 ( 5.03%) 0.01 ( 6.08%) 0.01 ( 5.20%)
Elapsed mean 0.01 ( 0.00%) 0.01 ( -0.27%) 0.01 ( 6.39%) 0.01 ( 5.30%) 0.01 ( 5.32%) 0.01 ( 5.03%) 0.01 ( 5.97%) 0.01 ( 5.22%)
Elapsed stddev 0.00 ( 0.00%) 0.00 ( -9.59%) 0.00 ( 10.77%) 0.00 ( 3.24%) 0.00 ( 24.42%) 0.00 ( 31.86%) 0.00 ( -7.46%) 0.00 ( 6.11%)
Elapsed max 0.01 ( 0.00%) 0.01 ( -0.01%) 0.01 ( 6.83%) 0.01 ( 5.42%) 0.01 ( 5.79%) 0.01 ( 5.53%) 0.01 ( 6.08%) 0.01 ( 5.26%)
Elapsed range 0.00 ( 0.00%) 0.00 ( 7.30%) 0.00 ( 24.38%) 0.00 ( 6.10%) 0.00 ( 30.79%) 0.00 ( 42.52%) 0.00 ( 6.11%) 0.00 ( 10.07%)
This patch (of 7):
In putback_lru_page() since commit
|
||
Cyrill Gorcunov
|
d9104d1ca9 |
mm: track vma changes with VM_SOFTDIRTY bit
Pavel reported that in case if vma area get unmapped and then mapped (or expanded) in-place, the soft dirty tracker won't be able to recognize this situation since it works on pte level and ptes are get zapped on unmap, loosing soft dirty bit of course. So to resolve this situation we need to track actions on vma level, there VM_SOFTDIRTY flag comes in. When new vma area created (or old expanded) we set this bit, and keep it here until application calls for clearing soft dirty bit. Thus when user space application track memory changes now it can detect if vma area is renewed. Reported-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Rob Landley <rob@landley.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
SeungHun Lee
|
3b11f0aaae |
mm: page_alloc: fix comment get_page_from_freelist
cpuset_zone_allowed is changed to cpuset_zone_allowed_softwall and the comment is moved to __cpuset_node_allowed_softwall. So fix this comment. Signed-off-by: SeungHun Lee <waydi1@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Khalid Aziz
|
7cb2ef56e6 |
mm: fix aio performance regression for database caused by THP
I am working with a tool that simulates oracle database I/O workload. This tool (orion to be specific - <http://docs.oracle.com/cd/E11882_01/server.112/e16638/iodesign.htm#autoId24>) allocates hugetlbfs pages using shmget() with SHM_HUGETLB flag. It then does aio into these pages from flash disks using various common block sizes used by database. I am looking at performance with two of the most common block sizes - 1M and 64K. aio performance with these two block sizes plunged after Transparent HugePages was introduced in the kernel. Here are performance numbers: pre-THP 2.6.39 3.11-rc5 1M read 8384 MB/s 5629 MB/s 6501 MB/s 64K read 7867 MB/s 4576 MB/s 4251 MB/s I have narrowed the performance impact down to the overheads introduced by THP in __get_page_tail() and put_compound_page() routines. perf top shows >40% of cycles being spent in these two routines. Every time direct I/O to hugetlbfs pages starts, kernel calls get_page() to grab a reference to the pages and calls put_page() when I/O completes to put the reference away. THP introduced significant amount of locking overhead to get_page() and put_page() when dealing with compound pages because hugepages can be split underneath get_page() and put_page(). It added this overhead irrespective of whether it is dealing with hugetlbfs pages or transparent hugepages. This resulted in 20%-45% drop in aio performance when using hugetlbfs pages. Since hugetlbfs pages can not be split, there is no reason to go through all the locking overhead for these pages from what I can see. I added code to __get_page_tail() and put_compound_page() to bypass all the locking code when working with hugetlbfs pages. This improved performance significantly. Performance numbers with this patch: pre-THP 3.11-rc5 3.11-rc5 + Patch 1M read 8384 MB/s 6501 MB/s 8371 MB/s 64K read 7867 MB/s 4251 MB/s 6510 MB/s Performance with 64K read is still lower than what it was before THP, but still a 53% improvement. It does mean there is more work to be done but I will take a 53% improvement for now. Please take a look at the following patch and let me know if it looks reasonable. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin B Shelar <pshelar@nicira.com> Cc: Christoph Lameter <cl@linux.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
3a7200af3d |
mm: compaction: do not compact pgdat for order-0
If kswapd was reclaiming for a high order and resets it to 0 due to fragmentation it will still call compact_pgdat. For the most part, this will fail a compaction_suitable() test and not compact but it is unnecessarily sloppy. It could be fixed in the caller but fix it in the API instead. [dhillf@gmail.com: pointed out that it was a potential problem] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Hillf Danton <dhillf@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Vagin
|
90c7a79cc4 |
kmemcg: don't allocate extra memory for root memcg_cache_params
The memcg_cache_params structure contains the common part and the union, which represents two different types of data: one for root cashes and another for child caches. The size of child data is fixed. The size of the memcg_caches array is calculated in runtime. Currently the size of memcg_cache_params for root caches is calculated incorrectly, because it includes the size of parameters for child caches. ssize_t size = memcg_caches_array_size(num_groups); size *= sizeof(void *); size += sizeof(struct memcg_cache_params); v2: Fix a typo in calculations Signed-off-by: Andrey Vagin <avagin@openvz.org> Cc: Glauber Costa <glommer@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yinghai Lu
|
e76b63f80d |
memblock, numa: binary search node id
Current early_pfn_to_nid() on arch that support memblock go over memblock.memory one by one, so will take too many try near the end. We can use existing memblock_search to find the node id for given pfn, that could save some time on bigger system that have many entries memblock.memory array. Here are the timing differences for several machines. In each case with the patch less time was spent in __early_pfn_to_nid(). 3.11-rc5 with patch difference (%) -------- ---------- -------------- UV1: 256 nodes 9TB: 411.66 402.47 -9.19 (2.23%) UV2: 255 nodes 16TB: 1141.02 1138.12 -2.90 (0.25%) UV2: 64 nodes 2TB: 128.15 126.53 -1.62 (1.26%) UV2: 32 nodes 2TB: 121.87 121.07 -0.80 (0.66%) Time in seconds. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Tejun Heo <tj@kernel.org> Acked-by: Russ Anderson <rja@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
0bf598d863 |
mbind: add BUG_ON(!vma) in new_vma_page()
new_vma_page() is called only by page migration called from do_mbind(), where pages to be migrated are queued into a pagelist by queue_pages_range(). queue_pages_range() confirms that a queued page belongs to some vma, so !vma case is not supposed to be happen. This patch adds BUG_ON() to catch this unexpected case. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
9809494578 |
mm/mempolicy: rename check_*range to queue_pages_*range
The function check_range() (and its family) is not well-named, because it does not only checking something, but moving pages from list to list to do page migration for them. So queue_pages_*range is more desirable name. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |