Commit Graph

24 Commits

Author SHA1 Message Date
Tuong Lien
b4b9771bcb tipc: enable tracepoints in tipc
As for the sake of debugging/tracing, the commit enables tracepoints in
TIPC along with some general trace_events as shown below. It also
defines some 'tipc_*_dump()' functions that allow to dump TIPC object
data whenever needed, that is, for general debug purposes, ie. not just
for the trace_events.

The following trace_events are now available:

- trace_tipc_skb_dump(): allows to trace and dump TIPC msg & skb data,
  e.g. message type, user, droppable, skb truesize, cloned skb, etc.

- trace_tipc_list_dump(): allows to trace and dump any TIPC buffers or
  queues, e.g. TIPC link transmq, socket receive queue, etc.

- trace_tipc_sk_dump(): allows to trace and dump TIPC socket data, e.g.
  sk state, sk type, connection type, rmem_alloc, socket queues, etc.

- trace_tipc_link_dump(): allows to trace and dump TIPC link data, e.g.
  link state, silent_intv_cnt, gap, bc_gap, link queues, etc.

- trace_tipc_node_dump(): allows to trace and dump TIPC node data, e.g.
  node state, active links, capabilities, link entries, etc.

How to use:
Put the trace functions at any places where we want to dump TIPC data
or events.

Note:
a) The dump functions will generate raw data only, that is, to offload
the trace event's processing, it can require a tool or script to parse
the data but this should be simple.

b) The trace_tipc_*_dump() should be reserved for a failure cases only
(e.g. the retransmission failure case) or where we do not expect to
happen too often, then we can consider enabling these events by default
since they will almost not take any effects under normal conditions,
but once the rare condition or failure occurs, we get the dumped data
fully for post-analysis.

For other trace purposes, we can reuse these trace classes as template
but different events.

c) A trace_event is only effective when we enable it. To enable the
TIPC trace_events, echo 1 to 'enable' files in the events/tipc/
directory in the 'debugfs' file system. Normally, they are located at:

/sys/kernel/debug/tracing/events/tipc/

For example:

To enable the tipc_link_dump event:

echo 1 > /sys/kernel/debug/tracing/events/tipc/tipc_link_dump/enable

To enable all the TIPC trace_events:

echo 1 > /sys/kernel/debug/tracing/events/tipc/enable

To collect the trace data:

cat trace

or

cat trace_pipe > /trace.out &

To disable all the TIPC trace_events:

echo 0 > /sys/kernel/debug/tracing/events/tipc/enable

To clear the trace buffer:

echo > trace

d) Like the other trace_events, the feature like 'filter' or 'trigger'
is also usable for the tipc trace_events.
For more details, have a look at:

Documentation/trace/ftrace.txt

MAINTAINERS | add two new files 'trace.h' & 'trace.c' in tipc

Acked-by: Ying Xue <ying.xue@windriver.com>
Tested-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-19 11:49:24 -08:00
GhantaKrishnamurthy MohanKrishna
c30b70deb5 tipc: implement socket diagnostics for AF_TIPC
This commit adds socket diagnostics capability for AF_TIPC in netlink
family NETLINK_SOCK_DIAG in a new kernel module (diag.ko).

The following are key design considerations:
- config TIPC_DIAG has default y, like INET_DIAG.
- only requests with flag NLM_F_DUMP is supported (dump all).
- tipc_sock_diag_req message is introduced to send filter parameters.
- the response attributes are of TLV, some nested.

To avoid exposing data structures between diag and tipc modules and
avoid code duplication, the following additions are required:
- export tipc_nl_sk_walk function to reuse socket iterator.
- export tipc_sk_fill_sock_diag to fill the tipc diag attributes.
- create a sock_diag response message in __tipc_add_sock_diag defined
  in diag.c and use the above exported tipc_sk_fill_sock_diag
  to fill response.

Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: GhantaKrishnamurthy MohanKrishna <mohan.krishna.ghanta.krishnamurthy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-22 14:43:35 -04:00
Jon Maloy
026321c6d0 tipc: rename tipc_server to tipc_topsrv
We rename struct tipc_server to struct tipc_topsrv. This reflect its now
specialized role as topology server. Accoringly, we change or add function
prefixes to make it clearer which functionality those belong to.

There are no functional changes in this commit.

Acked-by: Ying.Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-16 15:26:34 -05:00
David S. Miller
2a171788ba Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Files removed in 'net-next' had their license header updated
in 'net'.  We take the remove from 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-04 09:26:51 +09:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Jon Maloy
75da2163db tipc: introduce communication groups
As a preparation for introducing flow control for multicast and datagram
messaging we need a more strictly defined framework than we have now. A
socket must be able keep track of exactly how many and which other
sockets it is allowed to communicate with at any moment, and keep the
necessary state for those.

We therefore introduce a new concept we have named Communication Group.
Sockets can join a group via a new setsockopt() call TIPC_GROUP_JOIN.
The call takes four parameters: 'type' serves as group identifier,
'instance' serves as an logical member identifier, and 'scope' indicates
the visibility of the group (node/cluster/zone). Finally, 'flags' makes
it possible to set certain properties for the member. For now, there is
only one flag, indicating if the creator of the socket wants to receive
a copy of broadcast or multicast messages it is sending via the socket,
and if wants to be eligible as destination for its own anycasts.

A group is closed, i.e., sockets which have not joined a group will
not be able to send messages to or receive messages from members of
the group, and vice versa.

Any member of a group can send multicast ('group broadcast') messages
to all group members, optionally including itself, using the primitive
send(). The messages are received via the recvmsg() primitive. A socket
can only be member of one group at a time.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-13 08:46:00 -07:00
Jon Paul Maloy
35c55c9877 tipc: add neighbor monitoring framework
TIPC based clusters are by default set up with full-mesh link
connectivity between all nodes. Those links are expected to provide
a short failure detection time, by default set to 1500 ms. Because
of this, the background load for neighbor monitoring in an N-node
cluster increases with a factor N on each node, while the overall
monitoring traffic through the network infrastructure increases at
a ~(N * (N - 1)) rate. Experience has shown that such clusters don't
scale well beyond ~100 nodes unless we significantly increase failure
discovery tolerance.

This commit introduces a framework and an algorithm that drastically
reduces this background load, while basically maintaining the original
failure detection times across the whole cluster. Using this algorithm,
background load will now grow at a rate of ~(2 * sqrt(N)) per node, and
at ~(2 * N * sqrt(N)) in traffic overhead. As an example, each node will
now have to actively monitor 38 neighbors in a 400-node cluster, instead
of as before 399.

This "Overlapping Ring Supervision Algorithm" is completely distributed
and employs no centralized or coordinated state. It goes as follows:

- Each node makes up a linearly ascending, circular list of all its N
  known neighbors, based on their TIPC node identity. This algorithm
  must be the same on all nodes.

- The node then selects the next M = sqrt(N) - 1 nodes downstream from
  itself in the list, and chooses to actively monitor those. This is
  called its "local monitoring domain".

- It creates a domain record describing the monitoring domain, and
  piggy-backs this in the data area of all neighbor monitoring messages
  (LINK_PROTOCOL/STATE) leaving that node. This means that all nodes in
  the cluster eventually (default within 400 ms) will learn about
  its monitoring domain.

- Whenever a node discovers a change in its local domain, e.g., a node
  has been added or has gone down, it creates and sends out a new
  version of its node record to inform all neighbors about the change.

- A node receiving a domain record from anybody outside its local domain
  matches this against its own list (which may not look the same), and
  chooses to not actively monitor those members of the received domain
  record that are also present in its own list. Instead, it relies on
  indications from the direct monitoring nodes if an indirectly
  monitored node has gone up or down. If a node is indicated lost, the
  receiving node temporarily activates its own direct monitoring towards
  that node in order to confirm, or not, that it is actually gone.

- Since each node is actively monitoring sqrt(N) downstream neighbors,
  each node is also actively monitored by the same number of upstream
  neighbors. This means that all non-direct monitoring nodes normally
  will receive sqrt(N) indications that a node is gone.

- A major drawback with ring monitoring is how it handles failures that
  cause massive network partitionings. If both a lost node and all its
  direct monitoring neighbors are inside the lost partition, the nodes in
  the remaining partition will never receive indications about the loss.
  To overcome this, each node also chooses to actively monitor some
  nodes outside its local domain. Those nodes are called remote domain
  "heads", and are selected in such a way that no node in the cluster
  will be more than two direct monitoring hops away. Because of this,
  each node, apart from monitoring the member of its local domain, will
  also typically monitor sqrt(N) remote head nodes.

- As an optimization, local list status, domain status and domain
  records are marked with a generation number. This saves senders from
  unnecessarily conveying  unaltered domain records, and receivers from
  performing unneeded re-adaptations of their node monitoring list, such
  as re-assigning domain heads.

- As a measure of caution we have added the possibility to disable the
  new algorithm through configuration. We do this by keeping a threshold
  value for the cluster size; a cluster that grows beyond this value
  will switch from full-mesh to ring monitoring, and vice versa when
  it shrinks below the value. This means that if the threshold is set to
  a value larger than any anticipated cluster size (default size is 32)
  the new algorithm is effectively disabled. A patch set for altering the
  threshold value and for listing the table contents will follow shortly.

- This change is fully backwards compatible.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 14:06:28 -07:00
Erik Hugne
d0f91938be tipc: add ip/udp media type
The ip/udp bearer can be configured in a point-to-point
mode by specifying both local and remote ip/hostname,
or it can be enabled in multicast mode, where links are
established to all tipc nodes that have joined the same
multicast group. The multicast IP address is generated
based on the TIPC network ID, but can be overridden by
using another multicast address as remote ip.

Signed-off-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-05 22:08:42 -05:00
Richard Alpe
941787b829 tipc: remove tipc_snprintf
tipc_snprintf() was heavily utilized by the old netlink API which no
longer exists (now netlink compat).

In this patch we swap tipc_snprintf() to the identical scnprintf() in
the only remaining occurrence.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-09 13:20:49 -08:00
Richard Alpe
22ae7cff50 tipc: nl compat add noop and remove legacy nl framework
Add TIPC_CMD_NOOP to compat layer and remove the old framework.

All legacy nl commands are now converted to the compat layer in
netlink_compat.c.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-09 13:20:49 -08:00
Richard Alpe
bfb3e5dd8d tipc: move and rename the legacy nl api to "nl compat"
The new netlink API is no longer "v2" but rather the standard API and
the legacy API is now "nl compat". We split them into separate
start/stop and put them in different files in order to further
distinguish them.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-02-09 13:20:47 -08:00
Ying Xue
a8f48af587 tipc: remove node subscription infrastructure
The node subscribe infrastructure represents a virtual base class, so
its users, such as struct tipc_port and struct publication, can derive
its implemented functionalities. However, after the removal of struct
tipc_port, struct publication is left as its only single user now. So
defining an abstract infrastructure for one user becomes no longer
reasonable. If corresponding new functions associated with the
infrastructure are moved to name_table.c file, the node subscription
infrastructure can be removed as well.

Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-26 12:30:16 -05:00
Jon Paul Maloy
808d90f9c5 tipc: remove files ref.h and ref.c
The reference table is now 'socket aware' instead of being generic,
and has in reality become a socket internal table. In order to be
able to minimize the API exposed by the socket layer towards the rest
of the stack, we now move the reference table definitions and functions
into the file socket.c, and rename the functions accordingly.

There are no functional changes in this commit.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-23 11:18:35 -07:00
Jon Paul Maloy
0fc87aaebd tipc: remove source file port.c
In this commit, we move the remaining functions in port.c to
socket.c, and give them new names that correspond to their new
location. We then remove the file port.c.

There are only cosmetic changes to the moved functions.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-23 11:18:35 -07:00
Ying Xue
52ff872055 tipc: purge signal handler infrastructure
In the previous commits of this series, we removed all asynchronous
actions which were based on the tasklet handler - "tipc_k_signal()".

So the moment has now come when we can completely remove the tasklet
handler infrastructure. That is done with this commit.

Signed-off-by: Ying Xue <ying.xue@windriver.com>
Reviewed-by: Erik Hugne <erik.hugne@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-05 17:26:45 -04:00
Ying Xue
c5fa7b3cf3 tipc: introduce new TIPC server infrastructure
TIPC has two internal servers, one providing a subscription
service for topology events, and another providing the
configuration interface. These servers have previously been running
in BH context, accessing the TIPC-port (aka native) API directly.
Apart from these servers, even the TIPC socket implementation is
partially built on this API.

As this API may simultaneously be called via different paths and in
different contexts, a complex and costly lock policiy is required
in order to protect TIPC internal resources.

To eliminate the need for this complex lock policiy, we introduce
a new, generic service API that uses kernel sockets for message
passing instead of the native API. Once the toplogy and configuration
servers are converted to use this new service, all code pertaining
to the native API can be removed. This entails a significant
reduction in code amount and complexity, and opens up for a complete
rework of the locking policy in TIPC.

The new service also solves another problem:

As the current topology server works in BH context, it cannot easily
be blocked when sending of events fails due to congestion. In such
cases events may have to be silently dropped, something that is
unacceptable. Therefore, the new service keeps a dedicated outbound
queue receiving messages from BH context. Once messages are
inserted into this queue, we will immediately schedule a work from a
special workqueue. This way, messages/events from the topology server
are in reality sent in process context, and the server can block
if necessary.

Analogously, there is a new workqueue for receiving messages. Once a
notification about an arriving message is received in BH context, we
schedule a work from the receive workqueue to do the job of
receiving the message in process context.

As both sending and receive messages are now finished in processes,
subscribed events cannot be dropped any more.

As of this commit, this new server infrastructure is built, but
not actually yet called by the existing TIPC code, but since the
conversion changes required in order to use it are significant,
the addition is kept here as a separate commit.

Signed-off-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-17 15:53:00 -07:00
Ying Xue
cc79dd1ba9 tipc: change socket buffer overflow control to respect sk_rcvbuf
As per feedback from the netdev community, we change the buffer
overflow protection algorithm in receiving sockets so that it
always respects the nominal upper limit set in sk_rcvbuf.

Instead of scaling up from a small sk_rcvbuf value, which leads to
violation of the configured sk_rcvbuf limit, we now calculate the
weighted per-message limit by scaling down from a much bigger value,
still in the same field, according to the importance priority of the
received message.

To allow for administrative tunability of the socket receive buffer
size, we create a tipc_rmem sysctl variable to allow the user to
configure an even bigger value via sysctl command.  It is a size of
three (min/default/max) to be consistent with things like tcp_rmem.

By default, the value initialized in tipc_rmem[1] is equal to the
receive socket size needed by a TIPC_CRITICAL_IMPORTANCE message.
This value is also set as the default value of sk_rcvbuf.

Originally-by: Jon Maloy <jon.maloy@ericsson.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Jon Maloy <jon.maloy@ericsson.com>
[Ying: added sysctl variation to Jon's original patch]
Signed-off-by: Ying Xue <ying.xue@windriver.com>
[PG: don't compile sysctl.c if not config'd; add Documentation]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-17 15:53:00 -07:00
Patrick McHardy
a29a194a15 tipc: add InfiniBand media type
Add InfiniBand media type based on the ethernet media type.

The only real difference is that in case of InfiniBand, we need the entire
20 bytes of space reserved for media addresses, so the TIPC media type ID is
not explicitly stored in the packet payload.

Sample output of tipc-config:

# tipc-config -v -addr -netid -nt=all -p -m -b -n -ls

node address: <10.1.4>
current network id: 4711
Type       Lower      Upper      Port Identity              Publication Scope
0          167776257  167776257  <10.1.1:1855512577>        1855512578  cluster
           167776260  167776260  <10.1.4:1216454657>        1216454658  zone
1          1          1          <10.1.4:1216479235>        1216479236  node
Ports:
1216479235: bound to {1,1}
1216454657: bound to {0,167776260}
Media:
eth
ib
Bearers:
ib:ib0
Nodes known:
<10.1.1>: up
Link <broadcast-link>
  Window:20 packets
  RX packets:0 fragments:0/0 bundles:0/0
  TX packets:0 fragments:0/0 bundles:0/0
  RX naks:0 defs:0 dups:0
  TX naks:0 acks:0 dups:0
  Congestion bearer:0 link:0  Send queue max:0 avg:0

Link <10.1.4:ib0-10.1.1:ib0>
  ACTIVE  MTU:2044  Priority:10  Tolerance:1500 ms  Window:50 packets
  RX packets:80 fragments:0/0 bundles:0/0
  TX packets:40 fragments:0/0 bundles:0/0
  TX profile sample:22 packets  average:54 octets
  0-64:100% -256:0% -1024:0% -4096:0% -16384:0% -32768:0% -66000:0%
  RX states:410 probes:213 naks:0 defs:0 dups:0
  TX states:410 probes:197 naks:0 acks:0 dups:0
  Congestion bearer:0 link:0  Send queue max:1 avg:0

Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-17 14:18:33 -04:00
Paul Gortmaker
617d3c7a50 tipc: compress out gratuitous extra carriage returns
Some of the comment blocks are floating in limbo between two
functions, or between blocks of code.  Delete the extra line
feeds between any comment and its associated following block
of code, to be consistent with the majority of the rest of
the kernel.  Also delete trailing newlines at EOF and fix
a couple trivial typos in existing comments.

This is a 100% cosmetic change with no runtime impact.  We get
rid of over 500 lines of non-code, and being blank line deletes,
they won't even show up as noise in git blame.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-04-30 15:53:56 -04:00
Allan Stephens
f5e75269f5 tipc: rename dbg.[ch] to log.[ch]
As the first step in removing obsolete debugging code from TIPC the
files that implement TIPC's non-debug-related log buffer subsystem
are renamed to better reflect their true nature.

Signed-off-by: Allan Stephens <Allan.Stephens@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-01 13:57:51 -08:00
Allan Stephens
b0c1e928c8 tipc: Remove user registry subsystem
Eliminates routines, data structures, and files that make up TIPC's
user registry. The user registry is no longer needed since the native
API routines that utilized it no longer exist and there are no longer
any internal TIPC services that use it.

Signed-off-by: Allan Stephens <Allan.Stephens@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-01 13:57:51 -08:00
Allan Stephens
8f92df6ad4 tipc: Remove prototype code for supporting multiple clusters
Eliminates routines, data structures, and files that were intended
to allow TIPC to support a network containing multiple clusters.
Currently, TIPC supports only networks consisting of a single cluster
within a single zone, so this code is unnecessary.

Signed-off-by: Allan Stephens <Allan.Stephens@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-01 13:57:49 -08:00
Allan Stephens
51f98a8d70 tipc: Remove prototype code for supporting multiple zones
Eliminates routines, data structures, and files that were intended
to allows TIPC to support a network containing multiple zones.
Currently, TIPC supports only networks consisting of a single cluster
within a single zone, so this code is unnecessary.

Signed-off-by: Allan Stephens <Allan.Stephens@windriver.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-01 13:57:47 -08:00
Per Liden
b97bf3fd8f [TIPC] Initial merge
TIPC (Transparent Inter Process Communication) is a protocol designed for
intra cluster communication. For more information see
http://tipc.sourceforge.net

Signed-off-by: Per Liden <per.liden@nospam.ericsson.com>
2006-01-12 14:06:31 -08:00