The VM_BUG_ON() is already used by queue_pages_test_walk(), it sounds
better to dump more debug information by using VM_BUG_ON_VMA() to help
debugging.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Li Xinhai" <lixinhai.lxh@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1579068565-110432-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma_migratable() is called to check if pages in vma can be migrated before
go ahead to further actions. Currently it is used in below code path:
- task_numa_work
- mbind
- move_pages
For hugetlb mapping, whether vma is migratable or not is determined by:
- CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
- arch_hugetlb_migration_supported
Issue: current code only checks for CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
alone, and no code should use it directly. (note that current code in
vma_migratable don't cause failure or bug because
unmap_and_move_huge_page() will catch unsupported hugepage and handle it
properly)
This patch checks the two factors by hugepage_migration_supported for
impoving code logic and robustness. It will enable early bail out of
hugepage migration procedure, but because currently all architecture
supporting hugepage migration is able to support all page size, we would
not see performance gain with this patch applied.
vma_migratable() is moved to mm/mempolicy.c, because of the circular
reference of mempolicy.h and hugetlb.h cause defining it as inline not
feasible.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Link: http://lkml.kernel.org/r/1579786179-30633-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MPOL_MF_STRICT is used in mbind() for purposes:
(1) MPOL_MF_STRICT is set alone without MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, to check if there is misplaced page and return -EIO;
(2) MPOL_MF_STRICT is set with MPOL_MF_MOVE or MPOL_MF_MOVE_ALL, to
check if there is misplaced page which is failed to isolate, or page
is success on isolate but failed to move, and return -EIO.
For non hugepage mapping, (1) and (2) are implemented as expectation. For
hugepage mapping, (1) is not implemented. And in (2), the part about
failed to isolate and report -EIO is not implemented.
This patch implements the missed parts for hugepage mapping. Benefits
with it applied:
- User space can apply same code logic to handle mbind() on hugepage and
non hugepage mapping;
- Reliably using MPOL_MF_STRICT alone to check whether there is
misplaced page or not when bind policy on address range, especially for
address range which contains both hugepage and non hugepage mapping.
Analysis of potential impact to existing users:
- If MPOL_MF_STRICT alone was previously used, hugetlb pages not
following the memory policy would not cause an EIO error. After this
change, hugetlb pages are treated like all other pages. If
MPOL_MF_STRICT alone is used and hugetlb pages do not follow memory
policy an EIO error will be returned.
- For users who using MPOL_MF_STRICT with MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL, the semantic about some pages could not be moved will
not be changed by this patch, because failed to isolate and failed to
move have same effects to users, so their existing code will not be
impacted.
In mbind man page, the note about 'MPOL_MF_STRICT is ignored on huge page
mappings' can be removed after this patch is applied.
Mike:
: The current behavior with MPOL_MF_STRICT and hugetlb pages is inconsistent
: and does not match documentation (as described above). The special
: behavior for hugetlb pages ideally should have been removed when hugetlb
: page migration was introduced. It is unlikely that anyone relies on
: today's inconsistent behavior, and removing one more case of special
: handling for hugetlb pages is a good thing.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-man <linux-man@vger.kernel.org>
Link: http://lkml.kernel.org/r/1581559627-6206-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously 0 was assigned to variable 'last_migrated_pfn'. But the
variable is not read after that, so the assignment can be removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200318174509.15021-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5bbe3547aa ("mm: allow compaction of unevictable pages")
it is allowed to examine mlocked pages and compact them by default. On
-RT even minor pagefaults are problematic because it may take a few 100us
to resolve them and until then the task is blocked.
Make compact_unevictable_allowed = 0 default and issue a warning on RT if
it is changed.
[bigeasy@linutronix.de: v5]
Link: https://lore.kernel.org/linux-mm/20190710144138.qyn4tuttdq6h7kqx@linutronix.de/
Link: http://lkml.kernel.org/r/20200319165536.ovi75tsr2seared4@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/linux-mm/20190710144138.qyn4tuttdq6h7kqx@linutronix.de/
Link: http://lkml.kernel.org/r/20200303202225.nhqc3v5gwlb7x6et@linutronix.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan reports:
The patch 5e1f0f098b: "mm, compaction: capture a page under direct
compaction" from Mar 5, 2019, leads to the following Smatch complaint:
mm/compaction.c:2321 compact_zone_order()
error: we previously assumed 'capture' could be null (see line 2313)
mm/compaction.c
2288 static enum compact_result compact_zone_order(struct zone *zone, int order,
2289 gfp_t gfp_mask, enum compact_priority prio,
2290 unsigned int alloc_flags, int classzone_idx,
2291 struct page **capture)
^^^^^^^
2313 if (capture)
^^^^^^^
Check for NULL
2314 current->capture_control = &capc;
2315
2316 ret = compact_zone(&cc, &capc);
2317
2318 VM_BUG_ON(!list_empty(&cc.freepages));
2319 VM_BUG_ON(!list_empty(&cc.migratepages));
2320
2321 *capture = capc.page;
^^^^^^^^
Unchecked dereference.
2322 current->capture_control = NULL;
2323
In practice this is not an issue, as the only caller path passes non-NULL
capture:
__alloc_pages_direct_compact()
struct page *page = NULL;
try_to_compact_pages(capture = &page);
compact_zone_order(capture = capture);
So let's remove the unnecessary check, which should also make Smatch happy.
Fixes: 5e1f0f098b ("mm, compaction: capture a page under direct compaction")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/18b0df3c-0589-d96c-23fa-040798fee187@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code to implement THP migrations already exists, and the code for CMA
to clear out a region of memory already exists.
Only a few small tweaks are needed to allow CMA to move THP memory when
attempting an allocation from alloc_contig_range.
With these changes, migrating THPs from a CMA area works when allocating a
1GB hugepage from CMA memory.
[riel@surriel.com: fix hugetlbfs pages per Mike, cleanup per Vlastimil]
Link: http://lkml.kernel.org/r/20200228104700.0af2f18d@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200227213238.1298752-2-riel@surriel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix THP migration for CMA allocations", v2.
Transparent huge pages are allocated with __GFP_MOVABLE, and can end up in
CMA memory blocks. Transparent huge pages also have most of the
infrastructure in place to allow migration.
However, a few pieces were missing, causing THP migration to fail when
attempting to use CMA to allocate 1GB hugepages.
With these patches in place, THP migration from CMA blocks seems to work,
both for anonymous THPs and for tmpfs/shmem THPs.
This patch (of 2):
Add information to struct compact_control to indicate that the allocator
would really like to clear out this specific part of memory, used by for
example CMA.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200227213238.1298752-1-riel@surriel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sc->memcg_low_skipped resets skipped_deactivate to 0 but this is not
needed as this code path is never reachable with skipped_deactivate != 0
due to previous sc->skipped_deactivate branch.
[mhocko@kernel.org: rewrite changelog]
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200319165938.23354-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This gives some size improvement:
$size mm/vmscan.o (before)
text data bss dec hex filename
53670 24123 12 77805 12fed mm/vmscan.o
$size mm/vmscan.o (after)
text data bss dec hex filename
53648 24123 12 77783 12fd7 mm/vmscan.o
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously 0 was assigned to variable 'lruvec_size', but the variable was
never read later. So the assignment can be removed.
Fixes: f87bccde6a ("mm/vmscan: remove unused lru_pages argument")
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/20200229214022.11853-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pgdat->kswapd_classzone_idx could be accessed concurrently in
wakeup_kswapd(). Plain writes and reads without any lock protection
result in data races. Fix them by adding a pair of READ|WRITE_ONCE() as
well as saving a branch (compilers might well optimize the original code
in an unintentional way anyway). While at it, also take care of
pgdat->kswapd_order and non-kswapd threads in allow_direct_reclaim(). The
data races were reported by KCSAN,
BUG: KCSAN: data-race in wakeup_kswapd / wakeup_kswapd
write to 0xffff9f427ffff2dc of 4 bytes by task 7454 on cpu 13:
wakeup_kswapd+0xf1/0x400
wakeup_kswapd at mm/vmscan.c:3967
wake_all_kswapds+0x59/0xc0
wake_all_kswapds at mm/page_alloc.c:4241
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_slowpath at mm/page_alloc.c:4512
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x16e/0x6f0
__handle_mm_fault+0xcd5/0xd40
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
1 lock held by mtest01/7454:
#0: ffff9f425afe8808 (&mm->mmap_sem#2){++++}, at:
do_page_fault+0x143/0x6f9
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1539
irq event stamp: 6944085
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x34c/0x57c
irq_exit+0xa2/0xc0
read to 0xffff9f427ffff2dc of 4 bytes by task 7472 on cpu 38:
wakeup_kswapd+0xc8/0x400
wake_all_kswapds+0x59/0xc0
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x16e/0x6f0
__handle_mm_fault+0xcd5/0xd40
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
1 lock held by mtest01/7472:
#0: ffff9f425a9ac148 (&mm->mmap_sem#2){++++}, at:
do_page_fault+0x143/0x6f9
irq event stamp: 6793561
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x34c/0x57c
irq_exit+0xa2/0xc0
BUG: KCSAN: data-race in kswapd / wakeup_kswapd
write to 0xffff90973ffff2dc of 4 bytes by task 820 on cpu 6:
kswapd+0x27c/0x8d0
kthread+0x1e0/0x200
ret_from_fork+0x27/0x50
read to 0xffff90973ffff2dc of 4 bytes by task 6299 on cpu 0:
wakeup_kswapd+0xf3/0x450
wake_all_kswapds+0x59/0xc0
__alloc_pages_slowpath+0xdcc/0x1290
__alloc_pages_nodemask+0x3bb/0x450
alloc_pages_vma+0x8a/0x2c0
do_anonymous_page+0x170/0x700
__handle_mm_fault+0xc9f/0xd00
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x6f9
page_fault+0x34/0x40
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/1582749472-5171-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd kernel thread starts either with a CPU affinity set to the full cpu
mask of its target node or without any affinity at all if the node is
CPUless. There is a cpu hotplug callback (kswapd_cpu_online) that
implements an elaborate way to update this mask when a cpu is onlined.
It is not really clear whether there is any actual benefit from this
scheme. Completely CPU-less NUMA nodes rarely gain a new CPU during
runtime. Drop the code for that reason. If there is a real usecase then
we can resurrect and simplify the code.
[mhocko@suse.com rewrite changelog]
Suggested-by: Michal Hocko <mhocko@suse.org>
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/20200218224422.3407-1-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 98fa15f34c ("mm: replace all open encodings for
NUMA_NO_NODE") did the replacement across the kernel tree, but we got
some more in vmscan.c since then.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581568298-45317-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use mem_cgroup_is_root() API to check if memcg is root memcg instead of
open coding.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581398649-125989-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kstrndup fails, no memory was allocated and we can exit directly.
[david@redhat.com: reword changelog]
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1581398649-125989-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously if branch condition was false, the assignment was not executed.
The assignment can be safely executed even when the condition is false
and it is not incorrect as it assigns the value of 'nodemask' to
'ac.nodemask' which already has the same value.
So as the assignment can be executed unconditionally, the branch can be
removed.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200307225335.31300-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use free_area_empty() API to replace list_empty() for better code
readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/1583674354-7713-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes ALLOC_KSWAPD equal to __GFP_KSWAPD_RECLAIM (cast to int).
Thanks to that code like:
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
alloc_flags |= ALLOC_KSWAPD;
can be changed to:
alloc_flags |= (__force int) (gfp_mask &__GFP_KSWAPD_RECLAIM);
Thanks to this one branch less is generated in the assembly.
In case of ALLOC_KSWAPD flag two branches are saved, first one in code
that always executes in the beginning of page allocation and the second
one in loop in page allocator slowpath.
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/20200304162118.14784-1-mateusznosek0@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the vm.min_free_kbytes sysctl value is capped at a hardcoded
64M in init_per_zone_wmark_min (unless it is overridden by khugepaged
initialization).
This value has not been modified since 2005, and enterprise-grade systems
now frequently have hundreds of GB of RAM and multiple 10, 40, or even 100
GB NICs. We have seen page allocation failures on heavily loaded systems
related to NIC drivers. These issues were resolved by an increase to
vm.min_free_kbytes.
This patch increases the hardcoded value by a factor of 4 as a temporary
solution.
Further work to make the calculation of vm.min_free_kbytes more consistent
throughout the kernel would be desirable.
As an example of the inconsistency of the current method, this value is
recalculated by init_per_zone_wmark_min() in the case of memory hotplug
which will override the value set by set_recommended_min_free_kbytes()
called during khugepaged initialization even if khugepaged remains
enabled, however an on/off toggle of khugepaged will then recalculate and
set the value via set_recommended_min_free_kbytes().
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Rafael Aquini <aquini@redhat.com>
Link: http://lkml.kernel.org/r/20200220150103.5183-1-jsavitz@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "fix the missing underflow in memory operation function", v4.
The patchset helps to produce a KASAN report when size is negative in
memory operation functions. It is helpful for programmer to solve an
undefined behavior issue. Patch 1 based on Dmitry's review and
suggestion, patch 2 is a test in order to verify the patch 1.
[1]https://bugzilla.kernel.org/show_bug.cgi?id=199341
[2]https://lore.kernel.org/linux-arm-kernel/20190927034338.15813-1-walter-zh.wu@mediatek.com/
This patch (of 2):
KASAN missed detecting size is a negative number in memset(), memcpy(),
and memmove(), it will cause out-of-bounds bug. So needs to be detected
by KASAN.
If size is a negative number, then it has a reason to be defined as
out-of-bounds bug type. Casting negative numbers to size_t would indeed
turn up as a large size_t and its value will be larger than ULONG_MAX/2,
so that this can qualify as out-of-bounds.
KASAN report is shown below:
BUG: KASAN: out-of-bounds in kmalloc_memmove_invalid_size+0x70/0xa0
Read of size 18446744073709551608 at addr ffffff8069660904 by task cat/72
CPU: 2 PID: 72 Comm: cat Not tainted 5.4.0-rc1-next-20191004ajb-00001-gdb8af2f372b2-dirty #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x288
show_stack+0x14/0x20
dump_stack+0x10c/0x164
print_address_description.isra.9+0x68/0x378
__kasan_report+0x164/0x1a0
kasan_report+0xc/0x18
check_memory_region+0x174/0x1d0
memmove+0x34/0x88
kmalloc_memmove_invalid_size+0x70/0xa0
[1] https://bugzilla.kernel.org/show_bug.cgi?id=199341
[cai@lca.pw: fix -Wdeclaration-after-statement warn]
Link: http://lkml.kernel.org/r/1583509030-27939-1-git-send-email-cai@lca.pw
[peterz@infradead.org: fix objtool warning]
Link: http://lkml.kernel.org/r/20200305095436.GV2596@hirez.programming.kicks-ass.net
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Link: http://lkml.kernel.org/r/20191112065302.7015-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating memmap for hot added memory with the classic sparse, the
specified 'nid' is ignored in populate_section_memmap().
While in allocating memmap for the classic sparse during boot, the node
given by 'nid' is preferred. And VMEMMAP prefers the node of 'nid' in
both boot stage and memory hot adding. So seems no reason to not respect
the node of 'nid' for the classic sparse when hot adding memory.
Use kvmalloc_node instead to use the passed in 'nid'.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200316125625.GH3486@MiWiFi-R3L-srv
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change makes populate_section_memmap()/depopulate_section_memmap
much simpler.
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200316125450.GG3486@MiWiFi-R3L-srv
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After introducing mem sub section concept, pfn_present() loses its literal
meaning, and will not be necessary a truth on partial populated mem
section.
Since all of the callers use it to judge an absent section, it is better
to rename pfn_present() as pfn_in_present_section().
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Leonardo Bras <leonardo@linux.ibm.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Link: http://lkml.kernel.org/r/1581919110-29575-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memmap should be the address to page struct instead of address to pfn.
As mentioned by David, if system memory and devmem sit within a section,
the mismatch address would lead kdump to dump unexpected memory.
Since sub-section only works for SPARSEMEM_VMEMMAP, pfn_to_page() is valid
to get the page struct address at this point.
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/20200210005048.10437-1-richardw.yang@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When remapping an anonymous, private mapping, if MREMAP_DONTUNMAP is set,
the source mapping will not be removed. The remap operation will be
performed as it would have been normally by moving over the page tables to
the new mapping. The old vma will have any locked flags cleared, have no
pagetables, and any userfaultfds that were watching that range will
continue watching it.
For a mapping that is shared or not anonymous, MREMAP_DONTUNMAP will cause
the mremap() call to fail. Because MREMAP_DONTUNMAP always results in
moving a VMA you MUST use the MREMAP_MAYMOVE flag, it's not possible to
resize a VMA while also moving with MREMAP_DONTUNMAP so old_len must
always be equal to the new_len otherwise it will return -EINVAL.
We hope to use this in Chrome OS where with userfaultfd we could write an
anonymous mapping to disk without having to STOP the process or worry
about VMA permission changes.
This feature also has a use case in Android, Lokesh Gidra has said that
"As part of using userfaultfd for GC, We'll have to move the physical
pages of the java heap to a separate location. For this purpose mremap
will be used. Without the MREMAP_DONTUNMAP flag, when I mremap the java
heap, its virtual mapping will be removed as well. Therefore, we'll
require performing mmap immediately after. This is not only time
consuming but also opens a time window where a native thread may call mmap
and reserve the java heap's address range for its own usage. This flag
solves the problem."
[bgeffon@google.com: v6]
Link: http://lkml.kernel.org/r/20200218173221.237674-1-bgeffon@google.com
[bgeffon@google.com: v7]
Link: http://lkml.kernel.org/r/20200221174248.244748-1-bgeffon@google.com
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will Deacon <will@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Jesse Barnes <jsbarnes@google.com>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Florian Weimer <fweimer@redhat.com>
Link: http://lkml.kernel.org/r/20200207201856.46070-1-bgeffon@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Even on 64 bit kernel, the mmap failure can happen for a 32 bit task.
Virtual memory space shortage of a task on mmap is reported to userspace
as -ENOMEM. It can be confused as physical memory shortage of overall
system.
The vm_unmapped_area can be called to by some drivers or other kernel core
system like filesystem. In my platform, GPU driver calls to
vm_unmapped_area and the driver returns -ENOMEM even in GPU side shortage.
It can be hard to distinguish which code layer returns the -ENOMEM.
Create mmap trace file and add trace point of vm_unmapped_area.
i.e.)
277.156599: vm_unmapped_area: addr=77e0d03000 err=0 total_vm=0x17014b flags=0x1 len=0x400000 lo=0x8000 hi=0x7878c27000 mask=0x0 ofs=0x1
342.838740: vm_unmapped_area: addr=0 err=-12 total_vm=0xffb08 flags=0x0 len=0x100000 lo=0x40000000 hi=0xfffff000 mask=0x0 ofs=0x22
[akpm@linux-foundation.org: prefix address printk with 0x, per Matthew]
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200320055823.27089-3-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: mmap: add mmap trace point", v3.
Create mmap trace file and add trace point of vm_unmapped_area().
This patch (of 2):
In preparation for next patch remove inline of vm_unmapped_area and move
code to mmap.c. There is no logical change.
Also remove unmapped_area[_topdown] out of mm.h, there is no code
calling to them.
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20200320055823.27089-2-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The param "start" actually referes to the physical memory start, which is
to be mapped into virtual area vma. And it is the field vma->vm_start
which stands for the start of the area.
Most of the time, we do not read through whole implementation of a
function but only the definition and essential comments. Accurate
comments are definitely the base stone.
Signed-off-by: Wang Wenhu <wenhu.wang@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200318052206.105104-1-wenhu.wang@vivo.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It really made me scratch my head. Replace the comment with an accurate
and consistent description.
The parameter pfn actually refers to the page frame number which is
right-shifted by PAGE_SHIFT from the physical address.
Signed-off-by: WANG Wenhu <wenhu.wang@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200310073955.43415-1-wenhu.wang@vivo.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The existing gup code does not react to the fatal signals in many code
paths. For example, in one retry path of gup we're still using
down_read() rather than down_read_killable(). Also, when doing page
faults we don't pass in FAULT_FLAG_KILLABLE as well, which means that
within the faulting process we'll wait in non-killable way as well. These
were spotted by Linus during the code review of some other patches.
Let's allow the gup code to react to fatal signals to improve the
responsiveness of threads when during gup and being killed.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220160256.9887-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the gup counterpart of the change that allows the VM_FAULT_RETRY
to happen for more than once. One thing to mention is that we must check
the fatal signal here before retry because the GUP can be interrupted by
that, otherwise we can loop forever.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220195357.16371-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The idea comes from a discussion between Linus and Andrea [1].
Before this patch we only allow a page fault to retry once. We achieved
this by clearing the FAULT_FLAG_ALLOW_RETRY flag when doing
handle_mm_fault() the second time. This was majorly used to avoid
unexpected starvation of the system by looping over forever to handle the
page fault on a single page. However that should hardly happen, and after
all for each code path to return a VM_FAULT_RETRY we'll first wait for a
condition (during which time we should possibly yield the cpu) to happen
before VM_FAULT_RETRY is really returned.
This patch removes the restriction by keeping the FAULT_FLAG_ALLOW_RETRY
flag when we receive VM_FAULT_RETRY. It means that the page fault handler
now can retry the page fault for multiple times if necessary without the
need to generate another page fault event. Meanwhile we still keep the
FAULT_FLAG_TRIED flag so page fault handler can still identify whether a
page fault is the first attempt or not.
Then we'll have these combinations of fault flags (only considering
ALLOW_RETRY flag and TRIED flag):
- ALLOW_RETRY and !TRIED: this means the page fault allows to
retry, and this is the first try
- ALLOW_RETRY and TRIED: this means the page fault allows to
retry, and this is not the first try
- !ALLOW_RETRY and !TRIED: this means the page fault does not allow
to retry at all
- !ALLOW_RETRY and TRIED: this is forbidden and should never be used
In existing code we have multiple places that has taken special care of
the first condition above by checking against (fault_flags &
FAULT_FLAG_ALLOW_RETRY). This patch introduces a simple helper to detect
the first retry of a page fault by checking against both (fault_flags &
FAULT_FLAG_ALLOW_RETRY) and !(fault_flag & FAULT_FLAG_TRIED) because now
even the 2nd try will have the ALLOW_RETRY set, then use that helper in
all existing special paths. One example is in __lock_page_or_retry(), now
we'll drop the mmap_sem only in the first attempt of page fault and we'll
keep it in follow up retries, so old locking behavior will be retained.
This will be a nice enhancement for current code [2] at the same time a
supporting material for the future userfaultfd-writeprotect work, since in
that work there will always be an explicit userfault writeprotect retry
for protected pages, and if that cannot resolve the page fault (e.g., when
userfaultfd-writeprotect is used in conjunction with swapped pages) then
we'll possibly need a 3rd retry of the page fault. It might also benefit
other potential users who will have similar requirement like userfault
write-protection.
GUP code is not touched yet and will be covered in follow up patch.
Please read the thread below for more information.
[1] https://lore.kernel.org/lkml/20171102193644.GB22686@redhat.com/
[2] https://lore.kernel.org/lkml/20181230154648.GB9832@redhat.com/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220160246.9790-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When follow_hugetlb_page() returns with *locked==0, it means we've got a
VM_FAULT_RETRY within the fauling process and we've released the mmap_sem.
When that happens, we should stop and bail out.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-3-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Page fault enhancements", v6.
This series contains cleanups and enhancements to current page fault
logic. The whole idea comes from the discussion between Andrea and Linus
on the bug reported by syzbot here:
https://lkml.org/lkml/2017/11/2/833
Basically it does two things:
(a) Allows the page fault logic to be more interactive on not only
SIGKILL, but also the rest of userspace signals, and,
(b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more
than once.
For (a): with the changes we should be able to react faster when page
faults are working in parallel with userspace signals like SIGSTOP and
SIGCONT (and more), and with that we can remove the buggy part in
userfaultfd and benefit the whole page fault mechanism on faster signal
processing to reach the userspace.
For (b), we should be able to allow the page fault handler to loop for
even more than twice. Some context: for now since we have
FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the
same interrupt context, however never more than twice. This can be not
only a potential cleanup to remove this assumption since AFAIU the code
itself doesn't really have this twice-only limitation (though that should
be a protective approach in the past), at the same time it'll greatly
simplify future works like userfaultfd write-protect where it's possible
to retry for more than twice (please have a look at [1] below for a
possible user that might require the page fault to be handled for a third
time; if we can remove the retry limitation we can simply drop that patch
and those complexity).
This patch (of 16):
There's plenty of places around __get_user_pages() that has a parameter
"nonblocking" which does not really mean that "it won't block" (because it
can really block) but instead it shows whether the mmap_sem is released by
up_read() during the page fault handling mostly when VM_FAULT_RETRY is
returned.
We have the correct naming in e.g. get_user_pages_locked() or
get_user_pages_remote() as "locked", however there're still many places
that are using the "nonblocking" as name.
Renaming the places to "locked" where proper to better suite the
functionality of the variable. While at it, fixing up some of the
comments accordingly.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Cracauer <cracauer@cons.org>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Bobby Powers <bobbypowers@gmail.com>
Cc: Maya Gokhale <gokhale2@llnl.gov>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Marty McFadden <mcfadden8@llnl.gov>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the declaration and definition for is_vma_temporary_stack() are
scattered. Lets make is_vma_temporary_stack() helper available for
general use and also drop the declaration from (include/linux/huge_mm.h)
which is no longer required. While at this, rename this as
vma_is_temporary_stack() in line with existing helpers. This should not
cause any functional change.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1582782965-3274-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/vma: some more minor changes", v2.
The motivation here is to consolidate VMA flags and helpers in generic
memory header and reduce code duplication when ever applicable. If there
are other possible similar instances which might be missing here, please
do let me me know. I will be happy to incorporate them.
This patch (of 3):
Move VM_NO_KHUGEPAGED into generic header (include/linux/mm.h). This just
makes sure that no VMA flag is scattered in individual function files any
longer. While at this, fix an old comment which is no longer valid. This
should not cause any functional change.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1582782965-3274-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following the update of pagewalk code commit a07984d48146 ("mm: pagewalk:
add p4d_entry() and pgd_entry()") we can modify the mapping_dirty_helpers'
huge page-table entry callbacks to avoid splitting when a huge pud or -pmd
is encountered.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Steven Price <steven.price@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200203154305.15045-1-thomas_os@shipmail.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a task is getting moved out of the OOMing cgroup, it might result in
unexpected OOM killings if memory.oom.group is used anywhere in the cgroup
tree.
Imagine the following example:
A (oom.group = 1)
/ \
(OOM) B C
Let's say B's memory.max is exceeded and it's OOMing. The OOM killer
selects a task in B as a victim, but someone asynchronously moves the task
into C. mem_cgroup_get_oom_group() will iterate over all ancestors of C
up to the root cgroup. In theory it had to stop at the oom_domain level -
the memory cgroup which is OOMing. But because B is not an ancestor of C,
it's not happening. Instead it chooses A (because it's oom.group is set),
and kills all tasks in A. This behavior is wrong because the OOM happened
in B, so there is no reason to kill anything outside.
Fix this by checking it the memory cgroup to which the task belongs is a
descendant of the oom_domain. If not, memory.oom.group should be ignored,
and the OOM killer should kill only the victim task.
Reported-by: Dan Schatzberg <dschatzberg@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The read side of this is all protected, but we can still tear if multiple
iterations of mem_cgroup_protected are going at the same time.
There's some intentional racing in mem_cgroup_protected which is ok, but
load/store tearing should be avoided.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The write side of this is xchg()/smp_mb(), so that's all good. Just a few
sites missing a READ_ONCE.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This can be set concurrently with reads, which may cause the wrong value
to be propagated.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This can be set concurrently with reads, which may cause the wrong value
to be propagated.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/448206f44b0fa7be9dad2ca2601d2bcb2c0b7844.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This one is a bit more nuanced because we have memcg_max_mutex, which is
mostly just used for enforcing invariants, but we still need to READ_ONCE
since (despite its name) it doesn't really protect memory.max access.
On write (page_counter_set_max() and memory_max_write()) we use xchg(),
which uses smp_mb(), so that's already fine.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A mem_cgroup's high attribute can be concurrently set at the same time as
we are trying to read it -- for example, if we are in memory_high_write at
the same time as we are trying to do high reclaim.
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/2f66f7038ed1d4688e59de72b627ae0ea52efa83.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_id_get_many() is currently used only when MMU or MEMCG_SWAP
configuration options are enabled. Having them disabled triggers the
following warning at compile time:
linux/mm/memcontrol.c:4797:13: warning: `mem_cgroup_id_get_many' defined but not used [-Wunused-function]
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
Make mem_cgroup_id_get_many() __maybe_unused to address the issue.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200305164354.48147-1-vincenzo.frascino@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently multiple locations in memcg code, css_tryget_online() is being
used. However it doesn't matter whether the cgroup is online for the
callers. Online used to matter when we had reparenting on offlining and
we needed a way to prevent new ones from showing up.
The failure case for couple of these css_tryget_online usage is to
fallback to root_mem_cgroup which kind of make bypassing the memcg
limits possible for some workloads. For example creating an inotify
group in a subcontainer and then deleting that container after moving the
process to a different container will make all the event objects
allocated for that group to the root_mem_cgroup. So, using
css_tryget_online() is dangerous for such cases.
Two locations still use the online version. The swapin of offlined
memcg's pages and the memcg kmem cache creation. The kmem cache indeed
needs the online version as the kernel does the reparenting of memcg
kmem caches. For the swapin case, it has been left for later as the
fallback is not really that concerning.
With swap accounting enabled, if the memcg of the swapped out page is
not online then the memcg extracted from the given 'mm' will be charged
and if 'mm' is NULL then root memcg will be charged. However I could
not find a code path where the given 'mm' will be NULL for swap-in
case.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200302203109.179417-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, the effective protection of any given cgroup is capped by its
own explicit memory.low setting, regardless of what the parent says. The
reasons for this are mostly historical and ease of implementation: to make
delegation of memory.low safe, effective protection is the min() of all
memory.low up the tree.
Unfortunately, this limitation makes it impossible to protect an entire
subtree from another without forcing the user to make explicit protection
allocations all the way to the leaf cgroups - something that is highly
undesirable in real life scenarios.
Consider memory in a data center host. At the cgroup top level, we have a
distinction between system management software and the actual workload the
system is executing. Both branches are further subdivided into individual
services, job components etc.
We want to protect the workload as a whole from the system management
software, but that doesn't mean we want to protect and prioritize
individual workload wrt each other. Their memory demand can vary over
time, and we'd want the VM to simply cache the hottest data within the
workload subtree. Yet, the current memory.low limitations force us to
allocate a fixed amount of protection to each workload component in order
to get protection from system management software in general. This
results in very inefficient resource distribution.
Another concern with mandating downward allocation is that, as the
complexity of the cgroup tree grows, it gets harder for the lower levels
to be informed about decisions made at the host-level. Consider a
container inside a namespace that in turn creates its own nested tree of
cgroups to run multiple workloads. It'd be extremely difficult to
configure memory.low parameters in those leaf cgroups that on one hand
balance pressure among siblings as the container desires, while also
reflecting the host-level protection from e.g. rpm upgrades, that lie
beyond one or more delegation and namespacing points in the tree.
It's highly unusual from a cgroup interface POV that nested levels have to
be aware of and reflect decisions made at higher levels for them to be
effective.
To enable such use cases and scale configurability for complex trees, this
patch implements a resource inheritance model for memory that is similar
to how the CPU and the IO controller implement work-conserving resource
allocations: a share of a resource allocated to a subree always applies to
the entire subtree recursively, while allowing, but not mandating,
children to further specify distribution rules.
That means that if protection is explicitly allocated among siblings,
those configured shares are being followed during page reclaim just like
they are now. However, if the memory.low set at a higher level is not
fully claimed by the children in that subtree, the "floating" remainder is
applied to each cgroup in the tree in proportion to its size. Since
reclaim pressure is applied in proportion to size as well, each child in
that tree gets the same boost, and the effect is neutral among siblings -
with respect to each other, they behave as if no memory control was
enabled at all, and the VM simply balances the memory demands optimally
within the subtree. But collectively those cgroups enjoy a boost over the
cgroups in neighboring trees.
E.g. a leaf cgroup with a memory.low setting of 0 no longer means that
it's not getting a share of the hierarchically assigned resource, just
that it doesn't claim a fixed amount of it to protect from its siblings.
This allows us to recursively protect one subtree (workload) from another
(system management), while letting subgroups compete freely among each
other - without having to assign fixed shares to each leaf, and without
nested groups having to echo higher-level settings.
The floating protection composes naturally with fixed protection.
Consider the following example tree:
A A: low = 2G
/ \ A1: low = 1G
A1 A2 A2: low = 0G
As outside pressure is applied to this tree, A1 will enjoy a fixed
protection from A2 of 1G, but the remaining, unclaimed 1G from A is split
evenly among A1 and A2, coming out to 1.5G and 0.5G.
There is a slight risk of regressing theoretical setups where the
top-level cgroups don't know about the true budgeting and set bogusly high
"bypass" values that are meaningfully allocated down the tree. Such
setups would rely on unclaimed protection to be discarded, and
distributing it would change the intended behavior. Be safe and hide the
new behavior behind a mount option, 'memory_recursiveprot'.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The effective protection of any given cgroup is a somewhat complicated
construct that depends on the ancestor's configuration, siblings'
configurations, as well as current memory utilization in all these groups.
It's done this way to satisfy hierarchical delegation requirements while
also making the configuration semantics flexible and expressive in complex
real life scenarios.
Unfortunately, all the rules and requirements are sparsely documented, and
the code is a little too clever in merging different scenarios into a
single min() expression. This makes it hard to reason about the
implementation and avoid breaking semantics when making changes to it.
This patch documents each semantic rule individually and splits out the
handling of the overcommit case from the regular case.
Michal Koutný also points out that the points of equilibrium as described
in the existing example scenarios aren't actually accurate. Delete these
examples for now to avoid confusion.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>