We want the bonded request to have the same scheduler properties as its
master so that it is placed at the same depth in the queue. For example,
consider we have requests A, B and B', where B & B' are a bonded pair to
run in parallel on two engines.
A -> B
\- B'
B will run after A and so may be scheduled on an idle engine and wait on
A using a semaphore. B' sees B being executed and so enters the queue on
the same engine as A. As B' did not inherit the semaphore-chain from B,
it may have higher precedence than A and so preempts execution. However,
B' then sits on a semaphore waiting for B, who is waiting for A, who is
blocked by B.
Ergo B' needs to inherit the scheduler properties from B (i.e. the
semaphore chain) so that it is scheduled with the same priority as B and
will not be executed ahead of Bs dependencies.
Furthermore, to prevent the priorities changing via the expose fence on
B', we need to couple in the dependencies for PI. This requires us to
relax our sanity-checks that dependencies are strictly in order.
v2: Synchronise (B, B') execution on all platforms, regardless of using
a scheduler, any no-op syncs should be elided.
Fixes: ee1136908e ("drm/i915/execlists: Virtual engine bonding")
Closes: https://gitlab.freedesktop.org/drm/intel/issues/464
Testcase: igt/gem_exec_balancer/bonded-chain
Testcase: igt/gem_exec_balancer/bonded-semaphore
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191210151332.3902215-1-chris@chris-wilson.co.uk
If we see an already signaled fence that we want to await on, we skip
adding to the i915_sw_fence. However, we should pay attention to whether
there was an error on that fence and if so propagate it for our future
request.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191206160428.1503343-2-chris@chris-wilson.co.uk
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJd3YntAAoJEAx081l5xIa+dcQP/ikABkpm+q23FLKteRpL1rtX
xqlg5+KHW+YVCDls2BrINF6vYzyisoa8fNPlKMmOHse/IgMhFe9vBbCj1KQQOUR1
apNycI1wrcw/mn2WDikoIcF6C5cjqK9YVknnYoM6HnF1VmpGd1ecSGrOHrunEkrK
cMAWYIeqWGU8Gj/HUOitAFpLWFUMNle0BJuRoGLcoMusgS8yuCIEcpNzRhgL8fvJ
bW4imuyv24OjPoQzbKD0oQ0VIP86H0eM4LIeGZ2uyK/BSPKmMDqI4z4isUheS7RL
w4a6BdobMIdhew5dBXS0LsUJ3JniVJdHy123q9KgpmQAhGpiNoLT6BujfoUTUeWx
Mu0vM8Xmv9n4npdBYC+fLEFQXYJlu9uBA490jP84Kz6Fg1c6GyBebDY7/c2O4Zmg
7pvygmUF6boD6v2sIC/3161crgwU4g8zoxm2V4i9naxes2QB13LiEuJWlaI/FdxY
fd3zpglFGdoF1ThNne4QDh6gMKpXvjITyu/QxZeZ67Dt6i0Aqw9cRGHSpiVhYyDc
cx2hAp+rDvUi5SHkJKFpVImjB2DDn2xUG2uFMHz0cy9wNg203L3fRDi0hVtnM1+W
VpCxyLs2Upz6kEjDRVsfMZ9chCcWAWpVuKhtuuMUDw/IKnbP3uV8kzgJpVpaRVkD
76s5uYWHHBlk1IVlkOUP
=Hj7G
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2019-11-27' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie:
"Lots of stuff in here, though it hasn't been too insane this merge
apart from dealing with the security fun.
uapi:
- export different colorspace properties on DP vs HDMI
- new fourcc for ARM 16x16 block format
- syncobj: allow querying last submitted timeline value
- DRM_FORMAT_BIG_ENDIAN defined as unsigned
core:
- allow using gem vma manager in ttm
- connector/encoder/bridge doc fixes
- allow more than 3 encoders for a connector
- displayport mst suspend/resume reprobing support
- vram lazy unmapping, uniform vram mm and gem vram
- edid cleanups + AVI informframe bar info
- displayport helpers - dpcd parser added
dp_cec:
- Allow a connector to be associated with a cec device
ttm:
- pipelining with no_gpu_wait fix
- always keep BOs on the LRU
sched:
- allow free_job routine to sleep
i915:
- Block userptr from mappable GTT
- i915 perf uapi versioning
- OA stream dynamic reconfiguration
- make context persistence optional
- introduce DRM_I915_UNSTABLE Kconfig
- add fake lmem testing under unstable
- BT.2020 support for DP MSA
- struct mutex elimination
- Tigerlake display/PLL/power management improvements
- Jasper Lake PCH support
- refactor PMU for multiple GPUs
- Icelake firmware update
- Split out vga + switcheroo code
amdgpu:
- implement dma-buf import/export without helpers
- vega20 RAS enablement
- DC i2c over aux fixes
- renoir GPU reset
- DC HDCP support
- BACO support for CI/VI asics
- MSI-X support
- Arcturus EEPROM support
- Arcturus VCN encode support
- VCN dynamic powergating on RV/RV2
amdkfd:
- add navi12/14/renoir support to kfd
radeon:
- SI dpm fix ported from amdgpu
- fix bad DMA on ppc platforms
gma500:
- memory leak fixes
qxl:
- convert to new gem mmap
exynos:
- build warning fix
komeda:
- add aclk sysfs attribute
v3d:
- userspace cleanup uapi change
i810:
- fix for underflow in dispatch ioctls
ast:
- refactor show_cursor
mgag200:
- refactor show_cursor
arcgpu:
- encoder finding improvements
mediatek:
- mipi_tx, dsi and partial crtc support for MT8183 SoC
- rotation support
meson:
- add suspend/resume support
omap:
- misc refactors
tegra:
- DisplayPort support for Tegra 210, 186 and 194.
- IOMMU-backed DMA API fixes
panfrost:
- fix lockdep issue
- simplify devfreq integration
rcar-du:
- R8A774B1 SoC support
- fixes for H2 ES2.0
sun4i:
- vcc-dsi regulator support
virtio-gpu:
- vmexit vs spinlock fix
- move to gem shmem helpers
- handle large command buffers with cma"
* tag 'drm-next-2019-11-27' of git://anongit.freedesktop.org/drm/drm: (1855 commits)
drm/amdgpu: invalidate mmhub semaphore workaround in gmc9/gmc10
drm/amdgpu: initialize vm_inv_eng0_sem for gfxhub and mmhub
drm/amd/amdgpu/sriov skip RLCG s/r list for arcturus VF.
drm/amd/amdgpu/sriov temporarily skip ras,dtm,hdcp for arcturus VF
drm/amdgpu/gfx10: re-init clear state buffer after gpu reset
merge fix for "ftrace: Rework event_create_dir()"
drm/amdgpu: Update Arcturus golden registers
drm/amdgpu/gfx10: fix out-of-bound mqd_backup array access
drm/amdgpu/gfx10: explicitly wait for cp idle after halt/unhalt
Revert "drm/amd/display: enable S/G for RAVEN chip"
drm/amdgpu: disable gfxoff on original raven
drm/amdgpu: remove experimental flag for Navi14
drm/amdgpu: disable gfxoff when using register read interface
drm/amdgpu/powerplay: properly set PP_GFXOFF_MASK (v2)
drm/amdgpu: fix bad DMA from INTERRUPT_CNTL2
drm/radeon: fix bad DMA from INTERRUPT_CNTL2
drm/amd/display: Fix debugfs on MST connectors
drm/amdgpu/nv: add asic func for fetching vbios from rom directly
drm/amdgpu: put flush_delayed_work at first
drm/amdgpu/vcn2.5: fix the enc loop with hw fini
...
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
As we start peeking into requests for longer and longer, e.g.
incorporating use of spinlocks when only protected by an
rcu_read_lock(), we need to be careful in how we reset the request when
recycling and need to preserve any barriers that may still be in use as
the request is reset for reuse.
Quoting Linus Torvalds:
> If there is refcounting going on then why use SLAB_TYPESAFE_BY_RCU?
.. because the object can be accessed (by RCU) after the refcount has
gone down to zero, and the thing has been released.
That's the whole and only point of SLAB_TYPESAFE_BY_RCU.
That flag basically says:
"I may end up accessing this object *after* it has been free'd,
because there may be RCU lookups in flight"
This has nothing to do with constructors. It's ok if the object gets
reused as an object of the same type and does *not* get
re-initialized, because we're perfectly fine seeing old stale data.
What it guarantees is that the slab isn't shared with any other kind
of object, _and_ that the underlying pages are free'd after an RCU
quiescent period (so the pages aren't shared with another kind of
object either during an RCU walk).
And it doesn't necessarily have to have a constructor, because the
thing that a RCU walk will care about is
(a) guaranteed to be an object that *has* been on some RCU list (so
it's not a "new" object)
(b) the RCU walk needs to have logic to verify that it's still the
*same* object and hasn't been re-used as something else.
In contrast, a SLAB_TYPESAFE_BY_RCU memory gets free'd and re-used
immediately, but because it gets reused as the same kind of object,
the RCU walker can "know" what parts have meaning for re-use, in a way
it couidn't if the re-use was random.
That said, it *is* subtle, and people should be careful.
> So the re-use might initialize the fields lazily, not necessarily using a ctor.
If you have a well-defined refcount, and use "atomic_inc_not_zero()"
to guard the speculative RCU access section, and use
"atomic_dec_and_test()" in the freeing section, then you should be
safe wrt new allocations.
If you have a completely new allocation that has "random stale
content", you know that it cannot be on the RCU list, so there is no
speculative access that can ever see that random content.
So the only case you need to worry about is a re-use allocation, and
you know that the refcount will start out as zero even if you don't
have a constructor.
So you can think of the refcount itself as always having a zero
constructor, *BUT* you need to be careful with ordering.
In particular, whoever does the allocation needs to then set the
refcount to a non-zero value *after* it has initialized all the other
fields. And in particular, it needs to make sure that it uses the
proper memory ordering to do so.
NOTE! One thing to be very worried about is that re-initializing
whatever RCU lists means that now the RCU walker may be walking on the
wrong list so the walker may do the right thing for this particular
entry, but it may miss walking *other* entries. So then you can get
spurious lookup failures, because the RCU walker never walked all the
way to the end of the right list. That ends up being a much more
subtle bug.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191122094924.629690-1-chris@chris-wilson.co.uk
i915_irq.c is large. One reason for this is that has a large chunk of
the GT render power management stashed away in it. Extract that logic
out of i915_irq.c and intel_pm.c and put it under one roof.
Based on a patch by Chris Wilson.
Signed-off-by: Andi Shyti <andi.shyti@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191024211642.7688-1-chris@chris-wilson.co.uk
Avoid angering clang and smatch by using a constant value in a '&&' test,
by forcing that constant value into a boolean.
E.g.,
drivers/gpu/drm/i915/gt/intel_engine_heartbeat.c:159:13: warning: use of logical '&&' with constant operand [-Wconstant-logical-operand]
if (!delay && CONFIG_DRM_I915_PREEMPT_TIMEOUT) {
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191025135943.12524-1-chris@chris-wilson.co.uk
The locks (active.lock and rq->lock) need to be taken with disabled
interrupts. This is done in i915_request_retire() by disabling the
interrupts independently of the locks itself.
While local_irq_disable()+spin_lock() equals spin_lock_irq() on vanilla
it does not on PREEMPT_RT.
Chris Wilson confirmed that local_irq_disable() was just introduced as
an optimisation to avoid enabling/disabling interrupts during
lock/unlock combo.
Enable/disable interrupts as part of the locking instruction.
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191017161352.e5z3ugse7gxl5ari@linutronix.de
If the system is being slow and userspace is racing ahead of the GPU and
finds itself waiting for the GPU to catch up, before the process sleeps
give the tasklet a kick, bypassing ksoftirqd. If the system is
overloaded, then ksoftirqd may be delayed incurring additional latency
to our user.
This should not be a frequent problem, but in the past we have observed
several hundred millisecond delays before ksoftirqd services an
interrupt, so burn a few cycles to lend a helping hand.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191015132606.14349-1-chris@chris-wilson.co.uk
Since commit e2144503bf ("drm/i915: Prevent bonded requests from
overtaking each other on preemption") we have restricted requests to run
on their chosen engine across preemption events. We can take this
restriction into account to know that we will want to resubmit those
requests onto the same physical engine, and so can shortcircuit the
virtual engine selection process and keep the request on the same
engine during unwind.
References: e2144503bf ("drm/i915: Prevent bonded requests from overtaking each other on preemption")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Ramlingam C <ramalingam.c@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191013203012.25208-1-chris@chris-wilson.co.uk
If we are asked to submit a completed request, just move it onto the
active-list without modifying it's payload. If we try to emit the
modified payload of a completed request, we risk racing with the
ring->head update during retirement which may advance the head past our
breadcrumb and so we generate a warning for the emission being behind
the RING_HEAD.
v2: Commentary for the sneaky, shared responsibility between functions.
v3: Spelling mistakes and bonus assertion
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190923110056.15176-3-chris@chris-wilson.co.uk
(cherry picked from commit c0bb487dc1)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
wait_for_timelines is essentially the same loop as retiring requests
(with an extra timeout), so merge the two into one routine.
v2: i915_retire_requests_timeout and keep VT'd w/a as !interruptible
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-10-chris@chris-wilson.co.uk
Forgo the struct_mutex serialisation for i915_active, and interpose its
own mutex handling for active/retire.
This is a multi-layered sleight-of-hand. First, we had to ensure that no
active/retire callbacks accidentally inverted the mutex ordering rules,
nor assumed that they were themselves serialised by struct_mutex. More
challenging though, is the rule over updating elements of the active
rbtree. Instead of the whole i915_active now being serialised by
struct_mutex, allocations/rotations of the tree are serialised by the
i915_active.mutex and individual nodes are serialised by the caller
using the i915_timeline.mutex (we need to use nested spinlocks to
interact with the dma_fence callback lists).
The pain point here is that instead of a single mutex around execbuf, we
now have to take a mutex for active tracker (one for each vma, context,
etc) and a couple of spinlocks for each fence update. The improvement in
fine grained locking allowing for multiple concurrent clients
(eventually!) should be worth it in typical loads.
v2: Add some comments that barely elucidate anything :(
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
If we are asked to submit a completed request, just move it onto the
active-list without modifying it's payload. If we try to emit the
modified payload of a completed request, we risk racing with the
ring->head update during retirement which may advance the head past our
breadcrumb and so we generate a warning for the emission being behind
the RING_HEAD.
v2: Commentary for the sneaky, shared responsibility between functions.
v3: Spelling mistakes and bonus assertion
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190923110056.15176-3-chris@chris-wilson.co.uk
As we need to take a walk back along the signaler timeline to find the
fence before upon which we want to wait, we need to lock that timeline
to prevent it being modified as we walk. Similarly, we also need to
acquire a reference to the earlier fence while it still exists!
Though we lack the correct locking today, we are saved by the
overarching struct_mutex -- but that protection is being removed.
v2: Tvrtko made me realise I was being lax and using annotations to
ignore the AB-BA deadlock from the timeline overlap. As it would be
possible to construct a second request that was using a semaphore from the
same timeline as ourselves, we could quite easily end up in a situation
where we deadlocked in our mutex waits. Avoid that by using a trylock
and falling back to a normal dma-fence await if contended.
v3: Eek, the signal->timeline is volatile and must be carefully
dereferenced to ensure it is valid.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-2-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
On Tigerlake, MI_SEMAPHORE_WAIT grew an extra dword, so be sure to
update the length field and emit that extra parameter and any padding
noop as required.
v2: Define the token shift while we are adding the updated MI_SEMAPHORE_WAIT
v3: Use int instead of bool in the addition so that readers are not left
wondering about the intricacies of the C spec. Now they just have to
worry what the integer value of a boolean operation is...
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Michal Winiarski <michal.winiarski@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190917123055.28965-1-chris@chris-wilson.co.uk
Sadly lockdep records when the irqs are re-enabled and then marks up the
fake lock as being irq-unsafe. Our hand is forced and so we must mark up
the entire fake lock critical section as irq-off.
Hopefully this is the last tweak required!
v2: Not quite, we need to mark the timeline spinlock as irqsafe. That
was a genuine bug being hidden by the earlier lockdep splat.
Fixes: d67739268c ("drm/i915/gt: Mark up the nested engine-pm timeline lock as irqsafe")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190823132700.25286-2-chris@chris-wilson.co.uk
(cherry picked from commit 6dcb85a0ad)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Trust our own workers to not cause unnecessary delays and disable the
automatic timeout on their asynchronous fence waits. (Along the same
lines that we trust our own requests to complete eventually, if
necessary by force.)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190826072149.9447-6-chris@chris-wilson.co.uk
Sadly lockdep records when the irqs are re-enabled and then marks up the
fake lock as being irq-unsafe. Our hand is forced and so we must mark up
the entire fake lock critical section as irq-off.
Hopefully this is the last tweak required!
v2: Not quite, we need to mark the timeline spinlock as irqsafe. That
was a genuine bug being hidden by the earlier lockdep splat.
Fixes: d67739268c ("drm/i915/gt: Mark up the nested engine-pm timeline lock as irqsafe")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190823132700.25286-2-chris@chris-wilson.co.uk
We need the rename of reservation_object to dma_resv.
The solution on this merge came from linux-next:
From: Stephen Rothwell <sfr@canb.auug.org.au>
Date: Wed, 14 Aug 2019 12:48:39 +1000
Subject: [PATCH] drm: fix up fallout from "dma-buf: rename reservation_object to dma_resv"
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
---
drivers/gpu/drm/i915/gt/intel_engine_pool.c | 8 ++++----
3 files changed, 7 insertions(+), 7 deletions(-)
diff --git a/drivers/gpu/drm/i915/gt/intel_engine_pool.c b/drivers/gpu/drm/i915/gt/intel_engine_pool.c
index 03d90b49584a..4cd54c569911 100644
--- a/drivers/gpu/drm/i915/gt/intel_engine_pool.c
+++ b/drivers/gpu/drm/i915/gt/intel_engine_pool.c
@@ -43,12 +43,12 @@ static int pool_active(struct i915_active *ref)
{
struct intel_engine_pool_node *node =
container_of(ref, typeof(*node), active);
- struct reservation_object *resv = node->obj->base.resv;
+ struct dma_resv *resv = node->obj->base.resv;
int err;
- if (reservation_object_trylock(resv)) {
- reservation_object_add_excl_fence(resv, NULL);
- reservation_object_unlock(resv);
+ if (dma_resv_trylock(resv)) {
+ dma_resv_add_excl_fence(resv, NULL);
+ dma_resv_unlock(resv);
}
err = i915_gem_object_pin_pages(node->obj);
which is a simplified version from a previous one which had:
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
UAPI Changes:
Cross-subsystem Changes:
Core Changes:
- dma-buf: add reservation_object_fences helper, relax
reservation_object_add_shared_fence, remove
reservation_object seq number (and then
restored)
- dma-fence: Shrinkage of the dma_fence structure,
Merge dma_fence_signal and dma_fence_signal_locked,
Store the timestamp in struct dma_fence in a union with
cb_list
Driver Changes:
- More dt-bindings YAML conversions
- More removal of drmP.h includes
- dw-hdmi: Support get_eld and various i2s improvements
- gm12u320: Few fixes
- meson: Global cleanup
- panfrost: Few refactors, Support for GPU heap allocations
- sun4i: Support for DDC enable GPIO
- New panels: TI nspire, NEC NL8048HL11, LG Philips LB035Q02,
Sharp LS037V7DW01, Sony ACX565AKM, Toppoly TD028TTEC1
Toppoly TD043MTEA1
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRcEzekXsqa64kGDp7j7w1vZxhRxQUCXVqvpwAKCRDj7w1vZxhR
xa3RAQDzAnt5zeesAxX4XhRJzHoCEwj2PJj9Re6xMJ9PlcfcvwD+OS+bcB6jfiXV
Ug9IBd/DqjlmD9G9MxFxfSV946rksAw=
=8uv4
-----END PGP SIGNATURE-----
Merge tag 'drm-misc-next-2019-08-19' of git://anongit.freedesktop.org/drm/drm-misc into drm-next
drm-misc-next for 5.4:
UAPI Changes:
Cross-subsystem Changes:
Core Changes:
- dma-buf: add reservation_object_fences helper, relax
reservation_object_add_shared_fence, remove
reservation_object seq number (and then
restored)
- dma-fence: Shrinkage of the dma_fence structure,
Merge dma_fence_signal and dma_fence_signal_locked,
Store the timestamp in struct dma_fence in a union with
cb_list
Driver Changes:
- More dt-bindings YAML conversions
- More removal of drmP.h includes
- dw-hdmi: Support get_eld and various i2s improvements
- gm12u320: Few fixes
- meson: Global cleanup
- panfrost: Few refactors, Support for GPU heap allocations
- sun4i: Support for DDC enable GPIO
- New panels: TI nspire, NEC NL8048HL11, LG Philips LB035Q02,
Sharp LS037V7DW01, Sony ACX565AKM, Toppoly TD028TTEC1
Toppoly TD043MTEA1
Signed-off-by: Dave Airlie <airlied@redhat.com>
[airlied: fixup dma_resv rename fallout]
From: Maxime Ripard <maxime.ripard@bootlin.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190819141923.7l2adietcr2pioct@flea
Currently, we remove the from per-file request list for throttling and
retirement under a dedicated spinlock, but insertion is governed by
struct_mutex. This needs to be the same lock so that the
retirement/insertion of neighbouring requests (at the tail) doesn't
break the list.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190820080907.4665-1-chris@chris-wilson.co.uk
Errors spread like wildfire, and must eventually be returned to the
user. They need to be captured and passed along the flow of fences,
infecting each in turn with the existing error, until finally they fall
out of a user visible result.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190817232511.11391-1-chris@chris-wilson.co.uk
We use timeline->mutex to protect modifications to
context->active_count, and the associated enable/disable callbacks.
Due to complications with engine-pm barrier there is a path where we used
a "superlock" to provide serialised protect and so could not
unconditionally assert with lockdep that it was always held. However,
we can mark the mutex as taken (noting that we may be nested underneath
ourselves) which means we can be reassured the right timeline->mutex is
always treated as held and let lockdep roam free.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816121000.8507-1-chris@chris-wilson.co.uk
Forgo the struct_mutex requirement for request retirement as we have
been transitioning over to only using the timeline->mutex for
controlling the lifetime of a request on that timeline.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190815205709.24285-4-chris@chris-wilson.co.uk
Since __i915_request_queue() may be called from hardirq (timer) context,
we cannot use local_bh_disable/enable at the lower level. As we do want
to kick the tasklet to speed up initial submission or preemption for
normal client submission, lift it to the normal process context
callpath.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190815042031.27750-1-chris@chris-wilson.co.uk
Be more consistent with the naming of the other DMA-buf objects.
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/323401/
Move the timeline from being inside the intel_ring to intel_context
itself. This saves much pointer dancing and makes the relations of the
context to its timeline much clearer.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190809182518.20486-4-chris@chris-wilson.co.uk
We do not notify userspace when the scheduler capabilities are changed
(due to wedging the driver) and as such userspace will expect the caps
to be static and unchanging. Make it so, and so we only need to compute
our caps once during driver registration.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190806124300.24945-1-chris@chris-wilson.co.uk
Having taken the first step in encapsulating the functionality by moving
the related files under gt/, the next step is to start encapsulating by
passing around the relevant structs rather than the global
drm_i915_private. In this step, we pass intel_gt to intel_reset.c
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190712192953.9187-1-chris@chris-wilson.co.uk
We want to set this flag in the next commit on requests containing
perf queries so that the result of the perf query can just be a delta
of global counters, rather than doing post processing of the OA
buffer.
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
[ickle: add basic selftest for nopreempt]
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190709164227.25859-1-chris@chris-wilson.co.uk
When using a global seqno, we required a precise stop-the-workd event to
handle preemption and unwind the global seqno counter. To accomplish
this, we would preempt to a special out-of-band context and wait for the
machine to report that it was idle. Given an idle machine, we could very
precisely see which requests had completed and which we needed to feed
back into the run queue.
However, now that we have scrapped the global seqno, we no longer need
to precisely unwind the global counter and only track requests by their
per-context seqno. This allows us to loosely unwind inflight requests
while scheduling a preemption, with the enormous caveat that the
requests we put back on the run queue are still _inflight_ (until the
preemption request is complete). This makes request tracking much more
messy, as at any point then we can see a completed request that we
believe is not currently scheduled for execution. We also have to be
careful not to rewind RING_TAIL past RING_HEAD on preempting to the
running context, and for this we use a semaphore to prevent completion
of the request before continuing.
To accomplish this feat, we change how we track requests scheduled to
the HW. Instead of appending our requests onto a single list as we
submit, we track each submission to ELSP as its own block. Then upon
receiving the CS preemption event, we promote the pending block to the
inflight block (discarding what was previously being tracked). As normal
CS completion events arrive, we then remove stale entries from the
inflight tracker.
v2: Be a tinge paranoid and ensure we flush the write into the HWS page
for the GPU semaphore to pick in a timely fashion.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190620142052.19311-1-chris@chris-wilson.co.uk
In the unlikely case the request completes while we regard it as not even
executing on the GPU (see the next patch!), we have to flush any pending
execution callbacks at retirement and ensure that we do not add any
more.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-4-chris@chris-wilson.co.uk
With the upcoming change to automanaged i915_active, the intent is that
whenever we wait on the set of active fences, they are signaled and
collected. The requirement is that all successful returns from
i915_request_wait() signal the fence, so fixup the one remaining path
where we may return before the interrupt has been run.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190619112341.9082-3-chris@chris-wilson.co.uk
Since commit eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on
struct_mutex"), the I915_WAIT_LOCKED flags passed to i915_request_wait()
has been defunct. Now go ahead and remove it from all callers.
References: eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on struct_mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-3-chris@chris-wilson.co.uk
The idea behind keeping the saturation mask local to a context backfired
spectacularly. The premise with the local mask was that we would be more
proactive in attempting to use semaphores after each time the context
idled, and that all new contexts would attempt to use semaphores
ignoring the current state of the system. This turns out to be horribly
optimistic. If the system state is still oversaturated and the existing
workloads have all stopped using semaphores, the new workloads would
attempt to use semaphores and be deprioritised behind real work. The
new contexts would not switch off using semaphores until their initial
batch of low priority work had completed. Given sufficient backload load
of equal user priority, this would completely starve the new work of any
GPU time.
To compensate, remove the local tracking in favour of keeping it as
global state on the engine -- once the system is saturated and
semaphores are disabled, everyone stops attempting to use semaphores
until the system is idle again. One of the reason for preferring local
context tracking was that it worked with virtual engines, so for
switching to global state we could either do a complete check of all the
virtual siblings or simply disable semaphores for those requests. This
takes the simpler approach of disabling semaphores on virtual engines.
The downside is that the decision that the engine is saturated is a
local measure -- we are only checking whether or not this context was
scheduled in a timely fashion, it may be legitimately delayed due to user
priorities. We still have the same dilemma though, that we do not want
to employ the semaphore poll unless it will be used.
v2: Explain why we need to assume the worst wrt virtual engines.
Fixes: ca6e56f654 ("drm/i915: Disable semaphore busywaits on saturated systems")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618074153.16055-8-chris@chris-wilson.co.uk
Since commit 1ba627148e ("drm: Add reservation_object to
drm_gem_object"), struct drm_gem_object grew its own builtin
reservation_object rendering our own private one bloat. Remove our
redundant reservation_object and point into obj->base.resv instead.
References: 1ba627148e ("drm: Add reservation_object to drm_gem_object")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190618125858.7295-1-chris@chris-wilson.co.uk
To continue the onslaught of removing the assumption of a global
execution ordering, another casualty is the engine->timeline. Without an
actual timeline to track, it is overkill and we can replace it with a
much less grand plain list. We still need a list of requests inflight,
for the simple purpose of finding inflight requests (for retiring,
resetting, preemption etc).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-3-chris@chris-wilson.co.uk
We need to keep the context image pinned in memory until after the GPU
has finished writing into it. Since it continues to write as we signal
the final breadcrumb, we need to keep it pinned until the request after
it is complete. Currently we know the order in which requests execute on
each engine, and so to remove that presumption we need to identify a
request/context-switch we know must occur after our completion. Any
request queued after the signal must imply a context switch, for
simplicity we use a fresh request from the kernel context.
The sequence of operations for keeping the context pinned until saved is:
- On context activation, we preallocate a node for each physical engine
the context may operate on. This is to avoid allocations during
unpinning, which may be from inside FS_RECLAIM context (aka the
shrinker)
- On context deactivation on retirement of the last active request (which
is before we know the context has been saved), we add the
preallocated node onto a barrier list on each engine
- On engine idling, we emit a switch to kernel context. When this
switch completes, we know that all previous contexts must have been
saved, and so on retiring this request we can finally unpin all the
contexts that were marked as deactivated prior to the switch.
We can enhance this in future by flushing all the idle contexts on a
regular heartbeat pulse of a switch to kernel context, which will also
be used to check for hung engines.
v2: intel_context_active_acquire/_release
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-1-chris@chris-wilson.co.uk
We already use a mutex to serialise i915_reset() and wedging, so all we
need it to link that into i915_request_wait() and we have our lock cycle
detection.
v2.5: Take error mutex for selftests
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614071023.17929-3-chris@chris-wilson.co.uk
If we enter i915_request_wait() with an already completed request, but
unsignaled dma-fence, signal the fence before returning. This allows us
to execute any of the signal callbacks at the earliest opportunity.
v2: Also signal after busyspin success
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614111053.25615-2-chris@chris-wilson.co.uk
We cannot allow ourselves to wait on the GPU while holding any lock as we
may need to reset the GPU. While there is not an explicit lock between
the two operations, lockdep cannot detect the dependency. So let's tell
lockdep about the wait/reset dependency with an explicit lockmap.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190612085246.16374-1-chris@chris-wilson.co.uk
Before we commit ourselves to writing commands into the
ringbuffer and submitting the request, allow signals to interrupt
acquisition of the timeline mutex. We allow ourselves to be interrupted
at any time later if we need to block for space in the ring, anyway.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190610103610.19883-1-chris@chris-wilson.co.uk
In the next patch, we will want to configure the slave request
depending on which physical engine the master request is executed on.
For this, we introduce a callback from the execute fence to convey this
information.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190521211134.16117-8-chris@chris-wilson.co.uk
Allow the user to direct which physical engines of the virtual engine
they wish to execute one, as sometimes it is necessary to override the
load balancing algorithm.
v2: Only kick the virtual engines on context-out if required
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190521211134.16117-7-chris@chris-wilson.co.uk
Commit 1413b2bc07 ("drm/i915: Trim NEWCLIENT boosting") had the
intended consequence of not allowing a sequence of work that merely
crossed into a new engine the privilege to be promoted to NEWCLIENT
status. It also had the unintended consequence of actually making
NEWCLIENT effective on heavily oversubscribed transcode machines and
impacting upon their throughput.
If we consider a client packet composed of (rcsA, rcsB, vcs) and 30 of
those clients, using the NEWCLIENT boost that will be scheduled as
rcsA x 30, (rcsB, vcs) x 30
where as before it would have been
(rcsA, rcsB, vcs) x 30
That is with NEWCLIENT only boosting the first request of each client,
we would execute all rcsA requests prior to running on the vcs engines;
acruing a lot of dead time as compared to the previous case where the
vcs engine would be started in parallel to processing the second client.
The previous patch has the effect of delaying submission until it is
required by a third party (either the user with an explicit wait, or by
another client/engine). We reduce the NEWCLIENT bump to a mere WAIT,
which has the effect of removing its preemptive grant and reducing it to
the same level as any other user interaction -- that it will not be
promoted above the interengine dependencies, and so preventing NEWCLIENTS
from starving other engines. This a large nerf to the rrul properties of
the current NEWCLIENT, but it still does give prioritised submission to
new requests from light workloads.
References: b16c765122 ("drm/i915: Priority boost for new clients")
Fixes: 1413b2bc07 ("drm/i915: Trim NEWCLIENT boosting") # customer impact
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190515130052.4475-4-chris@chris-wilson.co.uk
The handling of the no-preemption priority level imposes the restriction
that we need to maintain the implied ordering even though preemption is
disabled. Otherwise we may end up with an AB-BA deadlock across multiple
engine due to a real preemption event reordering the no-preemption
WAITs. To resolve this issue we currently promote all requests to WAIT
on unsubmission, however this interferes with the timeslicing
requirement that we do not apply any implicit promotion that will defeat
the round-robin timeslice list. (If we automatically promote the active
request it will go back to the head of the queue and not the tail!)
So we need implicit promotion to prevent reordering around semaphores
where we are not allowed to preempt, and we must avoid implicit
promotion on unsubmission. So instead of at unsubmit, if we apply that
implicit promotion on adding the dependency, we avoid the semaphore
deadlock and we also reduce the gains made by the promotion for user
space waiting. Furthermore, by keeping the earlier dependencies at a
higher level, we reduce the search space for timeslicing without
altering runtime scheduling too badly (no dependencies at all will be
assigned a higher priority for rrul).
v2: Limit the bump to external edges (as originally intended) i.e.
between contexts and out to the user.
Testcase: igt/gem_concurrent_blit
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190515130052.4475-3-chris@chris-wilson.co.uk
In commit b7404c7ecb ("drm/i915: Bump ready tasks ahead of
busywaits"), I tried cutting a corner in order to not install a signal
for each of our dependencies, and only listened to requests on which we
were intending to busywait. The compromise that was made was that
instead of then being able to promote the request with a full
NOSEMAPHORE like its non-busywaiting brethren, as we had not ensured we
had cleared the semaphore chain, we settled for only using the NEWCLIENT
boost. With an over saturated system with multiple NEWCLIENTS in flight
at any time, this was found to be an inadequate promotion and left us
with a much poorer scheduling order than prior to using semaphores.
The outcome of this patch, is that all requests have NOSEMAPHORE
priority when they have no dependencies and are ready to run and not
busywait, restoring the pre-semaphore ordering on saturated systems.
We can demonstrate the effect of poor scheduling order by oversaturating
the system using gem_wsim on a system with multiple vcs engines
(i.e running the same workloads across more clients than required for
peak throughput, e.g. media_load_balance_17i7.wsim -c4 -b context):
x v5.1 (normalized)
+ tip
* fix
+------------------------------------------------------------------------+
| x |
| x |
| x |
| x |
| %x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %%x |
| %#x |
| %#x |
| %#x |
| %#x |
| %#x |
| + %#xx |
| + %#xx |
| + %%#xx |
| + %%#xx |
| + %%#xx |
| + %%#xx |
| + %%##x |
| +++ %%##x |
| +++ %%##x |
| +++ %%##x |
| ++++ %%##x |
| ++++ %%##x |
| ++++ %%##xx |
| ++++ %###xx |
| ++++ %###xx |
| ++++ %###xx |
| ++++ %###xx |
| ++++ + %#O#xx |
| ++++ + %#O#xx |
| ++++++ + %#O#xx |
| ++++++++++ %OOOxxx|
| ++++++++++ + %#OOO#xx|
| + ++++++++++++ ++ +++++ + ++ @@OOOO#xx|
| |A_| |
||__________M_______A____________________| |
| |A_| |
+------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 120 0.99456 1.00628 0.999985 1.0001545 0.0024387139
+ 120 0.873021 1.00037 0.884134 0.90148752 0.039190862
Difference at 99.5% confidence
-0.098667 +/- 0.0110762
-9.86517% +/- 1.10745%
(Student's t, pooled s = 0.0277657)
% 120 0.990207 1.00165 0.9970265 0.99699748 0.0021024
Difference at 99.5% confidence
-0.003157 +/- 0.000908245
-0.315651% +/- 0.0908105%
(Student's t, pooled s = 0.00227678)
Fixes: b7404c7ecb ("drm/i915: Bump ready tasks ahead of busywaits")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190515130052.4475-2-chris@chris-wilson.co.uk
Avoid charging us for the presumed busywait if the request was preempted
after successfully using semaphores to reduce inter-engine latency.
v2: Bump the priority to reflect the lack of semaphores now required.
References: ca6e56f654 ("drm/i915: Disable semaphore busywaits on saturated systems")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190515130052.4475-1-chris@chris-wilson.co.uk
Currently there is an underlying assumption that i915_request_unsubmit()
is synchronous wrt the GPU -- that is the request is no longer in flight
as we remove it. In the near future that may change, and this may upset
our signaling as we can process an interrupt for that request while it
is no longer in flight.
CPU0 CPU1
intel_engine_breadcrumbs_irq
(queue request completion)
i915_request_cancel_signaling
... ...
i915_request_enable_signaling
dma_fence_signal
Hence in the time it took us to drop the lock to signal the request, a
preemption event may have occurred and re-queued the request. In the
process, that request would have seen I915_FENCE_FLAG_SIGNAL clear and
so reused the rq->signal_link that was in use on CPU0, leading to bad
pointer chasing in intel_engine_breadcrumbs_irq.
A related issue was that if someone started listening for a signal on a
completed but no longer in-flight request, we missed the opportunity to
immediately signal that request.
Furthermore, as intel_contexts may be immediately released during
request retirement, in order to be entirely sure that
intel_engine_breadcrumbs_irq may no longer dereference the intel_context
(ce->signals and ce->signal_link), we must wait for irq spinlock.
In order to prevent the race, we use a bit in the fence.flags to signal
the transfer onto the signal list inside intel_engine_breadcrumbs_irq.
For simplicity, we use the DMA_FENCE_FLAG_SIGNALED_BIT as it then
quickly signals to any outside observer that the fence is indeed signaled.
v2: Sketch out potential dma-fence API for manual signaling
v3: And the test_and_set_bit()
Fixes: 52c0fdb25c ("drm/i915: Replace global breadcrumbs with per-context interrupt tracking")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190508112452.18942-1-chris@chris-wilson.co.uk
If we couple the scheduler more tightly with the execlists policy, we
can apply the preemption policy to the question of whether we need to
kick the tasklet at all for this priority bump.
v2: Rephrase it as a core i915 policy and not an execlists foible.
v3: Pull the kick together.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190507122544.12698-1-chris@chris-wilson.co.uk
Acquiring the signaler's timeline takes an active reference to their
HWSP that we would like to avoid if possible, so take it after
performing all of our allocations required to set up the fencing. The
acquisition also provides the final check that the target has not
already signaled allowing us to avoid the semaphore at the last moment.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190503140239.32668-1-chris@chris-wilson.co.uk
Asking the GPU to busywait on a memory address, perhaps not unexpectedly
in hindsight for a shared system, leads to bus contention that affects
CPU programs trying to concurrently access memory. This can manifest as
a drop in transcode throughput on highly over-saturated workloads.
The only clue offered by perf, is that the bus-cycles (perf stat -e
bus-cycles) jumped by 50% when enabling semaphores. This corresponds
with extra CPU active cycles being attributed to intel_idle's mwait.
This patch introduces a heuristic to try and detect when more than one
client is submitting to the GPU pushing it into an oversaturated state.
As we already keep track of when the semaphores are signaled, we can
inspect their state on submitting the busywait batch and if we planned
to use a semaphore but were too late, conclude that the GPU is
overloaded and not try to use semaphores in future requests. In
practice, this means we optimistically try to use semaphores for the
first frame of a transcode job split over multiple engines, and fail if
there are multiple clients active and continue not to use semaphores for
the subsequent frames in the sequence. Periodically, we try to
optimistically switch semaphores back on whenever the client waits to
catch up with the transcode results.
With 1 client, on Broxton J3455, with the relative fps normalized by %cpu:
x no semaphores
+ drm-tip
* patched
+------------------------------------------------------------------------+
| * |
| *+ |
| **+ |
| **+ x |
| x * +**+ x |
| x x * * +***x xx |
| x x * * *+***x *x |
| x x* + * * *****x *x x |
| + x xx+x* + *** * ********* x * |
| + x xx+x* * *** +** ********* xx * |
| * + ++++* + x*x****+*+* ***+*************+x* * |
|*+ +** *+ + +* + *++****** *xxx**********x***+*****************+*++ *|
| |__________A_____M_____| |
| |_______________A____M_________| |
| |____________A___M________| |
+------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 120 2.60475 3.50941 3.31123 3.2143953 0.21117399
+ 120 2.3826 3.57077 3.25101 3.1414161 0.28146407
Difference at 95.0% confidence
-0.0729792 +/- 0.0629585
-2.27039% +/- 1.95864%
(Student's t, pooled s = 0.248814)
* 120 2.35536 3.66713 3.2849 3.2059917 0.24618565
No difference proven at 95.0% confidence
With 10 clients over-saturating the pipeline:
x no semaphores
+ drm-tip
* patched
+------------------------------------------------------------------------+
| ++ ** |
| ++ ** |
| ++ ** |
| ++ ** |
| ++ xx *** |
| ++ xx *** |
| ++ xxx*** |
| ++ xxx*** |
| +++ xxx*** |
| +++ xx**** |
| +++ xx**** |
| +++ xx**** |
| +++ xx**** |
| ++++ xx**** |
| +++++ xx**** |
| +++++ x x****** |
| ++++++ xxx******* |
| ++++++ xxx******* |
| ++++++ xxx******* |
| ++++++ xx******** |
| ++++++ xxxx******** |
| ++++++ xxxx******** |
| ++++++++ xxxxx********* |
|+ + + + ++++++++ xxx*xx**********x* *|
| |__A__| |
| |__AM__| |
| |__A_| |
+------------------------------------------------------------------------+
N Min Max Median Avg Stddev
x 120 2.47855 2.8972 2.72376 2.7193402 0.074604933
+ 120 1.17367 1.77459 1.71977 1.6966782 0.085850697
Difference at 95.0% confidence
-1.02266 +/- 0.0203502
-37.607% +/- 0.748352%
(Student's t, pooled s = 0.0804246)
* 120 2.57868 3.00821 2.80142 2.7923878 0.058646477
Difference at 95.0% confidence
0.0730476 +/- 0.0169791
2.68622% +/- 0.624383%
(Student's t, pooled s = 0.0671018)
Indicating that we've recovered the regression from enabling semaphores
on this saturated setup, with a hint towards an overall improvement.
Very similar, but of smaller magnitude, results are observed on both
Skylake(gt2) and Kabylake(gt4). This may be due to the reduced impact of
bus-cycles, where we see a 50% hit on Broxton, it is only 10% on the big
core, in this particular test.
One observation to make here is that for a greedy client trying to
maximise its own throughput, using semaphores is the right choice. It is
only the holistic system-wide view that semaphores of one client
impacts another and reduces the overall throughput where we would choose
to disable semaphores.
The most noticeable negactive impact this has is on the no-op
microbenchmarks, which are also very notable for having no cpu bus load.
In particular, this increases the runtime and energy consumption of
gem_exec_whisper.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190504070707.30902-1-chris@chris-wilson.co.uk
Currently we submit the semaphore busywait as soon as the signaler is
submitted to HW. However, we may submit the signaler as the tail of a
batch of requests, and even not as the first context in the HW list,
i.e. the busywait may start spinning far in advance of the signaler even
starting.
If we wait until the request before the signaler is completed before
submitting the busywait, we prevent the busywait from starting too
early, if the signaler is not first in submission port.
To handle the case where the signaler is at the start of the second (or
later) submission port, we will need to delay the execution callback
until we know the context is promoted to port0. A challenge for later.
Fixes: e886196469 ("drm/i915: Use HW semaphores for inter-engine synchroni
sation on gen8+")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190501114541.10077-9-chris@chris-wilson.co.uk
Having transitioned GEM over to using intel_context as its primary means
of tracking the GEM context and engine combined and using
i915_request_create(), we can move the older i915_request_alloc()
helper function into selftests/ where the remaining users are confined.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190426163336.15906-9-chris@chris-wilson.co.uk
We switched to a tree of per-engine HW context to accommodate the
introduction of virtual engines. However, we plan to also support
multiple instances of the same engine within the GEM context, defeating
our use of the engine as a key to looking up the HW context. Just
allocate a logical per-engine instance and always use an index into the
ctx->engines[]. Later on, this ctx->engines[] may be replaced by a user
specified map.
v2: Add for_each_gem_engine() helper to iterator within the engines lock
v3: intel_context_create_request() helper
v4: s/unsigned long/unsigned int/ 4 billion engines is quite enough.
v5: Push iterator locking to caller
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190426163336.15906-7-chris@chris-wilson.co.uk
In order to separate the reservation phase of building a request from
its emission phase, we need to pull some of the request alloc activities
from deep inside i915_request to the surface, GEM_EXECBUFFER.
v2: Be frivolous, use a local drm_i915_private.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190425050143.811-1-chris@chris-wilson.co.uk
In the current scheme, on submitting a request we take a single global
GEM wakeref, which trickles down to wake up all GT power domains. This
is undesirable as we would like to be able to localise our power
management to the available power domains and to remove the global GEM
operations from the heart of the driver. (The intent there is to push
global GEM decisions to the boundary as used by the GEM user interface.)
Now during request construction, each request is responsible via its
logical context to acquire a wakeref on each power domain it intends to
utilize. Currently, each request takes a wakeref on the engine(s) and
the engines themselves take a chipset wakeref. This gives us a
transition on each engine which we can extend if we want to insert more
powermangement control (such as soft rc6). The global GEM operations
that currently require a struct_mutex are reduced to listening to pm
events from the chipset GT wakeref. As we reduce the struct_mutex
requirement, these listeners should evaporate.
Perhaps the biggest immediate change is that this removes the
struct_mutex requirement around GT power management, allowing us greater
flexibility in request construction. Another important knock-on effect,
is that by tracking engine usage, we can insert a switch back to the
kernel context on that engine immediately, avoiding any extra delay or
inserting global synchronisation barriers. This makes tracking when an
engine and its associated contexts are idle much easier -- important for
when we forgo our assumed execution ordering and need idle barriers to
unpin used contexts. In the process, it means we remove a large chunk of
code whose only purpose was to switch back to the kernel context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
Start acquiring the logical intel_context and using that as our primary
means for request allocation. This is the initial step to allow us to
avoid requiring struct_mutex for request allocation along the
perma-pinned kernel context, but it also provides a foundation for
breaking up the complex request allocation to handle different scenarios
inside execbuf.
For the purpose of emitting a request from inside retirement (see the
next patch for engine power management), we also need to lift control
over the timeline mutex to the caller.
v2: Note that the request carries the active reference upon construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-4-chris@chris-wilson.co.uk
We wish to start segregating the power management into different control
domains, both with respect to the hardware and the user interface. The
first step is that at the lowest level flow of requests, we want to
process a context event (and not a global GEM operation). In this patch,
we introduce the context callbacks that in future patches will be
redirected to per-engine interfaces leading to global operations as
required.
The intent is that this will be guarded by the timeline->mutex, except
that retiring has not quite finished transitioning over from being
guarded by struct_mutex. So at the moment it is protected by
struct_mutex with a reminded to switch.
v2: Rename default handlers to intel_context_enter_engine.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-3-chris@chris-wilson.co.uk
Start partitioning off the code that talks to the hardware (GT) from the
uapi layers and move the device facing code under gt/
One casualty is s/intel_ringbuffer.h/intel_engine.h/ with the plan to
subdivide that header and body further (and split out the submission
code from the ringbuffer and logical context handling). This patch aims
to be simple motion so git can fixup inflight patches with little mess.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424174839.7141-1-chris@chris-wilson.co.uk
An interesting discussion regarding "hybrid interrupt polling" for NVMe
came to the conclusion that the ideal busyspin before sleeping was half
of the expected request latency (and better if it was already halfway
through that request). This suggested that we too should look again at
our tradeoff between spinning and waiting. Currently, our spin simply
tries to hide the cost of enabling the interrupt, which is good to avoid
penalising nop requests (i.e. test throughput) and not much else.
Studying real world workloads suggests that a spin of upto 500us can
dramatically boost performance, but the suggestion is that this is not
from avoiding interrupt latency per-se, but from secondary effects of
sleeping such as allowing the CPU reduce cstate and context switch away.
In a truly hybrid interrupt polling scheme, we would aim to sleep until
just before the request completed and then wake up in advance of the
interrupt and do a quick poll to handle completion. This is tricky for
ourselves at the moment as we are not recording request times, and since
we allow preemption, our requests are not on as a nicely ordered
timeline as IO. However, the idea is interesting, for it will certainly
help us decide when busyspinning is worthwhile.
v2: Expose the spin setting via Kconfig options for easier adjustment
and testing.
v3: Don't get caught sneaking in a change to the busyspin parameters.
v4: Explain more about the "hybrid interrupt polling" scheme that we
want to migrate towards.
Suggested-by: Sagar Kamble <sagar.a.kamble@intel.com>
References: http://events.linuxfoundation.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Sagar Kamble <sagar.a.kamble@intel.com>
Cc: Eero Tamminen <eero.t.tamminen@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Ben Widawsky <ben@bwidawsk.net>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michał Winiarski <michal.winiarski@intel.com>
Reviewed-by: Sagar Kamble <sagar.a.kamble@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190419182625.11186-1-chris@chris-wilson.co.uk
As i915_requests are put into an RCU-freelist, they may get reused
before debugobjects notice them as being freed. On cleanup, explicitly
call i915_sw_fence_fini() so that the debugobject is properly tracked.
Reported-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Fixes: b7404c7ecb ("drm/i915: Bump ready tasks ahead of busywaits")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190411122445.20060-1-chris@chris-wilson.co.uk
Consider two tasks that are running in parallel on a pair of engines
(vcs0, vcs1), but then must complete on a shared engine (rcs0). To
maximise throughput, we want to run the first ready task on rcs0 (i.e.
the first task that completes on either of vcs0 or vcs1). When using
semaphores, however, we will instead queue onto rcs in submission order.
To resolve this incorrect ordering, we want to re-evaluate the priority
queue when each of the request is ready. Normally this happens because
we only insert into the priority queue requests that are ready, but with
semaphores we are inserting ahead of their readiness and to compensate
we penalize those tasks with reduced priority (so that tasks that do not
need to busywait should naturally be run first). However, given a series
of tasks that each use semaphores, the queue degrades into submission
fifo rather than readiness fifo, and so to counter this we give a small
boost to semaphore users as their dependent tasks are completed (and so
we no longer require any busywait prior to running the user task as they
are then ready themselves).
v2: Fixup irqsave for schedule_lock (Tvrtko)
Testcase: igt/gem_exec_schedule/semaphore-codependency
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
Cc: Dmitry Ermilov <dmitry.ermilov@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190409152922.23894-1-chris@chris-wilson.co.uk
The timeline is strictly ordered, so by inserting the timeline->barrier
request into the timeline->last_request it naturally provides the same
barrier. Consolidate the pair of barriers into one as they serve the
same purpose.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190408091728.20207-4-chris@chris-wilson.co.uk
It used to be handy that we only had a couple of headers, but over time
intel_drv.h has become unwieldy. Extract declarations to a separate
header file corresponding to the implementation module, clarifying the
modularity of the driver.
Ensure the new header is self-contained, and do so with minimal further
includes, using forward declarations as needed. Include the new header
only where needed, and sort the modified include directives while at it
and as needed.
No functional changes.
v2: gen6_rps_reset_ei() is in i915_irq.c not intel_pm.c.
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/adc6463b95eef3440fba9826793f7d1c5f3b0b4a.1554461791.git.jani.nikula@intel.com
During request construction, we take the timeline->mutex to ensure
exclusive access to the ringbuffer (for command emission) and the
timeline itself (for command ordering). The timeline->mutex should not
be dropped by callers until we release it in i915_request_add().
lockdep provides a pin/unpin lock facility to detect accidental unlocks
inside critical sections, so put it to use for request construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190403082132.327-1-chris@chris-wilson.co.uk
Ideally we only need one semaphore per ring to accommodate waiting on
multiple engines in parallel. However, since we do not know which fences
we will finally be waiting on, we emit a semaphore for every fence. It
turns out to be quite easy to trick ourselves into exhausting our
ringbuffer causing an error, just by feeding in a batch that depends on
several thousand contexts.
Since we never can be waiting on more than one semaphore in parallel
(other than perhaps the desire to busywait on multiple engines), just
pick the first fence for our semaphore. If we pick the wrong fence to
busywait on, we just miss an opportunity to reduce latency.
An adaption might be to use sched.flags as either a semaphore counter,
or to track the first busywait on each engine, converting it back to a
single use bit prior to closing the request.
v2: Track first semaphore used per-engine (this caters for our basic
igt that semaphores are working).
Reported-by: Mika Kuoppala <mika.kuoppala@intel.com>
Testcase: igt/gem_exec_fence/long-history
Fixes: e886196469 ("drm/i915: Use HW semaphores for inter-engine synchronisation on gen8+")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190401162641.10963-3-chris@chris-wilson.co.uk
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Previously, our view has been always to run the engines independently
within a context. (Multiple engines happened before we had contexts and
timelines, so they always operated independently and that behaviour
persisted into contexts.) However, at the user level the context often
represents a single timeline (e.g. GL contexts) and userspace must
ensure that the individual engines are serialised to present that
ordering to the client (or forgot about this detail entirely and hope no
one notices - a fair ploy if the client can only directly control one
engine themselves ;)
In the next patch, we will want to construct a set of engines that
operate as one, that have a single timeline interwoven between them, to
present a single virtual engine to the user. (They submit to the virtual
engine, then we decide which engine to execute on based.)
To that end, we want to be able to create contexts which have a single
timeline (fence context) shared between all engines, rather than multiple
timelines.
v2: Move the specialised timeline ordering to its own function.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190322092325.5883-4-chris@chris-wilson.co.uk
The timeline->name is only used for convenience in pretty printing the
i915_request.fence->ops->get_timeline_name() and it is just as
convenient to pull it from the gem_context directly. The few instances
of its use inside GEM_TRACE() has proven more of a nuisance than
helpful, so not worth saving imo.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190321140711.11190-4-chris@chris-wilson.co.uk
As the final request on a ring may hold the reference to this ring (via
retiring the last pinned context), we may find ourselves chasing a
dangling pointer on completion of the list.
A quick solution is to hold a reference to the ring itself as we retire
along it so that we only free it after we stop dereferencing it.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190318095204.9913-4-chris@chris-wilson.co.uk
Currently we assume that we know the order in which requests run and so
can determine if we need to reissue a switch-to-kernel-context prior to
idling. That assumption does not hold for the future, so instead of
tracking which barriers have been used, simply determine if we have ever
switched away from the kernel context by using the engine and before
idling ensure that all engines that have been used since the last idle
are synchronously switched back to the kernel context for safety (and
else of shrinking memory while idle).
v2: Use intel_engine_mask_t and ALL_ENGINES
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190308093657.8640-3-chris@chris-wilson.co.uk
Rather than manually add every new global into each hook, use
i915_global_register() function and keep a list of registered globals to
invoke instead.
However, I haven't found a way for random drivers to add an .init table
to avoid having to manually add ourselves to i915_globals_init() each
time.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190305213830.18094-1-chris@chris-wilson.co.uk
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
We don't want to busywait on the GPU if we have other work to do. If we
give non-busywaiting workloads higher (initial) priority than workloads
that require a busywait, we will prioritise work that is ready to run
immediately. We then also have to be careful that we don't give earlier
semaphores an accidental boost because later work doesn't wait on other
rings, hence we keep a history of semaphore usage of the dependency chain.
v2: Stop rolling the bits into a chain and just use a flag in case this
request or any of our dependencies use a semaphore. The rolling around
was contagious as Tvrtko was heard to fall off his chair.
Testcase: igt/gem_exec_schedule/semaphore
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-4-chris@chris-wilson.co.uk
Having introduced per-context seqno, we now have a means to identity
progress across the system without feel of rollback as befell the
global_seqno. That is we can program a MI_SEMAPHORE_WAIT operation in
advance of submission safe in the knowledge that our target seqno and
address is stable.
However, since we are telling the GPU to busy-spin on the target address
until it matches the signaling seqno, we only want to do so when we are
sure that busy-spin will be completed quickly. To achieve this we only
submit the request to HW once the signaler is itself executing (modulo
preemption causing us to wait longer), and we only do so for default and
above priority requests (so that idle priority tasks never themselves
hog the GPU waiting for others).
As might be reasonably expected, HW semaphores excel in inter-engine
synchronisation microbenchmarks (where the 3x reduced latency / increased
throughput more than offset the power cost of spinning on a second ring)
and have significant improvement (can be up to ~10%, most see no change)
for single clients that utilize multiple engines (typically media players
and transcoders), without regressing multiple clients that can saturate
the system or changing the power envelope dramatically.
v3: Drop the older NEQ branch, now we pin the signaler's HWSP anyway.
v4: Tell the world and include it as part of scheduler caps.
Testcase: igt/gem_exec_whisper
Testcase: igt/benchmarks/gem_wsim
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-3-chris@chris-wilson.co.uk
In preparation for enabling HW semaphores, we need to keep in flight
timeline HWSP alive until its use across entire system has completed,
as any other timeline active on the GPU may still refer back to the
already retired timeline. We both have to delay recycling available
cachelines and unpinning old HWSP until the next idle point.
An easy option would be to simply keep all used HWSP until the system as
a whole was idle, i.e. we could release them all at once on parking.
However, on a busy system, we may never see a global idle point,
essentially meaning the resource will be leaked until we are forced to
do a GC pass. We already employ a fine-grained idle detection mechanism
for vma, which we can reuse here so that each cacheline can be freed
immediately after the last request using it is retired.
v3: Keep track of the activity of each cacheline.
v4: cacheline_free() on canceling the seqno tracking
v5: Finally with a testcase to exercise wraparound
v6: Pack cacheline into empty bits of page-aligned vaddr
v7: Use i915_utils to hide the pointer casting around bit manipulation
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190301170901.8340-2-chris@chris-wilson.co.uk
A simple mutex used for guarding the flow of requests in and out of the
timeline. In the short-term, it will be used only to guard the addition
of requests into the timeline, taken on alloc and released on commit so
that only one caller can construct a request into the timeline
(important as the seqno and ring pointers must be serialised). This will
be used by observers to ensure that the seqno/hwsp is stable. Later,
when we have reduced retiring to only operate on a single timeline at a
time, we can then use the mutex as the sole guard required for retiring.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190301110547.14758-2-chris@chris-wilson.co.uk
WAIT is occasionally suppressed by virtue of preempted requests being
promoted to NEWCLIENT if they have not all ready received that boost.
Make this consistent for all WAIT boosts that they are not allowed to
preempt executing contexts and are merely granted the right to be at the
front of the queue for the next execution slot. This is in keeping with
the desire that the WAIT boost be a minor tweak that does not give
excessive promotion to its user and open ourselves to trivial abuse.
The problem with the inconsistent WAIT preemption becomes more apparent
as the preemption is propagated across the engines, where one engine may
preempt and the other not, and we be relying on the exact execution
order being consistent across engines (e.g. using HW semaphores to
coordinate parallel execution).
v2: Also protect GuC submission from false preemption loops.
v3: Build bug safeguards and better debug messages for st.
v4: Do the priority bumping in unsubmit (i.e. on preemption/reset
unwind), applying it earlier during submit causes out-of-order execution
combined with execute fences.
v5: Call sw_fence_fini for our dummy request (Matthew)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190228220639.3173-1-chris@chris-wilson.co.uk
As kmem_caches share the same properties (size, allocation/free behaviour)
for all potential devices, we can use global caches. While this
potential has worse fragmentation behaviour (one can argue that
different devices would have different activity lifetimes, but you can
also argue that activity is temporal across the system) it is the
default behaviour of the system at large to amalgamate matching caches.
The benefit for us is much reduced pointer dancing along the frequent
allocation paths.
v2: Defer shrinking until after a global grace period for futureproofing
multiple consumers of the slab caches, similar to the current strategy
for avoiding shrinking too early.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190228102035.5857-1-chris@chris-wilson.co.uk
Having weaned the interrupt handling off using a single global execution
queue, we no longer need to emit a global_seqno. Note that we still have
a few assumptions about execution order along engine timelines, but this
removes the most obvious artefact!
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190226094922.31617-3-chris@chris-wilson.co.uk
At a few points in our uABI, we check to see if the driver is wedged and
report -EIO back to the user in that case. However, as we perform the
check and reset asynchronously (where once before they were both
serialised by the struct_mutex), we may instead see the temporary wedging
used to cancel inflight rendering to avoid a deadlock during reset
(caused by either us timing out in our reset handler,
i915_wedge_on_timeout or with malice aforethought in intel_reset_prepare
for a stuck modeset). If we suspect this is the case, that is we see a
wedged driver *and* reset in progress, then wait until the reset is
resolved before reporting upon the wedged status.
v2: might_sleep() (Mika)
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109580
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190220145637.23503-1-chris@chris-wilson.co.uk
Currently, we accumulate each time a context hangs the GPU, offset
against the number of requests it submits, and if that score exceeds a
certain threshold, we ban that context from submitting any more requests
(cancelling any work in flight). In contrast, we use a simple timer on
the file, that if we see more than a 9 hangs faster than 60s apart in
total across all of its contexts, we will ban the client from creating
any more contexts. This leads to a confusing situation where the file
may be banned before the context, so lets use a simple timer scheme for
each.
If the context submits 3 hanging requests within a 120s period, declare
it forbidden to ever send more requests.
This has the advantage of not being easy to repair by simply sending
empty requests, but has the disadvantage that if the context is idle
then it is forgiven. However, if the context is idle, it is not
disrupting the system, but a hog can evade the request counting and
cause much more severe disruption to the system.
Updating ban_score from request retirement is dubious as the retirement
is purposely not in sync with request submission (i.e. we try and batch
retirement to reduce overhead and avoid latency on submission), which
leads to surprising situations where we can forgive a hang immediately
due to a backlog of requests from before the hang being retired
afterwards.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190219122215.8941-2-chris@chris-wilson.co.uk
As we currently do not check on submission whether the context is banned
in a timely manner it is possible for some requests to escape
cancellation after their parent context is banned. By moving the ban
into the request submission under the engine->timeline.lock, we
serialise it with the reset and setting of the context ban.
References: eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on struct_mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190213182737.12695-1-chris@chris-wilson.co.uk
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
As time goes by, usage of generic ioctls such as drm_syncobj and
sync_file are on the increase bypassing i915-specific ioctls like
GEM_WAIT. Currently, we only apply waitboosting to our driver ioctls as
we track the file/client and account the waitboosting to them. However,
since commit 7b92c1bd05 ("drm/i915: Avoid keeping waitboost active for
signaling threads"), we no longer have been applying the client
ratelimiting on waitboosts and so that information has only been used
for debug tracking.
Push the application of waitboosting down to the common
i915_request_wait, and apply it to all foreign fence waits as well.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Eero Tamminen <eero.t.tamminen@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190213092504.25709-1-chris@chris-wilson.co.uk