If the guest generates a synchronous external abort which is not handled
by the host, we inject it back into the guest as a virtual SError, but
only if the original fault was reported on the data side. Instruction
faults are reported as "Unsupported FSC", causing the vCPU run loop to
bail with -EFAULT.
Although synchronous external aborts from a guest are pretty unusual,
treat them the same regardless of whether they are taken as data or
instruction aborts by EL2.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200729102821.23392-3-will@kernel.org
If a stage-2 page-table contains an executable, read-only mapping at the
pte level (e.g. due to dirty logging being enabled), a subsequent write
fault to the same page which tries to install a larger block mapping
(e.g. due to dirty logging having been disabled) will erroneously inherit
the exec permission and consequently skip I-cache invalidation for the
rest of the block.
Ensure that exec permission is only inherited by write faults when the
new mapping is of the same size as the existing one. A subsequent
instruction abort will result in I-cache invalidation for the entire
block mapping.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tested-by: Quentin Perret <qperret@google.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20200723101714.15873-1-will@kernel.org
In the current kvm version, 'kvm_run' has been included in the 'kvm_vcpu'
structure. For historical reasons, many kvm-related function parameters
retain the 'kvm_run' and 'kvm_vcpu' parameters at the same time. This
patch does a unified cleanup of these remaining redundant parameters.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200623131418.31473-3-tianjia.zhang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a "gfp_zero" member to arm64's 'struct kvm_mmu_memory_cache' to make
the struct and its usage compatible with the common 'struct
kvm_mmu_memory_cache' in linux/kvm_host.h. This will minimize code
churn when arm64 moves to the common implementation in a future patch, at
the cost of temporarily having somewhat silly code.
Note, GFP_PGTABLE_USER is equivalent to GFP_KERNEL_ACCOUNT | GFP_ZERO:
#define GFP_PGTABLE_USER (GFP_PGTABLE_KERNEL | __GFP_ACCOUNT)
|
-> #define GFP_PGTABLE_KERNEL (GFP_KERNEL | __GFP_ZERO)
== GFP_KERNEL | __GFP_ACCOUNT | __GFP_ZERO
versus
#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
with __GFP_ZERO explicitly OR'd in
== GFP_KERNEL | __GFP_ACCOUNT | __GFP_ZERO
No functional change intended.
Tested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-18-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the @max param in mmu_topup_memory_cache() and instead use
ARRAY_SIZE() to terminate the loop to fill the cache. This removes a
BUG_ON() and sets the stage for moving arm64 to the common memory cache
implementation.
No functional change intended.
Tested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-17-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since we often have a precise idea of the level we're dealing with
when invalidating TLBs, we can provide it to as a hint to our
invalidation helper.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
As we are about to reuse our stage 2 page table manipulation code for
shadow stage 2 page tables in the context of nested virtualization, we
are going to manage multiple stage 2 page tables for a single VM.
This requires some pretty invasive changes to our data structures,
which moves the vmid and pgd pointers into a separate structure and
change pretty much all of our mmu code to operate on this structure
instead.
The new structure is called struct kvm_s2_mmu.
There is no intended functional change by this patch alone.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
[Designed data structure layout in collaboration]
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Co-developed-by: Marc Zyngier <maz@kernel.org>
[maz: Moved the last_vcpu_ran down to the S2 MMU structure as well]
Signed-off-by: Marc Zyngier <maz@kernel.org>
kvm/arm32 isn't supported since commit 541ad0150c ("arm: Remove
32bit KVM host support"). So HSR isn't meaningful since then. This
renames HSR to ESR accordingly. This shouldn't cause any functional
changes:
* Rename kvm_vcpu_get_hsr() to kvm_vcpu_get_esr() to make the
function names self-explanatory.
* Rename variables from @hsr to @esr to make them self-explanatory.
Note that the renaming on uapi and tracepoint will cause ABI changes,
which we should avoid. Specificly, there are 4 related source files
in this regard:
* arch/arm64/include/uapi/asm/kvm.h (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/handle_exit.c (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/trace_arm.h (tracepoints)
* arch/arm64/kvm/trace_handle_exit.h (tracepoints)
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Andrew Scull <ascull@google.com>
Link: https://lore.kernel.org/r/20200630015705.103366-1-gshan@redhat.com
Convert the last few remaining mmap_sem rwsem calls to use the new mmap
locking API. These were missed by coccinelle for some reason (I think
coccinelle does not support some of the preprocessor constructs in these
files ?)
[akpm@linux-foundation.org: convert linux-next leftovers]
[akpm@linux-foundation.org: more linux-next leftovers]
[akpm@linux-foundation.org: more linux-next leftovers]
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-6-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is already support of enabling dirty log gradually in small chunks
for x86 in commit 3c9bd4006b ("KVM: x86: enable dirty log gradually in
small chunks"). This adds support for arm64.
x86 still writes protect all huge pages when DIRTY_LOG_INITIALLY_ALL_SET
is enabled. However, for arm64, both huge pages and normal pages can be
write protected gradually by userspace.
Under the Huawei Kunpeng 920 2.6GHz platform, I did some tests on 128G
Linux VMs with different page size. The memory pressure is 127G in each
case. The time taken of memory_global_dirty_log_start in QEMU is listed
below:
Page Size Before After Optimization
4K 650ms 1.8ms
2M 4ms 1.8ms
1G 2ms 1.8ms
Besides the time reduction, the biggest improvement is that we will minimize
the performance side effect (because of dissolving huge pages and marking
memslots dirty) on guest after enabling dirty log.
Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200413122023.52583-1-zhukeqian1@huawei.com
We support mapping host memory backed by PMD transparent hugepages
at stage2 as huge pages. However the checks are now spread across
two different places. Let us unify the handling of the THPs to
keep the code cleaner (and future proof for PUD THP support).
This patch moves transparent_hugepage_adjust() closer to the caller
to avoid a forward declaration for fault_supports_stage2_huge_mappings().
Also, since we already handle the case where the host VA and the guest
PA may not be aligned, the explicit VM_BUG_ON() is not required.
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200507123546.1875-3-yuzenghui@huawei.com