The push-IPI logic for RT tasks expects to be invoked from hardirq
context. One reason is that a RT task on the remote CPU would block the
softirq processing on PREEMPT_RT and so avoid pulling / balancing the RT
tasks as intended.
Annotate root_domain::rto_push_work as IRQ_WORK_HARD_IRQ.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211006111852.1514359-2-bigeasy@linutronix.de
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce3 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
numa_group::fault_cpus is actually a pointer to the region
in numa_group::faults[] where NUMA_CPU stats are located.
Remove this redundant member and use numa_group::faults[NUMA_CPU]
directly like it is done for similar per-process numa fault stats.
There is no functionality change due to this commit.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-3-bharata@amd.com
Clarify and tighten try_invoke_on_locked_down_task().
Basically the function calls @func under task_rq_lock(), except it
avoids taking rq->lock when possible.
This makes calling @func unconditional (the function will get renamed
in a later patch to remove the try).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.589323576@infradead.org
When !SCHEDSTATS schedstat_enabled() is an unconditional 0 and the
whole block doesn't exist, however GCC figures the scoped variable
'stats' is unused and complains about it.
Upgrade the warning from -Wunused-variable to -Wunused-but-set-variable
by writing it in two statements. This fixes the build because the new
warning is in W=1.
Given that whole if(0) {} thing, I don't feel motivated to change
things overly much and quite strongly feel this is the compiler being
daft.
Fixes: cb3e971c435d ("sched: Make struct sched_statistics independent of fair sched class")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Neither wq_worker_sleeping() nor io_wq_worker_sleeping() require to be invoked
with preemption disabled:
- The worker flag checks operations only need to be serialized against
the worker thread itself.
- The accounting and worker pool operations are serialized with locks.
which means that disabling preemption has neither a reason nor a
value. Remove it and update the stale comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lkml.kernel.org/r/8735pnafj7.ffs@tglx
Doing cleanups in the tail of schedule() is a latency punishment for the
incoming task. The point of invoking kprobes_task_flush() for a dead task
is that the instances are returned and cannot leak when __schedule() is
kprobed.
Move it into the delayed cleanup.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.537994026@linutronix.de
The queued remote wakeup mechanism has turned out to be suboptimal for RT
enabled kernels. The maximum latencies go up by a factor of > 5x in certain
scenarious.
This is caused by either long wake lists or by a large number of TTWU IPIs
which are processed back to back.
Disable it for RT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.482262764@linutronix.de
mmdrop() is invoked from finish_task_switch() by the incoming task to drop
the mm which was handed over by the previous task. mmdrop() can be quite
expensive which prevents an incoming real-time task from getting useful
work done.
Provide mmdrop_sched() which maps to mmdrop() on !RT kernels. On RT kernels
it delagates the eventually required invocation of __mmdrop() to RCU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.648582026@linutronix.de
There exist situations in which the load balance needs to know the
properties of the CPUs in a scheduling group. When using asymmetric
packing, for instance, the load balancer needs to know not only the
state of dst_cpu but also of its SMT siblings, if any.
Use the flags of the child scheduling domains to initialize scheduling
group flags. This will reflect the properties of the CPUs in the
group.
A subsequent changeset will make use of these new flags. No functional
changes are introduced.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-3-ricardo.neri-calderon@linux.intel.com
Currently the boot defined preempt behaviour (aka dynamic preempt)
selects full preemption by default when the "preempt=" boot parameter
is omitted. However distros may rather want to default to either
no preemption or voluntary preemption.
To provide with this flexibility, make dynamic preemption a visible
Kconfig option and adapt the preemption behaviour selected by the user
to either static or dynamic preemption.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210914103134.11309-1-frederic@kernel.org
After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for deadline sched class.
The schedstat usage in DL sched class is similar with fair sched class,
for example,
fair deadline
enqueue update_stats_enqueue_fair update_stats_enqueue_dl
dequeue update_stats_dequeue_fair update_stats_dequeue_dl
put_prev_task update_stats_wait_start update_stats_wait_start_dl
set_next_task update_stats_wait_end update_stats_wait_end_dl
The user can get the schedstats information in the same way in fair sched
class. For example,
fair deadline
/proc/[pid]/sched /proc/[pid]/sched
The output of a deadline task's schedstats as follows,
$ cat /proc/69662/sched
...
se.sum_exec_runtime : 3067.696449
se.nr_migrations : 0
sum_sleep_runtime : 720144.029661
sum_block_runtime : 0.547853
wait_start : 0.000000
sleep_start : 14131540.828955
block_start : 0.000000
sleep_max : 2999.974045
block_max : 0.283637
exec_max : 1.000269
slice_max : 0.000000
wait_max : 0.002217
wait_sum : 0.762179
wait_count : 733
iowait_sum : 0.547853
iowait_count : 3
nr_migrations_cold : 0
nr_failed_migrations_affine : 0
nr_failed_migrations_running : 0
nr_failed_migrations_hot : 0
nr_forced_migrations : 0
nr_wakeups : 246
nr_wakeups_sync : 2
nr_wakeups_migrate : 0
nr_wakeups_local : 244
nr_wakeups_remote : 2
nr_wakeups_affine : 0
nr_wakeups_affine_attempts : 0
nr_wakeups_passive : 0
nr_wakeups_idle : 0
...
The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace deadlline tasks as well.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-9-laoar.shao@gmail.com
The runtime of a DL task has already been there, so we only need to
add a tracepoint.
One difference between fair task and DL task is that there is no vruntime
in dl task. To reuse the sched_stat_runtime tracepoint, '0' is passed as
vruntime for DL task.
The output of this tracepoint for DL task as follows,
top-36462 [047] d.h. 6083.452103: sched_stat_runtime: comm=top pid=36462 runtime=409898 [ns] vruntime=0 [ns]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-8-laoar.shao@gmail.com
We want to measure the latency of RT tasks in our production
environment with schedstats facility, but currently schedstats is only
supported for fair sched class. This patch enable it for RT sched class
as well.
After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for RT sched class.
The schedstat usage in RT sched class is similar with fair sched class,
for example,
fair RT
enqueue update_stats_enqueue_fair update_stats_enqueue_rt
dequeue update_stats_dequeue_fair update_stats_dequeue_rt
put_prev_task update_stats_wait_start update_stats_wait_start_rt
set_next_task update_stats_wait_end update_stats_wait_end_rt
The user can get the schedstats information in the same way in fair sched
class. For example,
fair RT
/proc/[pid]/sched /proc/[pid]/sched
schedstats is not supported for RT group.
The output of a RT task's schedstats as follows,
$ cat /proc/10349/sched
...
sum_sleep_runtime : 972.434535
sum_block_runtime : 960.433522
wait_start : 188510.871584
sleep_start : 0.000000
block_start : 0.000000
sleep_max : 12.001013
block_max : 952.660622
exec_max : 0.049629
slice_max : 0.000000
wait_max : 0.018538
wait_sum : 0.424340
wait_count : 49
iowait_sum : 956.495640
iowait_count : 24
nr_migrations_cold : 0
nr_failed_migrations_affine : 0
nr_failed_migrations_running : 0
nr_failed_migrations_hot : 0
nr_forced_migrations : 0
nr_wakeups : 49
nr_wakeups_sync : 0
nr_wakeups_migrate : 0
nr_wakeups_local : 49
nr_wakeups_remote : 0
nr_wakeups_affine : 0
nr_wakeups_affine_attempts : 0
nr_wakeups_passive : 0
nr_wakeups_idle : 0
...
The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace RT tasks as well. The output of these tracepoints for a
RT tasks as follows,
- runtime
stress-10352 [004] d.h. 1035.382286: sched_stat_runtime: comm=stress pid=10352 runtime=995769 [ns] vruntime=0 [ns]
[vruntime=0 means it is a RT task]
- wait
<idle>-0 [004] dN.. 1227.688544: sched_stat_wait: comm=stress pid=10352 delay=46849882 [ns]
- blocked
kworker/4:1-465 [004] dN.. 1585.676371: sched_stat_blocked: comm=stress pid=17194 delay=189963 [ns]
- iowait
kworker/4:1-465 [004] dN.. 1585.675330: sched_stat_iowait: comm=stress pid=17189 delay=182848 [ns]
- sleep
sleep-18194 [023] dN.. 1780.891840: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001160770 [ns]
sleep-18196 [023] dN.. 1781.893208: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001161970 [ns]
sleep-18197 [023] dN.. 1782.894544: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001128840 [ns]
[ In sleep.sh, it sleeps 1 sec each time. ]
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-7-laoar.shao@gmail.com
The runtime of a RT task has already been there, so we only need to
add a tracepoint.
One difference between fair task and RT task is that there is no vruntime
in RT task. To reuse the sched_stat_runtime tracepoint, '0' is passed as
vruntime for RT task.
The output of this tracepoint for RT task as follows,
stress-9748 [039] d.h. 113.519352: sched_stat_runtime: comm=stress pid=9748 runtime=997573 [ns] vruntime=0 [ns]
stress-9748 [039] d.h. 113.520352: sched_stat_runtime: comm=stress pid=9748 runtime=997627 [ns] vruntime=0 [ns]
stress-9748 [039] d.h. 113.521352: sched_stat_runtime: comm=stress pid=9748 runtime=998203 [ns] vruntime=0 [ns]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-6-laoar.shao@gmail.com
Currently in schedstats we have sum_sleep_runtime and iowait_sum, but
there's no metric to show how long the task is in D state. Once a task in
D state, it means the task is blocked in the kernel, for example the
task may be waiting for a mutex. The D state is more frequent than
iowait, and it is more critital than S state. So it is worth to add a
metric to measure it.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-5-laoar.shao@gmail.com
The original prototype of the schedstats helpers are
update_stats_wait_*(struct cfs_rq *cfs_rq, struct sched_entity *se)
The cfs_rq in these helpers is used to get the rq_clock, and the se is
used to get the struct sched_statistics and the struct task_struct. In
order to make these helpers available by all sched classes, we can pass
the rq, sched_statistics and task_struct directly.
Then the new helpers are
update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
which are independent of fair sched class.
To avoid vmlinux growing too large or introducing ovehead when
!schedstat_enabled(), some new helpers after schedstat_enabled() are also
introduced, Suggested by Mel. These helpers are in sched/stats.c,
__update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
The size of vmlinux as follows,
Before After
Size of vmlinux 826308552 826304640
The size is a litte smaller as some functions are not inlined again after
the change.
I also compared the sched performance with 'perf bench sched pipe',
suggested by Mel. The result as followsi (in usecs/op),
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the prev version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no difference.
No functional change.
[lkp@intel.com: reported build failure in prev version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-4-laoar.shao@gmail.com
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.
After the patch, schestats are orgnized as follows,
struct task_struct {
...
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
...
struct sched_statistics stats;
...
};
Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -
struct sched_entity_stats {
struct sched_entity se;
struct sched_statistics stats;
} __no_randomize_layout;
Then with the se in a task_group, we can easily get the stats.
The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.
As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the earlier version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no impact on the sched performance.
No functional change.
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
Give reduced sleeper credit to SCHED_IDLE entities. As a result, woken
SCHED_IDLE entities will take longer to preempt normal entities.
The benefit of this change is to make it less likely that a newly woken
SCHED_IDLE entity will preempt a short-running normal entity before it
blocks.
We still give a small sleeper credit to SCHED_IDLE entities, so that
idle<->idle competition retains some fairness.
Example: With HZ=1000, spawned four threads affined to one cpu, one of
which was set to SCHED_IDLE. Without this patch, wakeup latency for the
SCHED_IDLE thread was ~1-2ms, with the patch the wakeup latency was
~5ms.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Link: https://lore.kernel.org/r/20210820010403.946838-5-joshdon@google.com
Use a small, non-scaled min granularity for SCHED_IDLE entities, when
competing with normal entities. This reduces the latency of getting
a normal entity back on cpu, at the expense of increased context
switch frequency of SCHED_IDLE entities.
The benefit of this change is to reduce the round-robin latency for
normal entities when competing with a SCHED_IDLE entity.
Example: on a machine with HZ=1000, spawned two threads, one of which is
SCHED_IDLE, and affined to one cpu. Without this patch, the SCHED_IDLE
thread runs for 4ms then waits for 1.4s. With this patch, it runs for
1ms and waits 340ms (as it round-robins with the other thread).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-4-joshdon@google.com
With PREEMPT_RT enabled all hrtimers callbacks will be invoked in
softirq mode unless they are explicitly marked as HRTIMER_MODE_HARD.
During boot kthread_bind() is used for the creation of per-CPU threads
and then hangs in wait_task_inactive() if the ksoftirqd is not
yet up and running.
The hang disappeared since commit
26c7295be0 ("kthread: Do not preempt current task if it is going to call schedule()")
but enabling function trace on boot reliably leads to the freeze on boot
behaviour again.
The timer in wait_task_inactive() can not be directly used by a user
interface to abuse it and create a mass wake up of several tasks at the
same time leading to long sections with disabled interrupts.
Therefore it is safe to make the timer HRTIMER_MODE_REL_HARD.
Switch the timer to HRTIMER_MODE_REL_HARD.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210826170408.vm7rlj7odslshwch@linutronix.de
Consider a system with some NOHZ-idle CPUs, such that
nohz.idle_cpus_mask = S
nohz.next_balance = T
When a new CPU k goes NOHZ idle (nohz_balance_enter_idle()), we end up
with:
nohz.idle_cpus_mask = S \U {k}
nohz.next_balance = T
Note that the nohz.next_balance hasn't changed - it won't be updated until
a NOHZ balance is triggered. This is problematic if the newly NOHZ idle CPU
has an earlier rq.next_balance than the other NOHZ idle CPUs, IOW if:
cpu_rq(k).next_balance < nohz.next_balance
In such scenarios, the existing nohz.next_balance will prevent any NOHZ
balance from happening, which itself will prevent nohz.next_balance from
being updated to this new cpu_rq(k).next_balance. Unnecessary load balance
delays of over 12ms caused by this were observed on an arm64 RB5 board.
Use the new nohz.needs_update flag to mark the presence of newly-idle CPUs
that need their rq->next_balance to be collated into
nohz.next_balance. Trigger a NOHZ_NEXT_KICK when the flag is set.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-3-valentin.schneider@arm.com
A following patch will trigger NOHZ idle balances as a means to update
nohz.next_balance. Vincent noted that blocked load updates can have
non-negligible overhead, which should be avoided if the intent is to only
update nohz.next_balance.
Add a new NOHZ balance kick flag, NOHZ_NEXT_KICK. Gate NOHZ blocked load
update by the presence of NOHZ_STATS_KICK - currently all NOHZ balance
kicks will have the NOHZ_STATS_KICK flag set, so no change in behaviour is
expected.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-2-valentin.schneider@arm.com
Since commit a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to
list on unthrottle") we add cfs_rqs with no runnable tasks but not fully
decayed into the load (leaf) list. We may ignore adding some ancestors
and therefore breaking tmp_alone_branch invariant. This broke LTP test
cfs_bandwidth01 and it was partially fixed in commit fdaba61ef8
("sched/fair: Ensure that the CFS parent is added after unthrottling").
I noticed the named test still fails even with the fix (but with low
probability, 1 in ~1000 executions of the test). The reason is when
bailing out of unthrottle_cfs_rq early, we may miss adding ancestors of
the unthrottled cfs_rq, thus, not joining tmp_alone_branch properly.
Fix this by adding ancestors if we notice the unthrottled cfs_rq was
added to the load list.
Fixes: a7b359fc6a ("sched/fair: Correctly insert cfs_rq's to list on unthrottle")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Odin Ugedal <odin@uged.al>
Link: https://lore.kernel.org/r/20210917153037.11176-1-mkoutny@suse.com
For !RT kernels RCU nest depth in __might_resched() is always expected to
be 0, but on RT kernels it can be non zero while the preempt count is
expected to be always 0.
Instead of playing magic games in interpreting the 'preempt_offset'
argument, rename it to 'offsets' and use the lower 8 bits for the expected
preempt count, allow to hand in the expected RCU nest depth in the upper
bits and adopt the __might_resched() code and related checks and printks.
The affected call sites are updated in subsequent steps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.243232823@linutronix.de
might_sleep() output is pretty informative, but can be confusing at times
especially with PREEMPT_RCU when the check triggers due to a voluntary
sleep inside a RCU read side critical section:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: migrate_disable+0x33/0xa0
in_atomic() is 0, but it still tells that preemption was disabled at
migrate_disable(), which is completely useless because preemption is not
disabled. But the interesting information to decode the above, i.e. the RCU
nesting depth, is not printed.
That becomes even more confusing when might_sleep() is invoked from
cond_resched_lock() within a RCU read side critical section. Here the
expected preemption count is 1 and not 0.
BUG: sleeping function called from invalid context at kernel/test.c:131
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
Preemption disabled at: test_cond_lock+0xf3/0x1c0
So in_atomic() is set, which is expected as the caller holds a spinlock,
but it's unclear why this is broken and the preempt disable IP is just
pointing at the correct place, i.e. spin_lock(), which is obviously not
helpful either.
Make that more useful in general:
- Print preempt_count() and the expected value
and for the CONFIG_PREEMPT_RCU case:
- Print the RCU read side critical section nesting depth
- Print the preempt disable IP only when preempt count
does not have the expected value.
So the might_sleep() dump from a within a preemptible RCU read side
critical section becomes:
BUG: sleeping function called from invalid context at kernel/test.c:110
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
and the cond_resched_lock() case becomes:
BUG: sleeping function called from invalid context at kernel/test.c:141
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 415, name: kworker/u112:52
preempt_count: 1, expected: 1
RCU nest depth: 1, expected: 0
which makes is pretty obvious what's going on. For all other cases the
preempt disable IP is still printed as before:
BUG: sleeping function called from invalid context at kernel/test.c: 156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0xbe/0xf8
BUG: sleeping function called from invalid context at kernel/test.c: 163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 0
Preemption disabled at:
[<ffffffff82b48326>] test_might_sleep+0x1e4/0x280
This also prepares to provide a better debugging output for RT enabled
kernels and their spinlock substitutions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210923165358.181022656@linutronix.de