GPU saves accumulated context runtime (in CS timestamp units) in PPHWSP
which will be useful for us in cases when we are not able to track context
busyness ourselves (like with GuC). Keep a copy of this in struct
intel_context from where it can be easily read even if the context is not
pinned.
v2:
(Chris)
* Do not store pphwsp address in intel_context.
* Log CS wrap-around.
* Simplify calculation by relying on integer wraparound.
v3:
* Include total/avg in traces and error state for debugging
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200216133620.394962-1-chris@chris-wilson.co.uk
Currently on execlists, we use a local hwsp for the kernel_context,
rather than the engine's HWSP, as this is the default for execlists.
However, seqno wrap requires allocating a new HWSP cacheline, and may
require pinning a new HWSP page in the GGTT. This operation requiring
pinning in the GGTT is not allowed within the kernel_context timeline,
as doing so may require re-entering the kernel_context in order to evict
from the GGTT. As we want to avoid requiring a new HWSP for the
kernel_context, we can use the permanently pinned engine's HWSP instead.
However to do so we must prevent the use of semaphores reading the
kernel_context's HWSP, as the use of semaphores do not support rollover
onto the same cacheline. Fortunately, the kernel_context is mostly
isolated, so unlikely to give benefit to semaphores.
Reported-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200210205722.794180-5-chris@chris-wilson.co.uk
If we rewind the RING_TAIL on a context, due to a preemption event, we
must force the context restore for the RING_TAIL update to be properly
handled. Rather than note which preemption events may cause us to rewind
the tail, compare the new request's tail with the previously submitted
RING_TAIL, as it turns out that timeslicing was causing unexpected
rewinds.
<idle>-0 0d.s2 1280851190us : __execlists_submission_tasklet: 0000:00:02.0 rcs0: expired last=130:4698, prio=3, hint=3
<idle>-0 0d.s2 1280851192us : __i915_request_unsubmit: 0000:00:02.0 rcs0: fence 66:119966, current 119964
<idle>-0 0d.s2 1280851195us : __i915_request_unsubmit: 0000:00:02.0 rcs0: fence 130:4698, current 4695
<idle>-0 0d.s2 1280851198us : __i915_request_unsubmit: 0000:00:02.0 rcs0: fence 130:4696, current 4695
^---- Note we unwind 2 requests from the same context
<idle>-0 0d.s2 1280851208us : __i915_request_submit: 0000:00:02.0 rcs0: fence 130:4696, current 4695
<idle>-0 0d.s2 1280851213us : __i915_request_submit: 0000:00:02.0 rcs0: fence 134:1508, current 1506
^---- But to apply the new timeslice, we have to replay the first request
before the new client can start -- the unexpected RING_TAIL rewind
<idle>-0 0d.s2 1280851219us : trace_ports: 0000:00:02.0 rcs0: submit { 130:4696*, 134:1508 }
synmark2-5425 2..s. 1280851239us : process_csb: 0000:00:02.0 rcs0: cs-irq head=5, tail=0
synmark2-5425 2..s. 1280851240us : process_csb: 0000:00:02.0 rcs0: csb[0]: status=0x00008002:0x00000000
^---- Preemption event for the ELSP update; note the lite-restore
synmark2-5425 2..s. 1280851243us : trace_ports: 0000:00:02.0 rcs0: preempted { 130:4698, 66:119966 }
synmark2-5425 2..s. 1280851246us : trace_ports: 0000:00:02.0 rcs0: promote { 130:4696*, 134:1508 }
synmark2-5425 2.... 1280851462us : __i915_request_commit: 0000:00:02.0 rcs0: fence 130:4700, current 4695
synmark2-5425 2.... 1280852111us : __i915_request_commit: 0000:00:02.0 rcs0: fence 130:4702, current 4695
synmark2-5425 2.Ns1 1280852296us : process_csb: 0000:00:02.0 rcs0: cs-irq head=0, tail=2
synmark2-5425 2.Ns1 1280852297us : process_csb: 0000:00:02.0 rcs0: csb[1]: status=0x00000814:0x00000000
synmark2-5425 2.Ns1 1280852299us : trace_ports: 0000:00:02.0 rcs0: completed { 130:4696!, 134:1508 }
synmark2-5425 2.Ns1 1280852301us : process_csb: 0000:00:02.0 rcs0: csb[2]: status=0x00000818:0x00000040
synmark2-5425 2.Ns1 1280852302us : trace_ports: 0000:00:02.0 rcs0: completed { 134:1508, 0:0 }
synmark2-5425 2.Ns1 1280852313us : process_csb: process_csb:2336 GEM_BUG_ON(!i915_request_completed(*execlists->active) && !reset_in_progress(execlists))
Fixes: 8ee36e048c ("drm/i915/execlists: Minimalistic timeslicing")
Referenecs: 82c69bf586 ("drm/i915/gt: Detect if we miss WaIdleLiteRestore")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://patchwork.freedesktop.org/patch/msgid/20200207211452.2860634-1-chris@chris-wilson.co.uk
On Braswell and Broxton (also known as Valleyview and Apollolake), we
need to serialise updates of the GGTT using the big stop_machine()
hammer. This has the side effect of appearing to lockdep as a possible
reclaim (since it uses the cpuhp mutex and that is tainted by per-cpu
allocations). However, we want to use vm->mutex (including ggtt->mutex)
from within the shrinker and so must avoid such possible taints. For this
purpose, we introduced the asynchronous vma binding and we can apply it
to the PIN_GLOBAL so long as take care to add the necessary waits for
the worker afterwards.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/211
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200130181710.2030251-3-chris@chris-wilson.co.uk
Now that we have offline error capture and can reset an engine from
inside an atomic context while also preserving the GPU state for
post-mortem analysis, it is time to handle error interrupts thrown by
the command parser.
This provides a much, much faster mechanism for us to detect known
problems than using heartbeats/hangchecks, and also provides a mechanism
for when those are disabled. However, it is limited to problems the HW
can detect in the CS and so not a complete solution for detecting lockups.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200128204318.4182039-2-chris@chris-wilson.co.uk
If we encounter a hang on a virtual engine, as we process the hang the
request may already have been moved back to the virtual engine (we are
processing the hang on the physical engine). We need to reclaim the
request from the virtual engine so that the locking is consistent and
local to the real engine on which we will hold the request for error
state capturing.
v2: Pull the reclamation into execlists_hold() and assert that cannot be
called from outside of the reset (i.e. with the tasklet disabled).
v3: Added selftest
v4: Drop the reference owned by the virtual engine
Fixes: 748317386a ("drm/i915/execlists: Offline error capture")
Testcase: igt/gem_exec_balancer/hang
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200122140243.495621-2-chris@chris-wilson.co.uk
Thanks to preempt-to-busy, we leave the request on the HW as we submit
the preemption request. This means that the request may complete at any
moment as we process HW events, and in particular the request may be
retired as we are planning to capture it for a preemption timeout.
Be more careful while obtaining the request to capture after a
preemption timeout, and check to see if it completed before we were able
to put it on the on-hold list. If we do see it did complete just before
we capture the request, proclaim the preemption-timeout a false positive
and pardon the reset as we should hit an arbitration point momentarily
and so be able to process the preemption.
Note that even after we move the request to be on hold it may be retired
(as the reset to stop the HW comes after), so we do require to hold our
own reference as we work on the request for capture (and all of the
peeking at state within the request needs to be carefully protected).
Fixes: 32ff621fd7 ("drm/i915/gt: Allow temporary suspension of inflight requests")
Closes: https://gitlab.freedesktop.org/drm/intel/issues/997
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200122140243.495621-1-chris@chris-wilson.co.uk
Currently, we skip error capture upon forced preemption. We apply forced
preemption when there is a higher priority request that should be
running but is being blocked, and we skip inline error capture so that
the preemption request is not further delayed by a user controlled
capture -- extending the denial of service.
However, preemption reset is also used for heartbeats and regular GPU
hangs. By skipping the error capture, we remove the ability to debug GPU
hangs.
In order to capture the error without delaying the preemption request
further, we can do an out-of-line capture by removing the guilty request
from the execution queue and scheduling a worker to dump that request.
When removing a request, we need to remove the entire context and all
descendants from the execution queue, so that they do not jump past.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/738
Fixes: 3a7a92aba8 ("drm/i915/execlists: Force preemption")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200116184754.2860848-3-chris@chris-wilson.co.uk
In order to support out-of-line error capture, we need to remove the
active request from HW and put it to one side while a worker compresses
and stores all the details associated with that request. (As that
compression may take an arbitrary user-controlled amount of time, we
want to let the engine continue running on other workloads while the
hanging request is dumped.) Not only do we need to remove the active
request, but we also have to remove its context and all requests that
were dependent on it (both in flight, queued and future submission).
Finally once the capture is complete, we need to be able to resubmit the
request and its dependents and allow them to execute.
v2: Replace stack recursion with a simple list.
v3: Check all the parents, not just the first, when searching for a
stuck ancestor!
References: https://gitlab.freedesktop.org/drm/intel/issues/738
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200116184754.2860848-2-chris@chris-wilson.co.uk
Merge Intel Gen9 graphics fix from Akeem Abodunrin:
"Insufficient control flow in certain data structures for some Intel
Processors with Intel Processor Graphics may allow an unauthenticated
user to potentially enable information disclosure via local access
This provides mitigation for Gen9 hardware. Note that Gen8 is not
impacted due to a previously implemented workaround.
The mitigation involves using an existing hardware feature to forcibly
clear down all EU state at each context switch"
* tag 'Intel-CVE-2019-14615' of emailed bundle from Akeem G Abodunrin <akeem.g.abodunrin@intel.com>:
drm/i915/gen9: Clear residual context state on context switch
Intel ID: PSIRT-TA-201910-001
CVEID: CVE-2019-14615
Intel GPU Hardware prior to Gen11 does not clear EU state
during a context switch. This can result in information
leakage between contexts.
For Gen8 and Gen9, hardware provides a mechanism for
fast cleardown of the EU state, by issuing a PIPE_CONTROL
with bit 27 set. We can use this in a context batch buffer
to explicitly cleardown the state on every context switch.
As this workaround is already in place for gen8, we can borrow
the code verbatim for Gen9.
Signed-off-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Signed-off-by: Akeem G Abodunrin <akeem.g.abodunrin@intel.com>
Cc: Kumar Valsan Prathap <prathap.kumar.valsan@intel.com>
Cc: Chris Wilson <chris.p.wilson@intel.com>
Cc: Balestrieri Francesco <francesco.balestrieri@intel.com>
Cc: Bloomfield Jon <jon.bloomfield@intel.com>
Cc: Dutt Sudeep <sudeep.dutt@intel.com>
Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk