There was a integer wraparound when mode_clock became too high,
and we didn't correct for the FEC overhead factor when dividing,
with the calculations breaking at HBR3.
As a result our calculated bpp was way too high, and the link width
limitation never came into effect.
Print out the resulting bpp calcululations as a sanity check, just
in case we ever have to debug it later on again.
We also used the wrong factor for FEC. While bspec mentions 2.4%,
all the calculations use 1/0.972261, and the same ratio should be
applied to data M/N as well, so use it there when FEC is enabled.
This fixes the FIFO underrun we are seeing with FEC enabled.
Changes since v2:
- Handle fec_enable in intel_link_compute_m_n, so only data M/N is adjusted. (Ville)
- Fix initial hardware readout for FEC. (Ville)
Changes since v3:
- Remove bogus fec_to_mode_clock. (Ville)
Changes since v4:
- Use the correct register for icl. (Ville)
- Split hw readout to a separate patch.
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Fixes: d9218c8f6c ("drm/i915/dp: Add helpers for Compressed BPP and Slice Count for DSC")
Cc: <stable@vger.kernel.org> # v5.0+
Cc: Manasi Navare <manasi.d.navare@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190925082110.17439-1-maarten.lankhorst@linux.intel.com
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
(cherry picked from commit ed06efb801)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link training is failling when running link at 2.7GHz and 1.62GHz and
following BSpec pll algorithm.
Comparing the values calculated and the ones from the reference table
it looks like MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO should not always set
to 5. For DP ports ICL mg pll algorithm sets it to 10 or 5 based on
div2 value, that matches with dkl hardcoded table.
So implementing this way as it proved to work in HW and leaving a
comment so we know why it do not match BSpec.
v4:
Using the same is_dp check as ICL, need testing on HDMI over tc port
Issue reported on BSpec 49204.
Reviewed-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: José Roberto de Souza <jose.souza@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190926210659.56317-3-jose.souza@intel.com
Added DKL Phy sequences and helpers functions to program voltage
swing, clock gating and dp mode.
It is not written in DP enabling sequence but "PHY Clockgating
programming" states that clock gating should be enabled after the
link training but doing so causes all the following trainings to fail
so not enabling it for.
v2:
Setting the right HIP_INDEX_REG bits (José)
v3:
Adding the meaning of each column of tgl_dkl_phy_ddi_translations
Adding if gen >= 12 on intel_ddi_hdmi_level() and
intel_ddi_pre_enable_hdmi() instead of reuse part of gen >= 11 if
v4:
Moved the DP_MODE lane programing to another patch as ICL also
needed it
Sharing icl_phy_set_clock_gating() and icl_program_mg_dp_mode() with
TGL as bits and programing as now it almost identical to ICL
BSpec: 49292
BSpec: 49190
Cc: Imre Deak <imre.deak@intel.com>
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Reviewed-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Clinton A Taylor <clinton.a.taylor@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190926210659.56317-2-jose.souza@intel.com
BSpec was updated(r146548) with a new MG_DP_MODE Programming table,
now taking in consideration the pin assignment and allowing us to
optimize power by shutting down available but not needed lanes.
It was tested on ICL and TGL, with adaptors that used pin assignment
C and B, reversing the connector and going to different modes testing
the not needed lane shutdown.
v5:
Using crtc_state->lane_count instead of dp.lane_count
BSpec: 21735
BSpec: 49292
Cc: Imre Deak <imre.deak@intel.com>
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Reviewed-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Clinton A Taylor <clinton.a.taylor@intel.com>
Signed-off-by: José Roberto de Souza <jose.souza@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190926210659.56317-1-jose.souza@intel.com
According to the bspec, GLK/CNL have a smaller small joiner RAM buffer
than ICL+. This feels like something that could easily change again on
future platforms, so let's just add a function to return the proper
per-platform buffer size. That may also slightly simplify the upcoming
bigjoiner enabling.
Since we have to change intel_dp_dsc_get_output_bpp()'s signature to
pass the dev_priv down for the platform check, let's take the
opportunity to also make that function static since it isn't used
outside the intel_dp file.
v2: Minor rebase on top of Maarten's changes.
Bspec: 20388
Bspec: 49259
Cc: Manasi Navare <manasi.d.navare@intel.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Manasi Navare <manasi.d.navare@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190925234542.24289-1-matthew.d.roper@intel.com
There was a integer wraparound when mode_clock became too high,
and we didn't correct for the FEC overhead factor when dividing,
with the calculations breaking at HBR3.
As a result our calculated bpp was way too high, and the link width
limitation never came into effect.
Print out the resulting bpp calcululations as a sanity check, just
in case we ever have to debug it later on again.
We also used the wrong factor for FEC. While bspec mentions 2.4%,
all the calculations use 1/0.972261, and the same ratio should be
applied to data M/N as well, so use it there when FEC is enabled.
This fixes the FIFO underrun we are seeing with FEC enabled.
Changes since v2:
- Handle fec_enable in intel_link_compute_m_n, so only data M/N is adjusted. (Ville)
- Fix initial hardware readout for FEC. (Ville)
Changes since v3:
- Remove bogus fec_to_mode_clock. (Ville)
Changes since v4:
- Use the correct register for icl. (Ville)
- Split hw readout to a separate patch.
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Fixes: d9218c8f6c ("drm/i915/dp: Add helpers for Compressed BPP and Slice Count for DSC")
Cc: <stable@vger.kernel.org> # v5.0+
Cc: Manasi Navare <manasi.d.navare@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190925082110.17439-1-maarten.lankhorst@linux.intel.com
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
If platform supports and has modular FIA is enabled, the registers
bits also change, example: reading TC3 registers with modular FIA
enabled, driver should read from FIA2 but with TC1 bits offsets.
It is described in BSpec 50231 for DFLEXDPSP, other registers don't
have the BSpec description but testing in real hardware have proven
that it had moved for all other registers too.
v2:
- Caching index in tc_phy_fia_idx, instead of calculate it each time
v3:
- Setting tc_phy_fia and tc_phy_fia_idx in the same function
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: José Roberto de Souza <jose.souza@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190920205810.211048-3-jose.souza@intel.com
Gamma lut programming can be programmed using DSB
where bulk register programming can be done using indexed
register write which takes number of data and the mmio offset
to be written.
Currently enabled for 12-bit gamma LUT which is enabled by
default and later 8-bit/10-bit will be enabled in future
based on need.
v1: Initial version.
v2: Directly call dsb-api at callsites. (Jani)
v3:
- modified the code as per single dsb instance per crtc. (Shashank)
- Added dsb get/put call in platform specific load_lut hook. (Jani)
- removed dsb pointer from dev_priv. (Jani)
v4: simplified code by dropping ref-count implementation. (Shashank)
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Shashank Sharma <shashank.sharma@intel.com>
Signed-off-by: Animesh Manna <animesh.manna@intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/20190920115930.27829-9-animesh.manna@intel.com
This patch adds a function, which will internally get the gem buffer
for DSB engine. The GEM buffer is from global GTT, and is mapped into
CPU domain, contains the data + opcode to be feed to DSB engine.
v1: Initial version.
v2:
- removed some unwanted code. (Chris)
- Used i915_gem_object_create_internal instead of _shmem. (Chris)
- cmd_buf_tail removed and can be derived through vma object. (Chris)
v3: vma realeased if i915_gem_object_pin_map() failed. (Shashank)
v4: for simplification and based on current usage added single dsb
object in intel_crtc. (Shashank)
v5: seting NULL to cmd_buf moved outside of mutex in dsb-put(). (Shashank)
v6:
- refcount machanism added.
- Used atomic_add_return and atomic_dec_and_test instead of
atomic_inc and atomic_dec. (Jani)
Cc: Imre Deak <imre.deak@intel.com>
Cc: Michel Thierry <michel.thierry@intel.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Shashank Sharma <shashank.sharma@intel.com>
Signed-off-by: Animesh Manna <animesh.manna@intel.com>
[Jani: added #include <linux/types.h> while pushing]
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190920115930.27829-3-animesh.manna@intel.com
For icl+, have hw read out to create hw blob of gamma
lut values. icl+ platforms supports multi segmented gamma
mode by default, add hw lut creation for this mode.
This will be used to validate gamma programming using dsb
(display state buffer) which is a tgl specific feature.
Major change done-removal of readouts of coarse and fine segments
because PAL_PREC_DATA register isn't giving propoer values.
State checker limited only to "fine segment"
v2: -readout code for multisegmented gamma has to come
up with some intermediate entries that aren't preserved
in hardware (Jani N)
-linear interpolation (Ville)
-moved common code to check gamma_enable to specific funcs,
since icl doesn't support that
v3: -use u16 instead of __u16 [Jani N]
-used single lut [Jani N]
-improved and more readable for loops [Jani N]
-read values directly to actual locations and then fill gaps [Jani N]
-moved cleaning to patch 1 [Jani N]
-renamed icl_read_lut_multi_seg() to icl_read_lut_multi_segment to
make it similar to icl_load_luts()
-renamed icl_compute_interpolated_gamma_blob() to
icl_compute_interpolated_gamma_lut_values() more sensible, I guess
v4: -removed interpolated func for creating gamma lut values
-removed readouts of fine and coarse segments, failure to read PAL_PREC_DATA
correctly
Signed-off-by: Swati Sharma <swati2.sharma@intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/1569096654-24433-3-git-send-email-swati2.sharma@intel.com
On ILK-IVB the pipe colorspace is configured via PIPECONF
(as opposed to PIPEMISC in BDW+). Let's configure+readout
that stuff correctly.
Enabling YCbCr 4:4:4 output will now be a simple matter of
setting crtc_state->output_format appropriately in the encoder
.compute_config(). However, when we do that we must be
aware of the fact that YCbCr DP output doesn't seem to work
on ILK (resulting image is totally garbled), but on SNB+
it works fine. However HDMI YCbCr output does work correctly
even on ILK.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190718145053.25808-13-ville.syrjala@linux.intel.com
Reviewed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Prepare the pipe csc for YCbCr output on ilk/snb. The main difference
to IVB+ is the lack of explicit post offsets, and instead we must
configure the CSC info RGB->YUV mode (which takes care of offsetting
Cb/Cr properly) and enable the "black screen offset" bit to add the
required offset to Y.
And while at it throw some comments around the bit defines to
document which platforms have which bits.
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190718145053.25808-12-ville.syrjala@linux.intel.com
Reviewed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>