Commit Graph

843 Commits

Author SHA1 Message Date
Tejun Heo
c2b42d3cad memcg: convert mem_cgroup->under_oom from atomic_t to int
memcg->under_oom tracks whether the memcg is under OOM conditions and is
an atomic_t counter managed with mem_cgroup_[un]mark_under_oom().  While
atomic_t appears to be simple synchronization-wise, when used as a
synchronization construct like here, it's trickier and more error-prone
due to weak memory ordering rules, especially around atomic_read(), and
false sense of security.

For example, both non-trivial read sites of memcg->under_oom are a bit
problematic although not being actually broken.

* mem_cgroup_oom_register_event()

  It isn't explicit what guarantees the memory ordering between event
  addition and memcg->under_oom check.  This isn't broken only because
  memcg_oom_lock is used for both event list and memcg->oom_lock.

* memcg_oom_recover()

  The lockless test doesn't have any explanation why this would be
  safe.

mem_cgroup_[un]mark_under_oom() are very cold paths and there's no point
in avoiding locking memcg_oom_lock there.  This patch converts
memcg->under_oom from atomic_t to int, puts their modifications under
memcg_oom_lock and documents why the lockless test in
memcg_oom_recover() is safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00
Tejun Heo
f4b90b70b7 memcg: remove unused mem_cgroup->oom_wakeups
Since commit 4942642080 ("mm: memcg: handle non-error OOM situations
more gracefully"), nobody uses mem_cgroup->oom_wakeups.  Remove it.

While at it, also fold memcg_wakeup_oom() into memcg_oom_recover() which
is its only user.  This cleanup was suggested by Michal.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00
Johannes Weiner
dc56401fc9 mm: oom_kill: simplify OOM killer locking
The zonelist locking and the oom_sem are two overlapping locks that are
used to serialize global OOM killing against different things.

The historical zonelist locking serializes OOM kills from allocations with
overlapping zonelists against each other to prevent killing more tasks
than necessary in the same memory domain.  Only when neither tasklists nor
zonelists from two concurrent OOM kills overlap (tasks in separate memcgs
bound to separate nodes) are OOM kills allowed to execute in parallel.

The younger oom_sem is a read-write lock to serialize OOM killing against
the PM code trying to disable the OOM killer altogether.

However, the OOM killer is a fairly cold error path, there is really no
reason to optimize for highly performant and concurrent OOM kills.  And
the oom_sem is just flat-out redundant.

Replace both locking schemes with a single global mutex serializing OOM
kills regardless of context.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Johannes Weiner
16e951966f mm: oom_kill: clean up victim marking and exiting interfaces
Rename unmark_oom_victim() to exit_oom_victim().  Marking and unmarking
are related in functionality, but the interface is not symmetrical at
all: one is an internal OOM killer function used during the killing, the
other is for an OOM victim to signal its own death on exit later on.
This has locking implications, see follow-up changes.

While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which
is easier on the eye.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Johannes Weiner
f371763a79 mm: memcontrol: fix false-positive VM_BUG_ON() on -rt
On -rt, the VM_BUG_ON(!irqs_disabled()) triggers inside the memcg
swapout path because the spin_lock_irq(&mapping->tree_lock) in the
caller doesn't actually disable the hardware interrupts - which is fine,
because on -rt the tophalves run in process context and so we are still
safe from preemption while updating the statistics.

Remove the VM_BUG_ON() but keep the comment of what we rely on.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Clark Williams <williams@redhat.com>
Cc: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-10 16:43:43 -07:00
Vladimir Davydov
7d638093d4 memcg: do not call reclaim if !__GFP_WAIT
When trimming memcg consumption excess (see memory.high), we call
try_to_free_mem_cgroup_pages without checking if we are allowed to sleep
in the current context, which can result in a deadlock.  Fix this.

Fixes: 241994ed86 ("mm: memcontrol: default hierarchy interface for memory")
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-10 16:43:43 -07:00
Jason Low
4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Vladimir Davydov
2564f683d1 memcg: remove obsolete comment
Low and high watermarks, as they defined in the TODO to the mem_cgroup
struct, have already been implemented by Johannes, so remove the stale
comment.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:16 -07:00
Vladimir Davydov
adbe427b92 memcg: zap mem_cgroup_lookup()
mem_cgroup_lookup() is a wrapper around mem_cgroup_from_id(), which
checks that id != 0 before issuing the function call.  Today, there is
no point in this additional check apart from optimization, because there
is no css with id <= 0, so that css_from_id, called by
mem_cgroup_from_id, will return NULL for any id <= 0.

Since mem_cgroup_from_id is only called from mem_cgroup_lookup, let us
zap mem_cgroup_lookup, substituting calls to it with mem_cgroup_from_id
and moving the check if id > 0 to css_from_id.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:16 -07:00
Balasubramani Vivekanandan
2415b9f5cb memcg: print cgroup information when system panics due to panic_on_oom
If kernel panics due to oom, caused by a cgroup reaching its limit, when
'compulsory panic_on_oom' is enabled, then we will only see that the OOM
happened because of "compulsory panic_on_oom is enabled" but this doesn't
tell the difference between mempolicy and memcg.  And dumping system wide
information is plain wrong and more confusing.  This patch provides the
information of the cgroup whose limit triggerred panic

Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:05 -07:00
Chen Gang
b1b0deabbf mm: memcontrol: let mem_cgroup_move_account() have effect only if MMU enabled
When !MMU, it will report warning. The related warning with allmodconfig
under c6x:

    CC      mm/memcontrol.o
  mm/memcontrol.c:2802:12: warning: 'mem_cgroup_move_account' defined but not used [-Wunused-function]
   static int mem_cgroup_move_account(struct page *page,
              ^

Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:04 -07:00
Johannes Weiner
1575e68b3c mm: memcontrol: update copyright notice
Add myself to the list of copyright holders.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:00 -07:00
Vladimir Davydov
7feee590bb memcg: disable hierarchy support if bound to the legacy cgroup hierarchy
If the memory cgroup controller is initially mounted in the scope of the
default cgroup hierarchy and then remounted to a legacy hierarchy, it will
still have hierarchy support enabled, which is incorrect.  We should
disable hierarchy support if bound to the legacy cgroup hierarchy.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Johannes Weiner
d2973697b3 mm: memcontrol: use "max" instead of "infinity" in control knobs
The memcg control knobs indicate the highest possible value using the
symbolic name "infinity", which is long and awkward to type.

Switch to the string "max", which is just as descriptive but shorter and
sweeter.

This changes a user interface, so do it before the release and before
the development flag is dropped from the default hierarchy.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Michal Hocko
4e54dede38 memcg: fix low limit calculation
A memcg is considered low limited even when the current usage is equal to
the low limit.  This leads to interesting side effects e.g.
groups/hierarchies with no memory accounted are considered protected and
so the reclaim will emit MEMCG_LOW event when encountering them.

Another and much bigger issue was reported by Joonsoo Kim.  He has hit a
NULL ptr dereference with the legacy cgroup API which even doesn't have
low limit exposed.  The limit is 0 by default but the initial check fails
for memcg with 0 consumption and parent_mem_cgroup() would return NULL if
use_hierarchy is 0 and so page_counter_read would try to dereference NULL.

I suppose that the current implementation is just an overlook because the
documentation in Documentation/cgroups/unified-hierarchy.txt says:

  "The memory.low boundary on the other hand is a top-down allocated
  reserve.  A cgroup enjoys reclaim protection when it and all its
  ancestors are below their low boundaries"

Fix the usage and the low limit comparision in mem_cgroup_low accordingly.

Fixes: 241994ed86 (mm: memcontrol: default hierarchy interface for memory)
Reported-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Vladimir Davydov
f48b80a5e2 memcg: cleanup static keys decrement
Move memcg_socket_limit_enabled decrement to tcp_destroy_cgroup (called
from memcg_destroy_kmem -> mem_cgroup_sockets_destroy) and zap a bunch of
wrapper functions.

Although this patch moves static keys decrement from __mem_cgroup_free to
mem_cgroup_css_free, it does not introduce any functional changes, because
the keys are incremented on setting the limit (tcp or kmem), which can
only happen after successful mem_cgroup_css_online.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
2788cf0c40 memcg: reparent list_lrus and free kmemcg_id on css offline
Now, the only reason to keep kmemcg_id till css free is list_lru, which
uses it to distribute elements between per-memcg lists.  However, it can
be easily sorted out - we only need to change kmemcg_id of an offline
cgroup to its parent's id, making further list_lru_add()'s add elements to
the parent's list, and then move all elements from the offline cgroup's
list to the one of its parent.  It will work, because a racing
list_lru_del() does not need to know the list it is deleting the element
from.  It can decrement the wrong nr_items counter though, but the ongoing
reparenting will fix it.  After list_lru reparenting is done we are free
to release kmemcg_id saving a valuable slot in a per-memcg array for new
cgroups.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
2a4db7eb93 memcg: free memcg_caches slot on css offline
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only
on allocations, so there is no need to have the array entries set until
css free - we can clear them on css offline.  This will allow us to reuse
array entries more efficiently and avoid costly array relocations.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
f7ce3190c4 slab: embed memcg_cache_params to kmem_cache
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it.  The rationale is to save memory when kmem
accounting is disabled.  However, the memcg_cache_params has shrivelled
drastically since it was first introduced:

* Initially:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct kmem_cache *memcg_caches[0];
		struct {
			struct mem_cgroup *memcg;
			struct list_head list;
			struct kmem_cache *root_cache;
			bool dead;
			atomic_t nr_pages;
			struct work_struct destroy;
		};
	};
};

* Now:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct {
			struct rcu_head rcu_head;
			struct kmem_cache *memcg_caches[0];
		};
		struct {
			struct mem_cgroup *memcg;
			struct kmem_cache *root_cache;
		};
	};
};

So the memory saving does not seem to be a clear win anymore.

OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch.  That said, let
us embed it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
60d3fd32a7 list_lru: introduce per-memcg lists
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure.  Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.

This patch does the trick.  It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to.  So now
the list_lru structure is not just per node, but per node and per memcg.

Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware.  Otherwise (i.e.  if initialized with old list_lru_init), the
list_lru won't have per memcg lists.

Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased.  So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.

The locking is implemented in a manner similar to lruvecs, i.e.  we have
one lock per node that protects all lists (both global and per cgroup) on
the node.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
05257a1a3d memcg: add rwsem to synchronize against memcg_caches arrays relocation
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks.  As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size).  This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.

To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem.  The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates.  Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.

Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex.  However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
dbcf73e26c memcg: rename some cache id related variables
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome.  Also it doesn't point anyhow that
it's related to kmem/caches stuff.  So let's rename it to
memcg_nr_cache_ids.  It's concise and points us directly to
memcg_cache_id.

Also, rename kmem_limited_groups to memcg_cache_ida.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
cb731d6c62 vmscan: per memory cgroup slab shrinkers
This patch adds SHRINKER_MEMCG_AWARE flag.  If a shrinker has this flag
set, it will be called per memory cgroup.  The memory cgroup to scan
objects from is passed in shrink_control->memcg.  If the memory cgroup
is NULL, a memcg aware shrinker is supposed to scan objects from the
global list.  Unaware shrinkers are only called on global pressure with
memcg=NULL.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Naoya Horiguchi
26bcd64aa9 memcg: cleanup preparation for page table walk
pagewalk.c can handle vma in itself, so we don't have to pass vma via
walk->private.  And both of mem_cgroup_count_precharge() and
mem_cgroup_move_charge() do for each vma loop themselves, but now it's
done in pagewalk.c, so let's clean up them.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
Johannes Weiner
21afa38eed mm: memcontrol: consolidate swap controller code
The swap controller code is scattered all over the file.  Gather all
the code that isn't directly needed by the memory controller at the
end of the file in its own CONFIG_MEMCG_SWAP section.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
95a045f63d mm: memcontrol: consolidate memory controller initialization
The initialization code for the per-cpu charge stock and the soft
limit tree is compact enough to inline it into mem_cgroup_init().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
9c608dbe6a mm: memcontrol: simplify soft limit tree init code
- No need to test the node for N_MEMORY.  node_online() is enough for
  node fallback to work in slab, use NUMA_NO_NODE for everything else.

- Remove the BUG_ON() for allocation failure.  A NULL pointer crash is
  just as descriptive, and the absent return value check is obvious.

- Move local variables to the inner-most blocks.

- Point to the tree structure after its initialized, not before, it's
  just more logical that way.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Michal Hocko
c32b3cbe0d oom, PM: make OOM detection in the freezer path raceless
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter.  The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.

Tejun wasn't happy about this partial solution though and insisted on a
full solution.  That requires the full OOM and freezer's task freezing
exclusion, though.  This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.

oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.

oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations.  Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp.  unmark_oom_victim.  The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.

The page fault path is covered now as well although it was assumed to be
safe before.  As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here.  Same applies
to the memcg OOM killer.

out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation.  The page allocation
path simply fails the allocation same as before.  The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.

Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because

	- the victim cannot loop in the page fault handler (it would die
	  on the way out from the exception)
	- it cannot loop in the page allocator because all the further
	  allocation would fail and __GFP_NOFAIL allocations are not
	  acceptable at this stage
	- it shouldn't be blocked on any locks held by frozen tasks
	  (try_to_freeze expects lockless context) and kernel threads and
	  work queues are not frozen yet

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Michal Hocko
49550b6055 oom: add helpers for setting and clearing TIF_MEMDIE
This patchset addresses a race which was described in the changelog for
5695be142e ("OOM, PM: OOM killed task shouldn't escape PM suspend"):

: PM freezer relies on having all tasks frozen by the time devices are
: getting frozen so that no task will touch them while they are getting
: frozen.  But OOM killer is allowed to kill an already frozen task in order
: to handle OOM situtation.  In order to protect from late wake ups OOM
: killer is disabled after all tasks are frozen.  This, however, still keeps
: a window open when a killed task didn't manage to die by the time
: freeze_processes finishes.

The original patch hasn't closed the race window completely because that
would require a more complex solution as it can be seen by this patchset.

The primary motivation was to close the race condition between OOM killer
and PM freezer _completely_.  As Tejun pointed out, even though the race
condition is unlikely the harder it would be to debug weird bugs deep in
the PM freezer when the debugging options are reduced considerably.  I can
only speculate what might happen when a task is still runnable
unexpectedly.

On a plus side and as a side effect the oom enable/disable has a better
(full barrier) semantic without polluting hot paths.

I have tested the series in KVM with 100M RAM:
- many small tasks (20M anon mmap) which are triggering OOM continually
- s2ram which resumes automatically is triggered in a loop
	echo processors > /sys/power/pm_test
	while true
	do
		echo mem > /sys/power/state
		sleep 1s
	done
- simple module which allocates and frees 20M in 8K chunks. If it sees
  freezing(current) then it tries another round of allocation before calling
  try_to_freeze
- debugging messages of PM stages and OOM killer enable/disable/fail added
  and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before
  it wakes up waiters.
- rebased on top of the current mmotm which means some necessary updates
  in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but
  I think this should be OK because __thaw_task shouldn't interfere with any
  locking down wake_up_process. Oleg?

As expected there are no OOM killed tasks after oom is disabled and
allocations requested by the kernel thread are failing after all the tasks
are frozen and OOM disabled.  I wasn't able to catch a race where
oom_killer_disable would really have to wait but I kinda expected the race
is really unlikely.

[  242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB
[  243.628071] Unmarking 2992 OOM victim. oom_victims: 1
[  243.636072] (elapsed 2.837 seconds) done.
[  243.641985] Trying to disable OOM killer
[  243.643032] Waiting for concurent OOM victims
[  243.644342] OOM killer disabled
[  243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done.
[  243.652983] Suspending console(s) (use no_console_suspend to debug)
[  243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010
[...]
[  243.992600] PM: suspend of devices complete after 336.667 msecs
[  243.993264] PM: late suspend of devices complete after 0.660 msecs
[  243.994713] PM: noirq suspend of devices complete after 1.446 msecs
[  243.994717] ACPI: Preparing to enter system sleep state S3
[  243.994795] PM: Saving platform NVS memory
[  243.994796] Disabling non-boot CPUs ...

The first 2 patches are simple cleanups for OOM.  They should go in
regardless the rest IMO.

Patches 3 and 4 are trivial printk -> pr_info conversion and they should
go in ditto.

The main patch is the last one and I would appreciate acks from Tejun and
Rafael.  I think the OOM part should be OK (except for __thaw_task vs.
task_lock where a look from Oleg would appreciated) but I am not so sure I
haven't screwed anything in the freezer code.  I have found several
surprises there.

This patch (of 5):

This patch is just a preparatory and it doesn't introduce any functional
change.

Note:
I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to
wait for the oom victim and to prevent from new killing. This is
just a side effect of the flag. The primary meaning is to give the oom
victim access to the memory reserves and that shouldn't be necessary
here.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
1dfab5abcd mm: memcontrol: fold move_anon() and move_file()
Turn the move type enum into flags and give the flags field a shorter
name.  Once that is done, move_anon() and move_file() are simple enough to
just fold them into the callsites.

[akpm@linux-foundation.org: tweak MOVE_MASK definition, per Michal]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
241994ed86 mm: memcontrol: default hierarchy interface for memory
Introduce the basic control files to account, partition, and limit
memory using cgroups in default hierarchy mode.

This interface versioning allows us to address fundamental design
issues in the existing memory cgroup interface, further explained
below.  The old interface will be maintained indefinitely, but a
clearer model and improved workload performance should encourage
existing users to switch over to the new one eventually.

The control files are thus:

  - memory.current shows the current consumption of the cgroup and its
    descendants, in bytes.

  - memory.low configures the lower end of the cgroup's expected
    memory consumption range.  The kernel considers memory below that
    boundary to be a reserve - the minimum that the workload needs in
    order to make forward progress - and generally avoids reclaiming
    it, unless there is an imminent risk of entering an OOM situation.

  - memory.high configures the upper end of the cgroup's expected
    memory consumption range.  A cgroup whose consumption grows beyond
    this threshold is forced into direct reclaim, to work off the
    excess and to throttle new allocations heavily, but is generally
    allowed to continue and the OOM killer is not invoked.

  - memory.max configures the hard maximum amount of memory that the
    cgroup is allowed to consume before the OOM killer is invoked.

  - memory.events shows event counters that indicate how often the
    cgroup was reclaimed while below memory.low, how often it was
    forced to reclaim excess beyond memory.high, how often it hit
    memory.max, and how often it entered OOM due to memory.max.  This
    allows users to identify configuration problems when observing a
    degradation in workload performance.  An overcommitted system will
    have an increased rate of low boundary breaches, whereas increased
    rates of high limit breaches, maximum hits, or even OOM situations
    will indicate internally overcommitted cgroups.

For existing users of memory cgroups, the following deviations from
the current interface are worth pointing out and explaining:

  - The original lower boundary, the soft limit, is defined as a limit
    that is per default unset.  As a result, the set of cgroups that
    global reclaim prefers is opt-in, rather than opt-out.  The costs
    for optimizing these mostly negative lookups are so high that the
    implementation, despite its enormous size, does not even provide
    the basic desirable behavior.  First off, the soft limit has no
    hierarchical meaning.  All configured groups are organized in a
    global rbtree and treated like equal peers, regardless where they
    are located in the hierarchy.  This makes subtree delegation
    impossible.  Second, the soft limit reclaim pass is so aggressive
    that it not just introduces high allocation latencies into the
    system, but also impacts system performance due to overreclaim, to
    the point where the feature becomes self-defeating.

    The memory.low boundary on the other hand is a top-down allocated
    reserve.  A cgroup enjoys reclaim protection when it and all its
    ancestors are below their low boundaries, which makes delegation
    of subtrees possible.  Secondly, new cgroups have no reserve per
    default and in the common case most cgroups are eligible for the
    preferred reclaim pass.  This allows the new low boundary to be
    efficiently implemented with just a minor addition to the generic
    reclaim code, without the need for out-of-band data structures and
    reclaim passes.  Because the generic reclaim code considers all
    cgroups except for the ones running low in the preferred first
    reclaim pass, overreclaim of individual groups is eliminated as
    well, resulting in much better overall workload performance.

  - The original high boundary, the hard limit, is defined as a strict
    limit that can not budge, even if the OOM killer has to be called.
    But this generally goes against the goal of making the most out of
    the available memory.  The memory consumption of workloads varies
    during runtime, and that requires users to overcommit.  But doing
    that with a strict upper limit requires either a fairly accurate
    prediction of the working set size or adding slack to the limit.
    Since working set size estimation is hard and error prone, and
    getting it wrong results in OOM kills, most users tend to err on
    the side of a looser limit and end up wasting precious resources.

    The memory.high boundary on the other hand can be set much more
    conservatively.  When hit, it throttles allocations by forcing
    them into direct reclaim to work off the excess, but it never
    invokes the OOM killer.  As a result, a high boundary that is
    chosen too aggressively will not terminate the processes, but
    instead it will lead to gradual performance degradation.  The user
    can monitor this and make corrections until the minimal memory
    footprint that still gives acceptable performance is found.

    In extreme cases, with many concurrent allocations and a complete
    breakdown of reclaim progress within the group, the high boundary
    can be exceeded.  But even then it's mostly better to satisfy the
    allocation from the slack available in other groups or the rest of
    the system than killing the group.  Otherwise, memory.max is there
    to limit this type of spillover and ultimately contain buggy or
    even malicious applications.

  - The original control file names are unwieldy and inconsistent in
    many different ways.  For example, the upper boundary hit count is
    exported in the memory.failcnt file, but an OOM event count has to
    be manually counted by listening to memory.oom_control events, and
    lower boundary / soft limit events have to be counted by first
    setting a threshold for that value and then counting those events.
    Also, usage and limit files encode their units in the filename.
    That makes the filenames very long, even though this is not
    information that a user needs to be reminded of every time they
    type out those names.

    To address these naming issues, as well as to signal clearly that
    the new interface carries a new configuration model, the naming
    conventions in it necessarily differ from the old interface.

  - The original limit files indicate the state of an unset limit with
    a very high number, and a configured limit can be unset by echoing
    -1 into those files.  But that very high number is implementation
    and architecture dependent and not very descriptive.  And while -1
    can be understood as an underflow into the highest possible value,
    -2 or -10M etc. do not work, so it's not inconsistent.

    memory.low, memory.high, and memory.max will use the string
    "infinity" to indicate and set the highest possible value.

[akpm@linux-foundation.org: use seq_puts() for basic strings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
650c5e5654 mm: page_counter: pull "-1" handling out of page_counter_memparse()
The unified hierarchy interface for memory cgroups will no longer use "-1"
to mean maximum possible resource value.  In preparation for this, make
the string an argument and let the caller supply it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Greg Thelen
0ca44b148e memcg: add BUILD_BUG_ON() for string tables
Use BUILD_BUG_ON() to compile assert that memcg string tables are in sync
with corresponding enums.  There aren't currently any issues with these
tables.  This is just defensive.

Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Vladimir Davydov
90cbc25088 vmscan: force scan offline memory cgroups
Since commit b2052564e6 ("mm: memcontrol: continue cache reclaim from
offlined groups") pages charged to a memory cgroup are not reparented when
the cgroup is removed.  Instead, they are supposed to be reclaimed in a
regular way, along with pages accounted to online memory cgroups.

However, an lruvec of an offline memory cgroup will sooner or later get so
small that it will be scanned only at low scan priorities (see
get_scan_count()).  Therefore, if there are enough reclaimable pages in
big lruvecs, pages accounted to offline memory cgroups will never be
scanned at all, wasting memory.

Fix this by unconditionally forcing scanning dead lruvecs from kswapd.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
6de226191d mm: memcontrol: track move_lock state internally
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags.  Simplify the API by tracking it in the memcg.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:00 -08:00
Vladimir Davydov
d5b3cf7139 memcg: zap memcg_slab_caches and memcg_slab_mutex
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup.  Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed.  The
list is protected by memcg_slab_mutex.  The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.

However, we can perfectly get on without these two.  To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex.  This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.

Apart from this nice cleanup, it also:

 - assures that rcu_barrier() is called once at max when a root cache is
   destroyed or a memory cgroup is freed, no matter how many caches have
   SLAB_DESTROY_BY_RCU flag set;

 - fixes the race between kmem_cache_destroy and kmem_cache_create that
   exists, because memcg_cleanup_cache_params, which is called from
   kmem_cache_destroy after checking that kmem_cache->refcount=0,
   releases the slab_mutex, which gives kmem_cache_create a chance to
   make an alias to a cache doomed to be destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
3e0350a364 memcg: zap memcg_name argument of memcg_create_kmem_cache
Instead of passing the name of the memory cgroup which the cache is
created for in the memcg_name_argument, let's obtain it immediately in
memcg_create_kmem_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
dbf22eb6d8 memcg: zap __memcg_{charge,uncharge}_slab
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Kirill A. Shutemov
0661a33611 mm: remove rest usage of VM_NONLINEAR and pte_file()
One bit in ->vm_flags is unused now!

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:31 -08:00
Michal Hocko
f5e03a4989 memcg, shmem: fix shmem migration to use lrucare
It has been reported that 965GM might trigger

  VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage)

in mem_cgroup_migrate when shmem wants to replace a swap cache page
because of shmem_should_replace_page (the page is allocated from an
inappropriate zone).  shmem_replace_page expects that the oldpage is not
on LRU list and calls mem_cgroup_migrate without lrucare.  This is
obviously incorrect because swapcache pages might be on the LRU list
(e.g. swapin readahead page).

Fix this by enabling lrucare for the migration in shmem_replace_page.
Also clarify that lrucare should be used even if one of the pages might
be on LRU list.

The BUG_ON will trigger only when CONFIG_DEBUG_VM is enabled but even
without that the migration code might leave the old page on an
inappropriate memcg' LRU which is not that critical because the page
would get removed with its last reference but it is still confusing.

Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Reported-by: Dave Airlie <airlied@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 13:35:29 -08:00
Greg Thelen
0346dadbf0 memcg: remove extra newlines from memcg oom kill log
Commit e61734c55c ("cgroup: remove cgroup->name") added two extra
newlines to memcg oom kill log messages.  This makes dmesg hard to read
and parse.  The issue affects 3.15+.

Example:

  Task in /t                          <<< extra #1
   killed as a result of limit of /t
                                      <<< extra #2
  memory: usage 102400kB, limit 102400kB, failcnt 274712

Remove the extra newlines from memcg oom kill messages, so the messages
look like:

  Task in /t killed as a result of limit of /t
  memory: usage 102400kB, limit 102400kB, failcnt 240649

Fixes: e61734c55c ("cgroup: remove cgroup->name")
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-26 13:37:18 -08:00
Vladimir Davydov
4bdfc1c4a9 memcg: fix destination cgroup leak on task charges migration
We are supposed to take one css reference per each memory page and per
each swap entry accounted to a memory cgroup.  However, during task
charges migration we take a reference to the destination cgroup twice
per each swap entry: first in mem_cgroup_do_precharge()->try_charge()
and then in mem_cgroup_move_swap_account(), permanently leaking the
destination cgroup.

The hunk taking the second reference seems to be a leftover from the
pre-00501b531c472 ("mm: memcontrol: rewrite charge API") era.  Remove it
to fix the leak.

Fixes: e8ea14cc6e (mm: memcontrol: take a css reference for each charged page)
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08 15:10:52 -08:00
Johannes Weiner
24d404dc10 mm: memcontrol: switch soft limit default back to infinity
Commit 3e32cb2e0a ("mm: memcontrol: lockless page counters")
accidentally switched the soft limit default from infinity to zero,
which turns all memcgs with even a single page into soft limit excessors
and engages soft limit reclaim on all of them during global memory
pressure.  This makes global reclaim generally more aggressive, but also
inverts the meaning of existing soft limit configurations where unset
soft limits are usually more generous than set ones.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08 15:10:52 -08:00
Rickard Strandqvist
70bc068c4f mm/memcontrol.c: remove unused mem_cgroup_lru_names_not_uptodate()
Remove unused mem_cgroup_lru_names_not_uptodate() and move BUILD_BUG_ON()
to the beginning of memcg_stat_show().

This was partially found by using a static code analysis program called
cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Vladimir Davydov
8135be5a80 memcg: fix possible use-after-free in memcg_kmem_get_cache()
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c.  The copy of @c corresponding to
@memcg, @mc, is empty.  Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:

CPU0				CPU1
----				----
[ current=@t
  @mc->memcg_params->nr_pages=0 ]

kmem_cache_alloc(@c):
  call memcg_kmem_get_cache(@c);
  proceed to allocation from @mc:
    alloc a page for @mc:
      ...

				move @t from @memcg
				destroy @memcg:
				  mem_cgroup_css_offline(@memcg):
				    memcg_unregister_all_caches(@memcg):
				      kmem_cache_destroy(@mc)

    add page to @mc

We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.

Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free.  As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed.  This doesn't sound as a high price for code readability though.

Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache.  Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled.  I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Michele Curti
ae6e71d3d9 mm/memcontrol.c: fix defined but not used compiler warning
test_mem_cgroup_node_reclaimable() is used only when MAX_NUMNODES > 1, so
move it into the compiler if statement

[akpm@linux-foundation.org: clean up layout]
Signed-off-by: Michele Curti <michele.curti@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Oleg Nesterov
d003f371b2 oom: don't assume that a coredumping thread will exit soon
oom_kill.c assumes that PF_EXITING task should exit and free the memory
soon.  This is wrong in many ways and one important case is the coredump.
A task can sleep in exit_mm() "forever" while the coredumping sub-thread
can need more memory.

Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account,
we add the new trivial helper for that.

Note: this is only the first step, this patch doesn't try to solve other
problems.  The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can
participate in coredump after it was already observed in PF_EXITING state,
so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set.
fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so
out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it.
 And even the name/usage of the new helper is confusing, an exiting thread
can only free its ->mm if it is the only/last task in thread group.

[akpm@linux-foundation.org: add comment]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Zhang Zhen
056b7ccef4 mm/memcontrol.c: remove the unused arg in __memcg_kmem_get_cache()
The gfp was passed in but never used in this function.

Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Vladimir Davydov
6f185c290e memcg: turn memcg_kmem_skip_account into a bit field
It isn't supposed to stack, so turn it into a bit-field to save 4 bytes on
the task_struct.

Also, remove the memcg_stop/resume_kmem_account helpers - it is clearer to
set/clear the flag inline.  Regarding the overwhelming comment to the
helpers, which is removed by this patch too, we already have a compact yet
accurate explanation in memcg_schedule_cache_create, no need in yet
another one.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Vladimir Davydov
4e701d7b37 memcg: only check memcg_kmem_skip_account in __memcg_kmem_get_cache
__memcg_kmem_get_cache can recurse if it calls kmalloc (which it does if
the cgroup's kmem cache doesn't exist), because kmalloc may call
__memcg_kmem_get_cache internally again.  To avoid the recursion, we use
the task_struct->memcg_kmem_skip_account flag.

However, there's no need checking the flag in memcg_kmem_newpage_charge,
because there's no way how this function could result in recursion, if
called from memcg_kmem_get_cache.  So let's remove the redundant code.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00