It should've been changed when queue_work() became
queue_delayed_work(..., 0) in there. It's always had been
about not needing a delay, not about not using specific
function...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Adds support for qnx6fs readonly support to the linux kernel.
* Mount option
The option mmi_fs can be used to mount Harman Becker/Audi MMI 3G
HDD qnx6fs filesystems.
* Documentation
A high level filesystem stucture description can be found in the
Documentation/filesystems directory. (qnx6.txt)
* Additional features
- Active (stable) superblock selection
- Superblock checksum check (enforced)
- Supports mount of qnx6 filesystems with to host different endianess
- Automatic endianess detection
- Longfilename support (with non-enfocing crc check)
- All blocksizes (512, 1024, 2048 and 4096 supported)
Signed-off-by: Kai Bankett <chaosman@ontika.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
First of all, there's no need to zero ->i_uid/->i_gid on root inode -
both had been set to zero already. Moreover, let's take the iput()
on failure to the failure exit it belongs to...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Once upon a time it used to be much bigger, but these days there's
no point whatsoever keeping it in fs/inode.c, especially since
it's not even needed as initializer for ->drop_inode() - it's the
default and leaving ->drop_inode NULL will do just as well.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New field of struct super_block - ->s_max_links. Maximal allowed
value of ->i_nlink or 0; in the latter case all checks still need
to be done in ->link/->mkdir/->rename instances. Note that this
limit applies both to directoris and to non-directories.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Minor cleanup. de_thread()->setmax_mm_hiwater_rss() looks a bit
strange, move it into exec_mmap() which plays with old_mm.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
exit_notify() checks "tsk->self_exec_id != tsk->parent_exec_id"
to handle the "we have changed execution domain" case.
We can change do_thread() to always set ->exit_signal = SIGCHLD
and remove this check to simplify the code.
We could change setup_new_exec() instead, this looks more logical
because it increments ->self_exec_id. But note that de_thread()
already resets ->exit_signal if it changes the leader, let's keep
both changes close to each other.
Note that we change ->exit_signal lockless, this changes the rules.
Thereafter ->exit_signal is not stable under tasklist but this is
fine, the only possible change is OLDSIG -> SIGCHLD. This can race
with eligible_child() but the race is harmless. We can race with
reparent_leader() which changes our ->exit_signal in parallel, but
it does the same change to SIGCHLD.
The noticeable user-visible change is that the execing task is not
"visible" to do_wait()->eligible_child(__WCLONE) right after exec.
To me this looks more logical, and this is consistent with mt case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's the big serial and tty merge for the 3.4-rc1 tree.
There's loads of fixes and reworks in here from Jiri for the tty layer,
and a number of patches from Alan to help try to wrestle the vt layer
into a sane model.
Other than that, lots of driver updates and fixes, and other minor
stuff, all detailed in the shortlog.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iEYEABECAAYFAk9nihQACgkQMUfUDdst+ylXTQCdFuwVuZgjCts+xDVa1jX2ac84
UogAn3Wr+P7NYFN6gvaGm52KbGbZs405
=2b/l
-----END PGP SIGNATURE-----
Merge tag 'tty-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull TTY/serial patches from Greg KH:
"tty and serial merge for 3.4-rc1
Here's the big serial and tty merge for the 3.4-rc1 tree.
There's loads of fixes and reworks in here from Jiri for the tty
layer, and a number of patches from Alan to help try to wrestle the vt
layer into a sane model.
Other than that, lots of driver updates and fixes, and other minor
stuff, all detailed in the shortlog."
* tag 'tty-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (132 commits)
serial: pxa: add clk_prepare/clk_unprepare calls
TTY: Wrong unicode value copied in con_set_unimap()
serial: PL011: clear pending interrupts
serial: bfin-uart: Don't access tty circular buffer in TX DMA interrupt after it is reset.
vt: NULL dereference in vt_do_kdsk_ioctl()
tty: serial: vt8500: fix annotations for probe/remove
serial: remove back and forth conversions in serial_out_sync
serial: use serial_port_in/out vs serial_in/out in 8250
serial: introduce generic port in/out helpers
serial: reduce number of indirections in 8250 code
serial: delete useless void casts in 8250.c
serial: make 8250's serial_in shareable to other drivers.
serial: delete last unused traces of pausing I/O in 8250
pch_uart: Add module parameter descriptions
pch_uart: Use existing default_baud in setup_console
pch_uart: Add user_uartclk parameter
pch_uart: Add Fish River Island II uart clock quirks
pch_uart: Use uartclk instead of base_baud
mpc5200b/uart: select more tolerant uart prescaler on low baudrates
tty: moxa: fix bit test in moxa_start()
...
Here's the big driver core merge for 3.4-rc1.
Lots of various things here, sysfs fixes/tweaks (with the nlink breakage
reverted), dynamic debugging updates, w1 drivers, hyperv driver updates,
and a variety of other bits and pieces, full information in the
shortlog.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iEYEABECAAYFAk9neCsACgkQMUfUDdst+ylyQwCfY2eizvzw5HhjQs8gOiBRDADe
yrgAnj1Zan2QkoCnQIFJNAoxqNX9yAhd
=biH6
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core patches for 3.4-rc1 from Greg KH:
"Here's the big driver core merge for 3.4-rc1.
Lots of various things here, sysfs fixes/tweaks (with the nlink
breakage reverted), dynamic debugging updates, w1 drivers, hyperv
driver updates, and a variety of other bits and pieces, full
information in the shortlog."
* tag 'driver-core-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (78 commits)
Tools: hv: Support enumeration from all the pools
Tools: hv: Fully support the new KVP verbs in the user level daemon
Drivers: hv: Support the newly introduced KVP messages in the driver
Drivers: hv: Add new message types to enhance KVP
regulator: Support driver probe deferral
Revert "sysfs: Kill nlink counting."
uevent: send events in correct order according to seqnum (v3)
driver core: minor comment formatting cleanups
driver core: move the deferred probe pointer into the private area
drivercore: Add driver probe deferral mechanism
DS2781 Maxim Stand-Alone Fuel Gauge battery and w1 slave drivers
w1_bq27000: Only one thread can access the bq27000 at a time.
w1_bq27000 - remove w1_bq27000_write
w1_bq27000: remove unnecessary NULL test.
sysfs: Fix memory leak in sysfs_sd_setsecdata().
intel_idle: Revert change of auto_demotion_disable_flags for Nehalem
w1: Fix w1_bq27000
driver-core: documentation: fix up Greg's email address
powernow-k6: Really enable auto-loading
powernow-k7: Fix CPU family number
...
We should be testing "if (vnode->flags & (1 << 4))" instead of
"if (vnode->flags & 4) {". The current test checks if the data was
modified instead of deleted.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler changes for v3.4 from Ingo Molnar
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
printk: Make it compile with !CONFIG_PRINTK
sched/x86: Fix overflow in cyc2ns_offset
sched: Fix nohz load accounting -- again!
sched: Update yield() docs
printk/sched: Introduce special printk_sched() for those awkward moments
sched/nohz: Correctly initialize 'next_balance' in 'nohz' idle balancer
sched: Cleanup cpu_active madness
sched: Fix load-balance wreckage
sched: Clean up parameter passing of proc_sched_autogroup_set_nice()
sched: Ditch per cgroup task lists for load-balancing
sched: Rename load-balancing fields
sched: Move load-balancing arguments into helper struct
sched/rt: Do not submit new work when PI-blocked
sched/rt: Prevent idle task boosting
sched/wait: Add __wake_up_all_locked() API
sched/rt: Document scheduler related skip-resched-check sites
sched/rt: Use schedule_preempt_disabled()
sched/rt: Add schedule_preempt_disabled()
sched/rt: Do not throttle when PI boosting
sched/rt: Keep period timer ticking when rt throttling is active
...
Pull perf events changes for v3.4 from Ingo Molnar:
- New "hardware based branch profiling" feature both on the kernel and
the tooling side, on CPUs that support it. (modern x86 Intel CPUs
with the 'LBR' hardware feature currently.)
This new feature is basically a sophisticated 'magnifying glass' for
branch execution - something that is pretty difficult to extract from
regular, function histogram centric profiles.
The simplest mode is activated via 'perf record -b', and the result
looks like this in perf report:
$ perf record -b any_call,u -e cycles:u branchy
$ perf report -b --sort=symbol
52.34% [.] main [.] f1
24.04% [.] f1 [.] f3
23.60% [.] f1 [.] f2
0.01% [k] _IO_new_file_xsputn [k] _IO_file_overflow
0.01% [k] _IO_vfprintf_internal [k] _IO_new_file_xsputn
0.01% [k] _IO_vfprintf_internal [k] strchrnul
0.01% [k] __printf [k] _IO_vfprintf_internal
0.01% [k] main [k] __printf
This output shows from/to branch columns and shows the highest
percentage (from,to) jump combinations - i.e. the most likely taken
branches in the system. "branches" can also include function calls
and any other synchronous and asynchronous transitions of the
instruction pointer that are not 'next instruction' - such as system
calls, traps, interrupts, etc.
This feature comes with (hopefully intuitive) flat ascii and TUI
support in perf report.
- Various 'perf annotate' visual improvements for us assembly junkies.
It will now recognize function calls in the TUI and by hitting enter
you can follow the call (recursively) and back, amongst other
improvements.
- Multiple threads/processes recording support in perf record, perf
stat, perf top - which is activated via a comma-list of PIDs:
perf top -p 21483,21485
perf stat -p 21483,21485 -ddd
perf record -p 21483,21485
- Support for per UID views, via the --uid paramter to perf top, perf
report, etc. For example 'perf top --uid mingo' will only show the
tasks that I am running, excluding other users, root, etc.
- Jump label restructurings and improvements - this includes the
factoring out of the (hopefully much clearer) include/linux/static_key.h
generic facility:
struct static_key key = STATIC_KEY_INIT_FALSE;
...
if (static_key_false(&key))
do unlikely code
else
do likely code
...
static_key_slow_inc();
...
static_key_slow_inc();
...
The static_key_false() branch will be generated into the code with as
little impact to the likely code path as possible. the
static_key_slow_*() APIs flip the branch via live kernel code patching.
This facility can now be used more widely within the kernel to
micro-optimize hot branches whose likelihood matches the static-key
usage and fast/slow cost patterns.
- SW function tracer improvements: perf support and filtering support.
- Various hardenings of the perf.data ABI, to make older perf.data's
smoother on newer tool versions, to make new features integrate more
smoothly, to support cross-endian recording/analyzing workflows
better, etc.
- Restructuring of the kprobes code, the splitting out of 'optprobes',
and a corner case bugfix.
- Allow the tracing of kernel console output (printk).
- Improvements/fixes to user-space RDPMC support, allowing user-space
self-profiling code to extract PMU counts without performing any
system calls, while playing nice with the kernel side.
- 'perf bench' improvements
- ... and lots of internal restructurings, cleanups and fixes that made
these features possible. And, as usual this list is incomplete as
there were also lots of other improvements
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (120 commits)
perf report: Fix annotate double quit issue in branch view mode
perf report: Remove duplicate annotate choice in branch view mode
perf/x86: Prettify pmu config literals
perf report: Enable TUI in branch view mode
perf report: Auto-detect branch stack sampling mode
perf record: Add HEADER_BRANCH_STACK tag
perf record: Provide default branch stack sampling mode option
perf tools: Make perf able to read files from older ABIs
perf tools: Fix ABI compatibility bug in print_event_desc()
perf tools: Enable reading of perf.data files from different ABI rev
perf: Add ABI reference sizes
perf report: Add support for taken branch sampling
perf record: Add support for sampling taken branch
perf tools: Add code to support PERF_SAMPLE_BRANCH_STACK
x86/kprobes: Split out optprobe related code to kprobes-opt.c
x86/kprobes: Fix a bug which can modify kernel code permanently
x86/kprobes: Fix instruction recovery on optimized path
perf: Add callback to flush branch_stack on context switch
perf: Disable PERF_SAMPLE_BRANCH_* when not supported
perf/x86: Add LBR software filter support for Intel CPUs
...
This patch changes the page allocation in gfs2_block_truncate_page
and two others to GFP_NOFS to avoid deadlock in low-memory conditions.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* branch 'dcache-word-accesses':
vfs: use 'unsigned long' accesses for dcache name comparison and hashing
This does the name hashing and lookup using word-sized accesses when
that is efficient, namely on x86 (although any little-endian machine
with good unaligned accesses would do).
It does very much depend on little-endian logic, but it's a very hot
couple of functions under some real loads, and this patch improves the
performance of __d_lookup_rcu() and link_path_walk() by up to about 30%.
Giving a 10% improvement on some very pathname-heavy benchmarks.
Because we do make unaligned accesses past the filename, the
optimization is disabled when CONFIG_DEBUG_PAGEALLOC is active, and we
effectively depend on the fact that on x86 we don't really ever have the
last page of usable RAM followed immediately by any IO memory (due to
ACPI tables, BIOS buffer areas etc).
Some of the bit operations we do are a bit "subtle". It's commented,
but you do need to really think about the code. Or just consider it
black magic.
Thanks to people on G+ for some of the optimized bit tricks.
For some odd historical reason, the final mixing round for the dentry
cache hash table lookup had an insane "xor with big constant" logic. In
two places.
The big constant that is being xor'ed is GOLDEN_RATIO_PRIME, which is a
fairly random-looking number that is designed to be *multiplied* with so
that the bits get spread out over a whole long-word.
But xor'ing with it is insane. It doesn't really even change the hash -
it really only shifts the hash around in the hash table. To make
matters worse, the insane big constant is different on 32-bit and 64-bit
builds, even though the name hash bits we use are always 32-bit (and the
bits from the pointer we mix in effectively are too).
It's all total voodoo programming, in other words.
Now, some testing and analysis of the hash chains shows that the rest of
the hash function seems to be fairly good. It does pick the right bits
of the parent dentry pointer, for example, and while it's generally a
bad idea to use an xor to mix down the upper bits (because if there is a
repeating pattern, the xor can cause "destructive interference"), it
seems to not have been a disaster.
For example, replacing the hash with the normal "hash_long()" code (that
uses the GOLDEN_RATIO_PRIME constant correctly, btw) actually just makes
the hash worse. The hand-picked hash knew which bits of the pointer had
the highest entropy, and hash_long() ends up mixing bits less optimally
at least in some trivial tests.
So the hash function overall seems fine, it just has that really odd
"shift result around by a constant xor".
So get rid of the silly xor, and replace the down-mixing of the bits
with an add instead of an xor that tends to not have the same kind of
destructive interference issues. Some stats on the resulting hash
chains shows that they look statistically identical before and after,
but the code is simpler and no longer makes you go "WTF?".
Also, the incoming hash really is just "unsigned int", not a long, and
there's no real point to worry about the high 26 bits of the dentry
pointer for the 64-bit case, because they are all going to be identical
anyway.
So also change the hashing to be done in the more natural 'unsigned int'
that is the real size of the actual hashed data anyway.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 28d82dc1c4 ("epoll: limit paths") that I did to limit the
number of possible wakeup paths in epoll is causing a few applications
to longer work (dovecot for one).
The original patch is really about limiting the amount of epoll nesting
(since epoll fds can be attached to other fds). Thus, we probably can
allow an unlimited number of paths of depth 1. My current patch limits
it at 1000. And enforce the limits on paths that have a greater depth.
This is captured in: https://bugzilla.redhat.com/show_bug.cgi?id=681578
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge some more email patches from Andrew Morton:
"A couple of nilfs fixes"
* emailed from Andrew Morton <akpm@linux-foundation.org>:
nilfs2: fix NULL pointer dereference in nilfs_load_super_block()
nilfs2: clamp ns_r_segments_percentage to [1, 99]
ns_r_segments_percentage is read from the disk. Bogus or malicious
value could cause integer overflow and malfunction due to meaningless
disk usage calculation. This patch reports error when mounting such
bogus volumes.
Signed-off-by: Haogang Chen <haogangchen@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When writing files to afs I sometimes hit a BUG:
kernel BUG at fs/afs/rxrpc.c:179!
With a backtrace of:
afs_free_call
afs_make_call
afs_fs_store_data
afs_vnode_store_data
afs_write_back_from_locked_page
afs_writepages_region
afs_writepages
The cause is:
ASSERT(skb_queue_empty(&call->rx_queue));
Looking at a tcpdump of the session the abort happens because we
are exceeding our disk quota:
rx abort fs reply store-data error diskquota exceeded (32)
So the abort error is valid. We hit the BUG because we haven't
freed all the resources for the call.
By freeing any skbs in call->rx_queue before calling afs_free_call
we avoid hitting leaking memory and avoid hitting the BUG.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A read of a large file on an afs mount failed:
# cat junk.file > /dev/null
cat: junk.file: Bad message
Looking at the trace, call->offset wrapped since it is only an
unsigned short. In afs_extract_data:
_enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
...
if (call->offset < count) {
if (last) {
_leave(" = -EBADMSG [%d < %zu]", call->offset, count);
return -EBADMSG;
}
Which matches the trace:
[cat ] ==> afs_extract_data({65132},{524},1,,65536)
[cat ] <== afs_extract_data() = -EBADMSG [0 < 65536]
call->offset went from 65132 to 0. Fix this by making call->offset an
unsigned int.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block fixes from Jens Axboe:
"Been sitting on this for a while, but lets get this out the door.
This fixes various important bugs for 3.3 final, along with a few more
trivial ones. Please pull!"
* 'for-linus' of git://git.kernel.dk/linux-block:
block: fix ioc leak in put_io_context
block, sx8: fix pointer math issue getting fw version
Block: use a freezable workqueue for disk-event polling
drivers/block/DAC960: fix -Wuninitialized warning
drivers/block/DAC960: fix DAC960_V2_IOCTL_Opcode_T -Wenum-compare warning
block: fix __blkdev_get and add_disk race condition
block: Fix setting bio flags in drivers (sd_dif/floppy)
block: Fix NULL pointer dereference in sd_revalidate_disk
block: exit_io_context() should call elevator_exit_icq_fn()
block: simplify ioc_release_fn()
block: replace icq->changed with icq->flags
Pull CIFS fixes from Steve French.
* git://git.samba.org/sfrench/cifs-2.6:
CIFS: Do not kmalloc under the flocks spinlock
cifs: possible memory leak in xattr.
With the latest and greatest changes to the freezer, I started seeing
panics that were caused by jbd2 running post-process freezing and
hitting the canary BUG_ON for non-TuxOnIce I/O submission. I've traced
this back to a lack of set_freezable calls in both jbd and jbd2. Since
they're clearly meant to be frozen (there are tests for freezing()), I
submit the following patch to add the missing calls.
Signed-off-by: Nigel Cunningham <nigel@tuxonice.net>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
complete_walk() returns either ECHILD or ESTALE. do_last() turns this into
ECHILD unconditionally. If not in RCU mode, this error will reach userspace
which is complete nonsense.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
complete_walk() already puts nd->path, no need to do it again at cleanup time.
This would result in Oopses if triggered, apparently the codepath is not too
well exercised.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
CC: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
udf_release_file() can be called from munmap() path with mmap_sem held. Thus
we cannot take i_mutex there because that ranks above mmap_sem. Luckily,
i_mutex is not needed in udf_release_file() anymore since protection by
i_data_sem is enough to protect from races with write and truncate.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Reviewed-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
9a7aa12f39 introduced additional logic around setting the i_mutex
lockdep class for directory inodes. The idea was that some filesystems
may want their own special lockdep class for different directory
inodes and calling unlock_new_inode() should not clobber one of
those special classes.
I believe that the added conditional, around the *negated* return value
of lockdep_match_class(), caused directory inodes to be placed in the
wrong lockdep class.
inode_init_always() sets the i_mutex lockdep class with i_mutex_key for
all inodes. If the filesystem did not change the class during inode
initialization, then the conditional mentioned above was false and the
directory inode was incorrectly left in the non-directory lockdep class.
If the filesystem did set a special lockdep class, then the conditional
mentioned above was true and that class was clobbered with
i_mutex_dir_key.
This patch removes the negation from the conditional so that the i_mutex
lockdep class is properly set for directory inodes. Special classes are
preserved and directory inodes with unmodified classes are set with
i_mutex_dir_key.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Current code has put_ioctx() called asynchronously from aio_fput_routine();
that's done *after* we have killed the request that used to pin ioctx,
so there's nothing to stop io_destroy() waiting in wait_for_all_aios()
from progressing. As the result, we can end up with async call of
put_ioctx() being the last one and possibly happening during exit_mmap()
or elf_core_dump(), neither of which expects stray munmap() being done
to them...
We do need to prevent _freeing_ ioctx until aio_fput_routine() is done
with that, but that's all we care about - neither io_destroy() nor
exit_aio() will progress past wait_for_all_aios() until aio_fput_routine()
does really_put_req(), so the ioctx teardown won't be done until then
and we don't care about the contents of ioctx past that point.
Since actual freeing of these suckers is RCU-delayed, we don't need to
bump ioctx refcount when request goes into list for async removal.
All we need is rcu_read_lock held just over the ->ctx_lock-protected
area in aio_fput_routine().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Benjamin LaHaise <bcrl@kvack.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Have ioctx_alloc() return an extra reference, so that caller would drop it
on success and not bother with re-grabbing it on failure exit. The current
code is obviously broken - io_destroy() from another thread that managed
to guess the address io_setup() would've returned would free ioctx right
under us; gets especially interesting if aio_context_t * we pass to
io_setup() points to PROT_READ mapping, so put_user() fails and we end
up doing io_destroy() on kioctx another thread has just got freed...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs updates from Chris Mason:
"I have two additional and btrfs fixes in my for-linus branch. One is
a casting error that leads to memory corruption on i386 during scrub,
and the other fixes a corner case in the backref walking code (also
triggered by scrub)."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix casting error in scrub reada code
btrfs: fix locking issues in find_parent_nodes()
gfs2_fallocate was calling gfs2_write_alloc_required() once at the start of
the function. This caused problems since gfs2_write_alloc_required used a
long unsigned int for the len, but gfs2_fallocate could allocate a much
larger amount. This patch will move the call into the loop where the
chunks are actually allocated and zeroed out. This will keep the allocation
size under the limit, and also allow gfs2_fallocate to quickly skip over
sections of the file that are already completely allocated.
fallcate_chunk was also not correctly setting the file size. It was using the
len veriable to find the last block written to, but by the time it was setting
the size, the len variable had already been decremented to 0.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
We already send both a pre and post flush to the block device
when writing a journal header. There is no need to wait for
the previous I/O specifically when we do this, unless we've
turned "barriers" off.
As a side effect, this also cleans up the code path for flushing
the journal and makes it more readable.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Ok, this is hacky, and only works on little-endian machines with goo
unaligned handling. And even then only with CONFIG_DEBUG_PAGEALLOC
disabled, since it can access up to 7 bytes after the pathname.
But it runs like a bat out of hell.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
avoids allocating a fd that a) propagates to every kernel thread and
usermodehelper b) is not properly released.
References: http://article.gmane.org/gmane.linux.network.drbd/22529
Signed-off-by: Benjamin Poirier <bpoirier@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 524b6c5b39.
It has shown to break userspace tools, which is not acceptable.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The function used to find an rsb during directory
recovery was searching the single linear list of
rsb's. This wasted a lot of time compared to
using the standard hash table to find the rsb.
Signed-off-by: David Teigland <teigland@redhat.com>
In order to ensure that we've got enough buffer heads for flushing
the journal, the orignal code used __GFP_NOFAIL when performing
this allocation. Here we dispense with that in favour of using a
mempool. This should improve efficiency in low memory conditions
since flushing the journal is a good way to get memory back, we
don't want to be spinning, waiting on memory allocations. The
buffers which are allocated via this mempool are fairly short lived,
so that we'll recycle them pretty quickly.
Although there are other memory allocations which occur during the
journal flush process, this is the one which can potentially require
the most memory, so the most important one to fix.
The amount of memory reserved is a fixed amount, and we should not need
to scale it when there are a greater number of filesystems in use.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This ensures that we will not try to access the inode thats
being flushed via the glock after it has been freed.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>