Merge yet more updates from Andrew Morton:
- lots of little subsystems
- a few post-linux-next MM material. Most of the rest awaits more
merging of other trees.
Subsystems affected by this series: alpha, procfs, misc, core-kernel,
bitmap, lib, lz4, checkpatch, nilfs, kdump, rapidio, gcov, bfs, relay,
resource, ubsan, reboot, fault-injection, lzo, apparmor, and mm (swap,
memory-hotplug, pagemap, cleanups, and gup).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (86 commits)
mm: fix some spelling mistakes in comments
mm: simplify follow_pte{,pmd}
mm: unexport follow_pte_pmd
apparmor: remove duplicate macro list_entry_is_head()
lib/lzo/lzo1x_compress.c: make lzogeneric1x_1_compress() static
fault-injection: handle EI_ETYPE_TRUE
reboot: hide from sysfs not applicable settings
reboot: allow to override reboot type if quirks are found
reboot: remove cf9_safe from allowed types and rename cf9_force
reboot: allow to specify reboot mode via sysfs
reboot: refactor and comment the cpu selection code
lib/ubsan.c: mark type_check_kinds with static keyword
kcov: don't instrument with UBSAN
ubsan: expand tests and reporting
ubsan: remove UBSAN_MISC in favor of individual options
ubsan: enable for all*config builds
ubsan: disable UBSAN_TRAP for all*config
ubsan: disable object-size sanitizer under GCC
ubsan: move cc-option tests into Kconfig
ubsan: remove redundant -Wno-maybe-uninitialized
...
Commit 1fde6f21d9 ("proc: fix /proc/net/* after setns(2)") only forced
revalidation of regular files under /proc/net/
However, /proc/net/ is unusual in the sense of /proc/net/foo handlers
take netns pointer from parent directory which is old netns.
Steps to reproduce:
(void)open("/proc/net/sctp/snmp", O_RDONLY);
unshare(CLONE_NEWNET);
int fd = open("/proc/net/sctp/snmp", O_RDONLY);
read(fd, &c, 1);
Read will read wrong data from original netns.
Patch forces lookup on every directory under /proc/net .
Link: https://lkml.kernel.org/r/20201205160916.GA109739@localhost.localdomain
Fixes: 1da4d377f9 ("proc: revalidate misc dentries")
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reported-by: "Rantala, Tommi T. (Nokia - FI/Espoo)" <tommi.t.rantala@nokia.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull exec-update-lock update from Eric Biederman:
"The key point of this is to transform exec_update_mutex into a
rw_semaphore so readers can be separated from writers.
This makes it easier to understand what the holders of the lock are
doing, and makes it harder to contend or deadlock on the lock.
The real deadlock fix wound up in perf_event_open"
* 'exec-update-lock-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
exec: Transform exec_update_mutex into a rw_semaphore
Pull execve updates from Eric Biederman:
"This set of changes ultimately fixes the interaction of posix file
lock and exec. Fundamentally most of the change is just moving where
unshare_files is called during exec, and tweaking the users of
files_struct so that the count of files_struct is not unnecessarily
played with.
Along the way fcheck and related helpers were renamed to more
accurately reflect what they do.
There were also many other small changes that fell out, as this is the
first time in a long time much of this code has been touched.
Benchmarks haven't turned up any practical issues but Al Viro has
observed a possibility for a lot of pounding on task_lock. So I have
some changes in progress to convert put_files_struct to always rcu
free files_struct. That wasn't ready for the merge window so that will
have to wait until next time"
* 'exec-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
exec: Move io_uring_task_cancel after the point of no return
coredump: Document coredump code exclusively used by cell spufs
file: Remove get_files_struct
file: Rename __close_fd_get_file close_fd_get_file
file: Replace ksys_close with close_fd
file: Rename __close_fd to close_fd and remove the files parameter
file: Merge __alloc_fd into alloc_fd
file: In f_dupfd read RLIMIT_NOFILE once.
file: Merge __fd_install into fd_install
proc/fd: In fdinfo seq_show don't use get_files_struct
bpf/task_iter: In task_file_seq_get_next use task_lookup_next_fd_rcu
proc/fd: In proc_readfd_common use task_lookup_next_fd_rcu
file: Implement task_lookup_next_fd_rcu
kcmp: In get_file_raw_ptr use task_lookup_fd_rcu
proc/fd: In tid_fd_mode use task_lookup_fd_rcu
file: Implement task_lookup_fd_rcu
file: Rename fcheck lookup_fd_rcu
file: Replace fcheck_files with files_lookup_fd_rcu
file: Factor files_lookup_fd_locked out of fcheck_files
file: Rename __fcheck_files to files_lookup_fd_raw
...
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
For many workloads, pagetable consumption is significant and it makes
sense to expose it in the memory.stat for the memory cgroups. However at
the moment, the pagetables are accounted per-zone. Converting them to
per-node and using the right interface will correctly account for the
memory cgroups as well.
[akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/]
Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
Pull time namespace updates from Christian Brauner:
"When time namespaces were introduced we missed to virtualize the
'btime' field in /proc/stat. This confuses tasks which are in another
time namespace with a virtualized boottime which is common in some
container workloads. This contains Michael's series to fix 'btime'
which Thomas asked me to take through my tree.
To fix 'btime' virtualization we simply subtract the offset of the
time namespace's boottime from btime before printing the stats. Note
that since start_boottime of processes are seconds since boottime and
the boottime stamp is now shifted according to the time namespace's
offset, the offset of the time namespace also needs to be applied
before the process stats are given to userspace. This avoids that
processes shown by tools such as 'ps' appear as time travelers in the
corresponding time namespace.
Selftests are included to verify that btime virtualization in
/proc/stat works as expected"
* tag 'time-namespace-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
namespace: make timens_on_fork() return nothing
selftests/timens: added selftest for /proc/stat btime
fs/proc: apply the time namespace offset to /proc/stat btime
timens: additional helper functions for boottime offset handling
When we try to visit the pagemap of a tagged userspace pointer, we find
that the start_vaddr is not correct because of the tag.
To fix it, we should untag the userspace pointers in pagemap_read().
I tested with 5.10-rc4 and the issue remains.
Explanation from Catalin in [1]:
"Arguably, that's a user-space bug since tagged file offsets were never
supported. In this case it's not even a tag at bit 56 as per the arm64
tagged address ABI but rather down to bit 47. You could say that the
problem is caused by the C library (malloc()) or whoever created the
tagged vaddr and passed it to this function. It's not a kernel
regression as we've never supported it.
Now, pagemap is a special case where the offset is usually not
generated as a classic file offset but rather derived by shifting a
user virtual address. I guess we can make a concession for pagemap
(only) and allow such offset with the tag at bit (56 - PAGE_SHIFT + 3)"
My test code is based on [2]:
A userspace pointer which has been tagged by 0xb4: 0xb400007662f541c8
userspace program:
uint64 OsLayer::VirtualToPhysical(void *vaddr) {
uint64 frame, paddr, pfnmask, pagemask;
int pagesize = sysconf(_SC_PAGESIZE);
off64_t off = ((uintptr_t)vaddr) / pagesize * 8; // off = 0xb400007662f541c8 / pagesize * 8 = 0x5a00003b317aa0
int fd = open(kPagemapPath, O_RDONLY);
...
if (lseek64(fd, off, SEEK_SET) != off || read(fd, &frame, 8) != 8) {
int err = errno;
string errtxt = ErrorString(err);
if (fd >= 0)
close(fd);
return 0;
}
...
}
kernel fs/proc/task_mmu.c:
static ssize_t pagemap_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
...
src = *ppos;
svpfn = src / PM_ENTRY_BYTES; // svpfn == 0xb400007662f54
start_vaddr = svpfn << PAGE_SHIFT; // start_vaddr == 0xb400007662f54000
end_vaddr = mm->task_size;
/* watch out for wraparound */
// svpfn == 0xb400007662f54
// (mm->task_size >> PAGE) == 0x8000000
if (svpfn > mm->task_size >> PAGE_SHIFT) // the condition is true because of the tag 0xb4
start_vaddr = end_vaddr;
ret = 0;
while (count && (start_vaddr < end_vaddr)) { // we cannot visit correct entry because start_vaddr is set to end_vaddr
int len;
unsigned long end;
...
}
...
}
[1] https://lore.kernel.org/patchwork/patch/1343258/
[2] https://github.com/stressapptest/stressapptest/blob/master/src/os.cc#L158
Link: https://lkml.kernel.org/r/20201204024347.8295-1-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Song Bao Hua (Barry Song) <song.bao.hua@hisilicon.com>
Cc: <stable@vger.kernel.org> [5.4-]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When discussing[1] exec and posix file locks it was realized that none
of the callers of get_files_struct fundamentally needed to call
get_files_struct, and that by switching them to helper functions
instead it will both simplify their code and remove unnecessary
increments of files_struct.count. Those unnecessary increments can
result in exec unnecessarily unsharing files_struct which breaking
posix locks, and it can result in fget_light having to fallback to
fget reducing system performance.
Instead hold task_lock for the duration that task->files needs to be
stable in seq_show. The task_lock was already taken in
get_files_struct, and so skipping get_files_struct performs less work
overall, and avoids the problems with the files_struct reference
count.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-12-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-17-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
When discussing[1] exec and posix file locks it was realized that none
of the callers of get_files_struct fundamentally needed to call
get_files_struct, and that by switching them to helper functions
instead it will both simplify their code and remove unnecessary
increments of files_struct.count. Those unnecessary increments can
result in exec unnecessarily unsharing files_struct which breaking
posix locks, and it can result in fget_light having to fallback to
fget reducing system performance.
Using task_lookup_next_fd_rcu simplifies proc_readfd_common, by moving
the checking for the maximum file descritor into the generic code, and
by remvoing the need for capturing and releasing a reference on
files_struct.
As task_lookup_fd_rcu may update the fd ctx->pos has been changed
to be the fd +2 after task_lookup_fd_rcu returns.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Andy Lavr <andy.lavr@gmail.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-10-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-15-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
When discussing[1] exec and posix file locks it was realized that none
of the callers of get_files_struct fundamentally needed to call
get_files_struct, and that by switching them to helper functions
instead it will both simplify their code and remove unnecessary
increments of files_struct.count. Those unnecessary increments can
result in exec unnecessarily unsharing files_struct which breaking
posix locks, and it can result in fget_light having to fallback to
fget reducing system performance.
Instead of manually coding finding the files struct for a task and
then calling files_lookup_fd_rcu, use the helper task_lookup_fd_rcu
that combines those to steps. Making the code simpler and removing
the need to get a reference on a files_struct.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-7-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-12-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This change renames fcheck_files to files_lookup_fd_rcu. All of the
remaining callers take the rcu_read_lock before calling this function
so the _rcu suffix is appropriate. This change also tightens up the
debug check to verify that all callers hold the rcu_read_lock.
All callers that used to call files_check with the files->file_lock
held have now been changed to call files_lookup_fd_locked.
This change of name has helped remind me of which locks and which
guarantees are in place helping me to catch bugs later in the
patchset.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-9-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
When discussing[1] exec and posix file locks it was realized that none
of the callers of get_files_struct fundamentally needed to call
get_files_struct, and that by switching them to helper functions
instead it will both simplify their code and remove unnecessary
increments of files_struct.count. Those unnecessary increments can
result in exec unnecessarily unsharing files_struct which breaking
posix locks, and it can result in fget_light having to fallback to
fget reducing system performance.
Simplifying proc_fd_link is a little bit tricky. It is necessary to
know that there is a reference to fd_f ile while path_get is running.
This reference can either be guaranteed to exist either by locking the
fdtable as the code currently does or by taking a reference on the
file in question.
Use fget_task to remove the need for get_files_struct and
to take a reference to file in question.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-8-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-6-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Pull io_uring fixes from Jens Axboe:
"Mostly regression or stable fodder:
- Disallow async path resolution of /proc/self
- Tighten constraints for segmented async buffered reads
- Fix double completion for a retry error case
- Fix for fixed file life times (Pavel)"
* tag 'io_uring-5.10-2020-11-20' of git://git.kernel.dk/linux-block:
io_uring: order refnode recycling
io_uring: get an active ref_node from files_data
io_uring: don't double complete failed reissue request
mm: never attempt async page lock if we've transferred data already
io_uring: handle -EOPNOTSUPP on path resolution
proc: don't allow async path resolution of /proc/self components
Currently the kernel does not provide an infrastructure to translate
architecture numbers to a human-readable name. Translating syscall
numbers to syscall names is possible through FTRACE_SYSCALL
infrastructure but it does not provide support for compat syscalls.
This will create a file for each PID as /proc/pid/seccomp_cache.
The file will be empty when no seccomp filters are loaded, or be
in the format of:
<arch name> <decimal syscall number> <ALLOW | FILTER>
where ALLOW means the cache is guaranteed to allow the syscall,
and filter means the cache will pass the syscall to the BPF filter.
For the docker default profile on x86_64 it looks like:
x86_64 0 ALLOW
x86_64 1 ALLOW
x86_64 2 ALLOW
x86_64 3 ALLOW
[...]
x86_64 132 ALLOW
x86_64 133 ALLOW
x86_64 134 FILTER
x86_64 135 FILTER
x86_64 136 FILTER
x86_64 137 ALLOW
x86_64 138 ALLOW
x86_64 139 FILTER
x86_64 140 ALLOW
x86_64 141 ALLOW
[...]
This file is guarded by CONFIG_SECCOMP_CACHE_DEBUG with a default
of N because I think certain users of seccomp might not want the
application to know which syscalls are definitely usable. For
the same reason, it is also guarded by CAP_SYS_ADMIN.
Suggested-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/lkml/CAG48ez3Ofqp4crXGksLmZY6=fGrF_tWyUCg7PBkAetvbbOPeOA@mail.gmail.com/
Signed-off-by: YiFei Zhu <yifeifz2@illinois.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/94e663fa53136f5a11f432c661794d1ee7060779.1605101222.git.yifeifz2@illinois.edu
If this is attempted by a kthread, then return -EOPNOTSUPP as we don't
currently support that. Once we can get task_pid_ptr() doing the right
thing, then this can go away again.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge procfs splice read fixes from Christoph Hellwig:
"Greg reported a problem due to the fact that Android tests use procfs
files to test splice, which stopped working with the changes for
set_fs() removal.
This series adds read_iter support for seq_file, and uses those for
various proc files using seq_file to restore splice read support"
[ Side note: Christoph initially had a scripted "move everything over"
patch, which looks fine, but I personally would prefer us to actively
discourage splice() on random files. So this does just the minimal
basic core set of proc file op conversions.
For completeness, and in case people care, that script was
sed -i -e 's/\.proc_read\(\s*=\s*\)seq_read/\.proc_read_iter\1seq_read_iter/g'
but I'll wait and see if somebody has a strong argument for using
splice on random small /proc files before I'd run it on the whole
kernel. - Linus ]
* emailed patches from Christoph Hellwig <hch@lst.de>:
proc "seq files": switch to ->read_iter
proc "single files": switch to ->read_iter
proc/stat: switch to ->read_iter
proc/cpuinfo: switch to ->read_iter
proc: wire up generic_file_splice_read for iter ops
seq_file: add seq_read_iter
Implement ->read_iter for all proc "single files" so that more bionic
tests cases can pass when they call splice() on other fun files like
/proc/version
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement ->read_iter so that the Android bionic test suite can use
this random proc file for its splice test case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wire up generic_file_splice_read for the iter based proxy ops, so
that splice reads from them work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'/proc/stat' provides the field 'btime' which states the time stamp of
system boot in seconds. In case of time namespaces, the offset to the
boot time stamp was not applied earlier.
This confuses tasks which are in another time universe, e.g., in a
container of a container runtime which utilize time namespaces to
virtualize boottime.
Therefore, we make procfs to virtualize also the btime field by
subtracting the offset of the timens boottime from 'btime' before
printing the stats.
Since start_boottime of processes are seconds since boottime and the
boottime stamp is now shifted according to the timens offset, the
offset of the time namespace also needs to be applied before the
process stats are given to userspace.
This avoids that processes shown, e.g., by 'ps' appear as time
travelers in the corresponding time namespace.
Signed-off-by: Michael Weiß <michael.weiss@aisec.fraunhofer.de>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/20201027204258.7869-3-michael.weiss@aisec.fraunhofer.de
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
Make sure the async io-wq workers inherit the loginuid and sessionid from
the original task, and restore them to unset once we're done with the
async work item.
While at it, disable the ability for kernel threads to write to their own
loginuid.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently __set_oom_adj loops through all processes in the system to keep
oom_score_adj and oom_score_adj_min in sync between processes sharing
their mm. This is done for any task with more that one mm_users, which
includes processes with multiple threads (sharing mm and signals).
However for such processes the loop is unnecessary because their signal
structure is shared as well.
Android updates oom_score_adj whenever a tasks changes its role
(background/foreground/...) or binds to/unbinds from a service, making it
more/less important. Such operation can happen frequently. We noticed
that updates to oom_score_adj became more expensive and after further
investigation found out that the patch mentioned in "Fixes" introduced a
regression. Using Pixel 4 with a typical Android workload, write time to
oom_score_adj increased from ~3.57us to ~362us. Moreover this regression
linearly depends on the number of multi-threaded processes running on the
system.
Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with
(CLONE_VM && !CLONE_THREAD && !CLONE_VFORK). Change __set_oom_adj to use
MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj
update should be synchronized between multiple processes. To prevent
races between clone() and __set_oom_adj(), when oom_score_adj of the
process being cloned might be modified from userspace, we use
oom_adj_mutex. Its scope is changed to global.
The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for
the case of vfork(). To prevent performance regressions of vfork(), we
skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is
specified. Clearing the MMF_MULTIPROCESS flag (when the last process
sharing the mm exits) is left out of this patch to keep it simple and
because it is believed that this threading model is rare. Should there
ever be a need for optimizing that case as well, it can be done by hooking
into the exit path, likely following the mm_update_next_owner pattern.
With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being
quite rare, the regression is gone after the change is applied.
[surenb@google.com: v3]
Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com
Fixes: 44a70adec9 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj")
Reported-by: Tim Murray <timmurray@google.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com
Debugged-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using the read_iter/write_iter interfaces allows for in-kernel users
to set sysctls without using set_fs(). Also, the buffer is a string,
so give it the real type of 'char *', not void *.
[AV: Christoph's fixup folded in]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
To enable tagging on a memory range, the user must explicitly opt in via
a new PROT_MTE flag passed to mmap() or mprotect(). Since this is a new
memory type in the AttrIndx field of a pte, simplify the or'ing of these
bits over the protection_map[] attributes by making MT_NORMAL index 0.
There are two conditions for arch_vm_get_page_prot() to return the
MT_NORMAL_TAGGED memory type: (1) the user requested it via PROT_MTE,
registered as VM_MTE in the vm_flags, and (2) the vma supports MTE,
decided during the mmap() call (only) and registered as VM_MTE_ALLOWED.
arch_calc_vm_prot_bits() is responsible for registering the user request
as VM_MTE. The newly introduced arch_calc_vm_flag_bits() sets
VM_MTE_ALLOWED if the mapping is MAP_ANONYMOUS. An MTE-capable
filesystem (RAM-based) may be able to set VM_MTE_ALLOWED during its
mmap() file ops call.
In addition, update VM_DATA_DEFAULT_FLAGS to allow mprotect(PROT_MTE) on
stack or brk area.
The Linux mmap() syscall currently ignores unknown PROT_* flags. In the
presence of MTE, an mmap(PROT_MTE) on a file which does not support MTE
will not report an error and the memory will not be mapped as Normal
Tagged. For consistency, mprotect(PROT_MTE) will not report an error
either if the memory range does not support MTE. Two subsequent patches
in the series will propose tightening of this behaviour.
Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
For arm64 MTE support it is necessary to be able to mark pages that
contain user space visible tags that will need to be saved/restored e.g.
when swapped out.
To support this add a new arch specific flag (PG_arch_2). This flag is
only available on 64-bit architectures due to the limited number of
spare page flags on the 32-bit ones.
Signed-off-by: Steven Price <steven.price@arm.com>
[catalin.marinas@arm.com: use CONFIG_64BIT for guarding this new flag]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
This will allow proc files to implement iter read semantics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of providing a special no-compat version provide a special
compat version for operations with ->compat_ioctl.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Recently we found an issue on our production environment that when memcg
oom is triggered the oom killer doesn't chose the process with largest
resident memory but chose the first scanned process. Note that all
processes in this memcg have the same oom_score_adj, so the oom killer
should chose the process with largest resident memory.
Bellow is part of the oom info, which is enough to analyze this issue.
[7516987.983223] memory: usage 16777216kB, limit 16777216kB, failcnt 52843037
[7516987.983224] memory+swap: usage 16777216kB, limit 9007199254740988kB, failcnt 0
[7516987.983225] kmem: usage 301464kB, limit 9007199254740988kB, failcnt 0
[...]
[7516987.983293] [ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name
[7516987.983510] [ 5740] 0 5740 257 1 32768 0 -998 pause
[7516987.983574] [58804] 0 58804 4594 771 81920 0 -998 entry_point.bas
[7516987.983577] [58908] 0 58908 7089 689 98304 0 -998 cron
[7516987.983580] [58910] 0 58910 16235 5576 163840 0 -998 supervisord
[7516987.983590] [59620] 0 59620 18074 1395 188416 0 -998 sshd
[7516987.983594] [59622] 0 59622 18680 6679 188416 0 -998 python
[7516987.983598] [59624] 0 59624 1859266 5161 548864 0 -998 odin-agent
[7516987.983600] [59625] 0 59625 707223 9248 983040 0 -998 filebeat
[7516987.983604] [59627] 0 59627 416433 64239 774144 0 -998 odin-log-agent
[7516987.983607] [59631] 0 59631 180671 15012 385024 0 -998 python3
[7516987.983612] [61396] 0 61396 791287 3189 352256 0 -998 client
[7516987.983615] [61641] 0 61641 1844642 29089 946176 0 -998 client
[7516987.983765] [ 9236] 0 9236 2642 467 53248 0 -998 php_scanner
[7516987.983911] [42898] 0 42898 15543 838 167936 0 -998 su
[7516987.983915] [42900] 1000 42900 3673 867 77824 0 -998 exec_script_vr2
[7516987.983918] [42925] 1000 42925 36475 19033 335872 0 -998 python
[7516987.983921] [57146] 1000 57146 3673 848 73728 0 -998 exec_script_J2p
[7516987.983925] [57195] 1000 57195 186359 22958 491520 0 -998 python2
[7516987.983928] [58376] 1000 58376 275764 14402 290816 0 -998 rosmaster
[7516987.983931] [58395] 1000 58395 155166 4449 245760 0 -998 rosout
[7516987.983935] [58406] 1000 58406 18285584 3967322 37101568 0 -998 data_sim
[7516987.984221] oom-kill:constraint=CONSTRAINT_MEMCG,nodemask=(null),cpuset=3aa16c9482ae3a6f6b78bda68a55d32c87c99b985e0f11331cddf05af6c4d753,mems_allowed=0-1,oom_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184,task_memcg=/kubepods/podf1c273d3-9b36-11ea-b3df-246e9693c184/1f246a3eeea8f70bf91141eeaf1805346a666e225f823906485ea0b6c37dfc3d,task=pause,pid=5740,uid=0
[7516987.984254] Memory cgroup out of memory: Killed process 5740 (pause) total-vm:1028kB, anon-rss:4kB, file-rss:0kB, shmem-rss:0kB
[7516988.092344] oom_reaper: reaped process 5740 (pause), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
We can find that the first scanned process 5740 (pause) was killed, but
its rss is only one page. That is because, when we calculate the oom
badness in oom_badness(), we always ignore the negtive point and convert
all of these negtive points to 1. Now as oom_score_adj of all the
processes in this targeted memcg have the same value -998, the points of
these processes are all negtive value. As a result, the first scanned
process will be killed.
The oom_socre_adj (-998) in this memcg is set by kubelet, because it is a
a Guaranteed pod, which has higher priority to prevent from being killed
by system oom.
To fix this issue, we should make the calculation of oom point more
accurate. We can achieve it by convert the chosen_point from 'unsigned
long' to 'long'.
[cai@lca.pw: reported a issue in the previous version]
[mhocko@suse.com: fixed the issue reported by Cai]
[mhocko@suse.com: add the comment in proc_oom_score()]
[laoar.shao@gmail.com: v3]
Link: http://lkml.kernel.org/r/1594396651-9931-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/1594309987-9919-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "make vm_committed_as_batch aware of vm overcommit policy", v6.
When checking a performance change for will-it-scale scalability mmap test
[1], we found very high lock contention for spinlock of percpu counter
'vm_committed_as':
94.14% 0.35% [kernel.kallsyms] [k] _raw_spin_lock_irqsave
48.21% _raw_spin_lock_irqsave;percpu_counter_add_batch;__vm_enough_memory;mmap_region;do_mmap;
45.91% _raw_spin_lock_irqsave;percpu_counter_add_batch;__do_munmap;
Actually this heavy lock contention is not always necessary. The
'vm_committed_as' needs to be very precise when the strict
OVERCOMMIT_NEVER policy is set, which requires a rather small batch number
for the percpu counter.
So keep 'batch' number unchanged for strict OVERCOMMIT_NEVER policy, and
enlarge it for not-so-strict OVERCOMMIT_ALWAYS and OVERCOMMIT_GUESS
policies.
Benchmark with the same testcase in [1] shows 53% improvement on a 8C/16T
desktop, and 2097%(20X) on a 4S/72C/144T server. And for that case,
whether it shows improvements depends on if the test mmap size is bigger
than the batch number computed.
We tested 10+ platforms in 0day (server, desktop and laptop). If we lift
it to 64X, 80%+ platforms show improvements, and for 16X lift, 1/3 of the
platforms will show improvements.
And generally it should help the mmap/unmap usage,as Michal Hocko
mentioned:
: I believe that there are non-synthetic worklaods which would benefit
: from a larger batch. E.g. large in memory databases which do large
: mmaps during startups from multiple threads.
Note: There are some style complain from checkpatch for patch 4, as sysctl
handler declaration follows the similar format of sibling functions
[1] https://lore.kernel.org/lkml/20200305062138.GI5972@shao2-debian/
This patch (of 4):
Use the existing vm_memory_committed() instead, which is also convenient
for future change.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: kernel test robot <rong.a.chen@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1594389708-60781-1-git-send-email-feng.tang@intel.com
Link: http://lkml.kernel.org/r/1594389708-60781-2-git-send-email-feng.tang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>