The dev_attrs field of struct class is going away soon, dev_groups
should be used instead. This converts the rfkill class code to use the
correct field.
Cc: John W. Linville <linville@tuxdriver.com>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
And return the proper string for it.
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Prevent unnecessary rfkill event generation when the state has
not actually changed. These events have to be delivered to
relevant userspace processes, causing these processes to wake
up and do something while they could as well have slept. This
obviously results in more CPU usage, longer time-to-sleep-again
and therefore higher power consumption.
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Signed-off-by: Mykyta Iziumtsev <nikita.izyumtsev@gmail.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
This reverts commit 2e48928d8a.
Those functions are needed and should not be removed, or
there is no way to set the rfkill led trigger name.
Signed-off-by: AceLan Kao <acelan.kao@canonical.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
__rfkill_switch_all() switches the state of devices of a given type; however,
it does not switch devices of all type (RFKILL_TYPE_ALL). As a result, it
ignores the keycode "KEY_RFKILL" from another module, i.e. eeepc-wmi.
This fix is to make __rfkill_switch_all() to be able to switch not only
devices of a given type but also all devices.
Signed-off-by: Alex Hung <alex.hung@canonical.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
For files that are actively using linux/device.h, make sure
that they call it out. This will allow us to clean up some
of the implicit uses of linux/device.h within include/*
without introducing build regressions.
Yes, this was created by "cheating" -- i.e. the headers were
cleaned up, and then the fallout was found and fixed, and then
the two commits were reordered. This ensures we don't introduce
build regressions into the git history.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Use kstrtoul, etc instead of the now deprecated strict_strtoul, etc.
A semantic patch rule for the kstrtoul case is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression a,b;
{int,long} *c;
@@
-strict_strtoul
+kstrtoul
(a,b,c)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The list_for_each_entry loop can fail, in which case the list element is
not removed from the list rfkill_fds. Since this list is not accessed by
the loop, the addition of &data->list into the list is just moved after the
loop.
The sematic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression E,E1,E2;
identifier l;
@@
*list_add(&E->l,E1);
... when != E1
when != list_del(&E->l)
when != list_del_init(&E->l)
when != E = E2
*kfree(E);// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The following code is defined but never used.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This patch renames the (never officially released) sysfs-knobs
"blocked_hw" and "blocked_sw" to "hard" and "soft", as the hardware vs
software conotation is misleading.
It also gets rid of not needed locks around u32-read-access.
Signed-off-by: Florian Mickler <florian@mickler.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This commit introduces two new sysfs knobs.
/sys/class/rfkill/rfkill[0-9]+/blocked_hw: (ro)
hardblock kill state
/sys/class/rfkill/rfkill[0-9]+/blocked_sw: (rw)
softblock kill state
Signed-off-by: Florian Mickler <florian@mickler.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
net/rfkill/core.c: In function 'rfkill_type_show':
net/rfkill/core.c:610: warning: control may reach end of non-void function 'rfkill_get_type_str' being inlined
A gcc bug, but simple enough to squish.
Cc: John W. Linville <linville@tuxdriver.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The /dev/rfkill ops don't refer to the module,
so it is possible to unload the module while
file descriptors are open. Fix this oversight.
Reported-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Althoug GPS is a technology w/o transmitting radio
and thus not a primary candidate for rfkill switch,
rfkill gives unified interface point for devices with
wireless technology.
The input key is not supplied as it is too be deprecated.
Cc: johannes@sipsolutions.net
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The point of this function is to set the software and hardware state at
the same time. When I tried to use it, I found it was only setting the
software state.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Apparently there actually _are_ tools that try to set
this in sysfs even though it wasn't supposed to be used
this way without claiming first. Guess what: now that
I've cleaned it all up it doesn't matter and we can
simply allow setting the soft-block state in sysfs.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Tested-By: Darren Salt <linux@youmustbejoking.demon.co.uk>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
We've designed the /dev/rfkill API in a way that we
can increase the event struct by adding members at
the end, should it become necessary. To validate the
events, userspace and the kernel need to have the
proper event size to check for -- when reading from
the other end they need to verify that it's at least
version 1 of the event API, with the current struct
size, so define a constant for that and make the
code a little more 'future proof'.
Not that I expect that we'll have to change the event
size any time soon, but it's better to write the code
in a way that lends itself to extending.
Due to the current size of the event struct, the code
is currently equivalent, but should the event struct
ever need to be increased the new code might not need
changing.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This information allows userspace to implement a hybrid policy where
it can store the rfkill soft-blocked state in platform non-volatile
storage if available, and if not then file-based storage can be used.
Some users prefer platform non-volatile storage because of the behaviour
when dual-booting multiple versions of Linux, or if the rfkill setting
is changed in the BIOS setting screens, or if the BIOS responds to
wireless-toggle hotkeys itself before the relevant platform driver has
been loaded.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The setting of the "persistent" flag is also made more explicit using
a new rfkill_init_sw_state() function, instead of special-casing
rfkill_set_sw_state() when it is called before registration.
Suspend is a bit of a corner case so we try to get away without adding
another hack to rfkill-input - it's going to be removed soon.
If the state does change over suspend, users will simply have to prod
rfkill-input twice in order to toggle the state.
Userspace policy agents will be able to implement a more consistent user
experience. For example, they can avoid the above problem if they
toggle devices individually. Then there would be no "global state"
to get out of sync.
Currently there are only two rfkill drivers with persistent soft-blocked
state. thinkpad-acpi already checks the software state on resume.
eeepc-laptop will require modification.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
CC: Marcel Holtmann <marcel@holtmann.org>
Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
If we return after fiddling with the state, userspace will see the
wrong state and rfkill_set_sw_state() won't work until the next call to
rfkill_set_block(). At the moment rfkill_set_block() will always be
called from rfkill_resume(), but this will change in future.
Also, presumably the point of this test is to avoid bothering devices
which may be suspended. If we don't want to call set_block(), we
probably don't want to call query() either :-).
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Once rfkill-input is disabled, the "global" states will only be used as
default initial states.
Since the states will always be the same after resume, we shouldn't
generate events on resume.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
rfkill_set_global_sw_state() (previously rfkill_set_default()) will no
longer be exported by the rewritten rfkill core.
Instead, platform drivers which can provide persistent soft-rfkill state
across power-down/reboot should indicate their initial state by calling
rfkill_set_sw_state() before registration. Otherwise, they will be
initialized to a default value during registration by a set_block call.
We remove existing calls to rfkill_set_sw_state() which happen before
registration, since these had no effect in the old model. If these
drivers do have persistent state, the calls can be put back (subject
to testing :-). This affects hp-wmi and acer-wmi.
Drivers with persistent state will affect the global state only if
rfkill-input is enabled. This is required, otherwise booting with
wireless soft-blocked and pressing the wireless-toggle key once would
have no apparent effect. This special case will be removed in future
along with rfkill-input, in favour of a more flexible userspace daemon
(see Documentation/feature-removal-schedule.txt).
Now rfkill_global_states[n].def is only used to preserve global states
over EPO, it is renamed to ".sav".
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
It is useful for debugging when we know if something disabled
the in-kernel rfkill input handler.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The rfkill core didn't initialise the poll delayed work
because it assumed that polling was always done by specifying
the poll function. cfg80211, however, would like to start
polling only later, which is a valid use case and easy to
support, so change rfkill to always initialise the poll
delayed work and thus allow starting polling by calling the
rfkill_resume_polling() function after registration.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Sometimes it is necessary to know how the state is,
and it is easier to query rfkill than keep track of
it somewhere else, so add a function for that. This
could later be expanded to return hard/soft block,
but so far that isn't necessary.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
The new code added by this patch will make rfkill create
a misc character device /dev/rfkill that userspace can use
to control rfkill soft blocks and get status of devices as
well as events when the status changes.
Using it is very simple -- when you open it you can read
a number of times to get the initial state, and every
further read blocks (you can poll) on getting the next
event from the kernel. The same structure you read is
also used when writing to it to change the soft block of
a given device, all devices of a given type, or all
devices.
This also makes CONFIG_RFKILL_INPUT selectable again in
order to be able to test without it present since its
functionality can now be replaced by userspace entirely
and distros and users may not want the input part of
rfkill interfering with their userspace code. We will
also write a userspace daemon to handle all that and
consequently add the input code to the feature removal
schedule.
In order to have rfkilld support both kernels with and
without CONFIG_RFKILL_INPUT (or new kernels after its
eventual removal) we also add an ioctl (that only exists
if rfkill-input is present) to disable rfkill-input.
It is not very efficient, but at least gives the correct
behaviour in all cases.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This patch completely rewrites the rfkill core to address
the following deficiencies:
* all rfkill drivers need to implement polling where necessary
rather than having one central implementation
* updating the rfkill state cannot be done from arbitrary
contexts, forcing drivers to use schedule_work and requiring
lots of code
* rfkill drivers need to keep track of soft/hard blocked
internally -- the core should do this
* the rfkill API has many unexpected quirks, for example being
asymmetric wrt. alloc/free and register/unregister
* rfkill can call back into a driver from within a function the
driver called -- this is prone to deadlocks and generally
should be avoided
* rfkill-input pointlessly is a separate module
* drivers need to #ifdef rfkill functions (unless they want to
depend on or select RFKILL) -- rfkill should provide inlines
that do nothing if it isn't compiled in
* the rfkill structure is not opaque -- drivers need to initialise
it correctly (lots of sanity checking code required) -- instead
force drivers to pass the right variables to rfkill_alloc()
* the documentation is hard to read because it always assumes the
reader is completely clueless and contains way TOO MANY CAPS
* the rfkill code needlessly uses a lot of locks and atomic
operations in locked sections
* fix LED trigger to actually change the LED when the radio state
changes -- this wasn't done before
Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad]
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>