Functions that work on a pointer to virtual memory such as virt_to_pfn()
and users of that function such as virt_to_page() are supposed to pass a
pointer to virtual memory, ideally a (void *) or other pointer. However
since many architectures implement virt_to_pfn() as a macro, this function
becomes polymorphic and accepts both a (unsigned long) and a (void *).
If we instead implement a proper virt_to_pfn(void *addr) function the
following happens (occurred on arch/arm):
mm/kfence/core.c:558:30: warning: passing argument 1
of 'virt_to_pfn' makes pointer from integer without a
cast [-Wint-conversion]
In one case we can refer to __kfence_pool directly (and that is a proper
(char *) pointer) and in the other call site we use an explicit cast.
Link: https://lkml.kernel.org/r/20220630084124.691207-4-linus.walleij@linaro.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Functions that work on a pointer to virtual memory such as virt_to_pfn()
and users of that function such as virt_to_page() are supposed to pass a
pointer to virtual memory, ideally a (void *) or other pointer. However
since many architectures implement virt_to_pfn() as a macro, this function
becomes polymorphic and accepts both a (unsigned long) and a (void *).
If we instead implement a proper virt_to_pfn(void *addr) function the
following happens (occurred on arch/arm):
mm/highmem.c:153:29: warning: passing argument 1 of
'virt_to_pfn' makes pointer from integer without a
cast [-Wint-conversion]
We already have a proper void * pointer in the scope of this function
named "vaddr" so pass that instead.
Link: https://lkml.kernel.org/r/20220630084124.691207-3-linus.walleij@linaro.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
struct per_cpu_pages is no longer strictly local as PCP lists can be
drained remotely using a lock for protection. While the use of local_lock
works, it goes against the intent of local_lock which is for "pure CPU
local concurrency control mechanisms and not suited for inter-CPU
concurrency control" (Documentation/locking/locktypes.rst)
local_lock protects against migration between when the percpu pointer is
accessed and the pcp->lock acquired. The lock acquisition is a preemption
point so in the worst case, a task could migrate to another NUMA node and
accidentally allocate remote memory. The main requirement is to pin the
task to a CPU that is suitable for PREEMPT_RT and !PREEMPT_RT.
Replace local_lock with helpers that pin a task to a CPU, lookup the
per-cpu structure and acquire the embedded lock. It's similar to
local_lock without breaking the intent behind the API. It is not a
complete API as only the parts needed for PCP-alloc are implemented but in
theory, the generic helpers could be promoted to a general API if there
was demand for an embedded lock within a per-cpu struct with a guarantee
that the per-cpu structure locked matches the running CPU and cannot use
get_cpu_var due to RT concerns. PCP requires these semantics to avoid
accidentally allocating remote memory.
[mgorman@techsingularity.net: use pcp_spin_trylock_irqsave instead of pcpu_spin_trylock_irqsave]
Link: https://lkml.kernel.org/r/20220627084645.GA27531@techsingularity.net
Link: https://lkml.kernel.org/r/20220624125423.6126-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Some setups, notably NOHZ_FULL CPUs, are too busy to handle the per-cpu
drain work queued by __drain_all_pages(). So introduce a new mechanism to
remotely drain the per-cpu lists. It is made possible by remotely locking
'struct per_cpu_pages' new per-cpu spinlocks. A benefit of this new
scheme is that drain operations are now migration safe.
There was no observed performance degradation vs. the previous scheme.
Both netperf and hackbench were run in parallel to triggering the
__drain_all_pages(NULL, true) code path around ~100 times per second. The
new scheme performs a bit better (~5%), although the important point here
is there are no performance regressions vs. the previous mechanism.
Per-cpu lists draining happens only in slow paths.
Minchan Kim tested an earlier version and reported;
My workload is not NOHZ CPUs but run apps under heavy memory
pressure so they goes to direct reclaim and be stuck on
drain_all_pages until work on workqueue run.
unit: nanosecond
max(dur) avg(dur) count(dur)
166713013 487511.77786438033 1283
From traces, system encountered the drain_all_pages 1283 times and
worst case was 166ms and avg was 487us.
The other problem was alloc_contig_range in CMA. The PCP draining
takes several hundred millisecond sometimes though there is no
memory pressure or a few of pages to be migrated out but CPU were
fully booked.
Your patch perfectly removed those wasted time.
Link: https://lkml.kernel.org/r/20220624125423.6126-7-mgorman@techsingularity.net
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently the PCP lists are protected by using local_lock_irqsave to
prevent migration and IRQ reentrancy but this is inconvenient. Remote
draining of the lists is impossible and a workqueue is required and every
task allocation/free must disable then enable interrupts which is
expensive.
As preparation for dealing with both of those problems, protect the
lists with a spinlock. The IRQ-unsafe version of the lock is used
because IRQs are already disabled by local_lock_irqsave. spin_trylock
is used in combination with local_lock_irqsave() but later will be
replaced with a spin_trylock_irqsave when the local_lock is removed.
The per_cpu_pages still fits within the same number of cache lines after
this patch relative to before the series.
struct per_cpu_pages {
spinlock_t lock; /* 0 4 */
int count; /* 4 4 */
int high; /* 8 4 */
int batch; /* 12 4 */
short int free_factor; /* 16 2 */
short int expire; /* 18 2 */
/* XXX 4 bytes hole, try to pack */
struct list_head lists[13]; /* 24 208 */
/* size: 256, cachelines: 4, members: 7 */
/* sum members: 228, holes: 1, sum holes: 4 */
/* padding: 24 */
} __attribute__((__aligned__(64)));
There is overhead in the fast path due to acquiring the spinlock even
though the spinlock is per-cpu and uncontended in the common case. Page
Fault Test (PFT) running on a 1-socket reported the following results on a
1 socket machine.
5.19.0-rc3 5.19.0-rc3
vanilla mm-pcpspinirq-v5r16
Hmean faults/sec-1 869275.7381 ( 0.00%) 874597.5167 * 0.61%*
Hmean faults/sec-3 2370266.6681 ( 0.00%) 2379802.0362 * 0.40%*
Hmean faults/sec-5 2701099.7019 ( 0.00%) 2664889.7003 * -1.34%*
Hmean faults/sec-7 3517170.9157 ( 0.00%) 3491122.8242 * -0.74%*
Hmean faults/sec-8 3965729.6187 ( 0.00%) 3939727.0243 * -0.66%*
There is a small hit in the number of faults per second but given that the
results are more stable, it's borderline noise.
[akpm@linux-foundation.org: add missing local_unlock_irqrestore() on contention path]
Link: https://lkml.kernel.org/r/20220624125423.6126-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The per_cpu_pages is cache-aligned on a standard x86-64 distribution
configuration but a later patch will add a new field which would push the
structure into the next cache line. Use only one list to store THP-sized
pages on the per-cpu list. This assumes that the vast majority of
THP-sized allocations are GFP_MOVABLE but even if it was another type, it
would not contribute to serious fragmentation that potentially causes a
later THP allocation failure. Align per_cpu_pages on the cacheline
boundary to ensure there is no false cache sharing.
After this patch, the structure sizing is;
struct per_cpu_pages {
int count; /* 0 4 */
int high; /* 4 4 */
int batch; /* 8 4 */
short int free_factor; /* 12 2 */
short int expire; /* 14 2 */
struct list_head lists[13]; /* 16 208 */
/* size: 256, cachelines: 4, members: 6 */
/* padding: 32 */
} __attribute__((__aligned__(64)));
Link: https://lkml.kernel.org/r/20220624125423.6126-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Drain remote per-cpu directly", v5.
Some setups, notably NOHZ_FULL CPUs, may be running realtime or
latency-sensitive applications that cannot tolerate interference due to
per-cpu drain work queued by __drain_all_pages(). Introduce a new
mechanism to remotely drain the per-cpu lists. It is made possible by
remotely locking 'struct per_cpu_pages' new per-cpu spinlocks. This has
two advantages, the time to drain is more predictable and other unrelated
tasks are not interrupted.
This series has the same intent as Nicolas' series "mm/page_alloc: Remote
per-cpu lists drain support" -- avoid interference of a high priority task
due to a workqueue item draining per-cpu page lists. While many workloads
can tolerate a brief interruption, it may cause a real-time task running
on a NOHZ_FULL CPU to miss a deadline and at minimum, the draining is
non-deterministic.
Currently an IRQ-safe local_lock protects the page allocator per-cpu
lists. The local_lock on its own prevents migration and the IRQ disabling
protects from corruption due to an interrupt arriving while a page
allocation is in progress.
This series adjusts the locking. A spinlock is added to struct
per_cpu_pages to protect the list contents while local_lock_irq is
ultimately replaced by just the spinlock in the final patch. This allows
a remote CPU to safely. Follow-on work should allow the spin_lock_irqsave
to be converted to spin_lock to avoid IRQs being disabled/enabled in most
cases. The follow-on patch will be one kernel release later as it is
relatively high risk and it'll make bisections more clear if there are any
problems.
Patch 1 is a cosmetic patch to clarify when page->lru is storing buddy pages
and when it is storing per-cpu pages.
Patch 2 shrinks per_cpu_pages to make room for a spin lock. Strictly speaking
this is not necessary but it avoids per_cpu_pages consuming another
cache line.
Patch 3 is a preparation patch to avoid code duplication.
Patch 4 is a minor correction.
Patch 5 uses a spin_lock to protect the per_cpu_pages contents while still
relying on local_lock to prevent migration, stabilise the pcp
lookup and prevent IRQ reentrancy.
Patch 6 remote drains per-cpu pages directly instead of using a workqueue.
Patch 7 uses a normal spinlock instead of local_lock for remote draining
This patch (of 7):
The page allocator uses page->lru for storing pages on either buddy or PCP
lists. Create page->buddy_list and page->pcp_list as a union with
page->lru. This is simply to clarify what type of list a page is on in
the page allocator.
No functional change intended.
[minchan@kernel.org: fix page lru fields in macros]
Link: https://lkml.kernel.org/r/20220624125423.6126-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "hugetlb: speed up linear address scanning", v2.
At unmap, fork and remap time hugetlb address ranges are linearly scanned.
We can optimize these scans if the ranges are sparsely populated.
Also, enable page table "Lazy copy" for hugetlb at fork.
NOTE: Architectures not defining CONFIG_ARCH_WANT_GENERAL_HUGETLB need to
add an arch specific version hugetlb_mask_last_page() to take advantage of
sparse address scanning improvements. Baolin Wang added the routine for
arm64. Other architectures which could be optimized are: ia64, mips,
parisc, powerpc, s390, sh and sparc.
This patch (of 4):
HugeTLB address ranges are linearly scanned during fork, unmap and remap
operations. If a non-present entry is encountered, the code currently
continues to the next huge page aligned address. However, a non-present
entry implies that the page table page for that entry is not present.
Therefore, the linear scan can skip to the end of range mapped by the page
table page. This can speed operations on large sparsely populated hugetlb
mappings.
Create a new routine hugetlb_mask_last_page() that will return an address
mask. When the mask is ORed with an address, the result will be the
address of the last huge page mapped by the associated page table page.
Use this mask to update addresses in routines which linearly scan hugetlb
address ranges when a non-present pte is encountered.
hugetlb_mask_last_page is related to the implementation of huge_pte_offset
as hugetlb_mask_last_page is called when huge_pte_offset returns NULL.
This patch only provides a complete hugetlb_mask_last_page implementation
when CONFIG_ARCH_WANT_GENERAL_HUGETLB is defined. Architectures which
provide their own versions of huge_pte_offset can also provide their own
version of hugetlb_mask_last_page.
Link: https://lkml.kernel.org/r/20220621235620.291305-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20220621235620.291305-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: James Houghton <jthoughton@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The page fault path checks THP eligibility with __transhuge_page_enabled()
which does the similar thing as hugepage_vma_check(), so use
hugepage_vma_check() instead.
However page fault allows DAX and !anon_vma cases, so added a new flag,
in_pf, to hugepage_vma_check() to make page fault work correctly.
The in_pf flag is also used to skip shmem and file THP for page fault
since shmem handles THP in its own shmem_fault() and file THP allocation
on fault is not supported yet.
Also remove hugepage_vma_enabled() since hugepage_vma_check() is the only
caller now, it is not necessary to have a helper function.
Link: https://lkml.kernel.org/r/20220616174840.1202070-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The transparent_hugepage_active() was introduced to show THP eligibility
bit in smaps in proc, smaps is the only user. But it actually does the
similar check as hugepage_vma_check() which is used by khugepaged. We
definitely don't have to maintain two similar checks, so kill
transparent_hugepage_active().
This patch also fixed the wrong behavior for VM_NO_KHUGEPAGED vmas.
Also move hugepage_vma_check() to huge_memory.c and huge_mm.h since it
is not only for khugepaged anymore.
[akpm@linux-foundation.org: check vma->vm_mm, per Zach]
[akpm@linux-foundation.org: add comment to vdso check]
Link: https://lkml.kernel.org/r/20220616174840.1202070-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Cleanup transhuge_xxx helpers", v5.
This series is the follow-up of the discussion about cleaning up
transhuge_xxx helpers at
https://lore.kernel.org/linux-mm/627a71f8-e879-69a5-ceb3-fc8d29d2f7f1@suse.cz/.
THP has a bunch of helpers that do VMA sanity check for different paths,
they do the similar checks for the most callsites and have a lot duplicate
codes. And it is confusing what helpers should be used at what
conditions.
This series reorganized and cleaned up the code so that we could
consolidate all the checks into hugepage_vma_check().
The transhuge_vma_enabled(), transparent_hugepage_active() and
__transparent_hugepage_enabled() are killed by this series.
This patch (of 7):
Currently the THP flag check in hugepage_vma_check() will fallthrough if
the flag is NEVER and VM_HUGEPAGE is set. This is not a problem for now
since all the callers have the flag checked before or can't be invoked if
the flag is NEVER.
However, the following patch will call hugepage_vma_check() in more
places, for example, page fault, so this flag must be checked in
hugepge_vma_check().
Link: https://lkml.kernel.org/r/20220616174840.1202070-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20220616174840.1202070-2-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently any attempts to pin a device coherent page will fail. This is
because device coherent pages need to be managed by a device driver, and
pinning them would prevent a driver from migrating them off the device.
However this is no reason to fail pinning of these pages. These are
coherent and accessible from the CPU so can be migrated just like pinning
ZONE_MOVABLE pages. So instead of failing all attempts to pin them first
try migrating them out of ZONE_DEVICE.
[hch@lst.de: rebased to the split device memory checks, moved migrate_device_page to migrate_device.c]
Link: https://lkml.kernel.org/r/20220715150521.18165-7-alex.sierra@amd.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Add MEMORY_DEVICE_COHERENT for coherent device memory
mapping", v9.
This patch series introduces MEMORY_DEVICE_COHERENT, a type of memory
owned by a device that can be mapped into CPU page tables like
MEMORY_DEVICE_GENERIC and can also be migrated like MEMORY_DEVICE_PRIVATE.
This patch series is mostly self-contained except for a few places where
it needs to update other subsystems to handle the new memory type.
System stability and performance are not affected according to our ongoing
testing, including xfstests.
How it works: The system BIOS advertises the GPU device memory (aka VRAM)
as SPM (special purpose memory) in the UEFI system address map.
The amdgpu driver registers the memory with devmap as
MEMORY_DEVICE_COHERENT using devm_memremap_pages. The initial user for
this hardware page migration capability is the Frontier supercomputer
project. This functionality is not AMD-specific. We expect other GPU
vendors to find this functionality useful, and possibly other hardware
types in the future.
Our test nodes in the lab are similar to the Frontier configuration, with
.5 TB of system memory plus 256 GB of device memory split across 4 GPUs,
all in a single coherent address space. Page migration is expected to
improve application efficiency significantly. We will report empirical
results as they become available.
Coherent device type pages at gup are now migrated back to system memory
if they are being pinned long-term (FOLL_LONGTERM). The reason is, that
long-term pinning would interfere with the device memory manager owning
the device-coherent pages (e.g. evictions in TTM). These series
incorporate Alistair Popple patches to do this migration from
pin_user_pages() calls. hmm_gup_test has been added to hmm-test to test
different get user pages calls.
This series includes handling of device-managed anonymous pages returned
by vm_normal_pages. Although they behave like normal pages for purposes
of mapping in CPU page tables and for COW, they do not support LRU lists,
NUMA migration or THP.
We also introduced a FOLL_LRU flag that adds the same behaviour to
follow_page and related APIs, to allow callers to specify that they expect
to put pages on an LRU list.
This patch (of 14):
is_pinnable_page() and folio_is_pinnable() are renamed to
is_longterm_pinnable_page() and folio_is_longterm_pinnable() respectively.
These functions are used in the FOLL_LONGTERM flag context.
Link: https://lkml.kernel.org/r/20220715150521.18165-1-alex.sierra@amd.com
Link: https://lkml.kernel.org/r/20220715150521.18165-2-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make KASAN run on User Mode Linux on x86_64.
The UML-specific KASAN initializer uses mmap to map the ~16TB of shadow
memory to the location defined by KASAN_SHADOW_OFFSET. kasan_init()
utilizes constructors to initialize KASAN before main().
The location of the KASAN shadow memory, starting at
KASAN_SHADOW_OFFSET, can be configured using the KASAN_SHADOW_OFFSET
option. The default location of this offset is 0x100000000000, which
keeps it out-of-the-way even on UML setups with more "physical" memory.
For low-memory setups, 0x7fff8000 can be used instead, which fits in an
immediate and is therefore faster, as suggested by Dmitry Vyukov. There
is usually enough free space at this location; however, it is a config
option so that it can be easily changed if needed.
Note that, unlike KASAN on other architectures, vmalloc allocations
still use the shadow memory allocated upfront, rather than allocating
and free-ing it per-vmalloc allocation.
If another architecture chooses to go down the same path, we should
replace the checks for CONFIG_UML with something more generic, such
as:
- A CONFIG_KASAN_NO_SHADOW_ALLOC option, which architectures could set
- or, a way of having architecture-specific versions of these vmalloc
and module shadow memory allocation options.
Also note that, while UML supports both KASAN in inline mode
(CONFIG_KASAN_INLINE) and static linking (CONFIG_STATIC_LINK), it does
not support both at the same time.
Signed-off-by: Patricia Alfonso <trishalfonso@google.com>
Co-developed-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
__kasan_unpoison_pages() colours the memory with a random tag and stores
it in page->flags in order to re-create the tagged pointer via
page_to_virt() later. When the tag from the page->flags is read, ensure
that the in-memory tags are already visible by re-ordering the
page_kasan_tag_set() after kasan_unpoison(). The former already has
barriers in place through try_cmpxchg(). On the reader side, the order
is ensured by the address dependency between page->flags and the memory
access.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-2-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Most callers of memcg_slab_free_hook() already know the slab, which could
be passed to memcg_slab_free_hook() directly to reduce the overhead of an
another call of virt_to_slab(). For bulk freeing of objects, the call of
slab_objcgs() in the loop in memcg_slab_free_hook() is redundant as well.
Rework memcg_slab_free_hook() and build_detached_freelist() to reduce
those unnecessary overhead and make memcg_slab_free_hook() can handle bulk
freeing in slab_free().
Move the calling site of memcg_slab_free_hook() from do_slab_free() to
slab_free() for slub to make the code clearer since the logic is weird
(e.g. the caller need to judge whether it needs to call
memcg_slab_free_hook()). It is easy to make mistakes like missing calling
of memcg_slab_free_hook() like fixes of:
commit d1b2cf6cb8 ("mm: memcg/slab: uncharge during kmem_cache_free_bulk()")
commit ae085d7f93 ("mm: kfence: fix missing objcg housekeeping for SLAB")
This optimization is mainly for bulk objects freeing. The following numbers
is shown for 16-object freeing.
before after
kmem_cache_free_bulk: ~430 ns ~400 ns
The overhead is reduced by about 7% for 16-object freeing.
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Link: https://lore.kernel.org/r/20220429123044.37885-1-songmuchun@bytedance.com
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Slab caches marked with SLAB_ACCOUNT force accounting for every
allocation from this cache even if __GFP_ACCOUNT flag is not passed.
Unfortunately, at the moment this flag is not visible in ftrace output,
and this makes it difficult to analyze the accounted allocations.
This patch adds boolean "accounted" entry into trace output,
and set it to 'true' for calls used __GFP_ACCOUNT flag and
for allocations from caches marked with SLAB_ACCOUNT.
Set it to 'false' if accounting is disabled in configs.
Signed-off-by: Vasily Averin <vvs@openvz.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Link: https://lore.kernel.org/r/c418ed25-65fe-f623-fbf8-1676528859ed@openvz.org
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Commit e5251fd430 ("mm/hugetlb: introduce set_huge_swap_pte_at()
helper") add set_huge_swap_pte_at() to handle swap entries on
architectures that support hugepages consisting of contiguous ptes. And
currently the set_huge_swap_pte_at() is only overridden by arm64.
set_huge_swap_pte_at() provide a sz parameter to help determine the number
of entries to be updated. But in fact, all hugetlb swap entries contain
pfn information, so we can find the corresponding folio through the pfn
recorded in the swap entry, then the folio_size() is the number of entries
that need to be updated.
And considering that users will easily cause bugs by ignoring the
difference between set_huge_swap_pte_at() and set_huge_pte_at(). Let's
handle swap entries in set_huge_pte_at() and remove the
set_huge_swap_pte_at(), then we can call set_huge_pte_at() anywhere, which
simplifies our coding.
Link: https://lkml.kernel.org/r/20220626145717.53572-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Passing index to pte_offset_map_lock() directly so the below calculation
can be avoided. Rename orig_pte to ptep as it's not changed. Also use
helper is_swap_pte() to improve the readability. No functional change
intended.
[akpm@linux-foundation.org: reduce scope of `ptep']
Link: https://lkml.kernel.org/r/20220618090527.37843-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>