Commit Graph

18363 Commits

Author SHA1 Message Date
NeilBrown
c1221321b7 sched: Allow wait_on_bit_action() functions to support a timeout
It is currently not possible for various wait_on_bit functions
to implement a timeout.

While the "action" function that is called to do the waiting
could certainly use schedule_timeout(), there is no way to carry
forward the remaining timeout after a false wake-up.
As false-wakeups a clearly possible at least due to possible
hash collisions in bit_waitqueue(), this is a real problem.

The 'action' function is currently passed a pointer to the word
containing the bit being waited on.  No current action functions
use this pointer.  So changing it to something else will be a
little noisy but will have no immediate effect.

This patch changes the 'action' function to take a pointer to
the "struct wait_bit_key", which contains a pointer to the word
containing the bit so nothing is really lost.

It also adds a 'private' field to "struct wait_bit_key", which
is initialized to zero.

An action function can now implement a timeout with something
like

static int timed_out_waiter(struct wait_bit_key *key)
{
	unsigned long waited;
	if (key->private == 0) {
		key->private = jiffies;
		if (key->private == 0)
			key->private -= 1;
	}
	waited = jiffies - key->private;
	if (waited > 10 * HZ)
		return -EAGAIN;
	schedule_timeout(waited - 10 * HZ);
	return 0;
}

If any other need for context in a waiter were found it would be
easy to use ->private for some other purpose, or even extend
"struct wait_bit_key".

My particular need is to support timeouts in nfs_release_page()
to avoid deadlocks with loopback mounted NFS.

While wait_on_bit_timeout() would be a cleaner interface, it
will not meet my need.  I need the timeout to be sensitive to
the state of the connection with the server, which could change.
 So I need to use an 'action' interface.

Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051604.28027.41257.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 15:10:41 +02:00
NeilBrown
743162013d sched: Remove proliferation of wait_on_bit() action functions
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().

So:
 Rename wait_on_bit and        wait_on_bit_lock to
        wait_on_bit_action and wait_on_bit_lock_action
 to make it explicit that they need an action function.

 Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
 which are *not* given an action function but implicitly use
 a standard one.
 The decision to error-out if a signal is pending is now made
 based on the 'mode' argument rather than being encoded in the action
 function.

 All instances of the old wait_on_bit and wait_on_bit_lock which
 can use the new version have been changed accordingly and their
 action functions have been discarded.
 wait_on_bit{_lock} does not return any specific error code in the
 event of a signal so the caller must check for non-zero and
 interpolate their own error code as appropriate.

The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"

The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.

A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack.  So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).

Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS.  CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.

Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 15:10:39 +02:00
Ingo Molnar
d26fad5b38 Linux 3.16-rc5
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJTwvRvAAoJEHm+PkMAQRiG8CoIAJucWkj+MJFFoDXjR9hfI8U7
 /WeQLJP0GpWGMXd2KznX9epCuw5rsuaPAxCy1HFDNOa7OtNYacWrsIhByxOIDLwL
 YjDB9+fpMMPFWsr+LPJa8Ombh/TveCS77w6Pt5VMZFwvIKujiNK/C3MdxjReH5Gr
 iTGm8x7nEs2D6L2+5sQVlhXot/97phxIlBSP6wPXEiaztNZ9/JZi905Xpgq+WU16
 ZOA8MlJj1TQD4xcWyUcsQ5REwIOdQ6xxPF00wv/12RFela+Puy4JLAilnV6Mc12U
 fwYOZKbUNBS8rjfDDdyX3sljV1L5iFFqKkW3WFdnv/z8ZaZSo5NupWuavDnifKw=
 =6Q8o
 -----END PGP SIGNATURE-----

Merge tag 'v3.16-rc5' into sched/core, to refresh the branch before applying bigger tree-wide changes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 15:10:07 +02:00
Peter Zijlstra
e720fff634 sched/numa: Revert "Use effective_load() to balance NUMA loads"
Due to divergent trees, Rik find that this patch is no longer
required.

Requested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-u6odkgkw8wz3m7orgsjfo5pi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:23 +02:00
Jason Baron
5cd08fbfdb sched: Fix static_key race with sched_feat()
As pointed out by Andi Kleen, the usage of static keys can be racy in
sched_feat_disable() vs. sched_feat_enable(). Currently, we first check the
value of keys->enabled, and subsequently update the branch direction. This,
can be racy and can potentially leave the keys in an inconsistent state.

Take the i_mutex around these calls to resolve the race.

Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/9d7780c83db26683955cd01e6bc654ee2586e67f.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:21 +02:00
Jason Baron
6e76ea8a82 sched: Remove extra static_key*() function indirection
I think its a bit simpler without having to follow an extra layer of static
inline fuctions. No functional change just cosmetic.

Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: rostedt@goodmis.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/2ce52233ce200faad93b6029d90f1411cd926667.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:20 +02:00
xiaofeng.yan
1b09d29bc0 sched/rt: Fix replenish_dl_entity() comments to match the current upstream code
Signed-off-by: xiaofeng.yan <xiaofeng.yan@huawei.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1404712744-16986-1-git-send-email-xiaofeng.yan@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:20 +02:00
Kirill Tkhai
8875125efe sched: Transform resched_task() into resched_curr()
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.

The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:

  (before)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155274	  16445	   7042	 178761	  2ba49	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411490	1178376	 991232	9581098	 92322a	vmlinux

  (after)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155130	  16445	   7042	 178617	  2b9b9	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411362	1178376	 991232	9580970	 9231aa	vmlinux

	I was choosing between resched_curr() and resched_rq(),
	and the first name looks better for me.

A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:19 +02:00
Oleg Nesterov
466af29bf4 sched/deadline: Kill task_struct->pi_top_task
Remove task_struct->pi_top_task. The only user, rt_mutex_setprio(),
can use a local.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Dempsky <mdempsky@chromium.org>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20140606165206.GB29465@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:18 +02:00
Linus Torvalds
40f6123737 Merge branch 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
 "Mostly fixes for the fallouts from the recent cgroup core changes.

  The decoupled nature of cgroup dynamic hierarchy management
  (hierarchies are created dynamically on mount but may or may not be
  reused once unmounted depending on remaining usages) led to more
  ugliness being added to kernfs.

  Hopefully, this is the last of it"

* 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cpuset: break kernfs active protection in cpuset_write_resmask()
  cgroup: fix a race between cgroup_mount() and cgroup_kill_sb()
  kernfs: introduce kernfs_pin_sb()
  cgroup: fix mount failure in a corner case
  cpuset,mempolicy: fix sleeping function called from invalid context
  cgroup: fix broken css_has_online_children()
2014-07-10 11:38:23 -07:00
Linus Torvalds
a805cbf4c4 Merge branch 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
 "Two workqueue fixes.  Both are one liners.  One fixes missing uevent
  for workqueue files on sysfs.  The other one fixes missing zeroing of
  NUMA cpu masks which can lead to oopses among other things"

* 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: zero cpumask of wq_numa_possible_cpumask on init
  workqueue: fix dev_set_uevent_suppress() imbalance
2014-07-10 11:37:41 -07:00
Yasuaki Ishimatsu
5a6024f160 workqueue: zero cpumask of wq_numa_possible_cpumask on init
When hot-adding and onlining CPU, kernel panic occurs, showing following
call trace.

  BUG: unable to handle kernel paging request at 0000000000001d08
  IP: [<ffffffff8114acfd>] __alloc_pages_nodemask+0x9d/0xb10
  PGD 0
  Oops: 0000 [#1] SMP
  ...
  Call Trace:
   [<ffffffff812b8745>] ? cpumask_next_and+0x35/0x50
   [<ffffffff810a3283>] ? find_busiest_group+0x113/0x8f0
   [<ffffffff81193bc9>] ? deactivate_slab+0x349/0x3c0
   [<ffffffff811926f1>] new_slab+0x91/0x300
   [<ffffffff815de95a>] __slab_alloc+0x2bb/0x482
   [<ffffffff8105bc1c>] ? copy_process.part.25+0xfc/0x14c0
   [<ffffffff810a3c78>] ? load_balance+0x218/0x890
   [<ffffffff8101a679>] ? sched_clock+0x9/0x10
   [<ffffffff81105ba9>] ? trace_clock_local+0x9/0x10
   [<ffffffff81193d1c>] kmem_cache_alloc_node+0x8c/0x200
   [<ffffffff8105bc1c>] copy_process.part.25+0xfc/0x14c0
   [<ffffffff81114d0d>] ? trace_buffer_unlock_commit+0x4d/0x60
   [<ffffffff81085a80>] ? kthread_create_on_node+0x140/0x140
   [<ffffffff8105d0ec>] do_fork+0xbc/0x360
   [<ffffffff8105d3b6>] kernel_thread+0x26/0x30
   [<ffffffff81086652>] kthreadd+0x2c2/0x300
   [<ffffffff81086390>] ? kthread_create_on_cpu+0x60/0x60
   [<ffffffff815f20ec>] ret_from_fork+0x7c/0xb0
   [<ffffffff81086390>] ? kthread_create_on_cpu+0x60/0x60

In my investigation, I found the root cause is wq_numa_possible_cpumask.
All entries of wq_numa_possible_cpumask is allocated by
alloc_cpumask_var_node(). And these entries are used without initializing.
So these entries have wrong value.

When hot-adding and onlining CPU, wq_update_unbound_numa() is called.
wq_update_unbound_numa() calls alloc_unbound_pwq(). And alloc_unbound_pwq()
calls get_unbound_pool(). In get_unbound_pool(), worker_pool->node is set
as follow:

3592         /* if cpumask is contained inside a NUMA node, we belong to that node */
3593         if (wq_numa_enabled) {
3594                 for_each_node(node) {
3595                         if (cpumask_subset(pool->attrs->cpumask,
3596                                            wq_numa_possible_cpumask[node])) {
3597                                 pool->node = node;
3598                                 break;
3599                         }
3600                 }
3601         }

But wq_numa_possible_cpumask[node] does not have correct cpumask. So, wrong
node is selected. As a result, kernel panic occurs.

By this patch, all entries of wq_numa_possible_cpumask are allocated by
zalloc_cpumask_var_node to initialize them. And the panic disappeared.

Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Fixes: bce903809a ("workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]")
2014-07-07 09:56:48 -04:00
Linus Torvalds
549f11c9f0 Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq fixes from Thomas Gleixner:
 "A few minor fixlets in ARM SoC irq drivers and a fix for a memory leak
  which I introduced in the last round of cleanups :("

* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  genirq: Fix memory leak when calling irq_free_hwirqs()
  irqchip: spear_shirq: Fix interrupt offset
  irqchip: brcmstb-l2: Level-2 interrupts are edge sensitive
  irqchip: armada-370-xp: Mask all interrupts during initialization.
2014-07-05 16:56:14 -07:00
Keith Busch
8844aad89e genirq: Fix memory leak when calling irq_free_hwirqs()
irq_free_hwirqs() always calls irq_free_descs() with a cnt == 0
which makes it a no-op since the interrupt count to free is
decremented in itself.

Fixes: 7b6ef12625

Signed-off-by: Keith Busch <keith.busch@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/1404167084-8070-1-git-send-email-keith.busch@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-07-05 21:42:08 +02:00
Kirill Tkhai
b728ca0602 sched: Rework check_for_tasks()
1) Iterate thru all of threads in the system.
   Check for all threads, not only for group leaders.

2) Check for p->on_rq instead of p->state and cputime.
   Preempted task in !TASK_RUNNING state  OR just
   created task may be queued, that we want to be
   reported too.

3) Use read_lock() instead of write_lock().
   This function does not change any structures, and
   read_lock() is enough.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Cc: Konstantin Khorenko <khorenko@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Turner <pjt@google.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Todd E Brandt <todd.e.brandt@linux.intel.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684395.3462.44.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:45 +02:00
Kirill Tkhai
99b625670f sched/rt: Enqueue just unthrottled rt_rq back on the stack in __disable_runtime()
Make rt_rq available for pick_next_task(). Otherwise, their tasks
stay prisoned long time till dead cpu becomes alive again.

Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Ben Segall <bsegall@google.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684388.3462.43.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:44 +02:00
Kirill Tkhai
0e59bdaea7 sched/fair: Disable runtime_enabled on dying rq
We kill rq->rd on the CPU_DOWN_PREPARE stage:

	cpuset_cpu_inactive -> cpuset_update_active_cpus -> partition_sched_domains ->
	-> cpu_attach_domain -> rq_attach_root -> set_rq_offline

This unthrottles all throttled cfs_rqs.

But the cpu is still able to call schedule() till

	take_cpu_down->__cpu_disable()

is called from stop_machine.

This case the tasks from just unthrottled cfs_rqs are pickable
in a standard scheduler way, and they are picked by dying cpu.
The cfs_rqs becomes throttled again, and migrate_tasks()
in migration_call skips their tasks (one more unthrottle
in migrate_tasks()->CPU_DYING does not happen, because rq->rd
is already NULL).

Patch sets runtime_enabled to zero. This guarantees, the runtime
is not accounted, and the cfs_rqs won't exceed given
cfs_rq->runtime_remaining = 1, and tasks will be pickable
in migrate_tasks(). runtime_enabled is recalculated again
when rq becomes online again.

Ben Segall also noticed, we always enable runtime in
tg_set_cfs_bandwidth(). Actually, we should do that for online
cpus only. To prevent races with unthrottle_offline_cfs_rqs()
we take get_online_cpus() lock.

Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684382.3462.42.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:42 +02:00
Rik van Riel
a22b4b0123 sched/numa: Change scan period code to match intent
Reading through the scan period code and comment, it appears the
intent was to slow down NUMA scanning when a majority of accesses
are on the local node, specifically a local:remote ratio of 3:1.

However, the code actually tests local / (local + remote), and
the actual cut-off point was around 30% local accesses, well before
a task has actually converged on a node.

Changing the threshold to 7 means scanning slows down when a task
has around 70% of its accesses local, which appears to match the
intent of the code more closely.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:40 +02:00
Rik van Riel
db015daedb sched/numa: Rework best node setting in task_numa_migrate()
Fix up the best node setting in task_numa_migrate() to deal with a task
in a pseudo-interleaved NUMA group, which is already running in the
best location.

Set the task's preferred nid to the current nid, so task migration is
not retried at a high rate.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:39 +02:00
Rik van Riel
0132c3e177 sched/numa: Examine a task move when examining a task swap
Running "perf bench numa mem -0 -m -P 1000 -p 8 -t 20" on a 4
node system results in 160 runnable threads on a system with 80
CPU threads.

Once a process has nearly converged, with 39 threads on one node
and 1 thread on another node, the remaining thread will be unable
to migrate to its preferred node through a task swap.

However, a simple task move would make the workload converge,
witout causing an imbalance.

Test for this unlikely occurrence, and attempt a task move to
the preferred nid when it happens.

 # Running main, "perf bench numa mem -p 8 -t 20 -0 -m -P 1000"

 ###
 # 160 tasks will execute (on 4 nodes, 80 CPUs):
 #         -1x     0MB global  shared mem operations
 #         -1x  1000MB process shared mem operations
 #         -1x     0MB thread  local  mem operations
 ###

 ###
 #
 #    0.0%  [0.2 mins]  0/0   1/1  36/2   0/0  [36/3 ] l:  0-0   (  0) {0-2}
 #    0.0%  [0.3 mins] 43/3  37/2  39/2  41/3  [ 6/10] l:  0-1   (  1) {1-2}
 #    0.0%  [0.4 mins] 42/3  38/2  40/2  40/2  [ 4/9 ] l:  1-2   (  1) [50.0%] {1-2}
 #    0.0%  [0.6 mins] 41/3  39/2  40/2  40/2  [ 2/9 ] l:  2-4   (  2) [50.0%] {1-2}
 #    0.0%  [0.7 mins] 40/2  40/2  40/2  40/2  [ 0/8 ] l:  3-5   (  2) [40.0%] (  41.8s converged)

Without this patch, this same perf bench numa mem run had to
rely on the scheduler load balancer to first balance out the
load (moving a random task), before a task swap could complete
the NUMA convergence.

The load balancer does not normally take action unless the load

difference exceeds 25%. Convergence times of over half an hour
have been observed without this patch.

With this patch, the NUMA balancing code will simply migrate the
task, if that does not cause an imbalance.

Also skip examining a CPU in detail if the improvement on that CPU
is no more than the best we already have.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ggthh0rnh0yua6o5o3p6cr1o@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:38 +02:00
Rik van Riel
1c5d3eb375 sched/numa: Simplify task_numa_compare()
When a task is part of a numa_group, the comparison should always use
the group weight, in order to make workloads converge.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:37 +02:00
Rik van Riel
6dc1a672ab sched/numa: Use effective_load() to balance NUMA loads
When CONFIG_FAIR_GROUP_SCHED is enabled, the load that a task places
on a CPU is determined by the group the task is in. The active groups
on the source and destination CPU can be different, resulting in a
different load contribution by the same task at its source and at its
destination. As a result, the load needs to be calculated separately
for each CPU, instead of estimated once with task_h_load().

Getting this calculation right allows some workloads to converge,
where previously the last thread could get stuck on another node,
without being able to migrate to its final destination.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:35 +02:00
Rik van Riel
28a2174519 sched/numa: Move power adjustment into load_too_imbalanced()
Currently the NUMA code scales the load on each node with the
amount of CPU power available on that node, but it does not
apply any adjustment to the load of the task that is being
moved over.

On systems with SMT/HT, this results in a task being weighed
much more heavily than a CPU core, and a task move that would
even out the load between nodes being disallowed.

The correct thing is to apply the power correction to the
numbers after we have first applied the move of the tasks'
loads to them.

This also allows us to do the power correction with a multiplication,
rather than a division.

Also drop two function arguments for load_too_unbalanced, since it
takes various factors from env already.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:34 +02:00
Rik van Riel
f0b8a4afd6 sched/numa: Use group's max nid as task's preferred nid
From task_numa_placement, always try to consolidate the tasks
in a group on the group's top nid.

In case this task is part of a group that is interleaved over
multiple nodes, task_numa_migrate will set the task's preferred
nid to the best node it could find for the task, so this patch
will cause at most one run through task_numa_migrate.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:33 +02:00
Tim Chen
4486edd12b sched/fair: Implement fast idling of CPUs when the system is partially loaded
When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped.  This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.

On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus.  While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.

With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system.  We found
the patch eliminated 75% of the load balance attempts before idling a cpu.

The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running.  We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats().  We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:32 +02:00
Viresh Kumar
89abb5ad10 sched/idle: Drop !! while calculating 'broadcast'
We don't need 'broadcast' to be set to 'zero or one', but to 'zero or non-zero'
and so the extra operation to convert it to 'zero or one' can be skipped.

Also change type of 'broadcast' to unsigned int, i.e. type of
drv->states[*].flags.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/0dfbe2976aa108c53e08d3477ea90f6360c1f54c.1403584026.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:31 +02:00
Mike Galbraith
4036ac1567 sched: Fix clock_gettime(CLOCK_[PROCESS/THREAD]_CPUTIME_ID) monotonicity
If a task has been dequeued, it has been accounted.  Do not project
cycles that may or may not ever be accounted to a dequeued task, as
that may make clock_gettime() both inaccurate and non-monotonic.

Protect update_rq_clock() from slight TSC skew while at it.

Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: kosaki.motohiro@jp.fujitsu.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403588980.29711.11.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:30 +02:00
Ben Segall
c06f04c704 sched: Fix potential near-infinite distribute_cfs_runtime() loop
distribute_cfs_runtime() intentionally only hands out enough runtime to
bring each cfs_rq to 1 ns of runtime, expecting the cfs_rqs to then take
the runtime they need only once they actually get to run. However, if
they get to run sufficiently quickly, the period timer is still in
distribute_cfs_runtime() and no runtime is available, causing them to
throttle. Then distribute has to handle them again, and this can go on
until distribute has handed out all of the runtime 1ns at a time, which
takes far too long.

Instead allow access to the same runtime that distribute is handing out,
accepting that corner cases with very low quota may be able to spend the
entire cfs_b->runtime during distribute_cfs_runtime, meaning that the
runtime directly handed out by distribute_cfs_runtime was over quota. In
addition, if a cfs_rq does manage to throttle like this, make sure the
existing distribute_cfs_runtime no longer loops over it again.

Signed-off-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140620222120.13814.21652.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:29 +02:00
Viresh Kumar
541b82644d sched/core: Fix formatting issues in sched_can_stop_tick()
sched_can_stop_tick() is using 7 spaces instead of 8 spaces or a 'tab' at the
beginning of few lines. Which doesn't align well with the Coding Guidelines.

Also remove local variable 'rq' as it is used at only one place and we can
directly use this_rq() instead.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: fweisbec@gmail.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/afb781733e4a9ffbced5eb9fd25cc0aa5c6ffd7a.1403596966.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:28 +02:00
Peter Zijlstra
a77353e5eb irq_work: Remove BUG_ON in irq_work_run()
Because of a collision with 8d056c48e4 ("CPU hotplug, smp: flush any
pending IPI callbacks before CPU offline"), which ends up calling
hotplug_cfd()->flush_smp_call_function_queue()->irq_work_run(), which
is not from IRQ context.

And since that already calls irq_work_run() from the hotplug path,
remove our entire hotplug handling.

Reported-by: Stephen Warren <swarren@wwwdotorg.org>
Tested-by: Stephen Warren <swarren@wwwdotorg.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-busatzs2gvz4v62258agipuf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:26 +02:00
Ingo Molnar
51da9830d7 Merge branch 'timers/nohz' into sched/core
Merge these two, because upcoming patches will touch both areas.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:06:10 +02:00
Linus Torvalds
ef34c6ce49 Oleg Nesterov found and fixed a bug in the perf/ftrace/uprobes code where
running:
 
    # perf probe -x /lib/libc.so.6 syscall
    # echo 1 >> /sys/kernel/debug/tracing/events/probe_libc/enable
    # perf record -e probe_libc:syscall whatever
 
 kills the uprobe. Along the way he found some other minor bugs and clean ups
 that he fixed up making it a total of 4 patches.
 
 Doing unrelated work, I found that the reading of the ftrace trace
 file disables all function tracer callbacks. This was fine when ftrace
 was the only user, but now that it's used by perf and kprobes, this
 is a bug where reading trace can disable kprobes and perf. A very unexpected
 side effect and should be fixed.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJTtMugAAoJEKQekfcNnQGuRs8H/2HhNAy0F1pAFYT5tH2o0z/Z
 z6NFn83FUUoesg/Bd+1Dk7VekIZIdo1JxQc67/Y0D0oylPPr31gmVvk2llFPdJV5
 xuWiUOuMbDq4Eh3Een8yaOsNsGbcX0lgw9qJEyqAvhJMi5G4dyt3r/g+vFThAyqm
 O8Uv74GBGmUmmGMyZuW2r2f2vSEANSXTLbzFqj54fV7FNms1B0MpZ/2AiRcEwCzi
 9yMainwrO1VPVSrSJFkW8g4sNl5X1M4tiIT8wGN75YePJVK3FAH8LmUDfpau4+ae
 /QGdjNkRDWpZ3mMJPbz3sAT7USnMlSZ5w80Rf/CZuZAe2Ncycvh9AhqcFV0+fj8=
 =3h4s
 -----END PGP SIGNATURE-----

Merge tag 'trace-fixes-v3.16-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing fixes from Steven Rostedt:
 "Oleg Nesterov found and fixed a bug in the perf/ftrace/uprobes code
  where running:

    # perf probe -x /lib/libc.so.6 syscall
    # echo 1 >> /sys/kernel/debug/tracing/events/probe_libc/enable
    # perf record -e probe_libc:syscall whatever

  kills the uprobe.  Along the way he found some other minor bugs and
  clean ups that he fixed up making it a total of 4 patches.

  Doing unrelated work, I found that the reading of the ftrace trace
  file disables all function tracer callbacks.  This was fine when
  ftrace was the only user, but now that it's used by perf and kprobes,
  this is a bug where reading trace can disable kprobes and perf.  A
  very unexpected side effect and should be fixed"

* tag 'trace-fixes-v3.16-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  tracing: Remove ftrace_stop/start() from reading the trace file
  tracing/uprobes: Fix the usage of uprobe_buffer_enable() in probe_event_enable()
  tracing/uprobes: Kill the bogus UPROBE_HANDLER_REMOVE code in uprobe_dispatcher()
  uprobes: Change unregister/apply to WARN() if uprobe/consumer is gone
  tracing/uprobes: Revert "Support mix of ftrace and perf"
2014-07-03 18:37:25 -07:00
Andrew Morton
d18bbc215f kernel/printk/printk.c: revert "printk: enable interrupts before calling console_trylock_for_printk()"
Revert commit 939f04bec1 ("printk: enable interrupts before calling
console_trylock_for_printk()").

Andreas reported:

: None of the post 3.15 kernel boot for me. They all hang at the GRUB
: screen telling me it loaded and started the kernel, but the kernel
: itself stops before it prints anything (or even replaces the GRUB
: background graphics).

939f04bec1 is modest latency reduction.  Revert it until we understand
the reason for these failures.

Reported-by: Andreas Bombe <aeb@debian.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-07-03 09:21:54 -07:00
Tejun Heo
76bb5ab8f6 cpuset: break kernfs active protection in cpuset_write_resmask()
Writing to either "cpuset.cpus" or "cpuset.mems" file flushes
cpuset_hotplug_work so that cpu or memory hotunplug doesn't end up
migrating tasks off a cpuset after new resources are added to it.

As cpuset_hotplug_work calls into cgroup core via
cgroup_transfer_tasks(), this flushing adds the dependency to cgroup
core locking from cpuset_write_resmak().  This used to be okay because
cgroup interface files were protected by a different mutex; however,
8353da1f91 ("cgroup: remove cgroup_tree_mutex") simplified the
cgroup core locking and this dependency became a deadlock hazard -
cgroup file removal performed under cgroup core lock tries to drain
on-going file operation which is trying to flush cpuset_hotplug_work
blocked on the same cgroup core lock.

The locking simplification was done because kernfs added an a lot
easier way to deal with circular dependencies involving kernfs active
protection.  Let's use the same strategy in cpuset and break active
protection in cpuset_write_resmask().  While it isn't the prettiest,
this is a very rare, likely unique, situation which also goes away on
the unified hierarchy.

The commands to trigger the deadlock warning without the patch and the
lockdep output follow.

 localhost:/ # mount -t cgroup -o cpuset xxx /cpuset
 localhost:/ # mkdir /cpuset/tmp
 localhost:/ # echo 1 > /cpuset/tmp/cpuset.cpus
 localhost:/ # echo 0 > cpuset/tmp/cpuset.mems
 localhost:/ # echo $$ > /cpuset/tmp/tasks
 localhost:/ # echo 0 > /sys/devices/system/cpu/cpu1/online

  ======================================================
  [ INFO: possible circular locking dependency detected ]
  3.16.0-rc1-0.1-default+ #7 Not tainted
  -------------------------------------------------------
  kworker/1:0/32649 is trying to acquire lock:
   (cgroup_mutex){+.+.+.}, at: [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150

  but task is already holding lock:
   (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #2 (cpuset_hotplug_work){+.+...}:
  ...
  -> #1 (s_active#175){++++.+}:
  ...
  -> #0 (cgroup_mutex){+.+.+.}:
  ...

  other info that might help us debug this:

  Chain exists of:
    cgroup_mutex --> s_active#175 --> cpuset_hotplug_work

   Possible unsafe locking scenario:

	 CPU0                    CPU1
	 ----                    ----
    lock(cpuset_hotplug_work);
				 lock(s_active#175);
				 lock(cpuset_hotplug_work);
    lock(cgroup_mutex);

   *** DEADLOCK ***

  2 locks held by kworker/1:0/32649:
   #0:  ("events"){.+.+.+}, at: [<ffffffff81085412>] process_one_work+0x192/0x520
   #1:  (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520

  stack backtrace:
  CPU: 1 PID: 32649 Comm: kworker/1:0 Not tainted 3.16.0-rc1-0.1-default+ #7
 ...
  Call Trace:
   [<ffffffff815a5f78>] dump_stack+0x72/0x8a
   [<ffffffff810c263f>] print_circular_bug+0x10f/0x120
   [<ffffffff810c481e>] check_prev_add+0x43e/0x4b0
   [<ffffffff810c4ee6>] validate_chain+0x656/0x7c0
   [<ffffffff810c53d2>] __lock_acquire+0x382/0x660
   [<ffffffff810c57a9>] lock_acquire+0xf9/0x170
   [<ffffffff815aa13f>] mutex_lock_nested+0x6f/0x380
   [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150
   [<ffffffff811129c0>] hotplug_update_tasks_insane+0x110/0x1d0
   [<ffffffff81112bbd>] cpuset_hotplug_update_tasks+0x13d/0x180
   [<ffffffff811148ec>] cpuset_hotplug_workfn+0x18c/0x630
   [<ffffffff810854d4>] process_one_work+0x254/0x520
   [<ffffffff810875dd>] worker_thread+0x13d/0x3d0
   [<ffffffff8108e0c8>] kthread+0xf8/0x100
   [<ffffffff815acaec>] ret_from_fork+0x7c/0xb0

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Li Zefan <lizefan@huawei.com>
Tested-by: Li Zefan <lizefan@huawei.com>
2014-07-01 16:42:28 -04:00
Steven Rostedt (Red Hat)
099ed15167 tracing: Remove ftrace_stop/start() from reading the trace file
Disabling reading and writing to the trace file should not be able to
disable all function tracing callbacks. There's other users today
(like kprobes and perf). Reading a trace file should not stop those
from happening.

Cc: stable@vger.kernel.org # 3.0+
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-07-01 12:45:54 -04:00
Oleg Nesterov
fb6bab6a5a tracing/uprobes: Fix the usage of uprobe_buffer_enable() in probe_event_enable()
The usage of uprobe_buffer_enable() added by dcad1a20 is very wrong,

1. uprobe_buffer_enable() and uprobe_buffer_disable() are not balanced,
   _enable() should be called only if !enabled.

2. If uprobe_buffer_enable() fails probe_event_enable() should clear
   tp.flags and free event_file_link.

3. If uprobe_register() fails it should do uprobe_buffer_disable().

Link: http://lkml.kernel.org/p/20140627170146.GA18332@redhat.com

Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Fixes: dcad1a204f "tracing/uprobes: Fetch args before reserving a ring buffer"
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-30 13:22:33 -04:00
Oleg Nesterov
f786106e80 tracing/uprobes: Kill the bogus UPROBE_HANDLER_REMOVE code in uprobe_dispatcher()
I do not know why dd9fa555d7 "tracing/uprobes: Move argument fetching
to uprobe_dispatcher()" added the UPROBE_HANDLER_REMOVE, but it looks
wrong.

OK, perhaps it makes sense to avoid store_trace_args() if the tracee is
nacked by uprobe_perf_filter(). But then we should kill the same code
in uprobe_perf_func() and unify the TRACE/PROFILE filtering (we need to
do this anyway to mix perf/ftrace). Until then this code actually adds
the pessimization because uprobe_perf_filter() will be called twice and
return T in likely case.

Link: http://lkml.kernel.org/p/20140627170143.GA18329@redhat.com

Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-30 13:22:23 -04:00
Oleg Nesterov
06d0713904 uprobes: Change unregister/apply to WARN() if uprobe/consumer is gone
Add WARN_ON's into uprobe_unregister() and uprobe_apply() to ensure
that nobody tries to play with the dead uprobe/consumer. This helps
to catch the bugs like the one fixed by the previous patch.

In the longer term we should fix this poorly designed interface.
uprobe_register() should return "struct uprobe *" which should be
passed to apply/unregister. Plus other semantic changes, see the
changelog in commit 41ccba029e.

Link: http://lkml.kernel.org/p/20140627170140.GA18322@redhat.com

Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-30 13:22:15 -04:00
Oleg Nesterov
4821254206 tracing/uprobes: Revert "Support mix of ftrace and perf"
This reverts commit 43fe98913c.

This patch is very wrong. Firstly, this change leads to unbalanced
uprobe_unregister(). Just for example,

	# perf probe -x /lib/libc.so.6 syscall
	# echo 1 >> /sys/kernel/debug/tracing/events/probe_libc/enable
	# perf record -e probe_libc:syscall whatever

after that uprobe is dead (unregistered) but the user of ftrace/perf
can't know this, and it looks as if nobody hits this probe.

This would be easy to fix, but there are other reasons why it is not
simple to mix ftrace and perf. If nothing else, they can't share the
same ->consumer.filter. This is fixable too, but probably we need to
fix the poorly designed uprobe_register() interface first. At least
"register" and "apply" should be clearly separated.

Link: http://lkml.kernel.org/p/20140627170136.GA18319@redhat.com

Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: "zhangwei(Jovi)" <jovi.zhangwei@huawei.com>
Cc: stable@vger.kernel.org # v3.14
Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-30 13:21:58 -04:00
Li Zefan
3a32bd72d7 cgroup: fix a race between cgroup_mount() and cgroup_kill_sb()
We've converted cgroup to kernfs so cgroup won't be intertwined with
vfs objects and locking, but there are dark areas.

Run two instances of this script concurrently:

    for ((; ;))
    {
    	mount -t cgroup -o cpuacct xxx /cgroup
    	umount /cgroup
    }

After a while, I saw two mount processes were stuck at retrying, because
they were waiting for a subsystem to become free, but the root associated
with this subsystem never got freed.

This can happen, if thread A is in the process of killing superblock but
hasn't called percpu_ref_kill(), and at this time thread B is mounting
the same cgroup root and finds the root in the root list and performs
percpu_ref_try_get().

To fix this, we try to increase both the refcnt of the superblock and the
percpu refcnt of cgroup root.

v2:
- we should try to get both the superblock refcnt and cgroup_root refcnt,
  because cgroup_root may have no superblock assosiated with it.
- adjust/add comments.

tj: Updated comments.  Renamed @sb to @pinned_sb.

Cc: <stable@vger.kernel.org> # 3.15
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-06-30 10:16:26 -04:00
Li Zefan
970317aa48 cgroup: fix mount failure in a corner case
# cat test.sh
  #! /bin/bash

  mount -t cgroup -o cpu xxx /cgroup
  umount /cgroup

  mount -t cgroup -o cpu,cpuacct xxx /cgroup
  umount /cgroup
  # ./test.sh
  mount: xxx already mounted or /cgroup busy
  mount: according to mtab, xxx is already mounted on /cgroup

It's because the cgroupfs_root of the first mount was under destruction
asynchronously.

Fix this by delaying and then retrying mount for this case.

v3:
- put the refcnt immediately after getting it. (Tejun)

v2:
- use percpu_ref_tryget_live() rather that introducing
  percpu_ref_alive(). (Tejun)
- adjust comment.

tj: Updated the comment a bit.

Cc: <stable@vger.kernel.org> # 3.15
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-06-30 10:16:25 -04:00
Gu Zheng
391acf970d cpuset,mempolicy: fix sleeping function called from invalid context
When runing with the kernel(3.15-rc7+), the follow bug occurs:
[ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586
[ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python
[ 9969.441175] INFO: lockdep is turned off.
[ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G       A      3.15.0-rc7+ #85
[ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012
[ 9969.706052]  ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18
[ 9969.795323]  ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c
[ 9969.884710]  ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000
[ 9969.974071] Call Trace:
[ 9970.003403]  [<ffffffff8162f523>] dump_stack+0x4d/0x66
[ 9970.065074]  [<ffffffff8109995a>] __might_sleep+0xfa/0x130
[ 9970.130743]  [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0
[ 9970.200638]  [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210
[ 9970.272610]  [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140
[ 9970.344584]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.409282]  [<ffffffff811b1385>] __mpol_dup+0xe5/0x150
[ 9970.471897]  [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150
[ 9970.536585]  [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40
[ 9970.613763]  [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10
[ 9970.683660]  [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50
[ 9970.759795]  [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40
[ 9970.834885]  [<ffffffff8106a598>] do_fork+0xd8/0x380
[ 9970.894375]  [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0
[ 9970.969470]  [<ffffffff8106a8c6>] SyS_clone+0x16/0x20
[ 9971.030011]  [<ffffffff81642009>] stub_clone+0x69/0x90
[ 9971.091573]  [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b

The cause is that cpuset_mems_allowed() try to take
mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in
__mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is
under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock
protection region to protect the access to cpuset only in
current_cpuset_is_being_rebound(). So that we can avoid this bug.

This patch is a temporary solution that just addresses the bug
mentioned above, can not fix the long-standing issue about cpuset.mems
rebinding on fork():

"When the forker's task_struct is duplicated (which includes
 ->mems_allowed) and it races with an update to cpuset_being_rebound
 in update_tasks_nodemask() then the task's mems_allowed doesn't get
 updated. And the child task's mems_allowed can be wrong if the
 cpuset's nodemask changes before the child has been added to the
 cgroup's tasklist."

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable <stable@vger.kernel.org>
2014-06-25 09:42:11 -04:00
Linus Torvalds
b8e46d22dc This includes three patches from Oleg Nesterov. The first is a fix to a
race condition that happens between enabling/disabling syscall tracepoints
 and new process creations (the check to go into the ptrace path for a process
 can be set when it shouldn't, or not set when it should). Not a major bug
 but one that should be fixed and even applied to stable.
 
 The other two patches are cleanup/fixes that are not that critical, but
 for an -rc1 release would be nice to have. They both deal with syscall
 tracepoints.
 
 It also includes a patch to introduce a new macro for the TRACE_EVENT()
 format called __field_struct(). Originally, __field() was used to record
 any variable into a trace event, but with the addition of setting the
 "is signed" attribute, the check causes anything but a primitive variable
 to fail to compile. That is, structs and unions can't be used as they
 once were. When the "is signed" check was introduce there were only
 primitive variables being recorded. But that will change soon and it
 was reported that __field() causes build failures.
 
 To solve the __field() issue, __field_struct() is introduced to allow
 trace_events to be able to record complex types too.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJTpxx+AAoJEKQekfcNnQGu8dQH/RWwKuq/SDqdqFrYM3y0MGtU
 GpWTzaTYfhoO7FE2zNx3JQtfu5Zg+KPzavecEQqYJGdUvd5lopo+GR4TYQ2GIDdA
 O4gBgXkxJjYCQ4x9INXf/U8Afd4tfCYSWik2zzWUZaJSLd6pMV/4XbqqZItZ7aqt
 bxWa7CgmSMHmfsO5a3xWzX0ybPCmYw/+G15CZDGguoazO1FU6oFAnKnr86PGhquH
 eIHzGAO7ka6k+hQwM1gzUi5vIN+OGBZ4HuJCFu/jqaJHMxW0lomL93Gruifk3l4v
 r2ierd0FjMSrV1BzCWRR+diWq8W0xwOUutFd1eG3fKlKHZJn4oZfiUHsZw65PFQ=
 =Idsk
 -----END PGP SIGNATURE-----

Merge tag 'trace-fixes-v3.16-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing cleanups and fixes from Steven Rostedt:
 "This includes three patches from Oleg Nesterov.  The first is a fix to
  a race condition that happens between enabling/disabling syscall
  tracepoints and new process creations (the check to go into the ptrace
  path for a process can be set when it shouldn't, or not set when it
  should).  Not a major bug but one that should be fixed and even
  applied to stable.

  The other two patches are cleanup/fixes that are not that critical,
  but for an -rc1 release would be nice to have.  They both deal with
  syscall tracepoints.

  It also includes a patch to introduce a new macro for the
  TRACE_EVENT() format called __field_struct().  Originally, __field()
  was used to record any variable into a trace event, but with the
  addition of setting the "is signed" attribute, the check causes
  anything but a primitive variable to fail to compile.  That is,
  structs and unions can't be used as they once were.  When the "is
  signed" check was introduce there were only primitive variables being
  recorded.  But that will change soon and it was reported that
  __field() causes build failures.

  To solve the __field() issue, __field_struct() is introduced to allow
  trace_events to be able to record complex types too"

* tag 'trace-fixes-v3.16-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  tracing: Add __field_struct macro for TRACE_EVENT()
  tracing: syscall_regfunc() should not skip kernel threads
  tracing: Change syscall_*regfunc() to check PF_KTHREAD and use for_each_process_thread()
  tracing: Fix syscall_*regfunc() vs copy_process() race
2014-06-25 05:08:09 -07:00
Aaron Tomlin
ed235875e2 kernel/watchdog.c: print traces for all cpus on lockup detection
A 'softlockup' is defined as a bug that causes the kernel to loop in
kernel mode for more than a predefined period to time, without giving
other tasks a chance to run.

Currently, upon detection of this condition by the per-cpu watchdog
task, debug information (including a stack trace) is sent to the system
log.

On some occasions, we have observed that the "victim" rather than the
actual "culprit" (i.e.  the owner/holder of the contended resource) is
reported to the user.  Often this information has proven to be
insufficient to assist debugging efforts.

To avoid loss of useful debug information, for architectures which
support NMI, this patch makes it possible to improve soft lockup
reporting.  This is accomplished by issuing an NMI to each cpu to obtain
a stack trace.

If NMI is not supported we just revert back to the old method.  A sysctl
and boot-time parameter is available to toggle this feature.

[dzickus@redhat.com: add CONFIG_SMP in certain areas]
[akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations]
[mq@suse.cz: fix warning]
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jan Moskyto Matejka <mq@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:44 -07:00
David Rientjes
7cd2b0a34a mm, pcp: allow restoring percpu_pagelist_fraction default
Oleg reports a division by zero error on zero-length write() to the
percpu_pagelist_fraction sysctl:

    divide error: 0000 [#1] SMP DEBUG_PAGEALLOC
    CPU: 1 PID: 9142 Comm: badarea_io Not tainted 3.15.0-rc2-vm-nfs+ #19
    Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
    task: ffff8800d5aeb6e0 ti: ffff8800d87a2000 task.ti: ffff8800d87a2000
    RIP: 0010: percpu_pagelist_fraction_sysctl_handler+0x84/0x120
    RSP: 0018:ffff8800d87a3e78  EFLAGS: 00010246
    RAX: 0000000000000f89 RBX: ffff88011f7fd000 RCX: 0000000000000000
    RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000010
    RBP: ffff8800d87a3e98 R08: ffffffff81d002c8 R09: ffff8800d87a3f50
    R10: 000000000000000b R11: 0000000000000246 R12: 0000000000000060
    R13: ffffffff81c3c3e0 R14: ffffffff81cfddf8 R15: ffff8801193b0800
    FS:  00007f614f1e9740(0000) GS:ffff88011f440000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
    CR2: 00007f614f1fa000 CR3: 00000000d9291000 CR4: 00000000000006e0
    Call Trace:
      proc_sys_call_handler+0xb3/0xc0
      proc_sys_write+0x14/0x20
      vfs_write+0xba/0x1e0
      SyS_write+0x46/0xb0
      tracesys+0xe1/0xe6

However, if the percpu_pagelist_fraction sysctl is set by the user, it
is also impossible to restore it to the kernel default since the user
cannot write 0 to the sysctl.

This patch allows the user to write 0 to restore the default behavior.
It still requires a fraction equal to or larger than 8, however, as
stated by the documentation for sanity.  If a value in the range [1, 7]
is written, the sysctl will return EINVAL.

This successfully solves the divide by zero issue at the same time.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Oleg Drokin <green@linuxhacker.ru>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:43 -07:00
Don Zickus
bde92cf455 kernel/watchdog.c: remove preemption restrictions when restarting lockup detector
Peter Wu noticed the following splat on his machine when updating
/proc/sys/kernel/watchdog_thresh:

  BUG: sleeping function called from invalid context at mm/slub.c:965
  in_atomic(): 1, irqs_disabled(): 0, pid: 1, name: init
  3 locks held by init/1:
   #0:  (sb_writers#3){.+.+.+}, at: [<ffffffff8117b663>] vfs_write+0x143/0x180
   #1:  (watchdog_proc_mutex){+.+.+.}, at: [<ffffffff810e02d3>] proc_dowatchdog+0x33/0x110
   #2:  (cpu_hotplug.lock){.+.+.+}, at: [<ffffffff810589c2>] get_online_cpus+0x32/0x80
  Preemption disabled at:[<ffffffff810e0384>] proc_dowatchdog+0xe4/0x110

  CPU: 0 PID: 1 Comm: init Not tainted 3.16.0-rc1-testing #34
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
    dump_stack+0x4e/0x7a
    __might_sleep+0x11d/0x190
    kmem_cache_alloc_trace+0x4e/0x1e0
    perf_event_alloc+0x55/0x440
    perf_event_create_kernel_counter+0x26/0xe0
    watchdog_nmi_enable+0x75/0x140
    update_timers_all_cpus+0x53/0xa0
    proc_dowatchdog+0xe4/0x110
    proc_sys_call_handler+0xb3/0xc0
    proc_sys_write+0x14/0x20
    vfs_write+0xad/0x180
    SyS_write+0x49/0xb0
    system_call_fastpath+0x16/0x1b
  NMI watchdog: disabled (cpu0): hardware events not enabled

What happened is after updating the watchdog_thresh, the lockup detector
is restarted to utilize the new value.  Part of this process involved
disabling preemption.  Once preemption was disabled, perf tried to
allocate a new event (as part of the restart).  This caused the above
BUG_ON as you can't sleep with preemption disabled.

The preemption restriction seemed agressive as we are not doing anything
on that particular cpu, but with all the online cpus (which are
protected by the get_online_cpus lock).  Remove the restriction and the
BUG_ON goes away.

Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Peter Wu <peter@lekensteyn.nl>
Tested-by: Peter Wu <peter@lekensteyn.nl>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>		[3.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:43 -07:00
Petr Tesarik
b3acc56bfe kexec: save PG_head_mask in VMCOREINFO
To allow filtering of huge pages, makedumpfile must be able to identify
them in the dump.  This can be done by checking the appropriate page
flag, so communicate its value to makedumpfile through the VMCOREINFO
interface.

There's only one small catch.  Depending on how many page flags are
available on a given architecture, this bit can be called PG_head or
PG_compound.

I sent a similar patch back in 2012, but Eric Biederman did not like
using an #ifdef.  So, this time I'm adding a common symbol
(PG_head_mask) instead.

See https://lkml.org/lkml/2012/11/28/91 for the previous version.

Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:43 -07:00
Srivatsa S. Bhat
8d056c48e4 CPU hotplug, smp: flush any pending IPI callbacks before CPU offline
There is a race between the CPU offline code (within stop-machine) and
the smp-call-function code, which can lead to getting IPIs on the
outgoing CPU, *after* it has gone offline.

Specifically, this can happen when using
smp_call_function_single_async() to send the IPI, since this API allows
sending asynchronous IPIs from IRQ disabled contexts.  The exact race
condition is described below.

During CPU offline, in stop-machine, we don't enforce any rule in the
_DISABLE_IRQ stage, regarding the order in which the outgoing CPU and
the other CPUs disable their local interrupts.  Due to this, we can
encounter a situation in which an IPI is sent by one of the other CPUs
to the outgoing CPU (while it is *still* online), but the outgoing CPU
ends up noticing it only *after* it has gone offline.

              CPU 1                                         CPU 2
          (Online CPU)                               (CPU going offline)

       Enter _PREPARE stage                          Enter _PREPARE stage

                                                     Enter _DISABLE_IRQ stage

                                                   =
       Got a device interrupt, and                 | Didn't notice the IPI
       the interrupt handler sent an               | since interrupts were
       IPI to CPU 2 using                          | disabled on this CPU.
       smp_call_function_single_async()            |
                                                   =

       Enter _DISABLE_IRQ stage

       Enter _RUN stage                              Enter _RUN stage

                                  =
       Busy loop with interrupts  |                  Invoke take_cpu_down()
       disabled.                  |                  and take CPU 2 offline
                                  =

       Enter _EXIT stage                             Enter _EXIT stage

       Re-enable interrupts                          Re-enable interrupts

                                                     The pending IPI is noted
                                                     immediately, but alas,
                                                     the CPU is offline at
                                                     this point.

This of course, makes the smp-call-function IPI handler code running on
CPU 2 unhappy and it complains about "receiving an IPI on an offline
CPU".

One real example of the scenario on CPU 1 is the block layer's
complete-request call-path:

	__blk_complete_request() [interrupt-handler]
	    raise_blk_irq()
	        smp_call_function_single_async()

However, if we look closely, the block layer does check that the target
CPU is online before firing the IPI.  So in this case, it is actually
the unfortunate ordering/timing of events in the stop-machine phase that
leads to receiving IPIs after the target CPU has gone offline.

In reality, getting a late IPI on an offline CPU is not too bad by
itself (this can happen even due to hardware latencies in IPI
send-receive).  It is a bug only if the target CPU really went offline
without executing all the callbacks queued on its list.  (Note that a
CPU is free to execute its pending smp-call-function callbacks in a
batch, without waiting for the corresponding IPIs to arrive for each one
of those callbacks).

So, fixing this issue can be broken up into two parts:

1. Ensure that a CPU goes offline only after executing all the
   callbacks queued on it.

2. Modify the warning condition in the smp-call-function IPI handler
   code such that it warns only if an offline CPU got an IPI *and* that
   CPU had gone offline with callbacks still pending in its queue.

Achieving part 1 is straight-forward - just flush (execute) all the
queued callbacks on the outgoing CPU in the CPU_DYING stage[1],
including those callbacks for which the source CPU's IPIs might not have
been received on the outgoing CPU yet.  Once we do this, an IPI that
arrives late on the CPU going offline (either due to the race mentioned
above, or due to hardware latencies) will be completely harmless, since
the outgoing CPU would have executed all the queued callbacks before
going offline.

Overall, this fix (parts 1 and 2 put together) additionally guarantees
that we will see a warning only when the *IPI-sender code* is buggy -
that is, if it queues the callback _after_ the target CPU has gone
offline.

[1].  The CPU_DYING part needs a little more explanation: by the time we
execute the CPU_DYING notifier callbacks, the CPU would have already
been marked offline.  But we want to flush out the pending callbacks at
this stage, ignoring the fact that the CPU is offline.  So restructure
the IPI handler code so that we can by-pass the "is-cpu-offline?" check
in this particular case.  (Of course, the right solution here is to fix
CPU hotplug to mark the CPU offline _after_ invoking the CPU_DYING
notifiers, but this requires a lot of audit to ensure that this change
doesn't break any existing code; hence lets go with the solution
proposed above until that is done).

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Suggested-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sachin Kamat <sachin.kamat@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23 16:47:43 -07:00
Maxime Bizon
bddbceb688 workqueue: fix dev_set_uevent_suppress() imbalance
Uevents are suppressed during attributes registration, but never
restored, so kobject_uevent() does nothing.

Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 226223ab3c
2014-06-23 14:40:49 -04:00
Linus Torvalds
401c58fcbb Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "This is larger than usual: the main reason are the ARM symbol lookup
  speedups that came in late and were hard to resist.

  There's also a kprobes fix and various tooling fixes, plus the minimal
  re-enablement of the mmap2 support interface"

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  x86/kprobes: Fix build errors and blacklist context_track_user
  perf tests: Add test for closing dso objects on EMFILE error
  perf tests: Add test for caching dso file descriptors
  perf tests: Allow reuse of test_file function
  perf tests: Spawn child for each test
  perf tools: Add dso__data_* interface descriptons
  perf tools: Allow to close dso fd in case of open failure
  perf tools: Add file size check and factor dso__data_read_offset
  perf tools: Cache dso data file descriptor
  perf tools: Add global count of opened dso objects
  perf tools: Add global list of opened dso objects
  perf tools: Add data_fd into dso object
  perf tools: Separate dso data related variables
  perf tools: Cache register accesses for unwind processing
  perf record: Fix to honor user freq/interval properly
  perf timechart: Reflow documentation
  perf probe: Improve error messages in --line option
  perf probe: Improve an error message of perf probe --vars mode
  perf probe: Show error code and description in verbose mode
  perf probe: Improve error message for unknown member of data structure
  ...
2014-06-21 07:07:17 -10:00