The following commit:
3a4ac121c2 ("x86/perf: Add hardware performance events support for Zhaoxin CPU.")
Got the old-style NMI watchdog logic wrong and broke it for basically every
Intel CPU where it was active. Which is only truly old CPUs, so few people noticed.
On CPUs with perf events support we turn off the old-style NMI watchdog, so it
was pretty pointless to add the logic for X86_VENDOR_ZHAOXIN to begin with ... :-/
Anyway, the fix is to restore the old logic and add a 'break'.
[ mingo: Wrote a new changelog. ]
Fixes: 3a4ac121c2 ("x86/perf: Add hardware performance events support for Zhaoxin CPU.")
Signed-off-by: CodyYao-oc <CodyYao-oc@zhaoxin.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210607025335.9643-1-CodyYao-oc@zhaoxin.com
Microsoft Hypervisor expects the logical processor index to be the same
as CPU's index during logical processor creation. Using cpu_physical_id
confuses hypervisor's scheduler. That causes the root partition not boot
when core scheduler is used.
This patch removes the call to cpu_physical_id and uses the CPU index
directly for bringing up logical processor. This scheme works for both
classic scheduler and core scheduler.
Fixes: 333abaf5ab (x86/hyperv: implement and use hv_smp_prepare_cpus)
Signed-off-by: Praveen Kumar <kumarpraveen@linux.microsoft.com>
Link: https://lore.kernel.org/r/20210531074046.113452-1-kumarpraveen@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
AMD and Hygon CPUs have a CPUID bit for RAPL. Drop the fam17h suffix as
it is stale already.
Make use of this instead of a model check to work more nicely in virtual
environments where RAPL typically isn't available.
[ bp: drop the ../cpu/powerflags.c hunk which is superfluous as the
"rapl" bit name appears already in flags. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210514135920.16093-1-andrew.cooper3@citrix.com
When BIOS reports memory errors to Linux using the ACPI/APEI
error reporting method Linux creates a "struct mce" to pass
to the normal reporting code path.
The constructed record doesn't include a value for the "misc"
field of the structure, and so mce_usable_address() says this
record doesn't include a valid address.
Net result is that functions like uc_decode_notifier() will
just ignore this record instead of taking action to offline
a page.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210527222846.931851-1-tony.luck@intel.com
Add the (HWID, MCATYPE) tuples and names for new SMCA bank types.
Also, add their respective error descriptions to the MCE decoding module
edac_mce_amd. Also while at it, optimize the string names for some SMCA
banks.
[ bp: Drop repeated comments, explain why UMC_V2 is a separate entry. ]
Signed-off-by: Muralidhara M K <muralimk@amd.com>
Signed-off-by: Naveen Krishna Chatradhi <nchatrad@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lkml.kernel.org/r/20210526164601.66228-1-nchatrad@amd.com
Signal frames do not have a fixed format and can vary in size when a number
of things change: supported XSAVE features, 32 vs. 64-bit apps, etc.
Add support for a runtime method for userspace to dynamically discover
how large a signal stack needs to be.
Introduce a new variable, max_frame_size, and helper functions for the
calculation to be used in a new user interface. Set max_frame_size to a
system-wide worst-case value, instead of storing multiple app-specific
values.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H.J. Lu <hjl.tools@gmail.com>
Link: https://lkml.kernel.org/r/20210518200320.17239-3-chang.seok.bae@intel.com
A bus lock can be thousands of cycles slower than atomic operation within
one cache line. It also disrupts performance on other cores. Malicious
users can generate multiple bus locks to degrade the whole system
performance.
The current mitigation is to kill the offending process, but for certain
scenarios it's desired to identify and throttle the offending application.
Add a system wide rate limit for bus locks. When the system detects bus
locks at a rate higher than N/sec (where N can be set by the kernel boot
argument in the range [1..1000]) any task triggering a bus lock will be
forced to sleep for at least 20ms until the overall system rate of bus
locks drops below the threshold.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210419214958.4035512-3-fenghua.yu@intel.com
SEV-ES guests require properly setup task register with which the TSS
descriptor in the GDT can be located so that the IST-type #VC exception
handler which they need to function properly, can be executed.
This setup needs to happen before attempting to load microcode in
ucode_cpu_init() on secondary CPUs which can cause such #VC exceptions.
Simplify the machinery by running that exception setup from a new function
cpu_init_secondary() and explicitly call cpu_init_exception_handling() for
the boot CPU before cpu_init(). The latter prepares for fixing and
simplifying the exception/IST setup on the boot CPU.
There should be no functional changes resulting from this patch.
[ tglx: Reworked it so cpu_init_exception_handling() stays seperate ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Lai Jiangshan <laijs@linux.alibaba.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/87k0o6gtvu.ffs@nanos.tec.linutronix.de
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
It is better to clear as many flags as possible when we do a system
call entry, as opposed to the other way around. The fewer flags we
keep, the lesser the possible interference between the kernel and user
space.
The flags changed are:
- CF, PF, AF, ZF, SF, OF: these are arithmetic flags which affect
branches, possibly speculatively. They should be cleared for the same
reasons we now clear all GPRs on entry.
- RF: suppresses a code breakpoint on the subsequent instruction. It is
probably impossible to enter the kernel with RF set, but if it is
somehow not, it would break a kernel debugger setting a breakpoint on
the entry point. Either way, user space should not be able to control
kernel behavior here.
- ID: this flag has no direct effect (it is a scratch bit only.)
However, there is no reason to retain the user space value in the
kernel, and the standard should be to clear unless needed, not the
other way around.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210510185316.3307264-5-hpa@zytor.com
Drop write_tsc() and write_rdtscp_aux(); the former has no users, and the
latter has only a single user and is slightly misleading since the only
in-kernel consumer of MSR_TSC_AUX is RDPID, not RDTSCP.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210504225632.1532621-3-seanjc@google.com
Initialize MSR_TSC_AUX with CPU node information if RDTSCP or RDPID is
supported. This fixes a bug where vdso_read_cpunode() will read garbage
via RDPID if RDPID is supported but RDTSCP is not. While no known CPU
supports RDPID but not RDTSCP, both Intel's SDM and AMD's APM allow for
RDPID to exist without RDTSCP, e.g. it's technically a legal CPU model
for a virtual machine.
Note, technically MSR_TSC_AUX could be initialized if and only if RDPID
is supported since RDTSCP is currently not used to retrieve the CPU node.
But, the cost of the superfluous WRMSR is negigible, whereas leaving
MSR_TSC_AUX uninitialized is just asking for future breakage if someone
decides to utilize RDTSCP.
Fixes: a582c540ac ("x86/vdso: Use RDPID in preference to LSL when available")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210504225632.1532621-2-seanjc@google.com
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
Pull Hyper-V updates from Wei Liu:
- VMBus enhancement
- Free page reporting support for Hyper-V balloon driver
- Some patches for running Linux as Arm64 Hyper-V guest
- A few misc clean-up patches
* tag 'hyperv-next-signed-20210426' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (30 commits)
drivers: hv: Create a consistent pattern for checking Hyper-V hypercall status
x86/hyperv: Move hv_do_rep_hypercall to asm-generic
video: hyperv_fb: Add ratelimit on error message
Drivers: hv: vmbus: Increase wait time for VMbus unload
Drivers: hv: vmbus: Initialize unload_event statically
Drivers: hv: vmbus: Check for pending channel interrupts before taking a CPU offline
Drivers: hv: vmbus: Drivers: hv: vmbus: Introduce CHANNELMSG_MODIFYCHANNEL_RESPONSE
Drivers: hv: vmbus: Introduce and negotiate VMBus protocol version 5.3
Drivers: hv: vmbus: Use after free in __vmbus_open()
Drivers: hv: vmbus: remove unused function
Drivers: hv: vmbus: Remove unused linux/version.h header
x86/hyperv: remove unused linux/version.h header
x86/Hyper-V: Support for free page reporting
x86/hyperv: Fix unused variable 'hi' warning in hv_apic_read
x86/hyperv: Fix unused variable 'msr_val' warning in hv_qlock_wait
hv: hyperv.h: a few mundane typo fixes
drivers: hv: Fix EXPORT_SYMBOL and tab spaces issue
Drivers: hv: vmbus: Drop error message when 'No request id available'
asm-generic/hyperv: Add missing function prototypes per -W1 warnings
clocksource/drivers/hyper-v: Move handling of STIMER0 interrupts
...
Pull x86 bus lock detection updates from Thomas Gleixner:
"Support for enhanced split lock detection:
Newer CPUs provide a second mechanism to detect operations with lock
prefix which go accross a cache line boundary. Such operations have to
take bus lock which causes a system wide performance degradation when
these operations happen frequently.
The new mechanism is not using the #AC exception. It triggers #DB and
is restricted to operations in user space. Kernel side split lock
access can only be detected by the #AC based variant.
Contrary to the #AC based mechanism the #DB based variant triggers
_after_ the instruction was executed. The mechanism is CPUID
enumerated and contrary to the #AC version which is based on the magic
TEST_CTRL_MSR and model/family based enumeration on the way to become
architectural"
* tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/admin-guide: Change doc for split_lock_detect parameter
x86/traps: Handle #DB for bus lock
x86/cpufeatures: Enumerate #DB for bus lock detection
Pull misc x86 cleanups from Borislav Petkov:
"Trivial cleanups and fixes all over the place"
* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Remove me from IDE/ATAPI section
x86/pat: Do not compile stubbed functions when X86_PAT is off
x86/asm: Ensure asm/proto.h can be included stand-alone
x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
x86/msr: Make locally used functions static
x86/cacheinfo: Remove unneeded dead-store initialization
x86/process/64: Move cpu_current_top_of_stack out of TSS
tools/turbostat: Unmark non-kernel-doc comment
x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
x86/fpu/math-emu: Fix function cast warning
x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
x86: Fix various typos in comments, take #2
x86: Remove unusual Unicode characters from comments
x86/kaslr: Return boolean values from a function returning bool
x86: Fix various typos in comments
x86/setup: Remove unused RESERVE_BRK_ARRAY()
stacktrace: Move documentation for arch_stack_walk_reliable() to header
x86: Remove duplicate TSC DEADLINE MSR definitions
Pull x86 SGX updates from Borislav Petkov:
"Add the guest side of SGX support in KVM guests. Work by Sean
Christopherson, Kai Huang and Jarkko Sakkinen.
Along with the usual fixes, cleanups and improvements"
* tag 'x86_sgx_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/sgx: Mark sgx_vepc_vm_ops static
x86/sgx: Do not update sgx_nr_free_pages in sgx_setup_epc_section()
x86/sgx: Move provisioning device creation out of SGX driver
x86/sgx: Add helpers to expose ECREATE and EINIT to KVM
x86/sgx: Add helper to update SGX_LEPUBKEYHASHn MSRs
x86/sgx: Add encls_faulted() helper
x86/sgx: Add SGX2 ENCLS leaf definitions (EAUG, EMODPR and EMODT)
x86/sgx: Move ENCLS leaf definitions to sgx.h
x86/sgx: Expose SGX architectural definitions to the kernel
x86/sgx: Initialize virtual EPC driver even when SGX driver is disabled
x86/cpu/intel: Allow SGX virtualization without Launch Control support
x86/sgx: Introduce virtual EPC for use by KVM guests
x86/sgx: Add SGX_CHILD_PRESENT hardware error code
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page()
x86/cpufeatures: Add SGX1 and SGX2 sub-features
x86/cpufeatures: Make SGX_LC feature bit depend on SGX bit
x86/sgx: Remove unnecessary kmap() from sgx_ioc_enclave_init()
selftests/sgx: Use getauxval() to simplify test code
selftests/sgx: Improve error detection and messages
x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()
...
Pull x86 vmware guest update from Borislav Petkov:
"Have vmware guests skip the refined TSC calibration when the TSC
frequency has been retrieved from the hypervisor"
* tag 'x86_vmware_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Avoid TSC recalibration when frequency is known
Pull x86 alternatives/paravirt updates from Borislav Petkov:
"First big cleanup to the paravirt infra to use alternatives and thus
eliminate custom code patching.
For that, the alternatives infrastructure is extended to accomodate
paravirt's needs and, as a result, a lot of paravirt patching code
goes away, leading to a sizeable cleanup and simplification.
Work by Juergen Gross"
* tag 'x86_alternatives_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Have only one paravirt patch function
x86/paravirt: Switch functions with custom code to ALTERNATIVE
x86/paravirt: Add new PVOP_ALT* macros to support pvops in ALTERNATIVEs
x86/paravirt: Switch iret pvops to ALTERNATIVE
x86/paravirt: Simplify paravirt macros
x86/paravirt: Remove no longer needed 32-bit pvops cruft
x86/paravirt: Add new features for paravirt patching
x86/alternative: Use ALTERNATIVE_TERNARY() in _static_cpu_has()
x86/alternative: Support ALTERNATIVE_TERNARY
x86/alternative: Support not-feature
x86/paravirt: Switch time pvops functions to use static_call()
static_call: Add function to query current function
static_call: Move struct static_call_key definition to static_call_types.h
x86/alternative: Merge include files
x86/alternative: Drop unused feature parameter from ALTINSTR_REPLACEMENT()
Pull x86 RAS update from Borislav Petkov:
"Provide the ability to specify the IPID (IP block associated with the
MCE, AMD-specific) when injecting an MCE"
* tag 'ras_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/inject: Add IPID for injection too
On processors with Intel Hybrid Technology (i.e., one having more than
one type of CPU in the same package), all CPUs support the same
instruction set and enumerate the same features on CPUID. Thus, all
software can run on any CPU without restrictions. However, there may be
model-specific differences among types of CPUs. For instance, each type
of CPU may support a different number of performance counters. Also,
machine check error banks may be wired differently. Even though most
software will not care about these differences, kernel subsystems
dealing with these differences must know.
Add and expose a new helper function get_this_hybrid_cpu_type() to query
the type of the current hybrid CPU. The function will be used later in
the perf subsystem.
The Intel Software Developer's Manual defines the CPU type as 8-bit
identifier.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1618237865-33448-3-git-send-email-kan.liang@linux.intel.com
The commit in Fixes: changed the SGX EPC page sanitization to end up in
sgx_free_epc_page() which puts clean and sanitized pages on the free
list.
This was done for the reason that it is best to keep the logic to assign
available-for-use EPC pages to the correct NUMA lists in a single
location.
sgx_nr_free_pages is also incremented by sgx_free_epc_pages() but those
pages which are being added there per EPC section do not belong to the
free list yet because they haven't been sanitized yet - they land on the
dirty list first and the sanitization happens later when ksgxd starts
massaging them.
So remove that addition there and have sgx_free_epc_page() do that
solely.
[ bp: Sanitize commit message too. ]
Fixes: 51ab30eb2a ("x86/sgx: Replace section->init_laundry_list with sgx_dirty_page_list")
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210408092924.7032-1-jarkko@kernel.org
$ make CC=clang clang-analyzer
(needs clang-tidy installed on the system too)
on x86_64 defconfig triggers:
arch/x86/kernel/cpu/cacheinfo.c:880:24: warning: Value stored to 'this_cpu_ci' \
during its initialization is never read [clang-analyzer-deadcode.DeadStores]
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
^
arch/x86/kernel/cpu/cacheinfo.c:880:24: note: Value stored to 'this_cpu_ci' \
during its initialization is never read
So simply remove this unneeded dead-store initialization.
As compilers will detect this unneeded assignment and optimize this
anyway the resulting object code is identical before and after this
change.
No functional change. No change to object code.
[ bp: Massage commit message. ]
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lkml.kernel.org/r/1617177624-24670-1-git-send-email-yang.lee@linux.alibaba.com
And extract sgx_set_attribute() out of sgx_ioc_enclave_provision() and
export it as symbol for KVM to use.
The provisioning key is sensitive. The SGX driver only allows to create
an enclave which can access the provisioning key when the enclave
creator has permission to open /dev/sgx_provision. It should apply to
a VM as well, as the provisioning key is platform-specific, thus an
unrestricted VM can also potentially compromise the provisioning key.
Move the provisioning device creation out of sgx_drv_init() to
sgx_init() as a preparation for adding SGX virtualization support,
so that even if the SGX driver is not enabled due to flexible launch
control not being available, SGX virtualization can still be enabled,
and use it to restrict a VM's capability of being able to access the
provisioning key.
[ bp: Massage commit message. ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/0f4d044d621561f26d5f4ef73e8dc6cd18cc7e79.1616136308.git.kai.huang@intel.com
The host kernel must intercept ECREATE to impose policies on guests, and
intercept EINIT to be able to write guest's virtual SGX_LEPUBKEYHASH MSR
values to hardware before running guest's EINIT so it can run correctly
according to hardware behavior.
Provide wrappers around __ecreate() and __einit() to hide the ugliness
of overloading the ENCLS return value to encode multiple error formats
in a single int. KVM will trap-and-execute ECREATE and EINIT as part
of SGX virtualization, and reflect ENCLS execution result to guest by
setting up guest's GPRs, or on an exception, injecting the correct fault
based on return value of __ecreate() and __einit().
Use host userspace addresses (provided by KVM based on guest physical
address of ENCLS parameters) to execute ENCLS/EINIT when possible.
Accesses to both EPC and memory originating from ENCLS are subject to
segmentation and paging mechanisms. It's also possible to generate
kernel mappings for ENCLS parameters by resolving PFN but using
__uaccess_xx() is simpler.
[ bp: Return early if the __user memory accesses fail, use
cpu_feature_enabled(). ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/20e09daf559aa5e9e680a0b4b5fba940f1bad86e.1616136308.git.kai.huang@intel.com
The kernel will currently disable all SGX support if the hardware does
not support launch control. Make it more permissive to allow SGX
virtualization on systems without Launch Control support. This will
allow KVM to expose SGX to guests that have less-strict requirements on
the availability of flexible launch control.
Improve error message to distinguish between three cases. There are two
cases where SGX support is completely disabled:
1) SGX has been disabled completely by the BIOS
2) SGX LC is locked by the BIOS. Bare-metal support is disabled because
of LC unavailability. SGX virtualization is unavailable (because of
Kconfig).
One where it is partially available:
3) SGX LC is locked by the BIOS. Bare-metal support is disabled because
of LC unavailability. SGX virtualization is supported.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/b3329777076509b3b601550da288c8f3c406a865.1616136308.git.kai.huang@intel.com
Add a misc device /dev/sgx_vepc to allow userspace to allocate "raw"
Enclave Page Cache (EPC) without an associated enclave. The intended
and only known use case for raw EPC allocation is to expose EPC to a
KVM guest, hence the 'vepc' moniker, virt.{c,h} files and X86_SGX_KVM
Kconfig.
The SGX driver uses the misc device /dev/sgx_enclave to support
userspace in creating an enclave. Each file descriptor returned from
opening /dev/sgx_enclave represents an enclave. Unlike the SGX driver,
KVM doesn't control how the guest uses the EPC, therefore EPC allocated
to a KVM guest is not associated with an enclave, and /dev/sgx_enclave
is not suitable for allocating EPC for a KVM guest.
Having separate device nodes for the SGX driver and KVM virtual EPC also
allows separate permission control for running host SGX enclaves and KVM
SGX guests.
To use /dev/sgx_vepc to allocate a virtual EPC instance with particular
size, the hypervisor opens /dev/sgx_vepc, and uses mmap() with the
intended size to get an address range of virtual EPC. Then it may use
the address range to create one KVM memory slot as virtual EPC for
a guest.
Implement the "raw" EPC allocation in the x86 core-SGX subsystem via
/dev/sgx_vepc rather than in KVM. Doing so has two major advantages:
- Does not require changes to KVM's uAPI, e.g. EPC gets handled as
just another memory backend for guests.
- EPC management is wholly contained in the SGX subsystem, e.g. SGX
does not have to export any symbols, changes to reclaim flows don't
need to be routed through KVM, SGX's dirty laundry doesn't have to
get aired out for the world to see, and so on and so forth.
The virtual EPC pages allocated to guests are currently not reclaimable.
Reclaiming an EPC page used by enclave requires a special reclaim
mechanism separate from normal page reclaim, and that mechanism is not
supported for virutal EPC pages. Due to the complications of handling
reclaim conflicts between guest and host, reclaiming virtual EPC pages
is significantly more complex than basic support for SGX virtualization.
[ bp:
- Massage commit message and comments
- use cpu_feature_enabled()
- vertically align struct members init
- massage Virtual EPC clarification text
- move Kconfig prompt to Virtualization ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/0c38ced8c8e5a69872db4d6a1c0dabd01e07cad7.1616136308.git.kai.huang@intel.com
Bus locks degrade performance for the whole system, not just for the CPU
that requested the bus lock. Two CPU features "#AC for split lock" and
"#DB for bus lock" provide hooks so that the operating system may choose
one of several mitigation strategies.
#AC for split lock is already implemented. Add code to use the #DB for
bus lock feature to cover additional situations with new options to
mitigate.
split_lock_detect=
#AC for split lock #DB for bus lock
off Do nothing Do nothing
warn Kernel OOPs Warn once per task and
Warn once per task and and continues to run.
disable future checking
When both features are
supported, warn in #AC
fatal Kernel OOPs Send SIGBUS to user.
Send SIGBUS to user
When both features are
supported, fatal in #AC
ratelimit:N Do nothing Limit bus lock rate to
N per second in the
current non-root user.
Default option is "warn".
Hardware only generates #DB for bus lock detect when CPL>0 to avoid
nested #DB from multiple bus locks while the first #DB is being handled.
So no need to handle #DB for bus lock detected in the kernel.
#DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR
while #AC for split lock is enabled by split lock detection bit 29 in
TEST_CTRL MSR.
Both breakpoint and bus lock in the same instruction can trigger one #DB.
The bus lock is handled before the breakpoint in the #DB handler.
Delivery of #DB for bus lock in userspace clears DR6[11], which is set by
the #DB handler right after reading DR6.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
cpu_current_top_of_stack is currently stored in TSS.sp1. TSS is exposed
through the cpu_entry_area which is visible with user CR3 when PTI is
enabled and active.
This makes it a coveted fruit for attackers. An attacker can fetch the
kernel stack top from it and continue next steps of actions based on the
kernel stack.
But it is actualy not necessary to be stored in the TSS. It is only
accessed after the entry code switched to kernel CR3 and kernel GS_BASE
which means it can be in any regular percpu variable.
The reason why it is in TSS is historical (pre PTI) because TSS is also
used as scratch space in SYSCALL_64 and therefore cache hot.
A syscall also needs the per CPU variable current_task and eventually
__preempt_count, so placing cpu_current_top_of_stack next to them makes it
likely that they end up in the same cache line which should avoid
performance regressions. This is not enforced as the compiler is free to
place these variables, so these entry relevant variables should move into
a data structure to make this enforceable.
The seccomp_benchmark doesn't show any performance loss in the "getpid
native" test result. Actually, the result changes from 93ns before to 92ns
with this change when KPTI is disabled. The test is very stable and
although the test doesn't show a higher degree of precision it gives enough
confidence that moving cpu_current_top_of_stack does not cause a
regression.
[ tglx: Removed unneeded export. Massaged changelog ]
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210125173444.22696-2-jiangshanlai@gmail.com
SGX driver can accurately track how enclave pages are used. This
enables SECS to be specifically targeted and EREMOVE'd only after all
child pages have been EREMOVE'd. This ensures that SGX driver will
never encounter SGX_CHILD_PRESENT in normal operation.
Virtual EPC is different. The host does not track how EPC pages are
used by the guest, so it cannot guarantee EREMOVE success. It might,
for instance, encounter a SECS with a non-zero child count.
Add a definition of SGX_CHILD_PRESENT. It will be used exclusively by
the SGX virtualization driver to handle recoverable EREMOVE errors when
saniziting EPC pages after they are freed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/050b198e882afde7e6eba8e6a0d4da39161dbb5a.1616136308.git.kai.huang@intel.com
EREMOVE takes a page and removes any association between that page and
an enclave. It must be run on a page before it can be added into another
enclave. Currently, EREMOVE is run as part of pages being freed into the
SGX page allocator. It is not expected to fail, as it would indicate a
use-after-free of EPC pages. Rather than add the page back to the pool
of available EPC pages, the kernel intentionally leaks the page to avoid
additional errors in the future.
However, KVM does not track how guest pages are used, which means that
SGX virtualization use of EREMOVE might fail. Specifically, it is
legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to
KVM guest, because KVM/kernel doesn't track SECS pages.
To allow SGX/KVM to introduce a more permissive EREMOVE helper and
to let the SGX virtualization code use the allocator directly, break
out the EREMOVE call from the SGX page allocator. Rename the original
sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that
it is used to free an EPC page assigned to a host enclave. Replace
sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so
there's no functional change.
At the same time, improve the error message when EREMOVE fails, and
add documentation to explain to the user what that failure means and
to suggest to the user what to do when this bug happens in the case it
happens.
[ bp: Massage commit message, fix typos and sanitize text, simplify. ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
Add SGX1 and SGX2 feature flags, via CPUID.0x12.0x0.EAX, as scattered
features, since adding a new leaf for only two bits would be wasteful.
As part of virtualizing SGX, KVM will expose the SGX CPUID leafs to its
guest, and to do so correctly needs to query hardware and kernel support
for SGX1 and SGX2.
Suppress both SGX1 and SGX2 from /proc/cpuinfo. SGX1 basically means
SGX, and for SGX2 there is no concrete use case of using it in
/proc/cpuinfo.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d787827dbfca6b3210ac3e432e3ac1202727e786.1616136308.git.kai.huang@intel.com