Derive the mask of RWX bits reported on EPT violations from the mask of
RWX bits that are shoved into EPT entries; the layout is the same, the
EPT violation bits are simply shifted by three. Use the new shift and a
slight copy-paste of the mask derivation instead of completely open
coding the same to convert between the EPT entry bits and the exit
qualification when synthesizing a nested EPT Violation.
No functional change intended.
Cc: SU Hang <darcy.sh@antgroup.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329030108.97341-3-darcy.sh@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Merge branch for features that did not make it into 5.18:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following WARN is triggered from kvm_vm_ioctl_set_clock():
WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G W O 5.16.0.stable #20
Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
Call Trace:
<TASK>
? kvm_write_guest+0x114/0x120 [kvm]
kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
? schedule+0x4e/0xc0
? __cond_resched+0x1a/0x50
? futex_wait+0x166/0x250
? __send_signal+0x1f1/0x3d0
kvm_vm_ioctl+0x747/0xda0 [kvm]
...
The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
The save area for SEV-ES/SEV-SNP guests, as used by the hardware, is
different from the save area of a non SEV-ES/SEV-SNP guest.
This is the first step in defining the multiple save areas to keep them
separate and ensuring proper operation amongst the different types of
guests. Create an SEV-ES/SEV-SNP save area and adjust usage to the new
save area definition where needed.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Link: https://lore.kernel.org/r/20220405182743.308853-1-brijesh.singh@amd.com
The hypervisor uses the sev_features field (offset 3B0h) in the Save State
Area to control the SEV-SNP guest features such as SNPActive, vTOM,
ReflectVC etc. An SEV-SNP guest can read the sev_features field through
the SEV_STATUS MSR.
While at it, update dump_vmcb() to log the VMPL level.
See APM2 Table 15-34 and B-4 for more details.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Venu Busireddy <venu.busireddy@oracle.com>
Link: https://lore.kernel.org/r/20220307213356.2797205-2-brijesh.singh@amd.com
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.
Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.
In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded. Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.
Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.
=========================================================================
UBSAN: invalid-load in kernel/params.c:320:33
load of value 255 is not a valid value for type '_Bool'
CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
ubsan_epilogue+0x5/0x40
__ubsan_handle_load_invalid_value.cold+0x43/0x48
param_get_bool.cold+0xf/0x14
param_attr_show+0x55/0x80
module_attr_show+0x1c/0x30
sysfs_kf_seq_show+0x93/0xc0
seq_read_iter+0x11c/0x450
new_sync_read+0x11b/0x1a0
vfs_read+0xf0/0x190
ksys_read+0x5f/0xe0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
=========================================================================
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
Before Commit c3e5e415bc ("KVM: X86: Change kvm_sync_page()
to return true when remote flush is needed"), the return value
of kvm_sync_page() indicates whether the page is synced, and
kvm_mmu_get_page() would rebuild page when the sync fails.
But now, kvm_sync_page() returns false when the page is
synced and no tlb flushing is required, which leads to
rebuild page in kvm_mmu_get_page(). So return the return
value of mmu->sync_page() directly and check it in
kvm_mmu_get_page(). If the sync fails, the page will be
zapped and the invalid_list is not empty, so set flush as
true is accepted in mmu_sync_children().
Cc: stable@vger.kernel.org
Fixes: c3e5e415bc ("KVM: X86: Change kvm_sync_page() to return true when remote flush is needed")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Acked-by: Lai Jiangshan <jiangshanlai@gmail.com>
Message-Id: <0dabeeb789f57b0d793f85d073893063e692032d.1647336064.git.houwenlong.hwl@antgroup.com>
[mmu_sync_children should not flush if the page is zapped. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_load_{guest|host}_xsave_state handles xsave on vm entry and exit,
part of which is managing memory protection key state. The latest
arch.pkru is updated with a rdpkru, and if that doesn't match the base
host_pkru (which about 70% of the time), we issue a __write_pkru.
To improve performance, implement the following optimizations:
1. Reorder if conditions prior to wrpkru in both
kvm_load_{guest|host}_xsave_state.
Flip the ordering of the || condition so that XFEATURE_MASK_PKRU is
checked first, which when instrumented in our environment appeared
to be always true and less overall work than kvm_read_cr4_bits.
For kvm_load_guest_xsave_state, hoist arch.pkru != host_pkru ahead
one position. When instrumented, I saw this be true roughly ~70% of
the time vs the other conditions which were almost always true.
With this change, we will avoid 3rd condition check ~30% of the time.
2. Wrap PKU sections with CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS,
as if the user compiles out this feature, we should not have
these branches at all.
Signed-off-by: Jon Kohler <jon@nutanix.com>
Message-Id: <20220324004439.6709-1-jon@nutanix.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit the AVIC of the vCPU that is running nested for the duration of the
nested run, so that all interrupts arriving from both its vCPU siblings
and from KVM are delivered using normal IPIs and cause that vCPU to vmexit.
Note that unlike normal AVIC inhibition, there is no need to
update the AVIC mmio memslot, because the nested guest uses its
own set of paging tables.
That also means that AVIC doesn't need to be inhibited VM wide.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 enables vGIF for L2, the L2 cannot affect L1's GIF, regardless
of STGI/CLGI intercepts, and since VM entry enables GIF, this means
that L1's GIF is always 1 while L2 is running.
Thus in this case leave L1's vGIF in vmcb01, while letting L2
control the vGIF thus implementing nested vGIF.
Also allow KVM to toggle L1's GIF during nested entry/exit
by always using vmcb01.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose the pause filtering and threshold in the guest CPUID
and support PAUSE filtering when possible:
- If the L0 doesn't intercept PAUSE (cpu_pm=on), then allow L1 to
have full control over PAUSE filtering.
- if the L1 doesn't intercept PAUSE, use host values and update
the adaptive count/threshold even when running nested.
- Otherwise always exit to L1; it is not really possible to merge
the fields correctly. It is expected that in this case, userspace
will not enable this feature in the guest CPUID, to avoid having the
guest update both fields pointlessly.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clarify that this function is not used to initialize any part of
the vmcb02. No functional change intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't snapshot tsc_khz into max_tsc_khz during KVM initialization if the
host TSC is constant, in which case the actual TSC frequency will never
change and thus capturing the "max" TSC during initialization is
unnecessary, KVM can simply use tsc_khz during VM creation.
On CPUs with constant TSC, but not a hardware-specified TSC frequency,
snapshotting max_tsc_khz and using that to set a VM's default TSC
frequency can lead to KVM thinking it needs to manually scale the guest's
TSC if refining the TSC completes after KVM snapshots tsc_khz. The
actual frequency never changes, only the kernel's calculation of what
that frequency is changes. On systems without hardware TSC scaling, this
either puts KVM into "always catchup" mode (extremely inefficient), or
prevents creating VMs altogether.
Ideally, KVM would not be able to race with TSC refinement, or would have
a hook into tsc_refine_calibration_work() to get an alert when refinement
is complete. Avoiding the race altogether isn't practical as refinement
takes a relative eternity; it's deliberately put on a work queue outside
of the normal boot sequence to avoid unnecessarily delaying boot.
Adding a hook is doable, but somewhat gross due to KVM's ability to be
built as a module. And if the TSC is constant, which is likely the case
for every VMX/SVM-capable CPU produced in the last decade, the race can
be hit if and only if userspace is able to create a VM before TSC
refinement completes; refinement is slow, but not that slow.
For now, punt on a proper fix, as not taking a snapshot can help some
uses cases and not taking a snapshot is arguably correct irrespective of
the race with refinement.
[ dwmw2: Rebase on top of KVM-wide default_tsc_khz to ensure that all
vCPUs get the same frequency even if we hit the race. ]
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Anton Romanov <romanton@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220225145304.36166-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently KVM setup posted interrupt VMCS only depending on
per-vcpu APICv activation status at the vCPU creation time.
However, this status can be toggled dynamically under some
circumstance. So potentially, later posted interrupt enabling
may be problematic without VMCS readiness.
To fix this, always settle the VMCS setting for posted interrupt
as long as APICv is available and lapic locates in kernel.
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220315145836.9910-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for SCHEDOP_poll hypercall.
This implementation is optimized for polling for a single channel, which
is what Linux does. Polling for multiple channels is not especially
efficient (and has not been tested).
PV spinlocks slow path uses this hypercall, and explicitly crash if it's
not supported.
[ dwmw2: Rework to use kvm_vcpu_halt(), not supported for 32-bit guests ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-17-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the end of the patch series adding this batch of event channel
acceleration features, finally add the feature bit which advertises
them and document it all.
For SCHEDOP_poll we need to wake a polling vCPU when a given port
is triggered, even when it's masked — and we want to implement that
in the kernel, for efficiency. So we want the kernel to know that it
has sole ownership of event channel delivery. Thus, we allow
userspace to make the 'promise' by setting the corresponding feature
bit in its KVM_XEN_HVM_CONFIG call. As we implement SCHEDOP_poll
bypass later, we will do so only if that promise has been made by
userspace.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-16-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows uses a per-vCPU vector, and it's delivered via the local APIC
basically like an MSI (with associated EOI) unlike the traditional
guest-wide vector which is just magically asserted by Xen (and in the
KVM case by kvm_xen_has_interrupt() / kvm_cpu_get_extint()).
Now that the kernel is able to raise event channel events for itself,
being able to do so for Windows guests is also going to be useful.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-15-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the guest has offloaded the timer virq, handle the following
hypercalls for programming the timer:
VCPUOP_set_singleshot_timer
VCPUOP_stop_singleshot_timer
set_timer_op(timestamp_ns)
The event channel corresponding to the timer virq is then used to inject
events once timer deadlines are met. For now we back the PV timer with
hrtimer.
[ dwmw2: Add save/restore, 32-bit compat mode, immediate delivery,
don't check timer in kvm_vcpu_has_event() ]
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-13-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to intercept hypercalls such as VCPUOP_set_singleshot_timer, we
need to be aware of the Xen CPU numbering.
This looks a lot like the Hyper-V handling of vpidx, for obvious reasons.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-12-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Userspace registers a sending @port to either deliver to an @eventfd
or directly back to a local event channel port.
After binding events the guest or host may wish to bind those
events to a particular vcpu. This is usually done for unbound
and and interdomain events. Update requests are handled via the
KVM_XEN_EVTCHN_UPDATE flag.
Unregistered ports are handled by the emulator.
Co-developed-by: Ankur Arora <ankur.a.arora@oracle.com>
Co-developed-By: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-10-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds a KVM_XEN_HVM_EVTCHN_SEND ioctl which allows direct injection
of events given an explicit { vcpu, port, priority } in precisely the
same form that those fields are given in the IRQ routing table.
Userspace is currently able to inject 2-level events purely by setting
the bits in the shared_info and vcpu_info, but FIFO event channels are
harder to deal with; we will need the kernel to take sole ownership of
delivery when we support those.
A patch advertising this feature with a new bit in the KVM_CAP_XEN_HVM
ioctl will be added in a subsequent patch.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-9-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean it up to return -errno on error consistently, while still being
compatible with the return conventions for kvm_arch_set_irq_inatomic()
and the kvm_set_irq() callback.
We use -ENOTCONN to indicate when the port is masked. No existing users
care, except that it's negative.
Also allow it to optimise the vCPU lookup. Unless we abuse the lapic
map, there is no quick lookup from APIC ID to a vCPU; the logic in
kvm_get_vcpu_by_id() will just iterate over all vCPUs till it finds
the one it wants. So do that just once and stash the result in the
struct kvm_xen_evtchn for next time.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-8-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, the fast path of kvm_xen_set_evtchn_fast() doesn't set the
index bits in the target vCPU's evtchn_pending_sel, because it only has
a userspace virtual address with which to do so. It just sets them in
the kernel, and kvm_xen_has_interrupt() then completes the delivery to
the actual vcpu_info structure when the vCPU runs.
Using a gfn_to_pfn_cache allows kvm_xen_set_evtchn_fast() to do the full
delivery in the common case.
Clean up the fallback case too, by moving the deferred delivery out into
a separate kvm_xen_inject_pending_events() function which isn't ever
called in atomic contexts as __kvm_xen_has_interrupt() is.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new kvm_setup_guest_pvclock() which parallels the existing
kvm_setup_pvclock_page(). The latter will be removed once we convert
all users to the gfn_to_pfn_cache version.
Using the new cache, we can potentially let kvm_set_guest_paused() set
the PVCLOCK_GUEST_STOPPED bit directly rather than having to delegate
to the vCPU via KVM_REQ_CLOCK_UPDATE. But not yet.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220303154127.202856-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a dummy unused vmexit reason to mark the 'VM exit' that is happening
when kvm exits to handle SMM, which is not a real VM exit.
This makes it a bit easier to read the KVM trace, and avoids
other potential problems due to a stale vmexit reason in the vmcb.
If SVM_EXIT_SW somehow reaches svm_invoke_exit_handler(), instead,
svm_check_exit_valid() will return false and a WARN will be logged.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220301135526.136554-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM handles the VMCALL/VMMCALL instructions very strangely. Even though
both of these instructions really should #UD when executed on the wrong
vendor's hardware (i.e. VMCALL on SVM, VMMCALL on VMX), KVM replaces the
guest's instruction with the appropriate instruction for the vendor.
Nonetheless, older guest kernels without commit c1118b3602 ("x86: kvm:
use alternatives for VMCALL vs. VMMCALL if kernel text is read-only")
do not patch in the appropriate instruction using alternatives, likely
motivating KVM's intervention.
Add a quirk allowing userspace to opt out of hypercall patching. If the
quirk is disabled, KVM synthesizes a #UD in the guest.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220316005538.2282772-2-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
FNAME(cmpxchg_gpte) is an inefficient mess. It is at least decent if it
can go through get_user_pages_fast(), but if it cannot then it tries to
use memremap(); that is not just terribly slow, it is also wrong because
it assumes that the VM_PFNMAP VMA is contiguous.
The right way to do it would be to do the same thing as
hva_to_pfn_remapped() does since commit add6a0cd1c ("KVM: MMU: try to
fix up page faults before giving up", 2016-07-05), using follow_pte()
and fixup_user_fault() to determine the correct address to use for
memremap(). To do this, one could for example extract hva_to_pfn()
for use outside virt/kvm/kvm_main.c. But really there is no reason to
do that either, because there is already a perfectly valid address to
do the cmpxchg() on, only it is a userspace address. That means doing
user_access_begin()/user_access_end() and writing the code in assembly
to handle exceptions correctly. Worse, the guest PTE can be 8-byte
even on i686 so there is the extra complication of using cmpxchg8b to
account for. But at least it is an efficient mess.
(Thanks to Linus for suggesting improvement on the inline assembly).
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Reported-by: syzbot+6cde2282daa792c49ab8@syzkaller.appspotmail.com
Debugged-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bd53cb35a3 ("X86/KVM: Handle PFNs outside of kernel reach when touching GPTEs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When emulating exit from long mode, EFER_LMA is cleared with
vmx_set_efer(). This will already unset the VM_ENTRY_IA32E_MODE control
bit as requested by SDM, so there is no need to unset VM_ENTRY_IA32E_MODE
again in exit_lmode() explicitly. In case EFER isn't supported by
hardware, long mode isn't supported, so exit_lmode() cannot be reached.
Note that, thanks to the shadow controls mechanism, this change doesn't
eliminate vmread or vmwrite.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Message-Id: <20220311102643.807507-3-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_set_efer() sets uret->data but, in fact if the value of uret->data
will be used vmx_setup_uret_msrs() will have rewritten it with the value
returned by update_transition_efer(). uret->data is consumed if and only
if uret->load_into_hardware is true, and vmx_setup_uret_msrs() takes care
of (a) updating uret->data before setting uret->load_into_hardware to true
(b) setting uret->load_into_hardware to false if uret->data isn't updated.
Opportunistically use "vmx" directly instead of redoing to_vmx().
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Message-Id: <20220311102643.807507-2-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>