Pull 'full dynticks' support from Ingo Molnar:
"This tree from Frederic Weisbecker adds a new, (exciting! :-) core
kernel feature to the timer and scheduler subsystems: 'full dynticks',
or CONFIG_NO_HZ_FULL=y.
This feature extends the nohz variable-size timer tick feature from
idle to busy CPUs (running at most one task) as well, potentially
reducing the number of timer interrupts significantly.
This feature got motivated by real-time folks and the -rt tree, but
the general utility and motivation of full-dynticks runs wider than
that:
- HPC workloads get faster: CPUs running a single task should be able
to utilize a maximum amount of CPU power. A periodic timer tick at
HZ=1000 can cause a constant overhead of up to 1.0%. This feature
removes that overhead - and speeds up the system by 0.5%-1.0% on
typical distro configs even on modern systems.
- Real-time workload latency reduction: CPUs running critical tasks
should experience as little jitter as possible. The last remaining
source of kernel-related jitter was the periodic timer tick.
- A single task executing on a CPU is a pretty common situation,
especially with an increasing number of cores/CPUs, so this feature
helps desktop and mobile workloads as well.
The cost of the feature is mainly related to increased timer
reprogramming overhead when a CPU switches its tick period, and thus
slightly longer to-idle and from-idle latency.
Configuration-wise a third mode of operation is added to the existing
two NOHZ kconfig modes:
- CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named
as a config option. This is the traditional Linux periodic tick
design: there's a HZ tick going on all the time, regardless of
whether a CPU is idle or not.
- CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the
periodic tick when a CPU enters idle mode.
- CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the
tick when a CPU is idle, also slows the tick down to 1 Hz (one
timer interrupt per second) when only a single task is running on a
CPU.
The .config behavior is compatible: existing !CONFIG_NO_HZ and
CONFIG_NO_HZ=y settings get translated to the new values, without the
user having to configure anything. CONFIG_NO_HZ_FULL is turned off by
default.
This feature is based on a lot of infrastructure work that has been
steadily going upstream in the last 2-3 cycles: related RCU support
and non-periodic cputime support in particular is upstream already.
This tree adds the final pieces and activates the feature. The pull
request is marked RFC because:
- it's marked 64-bit only at the moment - the 32-bit support patch is
small but did not get ready in time.
- it has a number of fresh commits that came in after the merge
window. The overwhelming majority of commits are from before the
merge window, but still some aspects of the tree are fresh and so I
marked it RFC.
- it's a pretty wide-reaching feature with lots of effects - and
while the components have been in testing for some time, the full
combination is still not very widely used. That it's default-off
should reduce its regression abilities and obviously there are no
known regressions with CONFIG_NO_HZ_FULL=y enabled either.
- the feature is not completely idempotent: there is no 100%
equivalent replacement for a periodic scheduler/timer tick. In
particular there's ongoing work to map out and reduce its effects
on scheduler load-balancing and statistics. This should not impact
correctness though, there are no known regressions related to this
feature at this point.
- it's a pretty ambitious feature that with time will likely be
enabled by most Linux distros, and we'd like you to make input on
its design/implementation, if you dislike some aspect we missed.
Without flaming us to crisp! :-)
Future plans:
- there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off
the periodic tick altogether when there's a single busy task on a
CPU. We'd first like 1 Hz to be exposed more widely before we go
for the 0 Hz target though.
- once we reach 0 Hz we can remove the periodic tick assumption from
nr_running>=2 as well, by essentially interrupting busy tasks only
as frequently as the sched_latency constraints require us to do -
once every 4-40 msecs, depending on nr_running.
I am personally leaning towards biting the bullet and doing this in
v3.10, like the -rt tree this effort has been going on for too long -
but the final word is up to you as usual.
More technical details can be found in Documentation/timers/NO_HZ.txt"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
sched: Keep at least 1 tick per second for active dynticks tasks
rcu: Fix full dynticks' dependency on wide RCU nocb mode
nohz: Protect smp_processor_id() in tick_nohz_task_switch()
nohz_full: Add documentation.
cputime_nsecs: use math64.h for nsec resolution conversion helpers
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config
nohz: Reduce overhead under high-freq idling patterns
nohz: Remove full dynticks' superfluous dependency on RCU tree
nohz: Fix unavailable tick_stop tracepoint in dynticks idle
nohz: Add basic tracing
nohz: Select wide RCU nocb for full dynticks
nohz: Disable the tick when irq resume in full dynticks CPU
nohz: Re-evaluate the tick for the new task after a context switch
nohz: Prepare to stop the tick on irq exit
nohz: Implement full dynticks kick
nohz: Re-evaluate the tick from the scheduler IPI
sched: New helper to prevent from stopping the tick in full dynticks
sched: Kick full dynticks CPU that have more than one task enqueued.
perf: New helper to prevent full dynticks CPUs from stopping tick
perf: Kick full dynticks CPU if events rotation is needed
...
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.
In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.
This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().
This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
One testbox of mine (Intel Nehalem, 16-way) uses MWAIT for its idle routine,
which apparently can break out of its idle loop rather frequently, with
high frequency.
In that case NO_HZ_FULL=y kernels show high ksoftirqd overhead and constant
context switching, because tick_nohz_stop_sched_tick() will, if
delta_jiffies == 0, mis-identify this as a timer event - activating the
TIMER_SOFTIRQ, which wakes up ksoftirqd.
Fix this by treating delta_jiffies == 0 the same way we treat other short
wakeups, delta_jiffies == 1.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's not obvious to find out why the full dynticks subsystem
doesn't always stop the tick: whether this is due to kthreads,
posix timers, perf events, etc...
These new tracepoints are here to help the user diagnose
the failures and test this feature.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
When a task is scheduled in, it may have some properties
of its own that could make the CPU reconsider the need for
the tick: posix cpu timers, perf events, ...
So notify the full dynticks subsystem when a task gets
scheduled in and re-check the tick dependency at this
stage. This is done through a self IPI to avoid messing
up with any current lock scenario.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Interrupt exit is a natural place to stop the tick: it happens
after all events happening before and during the irq which
are liable to update the dependency on the tick occured. Also
it makes sure that any check on tick dependency is well ordered
against dynticks kick IPIs.
Bring in the infrastructure that performs the tick dependency
checks on irq exit and shut it down if these checks show that we
can do it safely.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Implement the full dynticks kick that is performed from
IPIs sent by various subsystems (scheduler, posix timers, ...)
when they want to notify about a new event that may
reconsider the dependency on the tick.
Most of the time, such an event end up restarting the tick.
(Part of the design with subsystems providing *_can_stop_tick()
helpers suggested by Peter Zijlstra a while ago).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The scheduler IPI is used by the scheduler to kick
full dynticks CPUs asynchronously when more than one
task are running or when a new timer list timer is
enqueued. This way the destination CPU can decide
to restart the tick to handle this new situation.
Now let's call that kick in the scheduler IPI.
(Reusing the scheduler IPI rather than implementing
a new IPI was suggested by Peter Zijlstra a while ago)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide a new kernel config that defaults all CPUs to be part
of the full dynticks range, except the boot one for timekeeping.
This default setting is overriden by the nohz_full= boot option
if passed by the user.
This is helpful for those who don't need a finegrained range
of full dynticks CPU and also for automated testing.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We need full dynticks CPU to also be RCU nocb so
that we don't have to keep the tick to handle RCU
callbacks.
Make sure the range passed to nohz_full= boot
parameter is a subset of rcu_nocbs=
The CPUs that fail to meet this requirement will be
excluded from the nohz_full range. This is checked
early in boot time, before any CPU has the opportunity
to stop its tick.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The timekeeping job must be able to run early on boot
because there may be some pre-SMP (and thus pre-initcalls )
components that rely on it. The IO-APIC is one such users
as it tests the timer health by watching jiffies progression.
Given that it happens before we know the initial online
set, we can't rely on it to select a timekeeper. We need
one before SMP time otherwise we simply crash on boot.
To fix this and keep things simple for now, force the boot CPU
outside of the full dynticks range in any case and do this early
on kernel parameter parsing time.
We might want a trickier solution later, expecially for aSMP
architectures that need to assign housekeeping tasks to arbitrary
low power CPUs.
But it's still first pass KISS time for now.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide two new helpers in order to notify the full dynticks CPUs about
some internal system changes against which they may reconsider the state
of their tick. Some practical examples include: posix cpu timers, perf tick
and sched clock tick.
For now the notifying handler, implemented through IPIs, is a stub
that will be implemented when we get the tick stop/restart infrastructure
in.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
"Extended nohz" was used as a naming base for the full dynticks
API and Kconfig symbols. It reflects the fact the system tries
to stop the tick in more places than just idle.
But that "extended" name is a bit opaque and vague. Rename it to
"full" makes it clearer what the system tries to do under this
config: try to shutdown the tick anytime it can. The various
constraints that prevent that to happen shouldn't be considered
as fundamental properties of this feature but rather technical
issues that may be solved in the future.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Given that we apply a few restrictions on the full dynticks
CPUs range (keep an online timekeeper oustide the range,
then in the future have the range be an RCU nocb CPUs subset),
let's print the final resulting range of full dynticks CPUs to
the user so that he knows what's really going to run.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The "NOHZ: local_softirq_pending" message is a largely informational
message. This makes extra work for customers that have a policy of
investigating all kernel log messages logged at <= KERN_ERR log level.
This patch sets the message to a different log level.
[ tglx: Use pr_warn() ]
Signed-off-by: Rado Vrbovsky <rvrbovsk@redhat.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/r/2037057938.893524.1360345050772.JavaMail.root@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This way the full nohz CPUs can safely run with the tick
stopped with a guarantee that somebody else is taking
care of the jiffies and GTOD progression.
Once the duty is attributed to a CPU, it won't change. Also that
CPU can't enter into dyntick idle mode or be hot unplugged.
This may later be improved from a power consumption POV. At
least we should be able to share the duty amongst all CPUs
outside the full dynticks range. Then the duty could even be
shared with full dynticks CPUs when those can't stop their
tick for any reason.
But let's start with that very simple approach first.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[fix have_nohz_full_mask offcase]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
For extreme usecases such as Real Time or HPC, having
the ability to shutdown the tick when a single task runs
on a CPU is a desired feature:
* Reducing the amount of interrupts improves throughput
for CPU-bound tasks. The CPU is less distracted from its
real job, from an execution time and from the cache point
of views.
* This also improve latency response as we have less critical
sections.
Start with introducing a very simple interface to define
full dynticks CPU: use a boot time option defined cpumask
through the "nohz_extended=" kernel parameter. CPUs that
are part of this range will have their tick shutdown
whenever possible: provided they run a single task and
they don't do kernel activity that require the periodic
tick. These details will be later documented in
Documentation/*
An online CPU must be kept outside this range to handle the
timekeeping.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Pull thermal management updates from Zhang Rui:
"Highlights:
- introduction of Dove thermal sensor driver.
- introduction of Kirkwood thermal sensor driver.
- introduction of intel_powerclamp thermal cooling device driver.
- add interrupt and DT support for rcar thermal driver.
- add thermal emulation support which allows platform thermal driver
to do software/hardware emulation for thermal issues."
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (36 commits)
thermal: rcar: remove __devinitconst
thermal: return an error on failure to register thermal class
Thermal: rename thermal governor Kconfig option to avoid generic naming
thermal: exynos: Use the new thermal trend type for quick cooling action.
Thermal: exynos: Add support for temperature falling interrupt.
Thermal: Dove: Add Themal sensor support for Dove.
thermal: Add support for the thermal sensor on Kirkwood SoCs
thermal: rcar: add Device Tree support
thermal: rcar: remove machine_power_off() from rcar_thermal_notify()
thermal: rcar: add interrupt support
thermal: rcar: add read/write functions for common/priv data
thermal: rcar: multi channel support
thermal: rcar: use mutex lock instead of spin lock
thermal: rcar: enable CPCTL to use hardware TSC deciding
thermal: rcar: use parenthesis on macro
Thermal: fix a build warning when CONFIG_THERMAL_EMULATION cleared
Thermal: fix a wrong comment
thermal: sysfs: Add a new sysfs node emul_temp for thermal emulation
PM: intel_powerclamp: off by one in start_power_clamp()
thermal: exynos: Miscellaneous fixes to support falling threshold interrupt
...
Pull scheduler changes from Ingo Molnar:
"Main changes:
- scheduler side full-dynticks (user-space execution is undisturbed
and receives no timer IRQs) preparation changes that convert the
cputime accounting code to be full-dynticks ready, from Frederic
Weisbecker.
- Initial sched.h split-up changes, by Clark Williams
- select_idle_sibling() performance improvement by Mike Galbraith:
" 1 tbench pair (worst case) in a 10 core + SMT package:
pre 15.22 MB/sec 1 procs
post 252.01 MB/sec 1 procs "
- sched_rr_get_interval() ABI fix/change. We think this detail is not
used by apps (so it's not an ABI in practice), but lets keep it
under observation.
- misc RT scheduling cleanups, optimizations"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h>
cputime: Remove irqsave from seqlock readers
sched, powerpc: Fix sched.h split-up build failure
cputime: Restore CPU_ACCOUNTING config defaults for PPC64
sched/rt: Move rt specific bits into new header file
sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
sched: Move sched.h sysctl bits into separate header
sched: Fix signedness bug in yield_to()
sched: Fix select_idle_sibling() bouncing cow syndrome
sched/rt: Further simplify pick_rt_task()
sched/rt: Do not account zero delta_exec in update_curr_rt()
cputime: Safely read cputime of full dynticks CPUs
kvm: Prepare to add generic guest entry/exit callbacks
cputime: Use accessors to read task cputime stats
cputime: Allow dynamic switch between tick/virtual based cputime accounting
cputime: Generic on-demand virtual cputime accounting
cputime: Move default nsecs_to_cputime() to jiffies based cputime file
cputime: Librarize per nsecs resolution cputime definitions
cputime: Avoid multiplication overflow on utime scaling
context_tracking: Export context state for generic vtime
...
Fix up conflict in kernel/context_tracking.c due to comment additions.
Conflicts:
kernel/irq_work.c
Add support for printk in full dynticks CPU.
* Don't stop tick with irq works pending. This
fix is generally useful and concerns archs that
can't raise self IPIs.
* Flush irq works before CPU offlining.
* Introduce "lazy" irq works that can wait for the
next tick to be executed, unless it's stopped.
* Implement klogd wake up using irq work. This
removes the ad-hoc printk_tick()/printk_needs_cpu()
hooks and make it working even in dynticks mode.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Allow to dynamically switch between tick and virtual based
cputime accounting. This way we can provide a kind of "on-demand"
virtual based cputime accounting. In this mode, the kernel relies
on the context tracking subsystem to dynamically probe on kernel
boundaries.
This is in preparation for being able to stop the timer tick in
more places than just the idle state. Doing so will depend on
CONFIG_VIRT_CPU_ACCOUNTING_GEN which makes it possible to account
the cputime without the tick by hooking on kernel/user boundaries.
Depending whether the tick is stopped or not, we can switch between
tick and vtime based accounting anytime in order to minimize the
overhead associated to user hooks.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Allow drivers such as intel_powerclamp to use these apis for
turning on/off ticks during idle.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Pull core timer changes from Ingo Molnar:
"It contains continued generic-NOHZ work by Frederic and smaller
cleanups."
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Kill xtime_lock, replacing it with jiffies_lock
clocksource: arm_generic: use this_cpu_ptr per-cpu helper
clocksource: arm_generic: use integer math helpers
time/jiffies: Make clocksource_jiffies static
clocksource: clean up parse_pmtmr()
tick: Correct the comments for tick_sched_timer()
tick: Conditionally build nohz specific code in tick handler
tick: Consolidate tick handling for high and low res handlers
tick: Consolidate timekeeping handling code
Pull trivial fix branches from Ingo Molnar.
Cleanup in __get_key_name, and a timer comment fixlet.
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
lockdep: Use KSYM_NAME_LEN'ed buffer for __get_key_name()
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers, sched: Correct the comments for tick_sched_timer()
klogd is woken up asynchronously from the tick in order
to do it safely.
However if printk is called when the tick is stopped, the reader
won't be woken up until the next interrupt, which might not fire
for a while. As a result, the user may miss some message.
To fix this, lets implement the printk tick using a lazy irq work.
This subsystem takes care of the timer tick state and can
fix up accordingly.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Don't stop the tick if we have pending irq works on the
queue, otherwise if the arch can't raise self-IPIs, we may not
find an opportunity to execute the pending works for a while.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
We need some quick way to check if the CPU has stopped
its tick. This will be useful to implement the printk tick
using the irq work subsystem.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
The prediction for future is difficult and when the cpuidle governor prediction
fails and govenor possibly choose the shallower C-state than it should. How to
quickly notice and find the failure becomes important for power saving.
cpuidle menu governor has a method to predict the repeat pattern if there are 8
C-states residency which are continuous and the same or very close, so it will
predict the next C-states residency will keep same residency time.
There is a real case that turbostat utility (tools/power/x86/turbostat)
at kernel 3.3 or early. turbostat utility will read 10 registers one by one at
Sandybridge, so it will generate 10 IPIs to wake up idle CPUs. So cpuidle menu
governor will predict it is repeat mode and there is another IPI wake up idle
CPU soon, so it keeps idle CPU stay at C1 state even though CPU is totally
idle. However, in the turbostat, following 10 registers reading is sleep 5
seconds by default, so the idle CPU will keep at C1 for a long time though it is
idle until break event occurs.
In a idle Sandybridge system, run "./turbostat -v", we will notice that deep
C-state dangles between "70% ~ 99%". After patched the kernel, we will notice
deep C-state stays at >99.98%.
In the patch, a timer is added when menu governor detects a repeat mode and
choose a shallow C-state. The timer is set to a time out value that greater
than predicted time, and we conclude repeat mode prediction failure if timer is
triggered. When repeat mode happens as expected, the timer is not triggered
and CPU waken up from C-states and it will cancel the timer initiatively.
When repeat mode does not happen, the timer will be time out and menu governor
will quickly notice that the repeat mode prediction fails and then re-evaluates
deeper C-states possibility.
Below is another case which will clearly show the patch much benefit:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <time.h>
#include <pthread.h>
volatile int * shutdown;
volatile long * count;
int delay = 20;
int loop = 8;
void usage(void)
{
fprintf(stderr,
"Usage: idle_predict [options]\n"
" --help -h Print this help\n"
" --thread -n Thread number\n"
" --loop -l Loop times in shallow Cstate\n"
" --delay -t Sleep time (uS)in shallow Cstate\n");
}
void *simple_loop() {
int idle_num = 1;
while (!(*shutdown)) {
*count = *count + 1;
if (idle_num % loop)
usleep(delay);
else {
/* sleep 1 second */
usleep(1000000);
idle_num = 0;
}
idle_num++;
}
}
static void sighand(int sig)
{
*shutdown = 1;
}
int main(int argc, char *argv[])
{
sigset_t sigset;
int signum = SIGALRM;
int i, c, er = 0, thread_num = 8;
pthread_t pt[1024];
static char optstr[] = "n:l:t:h:";
while ((c = getopt(argc, argv, optstr)) != EOF)
switch (c) {
case 'n':
thread_num = atoi(optarg);
break;
case 'l':
loop = atoi(optarg);
break;
case 't':
delay = atoi(optarg);
break;
case 'h':
default:
usage();
exit(1);
}
printf("thread=%d,loop=%d,delay=%d\n",thread_num,loop,delay);
count = malloc(sizeof(long));
shutdown = malloc(sizeof(int));
*count = 0;
*shutdown = 0;
sigemptyset(&sigset);
sigaddset(&sigset, signum);
sigprocmask (SIG_BLOCK, &sigset, NULL);
signal(SIGINT, sighand);
signal(SIGTERM, sighand);
for(i = 0; i < thread_num ; i++)
pthread_create(&pt[i], NULL, simple_loop, NULL);
for (i = 0; i < thread_num; i++)
pthread_join(pt[i], NULL);
exit(0);
}
Get powertop V2 from git://github.com/fenrus75/powertop, build powertop.
After build the above test application, then run it.
Test plaform can be Intel Sandybridge or other recent platforms.
#./idle_predict -l 10 &
#./powertop
We will find that deep C-state will dangle between 40%~100% and much time spent
on C1 state. It is because menu governor wrongly predict that repeat mode
is kept, so it will choose the C1 shallow C-state even though it has chance to
sleep 1 second in deep C-state.
While after patched the kernel, we find that deep C-state will keep >99.6%.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Now that timekeeping is protected by its own locks, rename
the xtime_lock to jifffies_lock to better describe what it
protects.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In the comments of function tick_sched_timer(), the sentence
"timer->base->cpu_base->lock held" is not right.
In function __run_hrtimer(), before call timer->function(),
the cpu_base->lock has been unlocked.
Signed-off-by: liu chuansheng <chuansheng.liu@intel.com>
Cc: fei.li@intel.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1351098455.15558.1421.camel@cliu38-desktop-build
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the comments of function tick_sched_timer(), the sentence
"timer->base->cpu_base->lock held" is not right.
In function __run_hrtimer(), before call timer->function(),
the cpu_base->lock has been unlocked.
Signed-off-by: liu chuansheng <chuansheng.liu@intel.com>
Cc: fei.li@intel.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1351098455.15558.1421.camel@cliu38-desktop-build
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This optimize a bit the high res tick sched handler.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Besides unifying code, this also adds the idle check before
processing idle accounting specifics on the low res handler.
This way we also generalize this part of the nohz code for
!CONFIG_HIGH_RES_TIMERS to prepare for the adaptive tickless
features.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Unify the duplicated timekeeping handling code of low and high res tick
sched handlers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
When we stop the tick in idle, we save the current jiffies value
in ts->idle_jiffies. This snapshot is substracted from the later
value of jiffies when the tick is restarted and the resulting
delta is accounted as idle cputime. This is how we handle the
idle cputime accounting without the tick.
But sometimes we need to schedule the next tick to some time in
the future instead of completely stopping it. In this case, a
tick may happen before we restart the periodic behaviour and
from that tick we account one jiffy to idle cputime as usual but
we also increment the ts->idle_jiffies snapshot by one so that
when we compute the delta to account, we substract the one jiffy
we just accounted.
To prepare for stopping the tick outside idle, we introduced a
check that prevents from fixing up that ts->idle_jiffies if we
are not running the idle task. But we use idle_cpu() for that
and this is a problem if we run the tick while another CPU
remotely enqueues a ttwu to our runqueue:
CPU 0: CPU 1:
tick_sched_timer() { ttwu_queue_remote()
if (idle_cpu(CPU 0))
ts->idle_jiffies++;
}
Here, idle_cpu() notes that &rq->wake_list is not empty and
hence won't consider the CPU as idle. As a result,
ts->idle_jiffies won't be incremented. But this is wrong because
we actually account the current jiffy to idle cputime. And that
jiffy won't get substracted from the nohz time delta. So in the
end, this jiffy is accounted twice.
Fix this by changing idle_cpu(smp_processor_id()) with
is_idle_task(current). This way the jiffy is substracted
correctly even if a ttwu operation is enqueued on the CPU.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # 3.5+
Link: http://lkml.kernel.org/r/1349308004-3482-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler changes from Ingo Molnar:
"Continued quest to clean up and enhance the cputime code by Frederic
Weisbecker, in preparation for future tickless kernel features.
Other than that, smallish changes."
Fix up trivial conflicts due to additions next to each other in arch/{x86/}Kconfig
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
cputime: Make finegrained irqtime accounting generally available
cputime: Gather time/stats accounting config options into a single menu
ia64: Reuse system and user vtime accounting functions on task switch
ia64: Consolidate user vtime accounting
vtime: Consolidate system/idle context detection
cputime: Use a proper subsystem naming for vtime related APIs
sched: cpu_power: enable ARCH_POWER
sched/nohz: Clean up select_nohz_load_balancer()
sched: Fix load avg vs. cpu-hotplug
sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
sched: Fix nohz_idle_balance()
sched: Remove useless code in yield_to()
sched: Add time unit suffix to sched sysctl knobs
sched/debug: Limit sd->*_idx range on sysctl
sched: Remove AFFINE_WAKEUPS feature flag
s390: Remove leftover account_tick_vtime() header
cputime: Consolidate vtime handling on context switch
sched: Move cputime code to its own file
cputime: Generalize CONFIG_VIRT_CPU_ACCOUNTING
tile: Remove SD_PREFER_LOCAL leftover
...
The can_stop_idle_tick() function complains if a softirq vector is
raised too late in the idle-entry process, presumably in order to
prevent dangling softirq invocations from being delayed across the
full idle period, which might be indefinitely long -- and if softirq
was asserted any later than the call to this function, such a delay
might well happen.
However, RCU needs to be able to use softirq to stop idle entry in
order to be able to drain RCU callbacks from the current CPU, which in
turn enables faster entry into dyntick-idle mode, which in turn reduces
power consumption. Because RCU takes this action at a well-defined
point in the idle-entry path, it is safe for RCU to take this approach.
This commit therefore silences the error message that is sometimes
produced when the going-idle CPU suddenly finds that it has an RCU_SOFTIRQ
to process. The error message will continue to be issued for other
softirq vectors.
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
There is no load_balancer to be selected now. It just sets the
state of the nohz tick to stop.
So rename the function, pass the 'cpu' as a parameter and then
remove the useless call from tick_nohz_restart_sched_tick().
[ s/set_nohz_tick_stopped/nohz_balance_enter_idle/g
s/clear_nohz_tick_stopped/nohz_balance_exit_idle/g ]
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1347261059-24747-1-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Azat Khuzhin reported high loadavg in Linux v3.6
After checking the upstream scheduler code, I found Peter's commit:
5167e8d541 sched/nohz: Rewrite and fix load-avg computation -- again
not fully applied, missing the call to calc_load_exit_idle().
After that idle exit in sampling window will always be calculated
to non-idle, and the load will be higher than normal.
This patch adds the missing call to calc_load_exit_idle().
Signed-off-by: Charles Wang <muming.wq@taobao.com>
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345449754-27130-1-git-send-email-muming.wq@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer core changes from Ingo Molnar:
"Continued cleanups of the core time and NTP code, plus more nohz work
preparing for tick-less userspace execution."
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Rework timekeeping functions to take timekeeper ptr as argument
time: Move xtime_nsec adjustment underflow handling timekeeping_adjust
time: Move arch_gettimeoffset() usage into timekeeping_get_ns()
time: Refactor accumulation of nsecs to secs
time: Condense timekeeper.xtime into xtime_sec
time: Explicitly use u32 instead of int for shift values
time: Whitespace cleanups per Ingo%27s requests
nohz: Move next idle expiry time record into idle logic area
nohz: Move ts->idle_calls incrementation into strict idle logic
nohz: Rename ts->idle_tick to ts->last_tick
nohz: Make nohz API agnostic against idle ticks cputime accounting
nohz: Separate idle sleeping time accounting from nohz logic
timers: Improve get_next_timer_interrupt()
timers: Add accounting of non deferrable timers
timers: Consolidate base->next_timer update
timers: Create detach_if_pending() and use it
Pull RCU changes from Ingo Molnar:
"Quoting from Paul, the major features of this series are:
1. Preventing latency spikes of more than 200 microseconds for
kernels built with NR_CPUS=4096, which is reportedly becoming the
default for some distros. This is a first step, as it does not
help with systems that actually -have- 4096 CPUs (work on this case
is in progress, but is not yet ready for mainline).
This category also includes improving concurrency of rcu_barrier(),
placed here due to conflicts. Posted to LKML at:
https://lkml.org/lkml/2012/6/22/381
Note that patches 18-22 of that series have been defered to 3.7, as
they have not yet proven themselves to be mainline-ready (and yes,
these are the ones intended to get rid of RCU's latency spikes for
systems that actually have 4096 CPUs).
2. Updates to documentation and rcutorture fixes, the latter category
including improvements to rcu_barrier() testing. Posted to LKML at
http://lkml.indiana.edu/hypermail/linux/kernel/1206.1/04094.html.
3. Miscellaneous fixes posted to LKML at:
https://lkml.org/lkml/2012/6/22/500
with the exception of the last commit, which was posted here:
http://www.gossamer-threads.com/lists/linux/kernel/1561830
4. RCU_FAST_NO_HZ fixes and improvements. Posted to LKML at:
http://lkml.indiana.edu/hypermail/linux/kernel/1206.1/00006.htmlhttp://www.gossamer-threads.com/lists/linux/kernel/1561833
The first four patches of the first series went into 3.5 to fix a
regression.
5. Code-style fixes. These were posted to LKML at
http://lkml.indiana.edu/hypermail/linux/kernel/1205.2/01180.htmlhttp://lkml.indiana.edu/hypermail/linux/kernel/1205.2/01181.html"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
rcu: Fix broken strings in RCU's source code.
rcu: Fix code-style issues involving "else"
rcu: Introduce check for callback list/count mismatch
rcu: Make RCU_FAST_NO_HZ respect nohz= boot parameter
rcu: Fix qlen_lazy breakage
rcu: Round FAST_NO_HZ lazy timeout to nearest second
rcu: The rcu_needs_cpu() function is not a quiescent state
rcu: Dump only the current CPU's buffers for idle-entry/exit warnings
rcu: Add check for CPUs going offline with callbacks queued
rcu: Disable preemption in rcu_blocking_is_gp()
rcu: Prevent uninitialized string in RCU CPU stall info
rcu: Fix rcu_is_cpu_idle() #ifdef in TINY_RCU
rcu: Split RCU core processing out of __call_rcu()
rcu: Prevent __call_rcu() from invoking RCU core on offline CPUs
rcu: Make __call_rcu() handle invocation from idle
rcu: Remove function versions of __kfree_rcu and __is_kfree_rcu_offset
rcu: Consolidate tree/tiny __rcu_read_{,un}lock() implementations
rcu: Remove return value from rcu_assign_pointer()
key: Remove extraneous parentheses from rcu_assign_keypointer()
rcu: Remove return value from RCU_INIT_POINTER()
...
Reason: Update to upstream changes to avoid further conflicts.
Fixup a trivial merge conflict in kernel/time/tick-sched.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thanks to Charles Wang for spotting the defects in the current code:
- If we go idle during the sample window -- after sampling, we get a
negative bias because we can negate our own sample.
- If we wake up during the sample window we get a positive bias
because we push the sample to a known active period.
So rewrite the entire nohz load-avg muck once again, now adding
copious documentation to the code.
Reported-and-tested-by: Doug Smythies <dsmythies@telus.net>
Reported-and-tested-by: Charles Wang <muming.wq@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the nohz= boot parameter disables nohz, then RCU_FAST_NO_HZ needs to
also disable itself. This commit therefore checks for tick_nohz_enabled
being zero, disabling rcu_prepare_for_idle() if so. This commit assumes
that tick_nohz_enabled can change at runtime: If this is not the case,
then a simpler approach suffices.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The next idle expiry time record and idle sleeps tracking are
statistics that only concern idle.
Since we want the nohz APIs to become usable further idle
context, let's pull up the handling of these statistics to the
callers in idle.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>