The readonly FS THP relies on khugepaged to collapse THP for suitable
vmas. But the behavior is inconsistent for "always" mode
(https://lore.kernel.org/linux-mm/00f195d4-d039-3cf2-d3a1-a2c88de397a0@suse.cz/).
The "always" mode means THP allocation should be tried all the time and
khugepaged should try to collapse THP all the time. Of course the
allocation and collapse may fail due to other factors and conditions.
Currently file THP may not be collapsed by khugepaged even though all the
conditions are met. That does break the semantics of "always" mode.
So make sure readonly FS vmas are registered to khugepaged to fix the
break.
Register suitable vmas in common mmap path, that could cover both readonly
FS vmas and shmem vmas, so remove the khugepaged calls in shmem.c.
Still need to keep the khugepaged call in vma_merge() since vma_merge() is
called in a lot of places, for example, madvise, mprotect, etc.
Link: https://lkml.kernel.org/r/20220510203222.24246-9-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastmil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Song Liu <song@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We run a lot of automated tests when building our software and run into
OOM scenarios when the tests run unbounded. v1 memcg exports
memcg->watermark as "memory.max_usage_in_bytes" in sysfs. We use this
metric to heuristically limit the number of tests that can run in parallel
based on per test historical data.
This metric is currently not exported for v2 memcg and there is no other
easy way of getting this information. getrusage() syscall returns
"ru_maxrss" which can be used as an approximation but that's the max RSS
of a single child process across all children instead of the aggregated
max for all child processes. The only work around is to periodically poll
"memory.current" but that's not practical for short-lived one-off cgroups.
Hence, expose memcg->watermark as "memory.peak" for v2 memcg.
Link: https://lkml.kernel.org/r/20220507050916.GA13577@us192.sjc.aristanetworks.com
Signed-off-by: Ganesan Rajagopal <rganesan@arista.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and
reboot the server to enable or disable the feature of optimizing vmemmap
pages associated with HugeTLB pages. However, rebooting usually takes a
long time. So add a sysctl to enable or disable the feature at runtime
without rebooting. Why we need this? There are 3 use cases.
1) The feature of minimizing overhead of struct page associated with
each HugeTLB is disabled by default without passing
"hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance)
deliver the servers to the users who want to enable this feature, they
have to configure the grub (change boot cmdline) and reboot the
servers, whereas rebooting usually takes a long time (we have thousands
of servers). It's a very bad experience for the users. So we need a
approach to enable this feature after rebooting. This is a use case in
our practical environment.
2) Some use cases are that HugeTLB pages are allocated 'on the fly'
instead of being pulled from the HugeTLB pool, those workloads would be
affected with this feature enabled. Those workloads could be
identified by the characteristics of they never explicitly allocating
huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages'
and then let the pages be allocated from the buddy allocator at fault
time. We can confirm it is a real use case from the commit
099730d674. For those workloads, the page fault time could be ~2x
slower than before. We suspect those users want to disable this
feature if the system has enabled this before and they don't think the
memory savings benefit is enough to make up for the performance drop.
3) If the workload which wants vmemmap pages to be optimized and the
workload which wants to set 'nr_overcommit_hugepages' and does not want
the extera overhead at fault time when the overcommitted pages be
allocated from the buddy allocator are deployed in the same server.
The user could enable this feature and set 'nr_hugepages' and
'nr_overcommit_hugepages', then disable the feature. In this case, the
overcommited HugeTLB pages will not encounter the extra overhead at
fault time.
Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Optimizing HugeTLB vmemmap pages is not compatible with allocating memmap
on hot added memory. If "hugetlb_free_vmemmap=on" and
memory_hotplug.memmap_on_memory" are both passed on the kernel command
line, optimizing hugetlb pages takes precedence. However, the global
variable memmap_on_memory will still be set to 1, even though we will not
try to allocate memmap on hot added memory.
Also introduce mhp_memmap_on_memory() helper to move the definition of
"memmap_on_memory" to the scope of CONFIG_MHP_MEMMAP_ON_MEMORY. In the
next patch, mhp_memmap_on_memory() will also be exported to be used in
hugetlb_vmemmap.c.
Link: https://lkml.kernel.org/r/20220512041142.39501-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "add hugetlb_optimize_vmemmap sysctl", v11.
This series aims to add hugetlb_optimize_vmemmap sysctl to enable or
disable the feature of optimizing vmemmap pages associated with HugeTLB
pages.
This patch (of 4):
If the size of "struct page" is not the power of two but with the feature
of minimizing overhead of struct page associated with each HugeTLB is
enabled, then the vmemmap pages of HugeTLB will be corrupted after
remapping (panic is about to happen in theory). But this only exists when
!CONFIG_MEMCG && !CONFIG_SLUB on x86_64. However, it is not a
conventional configuration nowadays. So it is not a real word issue, just
the result of a code review.
But we cannot prevent anyone from configuring that combined configure.
This hugetlb_optimize_vmemmap should be disable in this case to fix this
issue.
Link: https://lkml.kernel.org/r/20220512041142.39501-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220512041142.39501-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The asynchronous zspage free worker tries to lock a zspage's entire page
list without defending against page migration. Since pages which haven't
yet been locked can concurrently migrate off the zspage page list while
lock_zspage() churns away, lock_zspage() can suffer from a few different
lethal races.
It can lock a page which no longer belongs to the zspage and unsafely
dereference page_private(), it can unsafely dereference a torn pointer to
the next page (since there's a data race), and it can observe a spurious
NULL pointer to the next page and thus not lock all of the zspage's pages
(since a single page migration will reconstruct the entire page list, and
create_page_chain() unconditionally zeroes out each list pointer in the
process).
Fix the races by using migrate_read_lock() in lock_zspage() to synchronize
with page migration.
Link: https://lkml.kernel.org/r/20220509024703.243847-1-sultan@kerneltoast.com
Fixes: 77ff465799 ("zsmalloc: zs_page_migrate: skip unnecessary loops but not return -EBUSY if zspage is not inuse")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit a4efc174b3 which introduced a regression issue
that when there're multiple processes allocating dma memory in parallel by
calling dma_alloc_coherent(), it may fail sometimes as follows:
Error log:
cma: cma_alloc: linux,cma: alloc failed, req-size: 148 pages, ret: -16
cma: number of available pages:
3@125+20@172+12@236+4@380+32@736+17@2287+23@2473+20@36076+99@40477+108@40852+44@41108+20@41196+108@41364+108@41620+
108@42900+108@43156+483@44061+1763@45341+1440@47712+20@49324+20@49388+5076@49452+2304@55040+35@58141+20@58220+20@58284+
7188@58348+84@66220+7276@66452+227@74525+6371@75549=> 33161 free of 81920 total pages
When issue happened, we saw there were still 33161 pages (129M) free CMA
memory and a lot available free slots for 148 pages in CMA bitmap that we
want to allocate.
When dumping memory info, we found that there was also ~342M normal
memory, but only 1352K CMA memory left in buddy system while a lot of
pageblocks were isolated.
Memory info log:
Normal free:351096kB min:30000kB low:37500kB high:45000kB reserved_highatomic:0KB
active_anon:98060kB inactive_anon:98948kB active_file:60864kB inactive_file:31776kB
unevictable:0kB writepending:0kB present:1048576kB managed:1018328kB mlocked:0kB
bounce:0kB free_pcp:220kB local_pcp:192kB free_cma:1352kB lowmem_reserve[]: 0 0 0
Normal: 78*4kB (UECI) 1772*8kB (UMECI) 1335*16kB (UMECI) 360*32kB (UMECI) 65*64kB (UMCI)
36*128kB (UMECI) 16*256kB (UMCI) 6*512kB (EI) 8*1024kB (UEI) 4*2048kB (MI) 8*4096kB (EI)
8*8192kB (UI) 3*16384kB (EI) 8*32768kB (M) = 489288kB
The root cause of this issue is that since commit a4efc174b3 ("mm/cma.c:
remove redundant cma_mutex lock"), CMA supports concurrent memory
allocation. It's possible that the memory range process A trying to alloc
has already been isolated by the allocation of process B during memory
migration.
The problem here is that the memory range isolated during one allocation
by start_isolate_page_range() could be much bigger than the real size we
want to alloc due to the range is aligned to MAX_ORDER_NR_PAGES.
Taking an ARMv7 platform with 1G memory as an example, when
MAX_ORDER_NR_PAGES is big (e.g. 32M with max_order 14) and CMA memory is
relatively small (e.g. 128M), there're only 4 MAX_ORDER slot, then it's
very easy that all CMA memory may have already been isolated by other
processes when one trying to allocate memory using dma_alloc_coherent().
Since current CMA code will only scan one time of whole available CMA
memory, then dma_alloc_coherent() may easy fail due to contention with
other processes.
This patch simply falls back to the original method that using cma_mutex
to make alloc_contig_range() run sequentially to avoid the issue.
Link: https://lkml.kernel.org/r/20220509094551.3596244-1-aisheng.dong@nxp.com
Link: https://lore.kernel.org/all/20220315144521.3810298-2-aisheng.dong@nxp.com/
Fixes: a4efc174b3 ("mm/cma.c: remove redundant cma_mutex lock")
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [5.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull misc fixes from Andrew Morton:
"Seven MM fixes, three of which address issues added in the most recent
merge window, four of which are cc:stable.
Three non-MM fixes, none very serious"
[ And yes, that's a real pull request from Andrew, not me creating a
branch from emailed patches. Woo-hoo! ]
* tag 'mm-hotfixes-stable-2022-05-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
MAINTAINERS: add a mailing list for DAMON development
selftests: vm: Makefile: rename TARGETS to VMTARGETS
mm/kfence: reset PG_slab and memcg_data before freeing __kfence_pool
mailmap: add entry for martyna.szapar-mudlaw@intel.com
arm[64]/memremap: don't abuse pfn_valid() to ensure presence of linear map
procfs: prevent unprivileged processes accessing fdinfo dir
mm: mremap: fix sign for EFAULT error return value
mm/hwpoison: use pr_err() instead of dump_page() in get_any_page()
mm/huge_memory: do not overkill when splitting huge_zero_page
Revert "mm/memory-failure.c: skip huge_zero_page in memory_failure()"
Don't decrease the number of poisoned pages in page_alloc.c, let the
memory-failure.c do inc/dec poisoned pages only.
Also simplify unpoison_memory(), only decrease the number of
poisoned pages when:
- TestClearPageHWPoison() succeed
- put_page_back_buddy succeed
After decreasing, print necessary log.
Finally, remove clear_page_hwpoison() and unpoison_taken_off_page().
Link: https://lkml.kernel.org/r/20220509105641.491313-3-pizhenwei@bytedance.com
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "memory-failure: fix hwpoison_filter", v2.
As well known, the memory failure mechanism handles memory corrupted
event, and try to send SIGBUS to the user process which uses this
corrupted page.
For the virtualization case, QEMU catches SIGBUS and tries to inject MCE
into the guest, and the guest handles memory failure again. Thus the
guest gets the minimal effect from hardware memory corruption.
The further step I'm working on:
1, try to modify code to decrease poisoned pages in a single place
(mm/memofy-failure.c: simplify num_poisoned_pages_dec in this series).
2, try to use page_handle_poison() to handle SetPageHWPoison() and
num_poisoned_pages_inc() together. It would be best to call
num_poisoned_pages_inc() in a single place too.
3, introduce memory failure notifier list in memory-failure.c: notify
the corrupted PFN to someone who registers this list. If I can
complete [1] and [2] part, [3] will be quite easy(just call notifier
list after increasing poisoned page).
4, introduce memory recover VQ for memory balloon device, and registers
memory failure notifier list. During the guest kernel handles memory
failure, balloon device gets notified by memory failure notifier list,
and tells the host to recover the corrupted PFN(GPA) by the new VQ.
5, host side remaps the corrupted page(HVA), and tells the guest side
to unpoison the PFN(GPA). Then the guest fixes the corrupted page(GPA)
dynamically.
This patch (of 5):
clear_hwpoisoned_pages() clears HWPoison flag and decreases the number of
poisoned pages, this actually works as part of memory failure.
Move this function from sparse.c to memory-failure.c, finally there is no
CONFIG_MEMORY_FAILURE in sparse.c.
Link: https://lkml.kernel.org/r/20220509105641.491313-1-pizhenwei@bytedance.com
Link: https://lkml.kernel.org/r/20220509105641.491313-2-pizhenwei@bytedance.com
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The per-CPU resource vmap_block_queue is accessed via get_cpu_var(). That
macro disables preemption and then loads the pointer from the current CPU.
This doesn't work on PREEMPT_RT because a spinlock_t is later accessed
within the preempt-disable section.
There is no need to disable preemption while accessing the per-CPU struct
vmap_block_queue because the list is protected with a spinlock_t. The
per-CPU struct is also accessed cross-CPU in purge_fragmented_blocks().
It is possible that by using raw_cpu_ptr() the code migrates to another
CPU and uses struct from another CPU. This is fine because the list is
locked and the locked section is very short.
Use raw_cpu_ptr() to access vmap_block_queue.
Link: https://lkml.kernel.org/r/YnKx3duAB53P7ojN@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>