__legitimize_mnt() has two problems - one is that in case of success
the check of mount_lock is not ordered wrt preceding increment of
refcount, making it possible to have successful __legitimize_mnt()
on one CPU just before the otherwise final mntpu() on another,
with __legitimize_mnt() not seeing mntput() taking the lock and
mntput() not seeing the increment done by __legitimize_mnt().
Solved by a pair of barriers.
Another is that failure of __legitimize_mnt() on the second
read_seqretry() leaves us with reference that'll need to be
dropped by caller; however, if that races with final mntput()
we can end up with caller dropping rcu_read_lock() and doing
mntput() to release that reference - with the first mntput()
having freed the damn thing just as rcu_read_lock() had been
dropped. Solution: in "do mntput() yourself" failure case
grab mount_lock, check if MNT_DOOMED has been set by racing
final mntput() that has missed our increment and if it has -
undo the increment and treat that as "failure, caller doesn't
need to drop anything" case.
It's not easy to hit - the final mntput() has to come right
after the first read_seqretry() in __legitimize_mnt() *and*
manage to miss the increment done by __legitimize_mnt() before
the second read_seqretry() in there. The things that are almost
impossible to hit on bare hardware are not impossible on SMP
KVM, though...
Reported-by: Oleg Nesterov <oleg@redhat.com>
Fixes: 48a066e72d ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
mntput_no_expire() does the calculation of total refcount under mount_lock;
unfortunately, the decrement (as well as all increments) are done outside
of it, leading to false positives in the "are we dropping the last reference"
test. Consider the following situation:
* mnt is a lazy-umounted mount, kept alive by two opened files. One
of those files gets closed. Total refcount of mnt is 2. On CPU 42
mntput(mnt) (called from __fput()) drops one reference, decrementing component
* After it has looked at component #0, the process on CPU 0 does
mntget(), incrementing component #0, gets preempted and gets to run again -
on CPU 69. There it does mntput(), which drops the reference (component #69)
and proceeds to spin on mount_lock.
* On CPU 42 our first mntput() finishes counting. It observes the
decrement of component #69, but not the increment of component #0. As the
result, the total it gets is not 1 as it should've been - it's 0. At which
point we decide that vfsmount needs to be killed and proceed to free it and
shut the filesystem down. However, there's still another opened file
on that filesystem, with reference to (now freed) vfsmount, etc. and we are
screwed.
It's not a wide race, but it can be reproduced with artificial slowdown of
the mnt_get_count() loop, and it should be easier to hit on SMP KVM setups.
Fix consists of moving the refcount decrement under mount_lock; the tricky
part is that we want (and can) keep the fast case (i.e. mount that still
has non-NULL ->mnt_ns) entirely out of mount_lock. All places that zero
mnt->mnt_ns are dropping some reference to mnt and they call synchronize_rcu()
before that mntput(). IOW, if mntput() observes (under rcu_read_lock())
a non-NULL ->mnt_ns, it is guaranteed that there is another reference yet to
be dropped.
Reported-by: Jann Horn <jannh@google.com>
Tested-by: Jann Horn <jannh@google.com>
Fixes: 48a066e72d ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Superblock level remounts are currently restricted to global
CAP_SYS_ADMIN, as is the path for changing the root mount to
read only on umount. Loosen both of these permission checks to
also allow CAP_SYS_ADMIN in any namespace which is privileged
towards the userns which originally mounted the filesystem.
Signed-off-by: Seth Forshee <seth.forshee@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Christian Brauner <christian@brauner.io>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
In do_mount() when the MS_* flags are being converted to MNT_* flags,
MS_RDONLY got accidentally convered to SB_RDONLY.
Undo this change.
Fixes: e462ec50cb ("VFS: Differentiate mount flags (MS_*) from internal superblock flags")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want it only for the stuff created by SB_KERNMOUNT mounts, *not* for
their copies. As it is, creating a deep stack of bindings of /proc/*/ns/*
somewhere in a new namespace and exiting yields a stack overflow.
Cc: stable@kernel.org
Reported-by: Alexander Aring <aring@mojatatu.com>
Bisected-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Alexander Aring <aring@mojatatu.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Using this helper allows us to avoid the in-kernel call to the sys_umount()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as ksys_umount().
In the near future, the only fs-external caller of ksys_umount() should be
converted to call do_umount() directly. Then, ksys_umount() can be moved
within sys_umount() again.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Using this helper allows us to avoid the in-kernel calls to the sys_mount()
syscall. The ksys_ prefix denotes that this function is meant as a drop-in
replacement for the syscall. In particular, it uses the same calling
convention as sys_mount().
In the near future, all callers of ksys_mount() should be converted to call
do_mount() directly.
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Since commit e462ec50cb ("VFS: Differentiate mount flags (MS_*) from
internal superblock flags") the lazytime mount option doesn't get passed
on anymore.
Fix the issue by handling the option in do_mount().
Reviewed-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mount i_version flag is not enabled in the new sb_flags. This patch
adds the missing SB_I_VERSION flag.
Fixes: e462ec5 "VFS: Differentiate mount flags (MS_*) from internal
superblock flags"
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Overlayfs directory file_inode() is the overlay inode whether the real
inode is upper or lower.
This fixes a regression in xfstest generic/158.
Fixes: 7c6893e3c9 ("ovl: don't allow writing ioctl on lower layer")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Pull misc leftovers from Al Viro.
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fix the __user misannotations in asm-generic get_user/put_user
fput: Don't reinvent the wheel but use existing llist API
namespace.c: Don't reinvent the wheel but use existing llist API
Pull mount flag updates from Al Viro:
"Another chunk of fmount preparations from dhowells; only trivial
conflicts for that part. It separates MS_... bits (very grotty
mount(2) ABI) from the struct super_block ->s_flags (kernel-internal,
only a small subset of MS_... stuff).
This does *not* convert the filesystems to new constants; only the
infrastructure is done here. The next step in that series is where the
conflicts would be; that's the conversion of filesystems. It's purely
mechanical and it's better done after the merge, so if you could run
something like
list=$(for i in MS_RDONLY MS_NOSUID MS_NODEV MS_NOEXEC MS_SYNCHRONOUS MS_MANDLOCK MS_DIRSYNC MS_NOATIME MS_NODIRATIME MS_SILENT MS_POSIXACL MS_KERNMOUNT MS_I_VERSION MS_LAZYTIME; do git grep -l $i fs drivers/staging/lustre drivers/mtd ipc mm include/linux; done|sort|uniq|grep -v '^fs/namespace.c$')
sed -i -e 's/\<MS_RDONLY\>/SB_RDONLY/g' \
-e 's/\<MS_NOSUID\>/SB_NOSUID/g' \
-e 's/\<MS_NODEV\>/SB_NODEV/g' \
-e 's/\<MS_NOEXEC\>/SB_NOEXEC/g' \
-e 's/\<MS_SYNCHRONOUS\>/SB_SYNCHRONOUS/g' \
-e 's/\<MS_MANDLOCK\>/SB_MANDLOCK/g' \
-e 's/\<MS_DIRSYNC\>/SB_DIRSYNC/g' \
-e 's/\<MS_NOATIME\>/SB_NOATIME/g' \
-e 's/\<MS_NODIRATIME\>/SB_NODIRATIME/g' \
-e 's/\<MS_SILENT\>/SB_SILENT/g' \
-e 's/\<MS_POSIXACL\>/SB_POSIXACL/g' \
-e 's/\<MS_KERNMOUNT\>/SB_KERNMOUNT/g' \
-e 's/\<MS_I_VERSION\>/SB_I_VERSION/g' \
-e 's/\<MS_LAZYTIME\>/SB_LAZYTIME/g' \
$list
and commit it with something along the lines of 'convert filesystems
away from use of MS_... constants' as commit message, it would save a
quite a bit of headache next cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
VFS: Differentiate mount flags (MS_*) from internal superblock flags
VFS: Convert sb->s_flags & MS_RDONLY to sb_rdonly(sb)
vfs: Add sb_rdonly(sb) to query the MS_RDONLY flag on s_flags
Problem with ioctl() is that it's a file operation, yet often used as an
inode operation (i.e. modify the inode despite the file being opened for
read-only).
mnt_want_write_file() is used by filesystems in such cases to get write
access on an arbitrary open file.
Since overlayfs lets filesystems do all file operations, including ioctl,
this can lead to mnt_want_write_file() returning OK for a lower file and
modification of that lower file.
This patch prevents modification by checking if the file is from an
overlayfs lower layer and returning EPERM in that case.
Need to introduce a mnt_want_write_file_path() variant that still does the
old thing for inode operations that can do the copy up + modification
correctly in such cases (fchown, fsetxattr, fremovexattr).
This does not address the correctness of such ioctls on overlayfs (the
correct way would be to copy up and attempt to perform ioctl on upper
file).
In theory this could be a regression. We very much hope that nobody is
relying on such a hack in any sane setup.
While this patch meddles in VFS code, it has no effect on non-overlayfs
filesystems.
Reported-by: "zhangyi (F)" <yi.zhang@huawei.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Although llist provides proper APIs, they are not used. Make them used.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Differentiate the MS_* flags passed to mount(2) from the internal flags set
in the super_block's s_flags. s_flags are now called SB_*, with the names
and the values for the moment mirroring the MS_* flags that they're
equivalent to.
In this patch, just the headers are altered and some kernel code where
blind automated conversion isn't necessarily correct.
Note that this shows up some interesting issues:
(1) Some MS_* flags get translated to MNT_* flags (such as MS_NODEV ->
MNT_NODEV) without passing this on to the filesystem, but some
filesystems set such flags anyway.
(2) The ->remount_fs() methods of some filesystems adjust the *flags
argument by setting MS_* flags in it, such as MS_NOATIME - but these
flags are then scrubbed by do_remount_sb() (only the occupants of
MS_RMT_MASK are permitted: MS_RDONLY, MS_SYNCHRONOUS, MS_MANDLOCK,
MS_I_VERSION and MS_LAZYTIME)
I'm not sure what's the best way to solve all these cases.
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
Firstly by applying the following with coccinelle's spatch:
@@ expression SB; @@
-SB->s_flags & MS_RDONLY
+sb_rdonly(SB)
to effect the conversion to sb_rdonly(sb), then by applying:
@@ expression A, SB; @@
(
-(!sb_rdonly(SB)) && A
+!sb_rdonly(SB) && A
|
-A != (sb_rdonly(SB))
+A != sb_rdonly(SB)
|
-A == (sb_rdonly(SB))
+A == sb_rdonly(SB)
|
-!(sb_rdonly(SB))
+!sb_rdonly(SB)
|
-A && (sb_rdonly(SB))
+A && sb_rdonly(SB)
|
-A || (sb_rdonly(SB))
+A || sb_rdonly(SB)
|
-(sb_rdonly(SB)) != A
+sb_rdonly(SB) != A
|
-(sb_rdonly(SB)) == A
+sb_rdonly(SB) == A
|
-(sb_rdonly(SB)) && A
+sb_rdonly(SB) && A
|
-(sb_rdonly(SB)) || A
+sb_rdonly(SB) || A
)
@@ expression A, B, SB; @@
(
-(sb_rdonly(SB)) ? 1 : 0
+sb_rdonly(SB)
|
-(sb_rdonly(SB)) ? A : B
+sb_rdonly(SB) ? A : B
)
to remove left over excess bracketage and finally by applying:
@@ expression A, SB; @@
(
-(A & MS_RDONLY) != sb_rdonly(SB)
+(bool)(A & MS_RDONLY) != sb_rdonly(SB)
|
-(A & MS_RDONLY) == sb_rdonly(SB)
+(bool)(A & MS_RDONLY) == sb_rdonly(SB)
)
to make comparisons against the result of sb_rdonly() (which is a bool)
work correctly.
Signed-off-by: David Howells <dhowells@redhat.com>
Pull ->s_options removal from Al Viro:
"Preparations for fsmount/fsopen stuff (coming next cycle). Everything
gets moved to explicit ->show_options(), killing ->s_options off +
some cosmetic bits around fs/namespace.c and friends. Basically, the
stuff needed to work with fsmount series with minimum of conflicts
with other work.
It's not strictly required for this merge window, but it would reduce
the PITA during the coming cycle, so it would be nice to have those
bits and pieces out of the way"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
isofs: Fix isofs_show_options()
VFS: Kill off s_options and helpers
orangefs: Implement show_options
9p: Implement show_options
isofs: Implement show_options
afs: Implement show_options
affs: Implement show_options
befs: Implement show_options
spufs: Implement show_options
bpf: Implement show_options
ramfs: Implement show_options
pstore: Implement show_options
omfs: Implement show_options
hugetlbfs: Implement show_options
VFS: Don't use save/replace_mount_options if not using generic_show_options
VFS: Provide empty name qstr
VFS: Make get_filesystem() return the affected filesystem
VFS: Clean up whitespace in fs/namespace.c and fs/super.c
Provide a function to create a NUL-terminated string from unterminated data
Kill off s_options, save/replace_mount_options() and generic_show_options()
as all filesystems now implement ->show_options() for themselves. This
should make it easier to implement a context-based mount where the mount
options can be passed individually over a file descriptor.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Clean up line terminal whitespace in fs/namespace.c and fs/super.c.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull mnt namespace updates from Eric Biederman:
"A big break-through came during this development cycle as a way was
found to maintain the existing umount -l semantics while allowing for
optimizations that improve the performance. That is represented by the
first change in this series moving the reparenting of mounts into
their own pass. This has allowed addressing the horrific performance
of umount -l on a carefully crafted tree of mounts with locks held
(0.06s vs 60s in my testing). What allowed this was not changing where
umounts propagate to while propgating umounts.
The next change fixes the case where the order of the mount whose
umount are being progated visits a tree where the mounts are stacked
upon each other in another order. This is weird but not hard to
implement.
The final change takes advantage of the unchanging mount propgation
tree to skip parts of the mount propgation tree that have already been
visited. Yielding a very nice speed up in the worst case.
There remains one outstanding question about the semantics of umount -l
that I am still discussiong with Ram Pai. In practice that area of the
semantics was changed by 1064f874ab ("mnt: Tuck mounts under others
instead of creating shadow/side mounts.") and no regressions have been
reported. Still I intend to finish talking that out with him to ensure
there is not something a more intense use of mount propagation in the
future will not cause to become significant"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
mnt: Make propagate_umount less slow for overlapping mount propagation trees
mnt: In propgate_umount handle visiting mounts in any order
mnt: In umount propagation reparent in a separate pass
Fixes: 4f757f3cbf ("make sure that mntns_install() doesn't end up with referral for root")
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
While investigating some poor umount performance I realized that in
the case of overlapping mount trees where some of the mounts are locked
the code has been failing to unmount all of the mounts it should
have been unmounting.
This failure to unmount all of the necessary
mounts can be reproduced with:
$ cat locked_mounts_test.sh
mount -t tmpfs test-base /mnt
mount --make-shared /mnt
mkdir -p /mnt/b
mount -t tmpfs test1 /mnt/b
mount --make-shared /mnt/b
mkdir -p /mnt/b/10
mount -t tmpfs test2 /mnt/b/10
mount --make-shared /mnt/b/10
mkdir -p /mnt/b/10/20
mount --rbind /mnt/b /mnt/b/10/20
unshare -Urm --propagation unchaged /bin/sh -c 'sleep 5; if [ $(grep test /proc/self/mountinfo | wc -l) -eq 1 ] ; then echo SUCCESS ; else echo FAILURE ; fi'
sleep 1
umount -l /mnt/b
wait %%
$ unshare -Urm ./locked_mounts_test.sh
This failure is corrected by removing the prepass that marks mounts
that may be umounted.
A first pass is added that umounts mounts if possible and if not sets
mount mark if they could be unmounted if they weren't locked and adds
them to a list to umount possibilities. This first pass reconsiders
the mounts parent if it is on the list of umount possibilities, ensuring
that information of umoutability will pass from child to mount parent.
A second pass then walks through all mounts that are umounted and processes
their children unmounting them or marking them for reparenting.
A last pass cleans up the state on the mounts that could not be umounted
and if applicable reparents them to their first parent that remained
mounted.
While a bit longer than the old code this code is much more robust
as it allows information to flow up from the leaves and down
from the trunk making the order in which mounts are encountered
in the umount propgation tree irrelevant.
Cc: stable@vger.kernel.org
Fixes: 0c56fe3142 ("mnt: Don't propagate unmounts to locked mounts")
Reviewed-by: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull misc vfs updates from Al Viro:
"Making sure that something like a referral point won't end up as pwd
or root.
The main part is the last commit (fixing mntns_install()); that one
fixes a hard-to-hit race. The fchdir() commit is making fchdir(2) a
bit more robust - it should be impossible to get opened files (even
O_PATH ones) for referral points in the first place, so the existing
checks are OK, but checking the same thing as in chdir(2) is just as
cheap.
The path_init() commit removes a redundant check that shouldn't have
been there in the first place"
* 'work.sane_pwd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
make sure that mntns_install() doesn't end up with referral for root
path_init(): don't bother with checking MAY_EXEC for LOOKUP_ROOT
make sure that fchdir() won't accept referral points, etc.
new flag: LOOKUP_DOWN. If the starting point is overmounted, cross
into whatever's mounted on top, triggering referrals et.al.
Use that instead of follow_down_one() loop in mntns_install(), handle
errors properly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently we free fsnotify_mark_connector structure only when inode /
vfsmount is getting freed. This can however impose noticeable memory
overhead when marks get attached to inodes only temporarily. So free the
connector structure once the last mark is detached from the object.
Since notification infrastructure can be working with the connector
under the protection of fsnotify_mark_srcu, we have to be careful and
free the fsnotify_mark_connector only after SRCU period passes.
Reviewed-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently notification marks are attached to object (inode or vfsmnt) by
a hlist_head in the object. The list is also protected by a spinlock in
the object. So while there is any mark attached to the list of marks,
the object must be pinned in memory (and thus e.g. last iput() deleting
inode cannot happen). Also for list iteration in fsnotify() to work, we
must hold fsnotify_mark_srcu lock so that mark itself and
mark->obj_list.next cannot get freed. Thus we are required to wait for
response to fanotify events from userspace process with
fsnotify_mark_srcu lock held. That causes issues when userspace process
is buggy and does not reply to some event - basically the whole
notification subsystem gets eventually stuck.
So to be able to drop fsnotify_mark_srcu lock while waiting for
response, we have to pin the mark in memory and make sure it stays in
the object list (as removing the mark waiting for response could lead to
lost notification events for groups later in the list). However we don't
want inode reclaim to block on such mark as that would lead to system
just locking up elsewhere.
This commit is the first in the series that paves way towards solving
these conflicting lifetime needs. Instead of anchoring the list of marks
directly in the object, we anchor it in a dedicated structure
(fsnotify_mark_connector) and just point to that structure from the
object. The following commits will also add spinlock protecting the list
and object pointer to the structure.
Reviewed-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ever since mount propagation was introduced in cases where a mount in
propagated to parent mount mountpoint pair that is already in use the
code has placed the new mount behind the old mount in the mount hash
table.
This implementation detail is problematic as it allows creating
arbitrary length mount hash chains.
Furthermore it invalidates the constraint maintained elsewhere in the
mount code that a parent mount and a mountpoint pair will have exactly
one mount upon them. Making it hard to deal with and to talk about
this special case in the mount code.
Modify mount propagation to notice when there is already a mount at
the parent mount and mountpoint where a new mount is propagating to
and place that preexisting mount on top of the new mount.
Modify unmount propagation to notice when a mount that is being
unmounted has another mount on top of it (and no other children), and
to replace the unmounted mount with the mount on top of it.
Move the MNT_UMUONT test from __lookup_mnt_last into
__propagate_umount as that is the only call of __lookup_mnt_last where
MNT_UMOUNT may be set on any mount visible in the mount hash table.
These modifications allow:
- __lookup_mnt_last to be removed.
- attach_shadows to be renamed __attach_mnt and its shadow
handling to be removed.
- commit_tree to be simplified
- copy_tree to be simplified
The result is an easier to understand tree of mounts that does not
allow creation of arbitrary length hash chains in the mount hash table.
The result is also a very slight userspace visible difference in semantics.
The following two cases now behave identically, where before order
mattered:
case 1: (explicit user action)
B is a slave of A
mount something on A/a , it will propagate to B/a
and than mount something on B/a
case 2: (tucked mount)
B is a slave of A
mount something on B/a
and than mount something on A/a
Histroically umount A/a would fail in case 1 and succeed in case 2.
Now umount A/a succeeds in both configurations.
This very small change in semantics appears if anything to be a bug
fix to me and my survey of userspace leads me to believe that no programs
will notice or care of this subtle semantic change.
v2: Updated to mnt_change_mountpoint to not call dput or mntput
and instead to decrement the counts directly. It is guaranteed
that there will be other references when mnt_change_mountpoint is
called so this is safe.
v3: Moved put_mountpoint under mount_lock in attach_recursive_mnt
As the locking in fs/namespace.c changed between v2 and v3.
v4: Reworked the logic in propagate_mount_busy and __propagate_umount
that detects when a mount completely covers another mount.
v5: Removed unnecessary tests whose result is alwasy true in
find_topper and attach_recursive_mnt.
v6: Document the user space visible semantic difference.
Cc: stable@vger.kernel.org
Fixes: b90fa9ae8f ("[PATCH] shared mount handling: bind and rbind")
Tested-by: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
To support unprivileged users mounting filesystems two permission
checks have to be performed: a test to see if the user allowed to
create a mount in the mount namespace, and a test to see if
the user is allowed to access the specified filesystem.
The automount case is special in that mounting the original filesystem
grants permission to mount the sub-filesystems, to any user who
happens to stumble across the their mountpoint and satisfies the
ordinary filesystem permission checks.
Attempting to handle the automount case by using override_creds
almost works. It preserves the idea that permission to mount
the original filesystem is permission to mount the sub-filesystem.
Unfortunately using override_creds messes up the filesystems
ordinary permission checks.
Solve this by being explicit that a mount is a submount by introducing
vfs_submount, and using it where appropriate.
vfs_submount uses a new mount internal mount flags MS_SUBMOUNT, to let
sget and friends know that a mount is a submount so they can take appropriate
action.
sget and sget_userns are modified to not perform any permission checks
on submounts.
follow_automount is modified to stop using override_creds as that
has proven problemantic.
do_mount is modified to always remove the new MS_SUBMOUNT flag so
that we know userspace will never by able to specify it.
autofs4 is modified to stop using current_real_cred that was put in
there to handle the previous version of submount permission checking.
cifs is modified to pass the mountpoint all of the way down to vfs_submount.
debugfs is modified to pass the mountpoint all of the way down to
trace_automount by adding a new parameter. To make this change easier
a new typedef debugfs_automount_t is introduced to capture the type of
the debugfs automount function.
Cc: stable@vger.kernel.org
Fixes: 069d5ac9ae ("autofs: Fix automounts by using current_real_cred()->uid")
Fixes: aeaa4a79ff ("fs: Call d_automount with the filesystems creds")
Reviewed-by: Trond Myklebust <trond.myklebust@primarydata.com>
Reviewed-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Protecting the mountpoint hashtable with namespace_sem was sufficient
until a call to umount_mnt was added to mntput_no_expire. At which
point it became possible for multiple calls of put_mountpoint on
the same hash chain to happen on the same time.
Kristen Johansen <kjlx@templeofstupid.com> reported:
> This can cause a panic when simultaneous callers of put_mountpoint
> attempt to free the same mountpoint. This occurs because some callers
> hold the mount_hash_lock, while others hold the namespace lock. Some
> even hold both.
>
> In this submitter's case, the panic manifested itself as a GP fault in
> put_mountpoint() when it called hlist_del() and attempted to dereference
> a m_hash.pprev that had been poisioned by another thread.
Al Viro observed that the simple fix is to switch from using the namespace_sem
to the mount_lock to protect the mountpoint hash table.
I have taken Al's suggested patch moved put_mountpoint in pivot_root
(instead of taking mount_lock an additional time), and have replaced
new_mountpoint with get_mountpoint a function that does the hash table
lookup and addition under the mount_lock. The introduction of get_mounptoint
ensures that only the mount_lock is needed to manipulate the mountpoint
hashtable.
d_set_mounted is modified to only set DCACHE_MOUNTED if it is not
already set. This allows get_mountpoint to use the setting of
DCACHE_MOUNTED to ensure adding a struct mountpoint for a dentry
happens exactly once.
Cc: stable@vger.kernel.org
Fixes: ce07d891a0 ("mnt: Honor MNT_LOCKED when detaching mounts")
Reported-by: Krister Johansen <kjlx@templeofstupid.com>
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Make sure that clone_mnt() never returns a mount with MNT_SHARED in
flags, but without a valid ->mnt_group_id. That allows to demystify
do_make_slave() quite a bit, among other things.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The function path_is_under() doesn't modify the paths pointed by its
arguments but only browse them. Constifying this pointers make a cleaner
interface to be used by (future) code which may only have access to
const struct path pointers (e.g. LSM hooks).
Signed-off-by: Mickaël Salaün <mic@digikod.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
d_mountpoint() can only be used reliably to establish if a dentry is
not mounted in any namespace. It isn't aware of the possibility there
may be multiple mounts using a given dentry that may be in a different
namespace.
Add helper functions, path_is_mountpoint(), that checks if a struct path
is a mountpoint for this case.
Link: http://lkml.kernel.org/r/20161011053358.27645.9729.stgit@pluto.themaw.net
Signed-off-by: Ian Kent <raven@themaw.net>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
Comment: Kees Cook <kees@outflux.net>
iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
pa/A7CNQwibIV6YD8+/p
=1dUK
-----END PGP SIGNATURE-----
Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
CAI Qian <caiqian@redhat.com> pointed out that the semantics
of shared subtrees make it possible to create an exponentially
increasing number of mounts in a mount namespace.
mkdir /tmp/1 /tmp/2
mount --make-rshared /
for i in $(seq 1 20) ; do mount --bind /tmp/1 /tmp/2 ; done
Will create create 2^20 or 1048576 mounts, which is a practical problem
as some people have managed to hit this by accident.
As such CVE-2016-6213 was assigned.
Ian Kent <raven@themaw.net> described the situation for autofs users
as follows:
> The number of mounts for direct mount maps is usually not very large because of
> the way they are implemented, large direct mount maps can have performance
> problems. There can be anywhere from a few (likely case a few hundred) to less
> than 10000, plus mounts that have been triggered and not yet expired.
>
> Indirect mounts have one autofs mount at the root plus the number of mounts that
> have been triggered and not yet expired.
>
> The number of autofs indirect map entries can range from a few to the common
> case of several thousand and in rare cases up to between 30000 and 50000. I've
> not heard of people with maps larger than 50000 entries.
>
> The larger the number of map entries the greater the possibility for a large
> number of active mounts so it's not hard to expect cases of a 1000 or somewhat
> more active mounts.
So I am setting the default number of mounts allowed per mount
namespace at 100,000. This is more than enough for any use case I
know of, but small enough to quickly stop an exponential increase
in mounts. Which should be perfect to catch misconfigurations and
malfunctioning programs.
For anyone who needs a higher limit this can be changed by writing
to the new /proc/sys/fs/mount-max sysctl.
Tested-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
From: Andrey Vagin <avagin@openvz.org>
Each namespace has an owning user namespace and now there is not way
to discover these relationships.
Pid and user namepaces are hierarchical. There is no way to discover
parent-child relationships too.
Why we may want to know relationships between namespaces?
One use would be visualization, in order to understand the running
system. Another would be to answer the question: what capability does
process X have to perform operations on a resource governed by namespace
Y?
One more use-case (which usually called abnormal) is checkpoint/restart.
In CRIU we are going to dump and restore nested namespaces.
There [1] was a discussion about which interface to choose to determing
relationships between namespaces.
Eric suggested to add two ioctl-s [2]:
> Grumble, Grumble. I think this may actually a case for creating ioctls
> for these two cases. Now that random nsfs file descriptors are bind
> mountable the original reason for using proc files is not as pressing.
>
> One ioctl for the user namespace that owns a file descriptor.
> One ioctl for the parent namespace of a namespace file descriptor.
Here is an implementaions of these ioctl-s.
$ man man7/namespaces.7
...
Since Linux 4.X, the following ioctl(2) calls are supported for
namespace file descriptors. The correct syntax is:
fd = ioctl(ns_fd, ioctl_type);
where ioctl_type is one of the following:
NS_GET_USERNS
Returns a file descriptor that refers to an owning user names‐
pace.
NS_GET_PARENT
Returns a file descriptor that refers to a parent namespace.
This ioctl(2) can be used for pid and user namespaces. For
user namespaces, NS_GET_PARENT and NS_GET_USERNS have the same
meaning.
In addition to generic ioctl(2) errors, the following specific ones
can occur:
EINVAL NS_GET_PARENT was called for a nonhierarchical namespace.
EPERM The requested namespace is outside of the current namespace
scope.
[1] https://lkml.org/lkml/2016/7/6/158
[2] https://lkml.org/lkml/2016/7/9/101
Changes for v2:
* don't return ENOENT for init_user_ns and init_pid_ns. There is nothing
outside of the init namespace, so we can return EPERM in this case too.
> The fewer special cases the easier the code is to get
> correct, and the easier it is to read. // Eric
Changes for v3:
* rename ns->get_owner() to ns->owner(). get_* usually means that it
grabs a reference.
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: "W. Trevor King" <wking@tremily.us>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Return -EPERM if an owning user namespace is outside of a process
current user namespace.
v2: In a first version ns_get_owner returned ENOENT for init_user_ns.
This special cases was removed from this version. There is nothing
outside of init_user_ns, so we can return EPERM.
v3: rename ns->get_owner() to ns->owner(). get_* usually means that it
grabs a reference.
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The current error codes returned when a the per user per user
namespace limit are hit (EINVAL, EUSERS, and ENFILE) are wrong. I
asked for advice on linux-api and it we made clear that those were
the wrong error code, but a correct effor code was not suggested.
The best general error code I have found for hitting a resource limit
is ENOSPC. It is not perfect but as it is unambiguous it will serve
until someone comes up with a better error code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This patch allows flock, posix locks, ofd locks and leases to work
correctly on overlayfs.
Instead of using the underlying inode for storing lock context use the
overlay inode. This allows locks to be persistent across copy-up.
This is done by introducing locks_inode() helper and using it instead of
file_inode() to get the inode in locking code. For non-overlayfs the two
are equivalent, except for an extra pointer dereference in locks_inode().
Since lock operations are in "struct file_operations" we must also make
sure not to call underlying filesystem's lock operations. Introcude a
super block flag MS_NOREMOTELOCK to this effect.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Acked-by: Jeff Layton <jlayton@poochiereds.net>
Cc: "J. Bruce Fields" <bfields@fieldses.org>