There's a new version of the Telewell 4G modem working with, but not
recognized by this driver.
Signed-off-by: Bernd Wachter <bernd.wachter@jolla.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lars writes: "I'm only 99% sure that the net interfaces are qmi
interfaces, nothing to lose by adding them in my opinion."
And I tend to agree based on the similarity with the two Olicard
modems we already have here.
Reported-by: Lars Melin <larsm17@gmail.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
This interface is unusable, as the cdc-wdm character device doesn't reply to
any QMI command. Also, the out-of-tree Sierra Wireless GobiNet driver fully
skips it.
Signed-off-by: Aleksander Morgado <aleksander@aleksander.es>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A set of new VID/PIDs retrieved from the out-of-tree GobiNet/GobiSerial
Sierra Wireless drivers.
Signed-off-by: Aleksander Morgado <aleksander@aleksander.es>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Dan writes:
"The Dell drivers use the same configuration for PIDs:
81A2: Dell Wireless 5806 Gobi(TM) 4G LTE Mobile Broadband Card
81A3: Dell Wireless 5570 HSPA+ (42Mbps) Mobile Broadband Card
81A4: Dell Wireless 5570e HSPA+ (42Mbps) Mobile Broadband Card
81A8: Dell Wireless 5808 Gobi(TM) 4G LTE Mobile Broadband Card
81A9: Dell Wireless 5808e Gobi(TM) 4G LTE Mobile Broadband Card
These devices are all clearly Sierra devices, but are also definitely
Gobi-based. The A8 might be the MC7700/7710 and A9 is likely a MC7750.
>From DellGobi5kSetup.exe from the Dell drivers:
usbif0: serial/firmware loader?
usbif2: nmea
usbif3: modem/ppp
usbif8: net/QMI"
Reported-by: AceLan Kao <acelan.kao@canonical.com>
Reported-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A number of older CMOTech modems are based on Qualcomm
chips and exporting a QMI/wwan function.
Reported-by: Lars Melin <larsm17@gmail.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
This device provides QMI and ethernet functionality via a standard CDC
ethernet descriptor. But when driven by cdc_ether, the QMI
functionality is unavailable because only cdc_ether can claim the USB
interface. Thus blacklist the device in cdc_ether and add its IDs to
qmi_wwan, which enables both QMI and ethernet simultaneously.
Signed-off-by: Yegor Yefremov <yegorslists@googlemail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes a generic hard_header_len check from the usbnet
module that is causing dropped packages under certain circumstances
for devices that send rx packets that cross urb boundaries.
One example is the AX88772B which occasionally send rx packets that
cross urb boundaries where the remaining partial packet is sent with
no hardware header. When the buffer with a partial packet is of less
number of octets than the value of hard_header_len the buffer is
discarded by the usbnet module.
With AX88772B this can be reproduced by using ping with a packet
size between 1965-1976.
The bug has been reported here:
https://bugzilla.kernel.org/show_bug.cgi?id=29082
This patch introduces the following changes:
- Removes the generic hard_header_len check in the rx_complete
function in the usbnet module.
- Introduces a ETH_HLEN check for skbs that are not cloned from
within a rx_fixup callback.
- For safety a hard_header_len check is added to each rx_fixup
callback function that could be affected by this change.
These extra checks could possibly be removed by someone
who has the hardware to test.
- Removes a call to dev_kfree_skb_any() and instead utilizes the
dev->done list to queue skbs for cleanup.
The changes place full responsibility on the rx_fixup callback
functions that clone skbs to only pass valid skbs to the
usbnet_skb_return function.
Signed-off-by: Emil Goode <emilgoode@gmail.com>
Reported-by: Igor Gnatenko <i.gnatenko.brain@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the PXS8 and PHS8 devices show up with PID 0x0053 they will expose both a
QMI port and a WWAN interface.
CC: Hans-Christoph Schemmel <hans-christoph.schemmel@gemalto.com>
CC: Christian Schmiedl <christian.schmiedl@gemalto.com>
CC: Nicolaus Colberg <nicolaus.colberg@gemalto.com>
CC: David McCullough <david.mccullough@accelecon.com>
Signed-off-by: Aleksander Morgado <aleksander@aleksander.es>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver description files give these descriptions to the vendor specific
ports on this modem:
VID_19D2&PID_1270&MI_00: "ZTE MF667 Diagnostics Port"
VID_19D2&PID_1270&MI_01: "ZTE MF667 AT Port"
VID_19D2&PID_1270&MI_02: "ZTE MF667 ATExt2 Port"
VID_19D2&PID_1270&MI_03: "ZTE MF667 ATExt Port"
VID_19D2&PID_1270&MI_04: "ZTE MF667 USB Modem"
VID_19D2&PID_1270&MI_05: "ZTE MF667 Network Adapter"
Signed-off-by: Raymond Wanyoike <raymond.wanyoike@gmail.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
This device was mentioned in an OpenWRT forum. Seems to have a "standard"
Sierra Wireless ifnumber to function layout:
0: qcdm
2: nmea
3: modem
8: qmi
9: storage
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/usb/qmi_wwan.c
include/net/dst.h
Trivial merge conflicts, both were overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a QMI device, manufactured by TCT Mobile Phones.
A companion patch blacklisting this device's QMI interface in the option.c
driver has been sent.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
Signed-off-by: Antonella Pellizzari <anto.pellizzari83@gmail.com>
Tested-by: Dan Williams <dcbw@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/emulex/benet/be.h
drivers/net/usb/qmi_wwan.c
drivers/net/wireless/brcm80211/brcmfmac/dhd_bus.h
include/net/netfilter/nf_conntrack_synproxy.h
include/net/secure_seq.h
The conflicts are of two varieties:
1) Conflicts with Joe Perches's 'extern' removal from header file
function declarations. Usually it's an argument signature change
or a function being added/removed. The resolutions are trivial.
2) Some overlapping changes in qmi_wwan.c and be.h, one commit adds
a new value, another changes an existing value. That sort of
thing.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cinterion PLXX LTE devices have a 0x0060 product ID, not 0x12d1.
The blacklisting in the serial/option driver does actually use the correct PID,
as per commit 8ff10bdb14 ('USB: Blacklisted
Cinterion's PLxx WWAN Interface').
CC: Hans-Christoph Schemmel <hans-christoph.schemmel@gemalto.com>
CC: Christian Schmiedl <christian.schmiedl@gemalto.com>
CC: Nicolaus Colberg <nicolaus.colberg@gemalto.com>
Signed-off-by: Aleksander Morgado <aleksander@lanedo.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Acked-by: Christian Schmiedl <christian.schmiedl@gemalto.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Newer firmware use a new pid and a different interface.
Signed-off-by: Fabio Porcedda <fabio.porcedda@gmail.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding the device list from the Windows driver description files
included with a new Qualcomm MDM9615 based device, "Alcatel-sbell
ASB TL131 TDD LTE", from China Mobile. This device is tested
and verified to work. The others are assumed to work based on
using the same Windows driver.
Many of these devices support multiple QMI/wwan ports, requiring
multiple interface matching entries. All devices are composite,
providing a mix of one or more serial, storage or Android Debug
Brigde functions in addition to the wwan function.
This device list included an update of one previously known device,
which was incorrectly assumed to have a Gobi 2K layout. This is
corrected.
Reported-by: 王康 <scateu@gmail.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the new bool function ether_addr_equal to add
some clarity and reduce the likelihood for misuse
of compare_ether_addr for sorting.
Done via cocci script: (and a little typing)
$ cat compare_ether_addr.cocci
@@
expression a,b;
@@
- !compare_ether_addr(a, b)
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- compare_ether_addr(a, b)
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- !ether_addr_equal(a, b) == 0
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- !ether_addr_equal(a, b) != 0
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- ether_addr_equal(a, b) == 0
+ !ether_addr_equal(a, b)
@@
expression a,b;
@@
- ether_addr_equal(a, b) != 0
+ ether_addr_equal(a, b)
@@
expression a,b;
@@
- !!ether_addr_equal(a, b)
+ ether_addr_equal(a, b)
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Conflicts:
drivers/net/ethernet/freescale/fec_main.c
drivers/net/ethernet/renesas/sh_eth.c
net/ipv4/gre.c
The GRE conflict is between a bug fix (kfree_skb --> kfree_skb_list)
and the splitting of the gre.c code into seperate files.
The FEC conflict was two sets of changes adding ethtool support code
in an "!CONFIG_M5272" CPP protected block.
Finally the sh_eth.c conflict was between one commit add bits set
in the .eesr_err_check mask whilst another commit removed the
.tx_error_check member and assignments.
Signed-off-by: David S. Miller <davem@davemloft.net>
Another QMI-speaking device by ZTE, re-branded by ONDA!
I'm connected ovr this device's QMI interface right now, so I can say I tested
it! :)
Note: a follow-up patch was posted to the linux-usb mailing list, to prevent
the option driver from binding to the device's QMI interface, making it
unusable.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A standard Gobi 3000 reference design module.
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
The MC8305 module got an additional entry added based solely on
information from a Windows driver *.inf file. We now have the
actual descriptor layout from one of these modules, and it
consists of two alternate configurations where cfg #1 is a
normal Gobi 2k layout and cfg #2 is MBIM only, using interface
numbers 5 and 6 for MBIM control and data. The extra Windows
driver entry for interface number 5 was most likely a bug.
Deleting the bogus entry to avoid unnecessary qmi_wwan probe
failures when using the MBIM configuration.
Reported-by: Lana Black <sickmind@lavabit.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Found in the Windows INF files while investigating the
Novatel/Verizon USB-1000 device. The USB-1000 is verified as
a Gobi1K device and works with QMI after loading appropriate
firmware.
Signed-off-by: Dan Williams <dcbw@redhat.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Another QMI speaking Qualcomm based device, which should be
driven by qmi_wwan, while cdc_ether should ignore it.
Like on other Huawei devices, the wwan function can appear
either as a single vendor specific interface or as a CDC ECM
class function using separate control and data interfaces.
The ECM control interface protocol is 0xff, likely in an
attempt to indicate that vendor specific management is
required.
In addition to the near standard CDC class, Huawei also add
vendor specific AT management commands to their firmwares.
This is probably an attempt to support non-Windows systems
using standard class drivers. Unfortunately, this part of
the firmware is often buggy. Linux is much better off using
whatever native vendor specific management protocol the
device offers, and Windows uses, whenever possible. This
means QMI in the case of Qualcomm based devices.
The E1820 has been verified to work fine with QMI.
Matching on interface number is necessary to distiguish the
wwan function from serial functions in the single interface
mode, as both function types will have class/subclass/function
set to ff/ff/ff.
The control interface number does not change in CDC ECM mode,
so the interface number matching rule is sufficient to handle
both modes. The cdc_ether blacklist entry is only relevant in
CDC ECM mode, but using a similar interface number based rule
helps document this as a transfer from one driver to another.
Other Huawei 02/06/ff devices are left with the cdc_ether driver
because we do not know whether they are based on Qualcomm chips.
The Huawei specific AT command management is known to be somewhat
hardware independent, and their usage of these class codes may
also be independent of the modem hardware.
Reported-by: Graham Inggs <graham.inggs@uct.ac.za>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Added support for Cinterion's PLxx WWAN Interface by adding QMI_FIXED_INTF with
Cinterion's Vendor ID as well as Product ID and WWAN Interface Number.
Signed-off-by: Hans-Christoph Schemmel <hans-christoph.schemmel@gemalto.com>
Signed-off-by: Christian Schmiedl <christian.schmiedl@gemalto.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A rebranded Novatel E371 for AT&T's LTE bands. qmi_wwan should drive this
device, while cdc_ether should ignore it. Even though the USB descriptors
are plain CDC-ETHER that USB interface is a QMI interface.
Cc: <stable@vger.kernel.org>
Signed-off-by: Dan Williams <dcbw@redhat.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Here's the big USB pull request for 3.10-rc1.
Lots of USB patches here, the majority being USB gadget changes and
USB-serial driver cleanups, the rest being ARM build fixes / cleanups,
and individual driver updates. We also finally got some chipidea fixes,
which have been delayed for a number of kernel releases, as the
maintainer has now reappeared.
All of these have been in linux-next for a while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iEYEABECAAYFAlF+md4ACgkQMUfUDdst+ymkSgCfZWIiCtiX/li0yJqSiRB4yYJx
Ex0AoNemOOf6ywvSOHPbILTbJ1G+c/PX
=JmvB
-----END PGP SIGNATURE-----
Merge tag 'usb-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
Pull USB patches from Greg Kroah-Hartman:
"Here's the big USB pull request for 3.10-rc1.
Lots of USB patches here, the majority being USB gadget changes and
USB-serial driver cleanups, the rest being ARM build fixes / cleanups,
and individual driver updates. We also finally got some chipidea
fixes, which have been delayed for a number of kernel releases, as the
maintainer has now reappeared.
All of these have been in linux-next for a while"
* tag 'usb-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb: (568 commits)
USB: ehci-msm: USB_MSM_OTG needs USB_PHY
USB: OHCI: avoid conflicting platform drivers
USB: OMAP: ISP1301 needs USB_PHY
USB: lpc32xx: ISP1301 needs USB_PHY
USB: ftdi_sio: enable two UART ports on ST Microconnect Lite
usb: phy: tegra: don't call into tegra-ehci directly
usb: phy: phy core cannot yet be a module
USB: Fix initconst in ehci driver
usb-storage: CY7C68300A chips do not support Cypress ATACB
USB: serial: option: Added support Olivetti Olicard 145
USB: ftdi_sio: correct ST Micro Connect Lite PIDs
ARM: mxs_defconfig: add CONFIG_USB_PHY
ARM: imx_v6_v7_defconfig: add CONFIG_USB_PHY
usb: phy: remove exported function from __init section
usb: gadget: zero: put function instances on unbind
usb: gadget: f_sourcesink.c: correct a copy-paste misnomer
usb: gadget: cdc2: fix error return code in cdc_do_config()
usb: gadget: multi: fix error return code in rndis_do_config()
usb: gadget: f_obex: fix error return code in obex_bind()
USB: storage: convert to use module_usb_driver()
...
We normally trust and use the CDC functional descriptors provided by a
number of devices. But some of these will erroneously list the address
reserved for the device end of the link. Attempting to use this on
both the device and host side will naturally not work.
Work around this bug by ignoring the functional descriptor and assign a
random address instead in this case.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Received packets are sometimes addressed to 00:a0:c6:00:00:00
instead of the address the device firmware should have learned
from the host:
321.224126 77.16.85.204 -> 148.122.171.134 ICMP 98 Echo (ping) request id=0x4025, seq=64/16384, ttl=64
0000 82 c0 82 c9 f1 67 82 c0 82 c9 f1 67 08 00 45 00 .....g.....g..E.
0010 00 54 00 00 40 00 40 01 57 cc 4d 10 55 cc 94 7a .T..@.@.W.M.U..z
0020 ab 86 08 00 62 fc 40 25 00 40 b2 bc 6e 51 00 00 ....b.@%.@..nQ..
0030 00 00 6b bd 09 00 00 00 00 00 10 11 12 13 14 15 ..k.............
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 .......... !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67
321.240607 148.122.171.134 -> 77.16.85.204 ICMP 98 Echo (ping) reply id=0x4025, seq=64/16384, ttl=55
0000 00 a0 c6 00 00 00 02 50 f3 00 00 00 08 00 45 00 .......P......E.
0010 00 54 00 56 00 00 37 01 a0 76 94 7a ab 86 4d 10 .T.V..7..v.z..M.
0020 55 cc 00 00 6a fc 40 25 00 40 b2 bc 6e 51 00 00 U...j.@%.@..nQ..
0030 00 00 6b bd 09 00 00 00 00 00 10 11 12 13 14 15 ..k.............
0040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 .......... !"#$%
0050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67
The bogus address is always the same, and matches the address
suggested by many devices as a default address. It is likely a
hardcoded firmware default.
The circumstances where this bug has been observed indicates that
the trigger is related to timing or some other factor the host
cannot control. Repeating the exact same configuration sequence
that caused it to trigger once, will not necessarily cause it to
trigger the next time. Reproducing the bug is therefore difficult.
This opens up a possibility that the bug is more common than we can
confirm, because affected devices often will work properly again
after a reset. A procedure most users are likely to try out before
reporting a bug.
Unconditionally rewriting the destination address if the first digit
of the received packet is 0, is considered an acceptable compromise
since we already have to inspect this digit. The simplification will
cause unnecessary rewrites if the real address starts with 0, but this
is still better than adding additional tests for this particular case.
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
A number of LTE devices from different vendors all suffer from the
same firmware bug: Most of the packets received from the device while
it is attached to a LTE network will not have an ethernet header. The
devices work as expected when attached to 2G or 3G networks, sending
an ethernet header with all packets.
This driver is not aware of which network the modem attached to, and
even if it were there are still some packet types which are always
received with the header intact.
All devices supported by this driver have severely limited
networking capabilities:
- can only transmit IPv4, IPv6 and possibly ARP
- can only support a single host hardware address at any time
- will only do point-to-point communcation with the host
Because of this, we are able to reliably identify any bogus raw IP
packets by simply looking at the 4 IP version bits. All we need to
do is to avoid 4 or 6 in the first digit of the mac address. This
workaround ensures this, and fix up the received packets as necessary.
Given the distribution of the bug, it is believed that the source is
the chipset vendor. The devices which are verified to be affected are:
Huawei E392u-12 (Qualcomm MDM9200)
Pantech UML290 (Qualcomm MDM9600)
Novatel USB551L (Qualcomm MDM9600)
Novatel E362 (Qualcomm MDM9600)
It is believed that the bug depend on firmware revision, which means
that possibly all devices based on the above mentioned chipset may be
affected if we consider all available firmware revisions.
The information about affected devices and versions is likely
incomplete. As the additional overhead for packets not needing this
fixup is very small, it is considered acceptable to apply the
workaround to all devices handled by this driver.
Reported-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
If suspend callback fails in system sleep context, usb core will
ignore the failure and let system sleep go ahead further, so
this patch comments on the case and requires that both
usbnet_suspend() and subdriver->suspend() MUST return 0 in
system sleep context.
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd877e4 ("net: qmi_wwan: use a single bind function for
all device types") made Gobi 1K devices fail probing.
Using the number of endpoints in the default altsetting to decide
whether the function use one or two interfaces is wrong. Other
altsettings may provide more endpoints.
With Gobi 1K devices, USB interface #3's altsetting is 0 by default, but
altsetting 0 only provides one interrupt endpoint and is not sufficent
for QMI. Altsetting 1 provides all 3 endpoints required for qmi_wwan
and works with QMI. Gobi 1K layout for intf#3 is:
Interface Descriptor: 255/255/255
bInterfaceNumber 3
bAlternateSetting 0
Endpoint Descriptor: Interrupt IN
Interface Descriptor: 255/255/255
bInterfaceNumber 3
bAlternateSetting 1
Endpoint Descriptor: Interrupt IN
Endpoint Descriptor: Bulk IN
Endpoint Descriptor: Bulk OUT
Prior to commit bd877e4, we would call usbnet_get_endpoints
before giving up finding enough endpoints. Removing the early
endpoint number test and the strict functional descriptor
requirement allow qmi_wwan_bind to continue until
usbnet_get_endpoints has made the final attempt to collect
endpoints. This restores the behaviour from before commit
bd877e4 without losing the added benefit of using a single bind
function.
The driver has always required a CDC Union functional descriptor
for two-interface functions. Using the existence of this
descriptor to detect two-interface functions is the logically
correct method.
Reported-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Tested-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It advertises a standard CDC-ETHER interface, which actually should be
driven by qmi_wwan.
Signed-off-by: Dan Williams <dcbw@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding new class/subclass/protocol combinations based on the GPLed
out-of-tree Huawei driver. One of these has already appeared on a
device labelled as "E320".
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add VID, PID and fixed interface for Telit LE920
Signed-off-by: Daniele Palmas <dnlplm@gmail.com>
Acked-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver description files gives these names to the vendor specific
functions on this modem:
Diag VID_19D2&PID_0265&MI_00
NMEA VID_19D2&PID_0265&MI_01
AT cmd VID_19D2&PID_0265&MI_02
Modem VID_19D2&PID_0265&MI_03
Net VID_19D2&PID_0265&MI_04
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver description files gives these names to the vendor specific
functions on this modem:
Diagnostics VID_2357&PID_0201&MI_00
NMEA VID_2357&PID_0201&MI_01
Modem VID_2357&PID_0201&MI_03
Networkcard VID_2357&PID_0201&MI_04
The "Networkcard" function has been verified to support these QMI
services:
ctl (1.3)
wds (1.3)
dms (1.2)
nas (1.0)
Reported-by: Thomas Schäfer <tschaefer@t-online.de>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
also known as Alcatel One Touch L100V LTE
The driver description files gives these names to the vendor specific
functions on this modem:
Application1: VID_1BBB&PID_011E&MI_00
Application2: VID_1BBB&PID_011E&MI_01
Modem: VID_1BBB&PID_011E&MI_03
Ethernet: VID_1BBB&PID_011E&MI_04
Reported-by: Thomas Schäfer <tschaefer@t-online.de>
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Signed-off-by: David S. Miller <davem@davemloft.net>