* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq:
[CPUFREQ] powernow-k8: ignore out-of-range PstateStatus value
[CPUFREQ] Documentation: Add Blackfin to list of supported processors
All architectures now use the generic compat_sys_ptrace, as should every
new architecture that needs 32bit compat (if we'll ever get another).
Remove the now superflous __ARCH_WANT_COMPAT_SYS_PTRACE define, and also
kill a comment about __ARCH_SYS_PTRACE that was added after
__ARCH_SYS_PTRACE was already gone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... so get xen-ops.h in agreement with xen/smp.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A workaround for AMD CPU family 11h erratum 311 might cause that the
P-state Status Register shows a "current P-state" which is larger than
the "current P-state limit" in P-state Current Limit Register. For the
wrong P-state value there is no ACPI _PSS object defined and
powernow-k8/cpufreq can't determine the proper CPU frequency for that
state.
As a consequence this can cause a panic during boot (potentially with
all recent kernel versions -- at least I have reproduced it with
various 2.6.27 kernels and with the current .28 series), as an
example:
powernow-k8: Found 1 AMD Turion(tm)X2 Ultra DualCore Mobile ZM-82 processors (2 \
)
powernow-k8: 0 : pstate 0 (2200 MHz)
powernow-k8: 1 : pstate 1 (1100 MHz)
powernow-k8: 2 : pstate 2 (600 MHz)
BUG: unable to handle kernel paging request at ffff88086e7528b8
IP: [<ffffffff80486361>] cpufreq_stats_update+0x4a/0x5f
PGD 202063 PUD 0
Oops: 0002 [#1] SMP
last sysfs file:
CPU 1
Modules linked in:
Pid: 1, comm: swapper Not tainted 2.6.28-rc3-dirty #16
RIP: 0010:[<ffffffff80486361>] [<ffffffff80486361>] cpufreq_stats_update+0x4a/0\
f
Synaptics claims to have extended capabilities, but I'm not able to read them.<6\
6
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff88006e7528c0
RDX: 00000000ffffffff RSI: ffff88006e54af00 RDI: ffffffff808f056c
RBP: 00000000fffee697 R08: 0000000000000003 R09: ffff88006e73f080
R10: 0000000000000001 R11: 00000000002191c0 R12: ffff88006fb83c10
R13: 00000000ffffffff R14: 0000000000000001 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88006fb50740(0000) knlGS:0000000000000000
Unable to initialize Synaptics hardware.
CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
CR2: ffff88086e7528b8 CR3: 0000000000201000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process swapper (pid: 1, threadinfo ffff88006fb82000, task ffff88006fb816d0)
Stack:
ffff88006e74da50 0000000000000000 ffff88006e54af00 ffffffff804863c7
ffff88006e74da50 0000000000000000 00000000ffffffff 0000000000000000
ffff88006fb83c10 ffffffff8024b46c ffffffff808f0560 ffff88006fb83c10
Call Trace:
[<ffffffff804863c7>] ? cpufreq_stat_notifier_trans+0x51/0x83
[<ffffffff8024b46c>] ? notifier_call_chain+0x29/0x4c
[<ffffffff8024b561>] ? __srcu_notifier_call_chain+0x46/0x61
[<ffffffff8048496d>] ? cpufreq_notify_transition+0x93/0xa9
[<ffffffff8021ab8d>] ? powernowk8_target+0x1e8/0x5f3
[<ffffffff80486687>] ? cpufreq_governor_performance+0x1b/0x20
[<ffffffff80484886>] ? __cpufreq_governor+0x71/0xa8
[<ffffffff80484b21>] ? __cpufreq_set_policy+0x101/0x13e
[<ffffffff80485bcd>] ? cpufreq_add_dev+0x3f0/0x4cd
[<ffffffff8048577a>] ? handle_update+0x0/0x8
[<ffffffff803c2062>] ? sysdev_driver_register+0xb6/0x10d
[<ffffffff8056592c>] ? powernowk8_init+0x0/0x7e
[<ffffffff8048604c>] ? cpufreq_register_driver+0x8f/0x140
[<ffffffff80209056>] ? _stext+0x56/0x14f
[<ffffffff802c2234>] ? proc_register+0x122/0x17d
[<ffffffff802c23a0>] ? create_proc_entry+0x73/0x8a
[<ffffffff8025c259>] ? register_irq_proc+0x92/0xaa
[<ffffffff8025c2c8>] ? init_irq_proc+0x57/0x69
[<ffffffff807fc85f>] ? kernel_init+0x116/0x169
[<ffffffff8020cc79>] ? child_rip+0xa/0x11
[<ffffffff807fc749>] ? kernel_init+0x0/0x169
[<ffffffff8020cc6f>] ? child_rip+0x0/0x11
Code: 05 c5 83 36 00 48 c7 c2 48 5d 86 80 48 8b 04 d8 48 8b 40 08 48 8b 34 02 48\
RIP [<ffffffff80486361>] cpufreq_stats_update+0x4a/0x5f
RSP <ffff88006fb83b20>
CR2: ffff88086e7528b8
---[ end trace 0678bac75e67a2f7 ]---
Kernel panic - not syncing: Attempted to kill init!
In short, aftereffect of the wrong P-state is that
cpufreq_stats_update() uses "-1" as index for some array in
cpufreq_stats_update (unsigned int cpu)
{
...
if (stat->time_in_state)
stat->time_in_state[stat->last_index] =
cputime64_add(stat->time_in_state[stat->last_index],
cputime_sub(cur_time, stat->last_time));
...
}
Fortunately, the wrong P-state value is returned only if the core is
in P-state 0. This fix solves the problem by detecting the
out-of-range P-state, ignoring it, and using "0" instead.
Cc: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Dave Jones <davej@redhat.com>
When we migrate an interrupt from one CPU to another, we set the
move_in_progress flag and clean up the vectors later once they're not
being used. If you're unlucky and call destroy_irq() before the vectors
become un-used, the move_in_progress flag is never cleared, which causes
the interrupt to become unusable.
This was discovered by Jesse Brandeburg for whom it manifested as an
MSI-X device refusing to use MSI-X mode when the driver was unloaded
and reloaded repeatedly.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: uaccess_64: fix return value in __copy_from_user()
x86: quirk for reboot stalls on a Dell Optiplex 330
* 'x86/numa' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: make NUMA on 32-bit depend on EXPERIMENTAL again
x86, hibernate: fix breakage on x86_32 with CONFIG_NUMA set
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: more general identifier for Phoenix BIOS
AMD IOMMU: check for next_bit also in unmapped area
AMD IOMMU: fix fullflush comparison length
AMD IOMMU: enable device isolation per default
AMD IOMMU: add parameter to disable device isolation
x86, PEBS/DS: fix code flow in ds_request()
x86: add rdtsc barrier to TSC sync check
xen: fix scrub_page()
x86: fix es7000 compiling
x86, bts: fix unlock problem in ds.c
x86, voyager: fix smp generic helper voyager breakage
x86: move iomap.h to the new include location
Introduce a new accept4() system call. The addition of this system call
matches analogous changes in 2.6.27 (dup3(), evenfd2(), signalfd4(),
inotify_init1(), epoll_create1(), pipe2()) which added new system calls
that differed from analogous traditional system calls in adding a flags
argument that can be used to access additional functionality.
The accept4() system call is exactly the same as accept(), except that
it adds a flags bit-mask argument. Two flags are initially implemented.
(Most of the new system calls in 2.6.27 also had both of these flags.)
SOCK_CLOEXEC causes the close-on-exec (FD_CLOEXEC) flag to be enabled
for the new file descriptor returned by accept4(). This is a useful
security feature to avoid leaking information in a multithreaded
program where one thread is doing an accept() at the same time as
another thread is doing a fork() plus exec(). More details here:
http://udrepper.livejournal.com/20407.html "Secure File Descriptor Handling",
Ulrich Drepper).
The other flag is SOCK_NONBLOCK, which causes the O_NONBLOCK flag
to be enabled on the new open file description created by accept4().
(This flag is merely a convenience, saving the use of additional calls
fcntl(F_GETFL) and fcntl (F_SETFL) to achieve the same result.
Here's a test program. Works on x86-32. Should work on x86-64, but
I (mtk) don't have a system to hand to test with.
It tests accept4() with each of the four possible combinations of
SOCK_CLOEXEC and SOCK_NONBLOCK set/clear in 'flags', and verifies
that the appropriate flags are set on the file descriptor/open file
description returned by accept4().
I tested Ulrich's patch in this thread by applying against 2.6.28-rc2,
and it passes according to my test program.
/* test_accept4.c
Copyright (C) 2008, Linux Foundation, written by Michael Kerrisk
<mtk.manpages@gmail.com>
Licensed under the GNU GPLv2 or later.
*/
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#define PORT_NUM 33333
#define die(msg) do { perror(msg); exit(EXIT_FAILURE); } while (0)
/**********************************************************************/
/* The following is what we need until glibc gets a wrapper for
accept4() */
/* Flags for socket(), socketpair(), accept4() */
#ifndef SOCK_CLOEXEC
#define SOCK_CLOEXEC O_CLOEXEC
#endif
#ifndef SOCK_NONBLOCK
#define SOCK_NONBLOCK O_NONBLOCK
#endif
#ifdef __x86_64__
#define SYS_accept4 288
#elif __i386__
#define USE_SOCKETCALL 1
#define SYS_ACCEPT4 18
#else
#error "Sorry -- don't know the syscall # on this architecture"
#endif
static int
accept4(int fd, struct sockaddr *sockaddr, socklen_t *addrlen, int flags)
{
printf("Calling accept4(): flags = %x", flags);
if (flags != 0) {
printf(" (");
if (flags & SOCK_CLOEXEC)
printf("SOCK_CLOEXEC");
if ((flags & SOCK_CLOEXEC) && (flags & SOCK_NONBLOCK))
printf(" ");
if (flags & SOCK_NONBLOCK)
printf("SOCK_NONBLOCK");
printf(")");
}
printf("\n");
#if USE_SOCKETCALL
long args[6];
args[0] = fd;
args[1] = (long) sockaddr;
args[2] = (long) addrlen;
args[3] = flags;
return syscall(SYS_socketcall, SYS_ACCEPT4, args);
#else
return syscall(SYS_accept4, fd, sockaddr, addrlen, flags);
#endif
}
/**********************************************************************/
static int
do_test(int lfd, struct sockaddr_in *conn_addr,
int closeonexec_flag, int nonblock_flag)
{
int connfd, acceptfd;
int fdf, flf, fdf_pass, flf_pass;
struct sockaddr_in claddr;
socklen_t addrlen;
printf("=======================================\n");
connfd = socket(AF_INET, SOCK_STREAM, 0);
if (connfd == -1)
die("socket");
if (connect(connfd, (struct sockaddr *) conn_addr,
sizeof(struct sockaddr_in)) == -1)
die("connect");
addrlen = sizeof(struct sockaddr_in);
acceptfd = accept4(lfd, (struct sockaddr *) &claddr, &addrlen,
closeonexec_flag | nonblock_flag);
if (acceptfd == -1) {
perror("accept4()");
close(connfd);
return 0;
}
fdf = fcntl(acceptfd, F_GETFD);
if (fdf == -1)
die("fcntl:F_GETFD");
fdf_pass = ((fdf & FD_CLOEXEC) != 0) ==
((closeonexec_flag & SOCK_CLOEXEC) != 0);
printf("Close-on-exec flag is %sset (%s); ",
(fdf & FD_CLOEXEC) ? "" : "not ",
fdf_pass ? "OK" : "failed");
flf = fcntl(acceptfd, F_GETFL);
if (flf == -1)
die("fcntl:F_GETFD");
flf_pass = ((flf & O_NONBLOCK) != 0) ==
((nonblock_flag & SOCK_NONBLOCK) !=0);
printf("nonblock flag is %sset (%s)\n",
(flf & O_NONBLOCK) ? "" : "not ",
flf_pass ? "OK" : "failed");
close(acceptfd);
close(connfd);
printf("Test result: %s\n", (fdf_pass && flf_pass) ? "PASS" : "FAIL");
return fdf_pass && flf_pass;
}
static int
create_listening_socket(int port_num)
{
struct sockaddr_in svaddr;
int lfd;
int optval;
memset(&svaddr, 0, sizeof(struct sockaddr_in));
svaddr.sin_family = AF_INET;
svaddr.sin_addr.s_addr = htonl(INADDR_ANY);
svaddr.sin_port = htons(port_num);
lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1)
die("socket");
optval = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval)) == -1)
die("setsockopt");
if (bind(lfd, (struct sockaddr *) &svaddr,
sizeof(struct sockaddr_in)) == -1)
die("bind");
if (listen(lfd, 5) == -1)
die("listen");
return lfd;
}
int
main(int argc, char *argv[])
{
struct sockaddr_in conn_addr;
int lfd;
int port_num;
int passed;
passed = 1;
port_num = (argc > 1) ? atoi(argv[1]) : PORT_NUM;
memset(&conn_addr, 0, sizeof(struct sockaddr_in));
conn_addr.sin_family = AF_INET;
conn_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
conn_addr.sin_port = htons(port_num);
lfd = create_listening_socket(port_num);
if (!do_test(lfd, &conn_addr, 0, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, 0))
passed = 0;
if (!do_test(lfd, &conn_addr, 0, SOCK_NONBLOCK))
passed = 0;
if (!do_test(lfd, &conn_addr, SOCK_CLOEXEC, SOCK_NONBLOCK))
passed = 0;
close(lfd);
exit(passed ? EXIT_SUCCESS : EXIT_FAILURE);
}
[mtk.manpages@gmail.com: rewrote changelog, updated test program]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: <linux-api@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__copy_from_user() will return invalid value 16 when it fails to
access user space and the size is 10.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Dell Optiplex 330 appears to hang on reboot. This is resolved by adding
a quirk to set bios reboot.
Signed-off-by: Leann Ogasawara <leann.ogasawara@canonical.com>
Signed-off-by: Steve Conklin <steve.conklin@canonical.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: widen the reach of the low-memory-protect DMI quirk
Phoenix BIOSes variously identify their vendor as "Phoenix Technologies,
LTD" or "Phoenix Technologies LTD" (without the comma.)
This patch makes the identification string in the bad_bios_dmi_table
more general (following a suggestion by Ingo Molnar), so that both
versions are handled.
Again, the patched file compiles cleanly and the patch has been tested
successfully on my machine.
Signed-off-by: Philipp Kohlbecher <xt28@gmx.de>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: makes device isolation the default for AMD IOMMU
Some device drivers showed double-free bugs of DMA memory while testing
them with AMD IOMMU. If all devices share the same protection domain
this can lead to data corruption and data loss. Prevent this by putting
each device into its own protection domain per default.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
this compiler warning:
arch/x86/kernel/ds.c: In function 'ds_request':
arch/x86/kernel/ds.c:368: warning: 'context' may be used uninitialized in this function
Shows that the code flow in ds_request() is buggy - it goes into
the unlock+release-context path even when the context is not allocated
yet.
First allocate the context, then do the other checks.
Also, take care with GFP allocations under the ds_lock spinlock.
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix incorrectly marked unstable TSC clock
Patch (commit 0d12cdd "sched: improve sched_clock() performance") has
a regression on one of the test systems here.
With the patch, I see:
checking TSC synchronization [CPU#0 -> CPU#1]:
Measured 28 cycles TSC warp between CPUs, turning off TSC clock.
Marking TSC unstable due to check_tsc_sync_source failed
Whereas, without the patch syncs pass fine on all CPUs:
checking TSC synchronization [CPU#0 -> CPU#1]: passed.
Due to this, TSC is marked unstable, when it is not actually unstable.
This is because syncs in check_tsc_wrap() goes away due to this commit.
As per the discussion on this thread, correct way to fix this is to add
explicit syncs as below?
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix es7000 build
CC arch/x86/kernel/es7000_32.o
arch/x86/kernel/es7000_32.c: In function find_unisys_acpi_oem_table:
arch/x86/kernel/es7000_32.c:255: error: implicit declaration of function acpi_get_table_with_size
arch/x86/kernel/es7000_32.c:261: error: implicit declaration of function early_acpi_os_unmap_memory
arch/x86/kernel/es7000_32.c: In function unmap_unisys_acpi_oem_table:
arch/x86/kernel/es7000_32.c:277: error: implicit declaration of function __acpi_unmap_table
make[1]: *** [arch/x86/kernel/es7000_32.o] Error 1
we applied one patch out of order...
| commit a73aaedd95
| Author: Yinghai Lu <yhlu.kernel@gmail.com>
| Date: Sun Sep 14 02:33:14 2008 -0700
|
| x86: check dsdt before find oem table for es7000, v2
|
| v2: use __acpi_unmap_table()
that patch need:
x86: use early_ioremap in __acpi_map_table
x86: always explicitly map acpi memory
acpi: remove final __acpi_map_table mapping before setting acpi_gbl_permanent_mmap
acpi/x86: introduce __apci_map_table, v4
submitted to the ACPI tree but not upstream yet.
fix it until those patches applied, need to revert this one
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix a problem where ds_request() returned an error without releasing the
ds lock.
Reported-by: Stephane Eranian <eranian@gmail.com>
Signed-off-by: Markus Metzger <markus.t.metzger@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This reverts commit e51af66308, which was
wrongly hoovered up and submitted about a month after a better fix had
already been merged.
The better fix is commit cbda1ba898
("PCI/iommu: blacklist DMAR on Intel G31/G33 chipsets"), where we do
this blacklisting based on the DMI identification for the offending
motherboard, since sometimes this chipset (or at least a chipset with
the same PCI ID) apparently _does_ actually have an IOMMU.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My previous patch to make CONFIG_NUMA on x86_32 depend on BROKEN
turned out to be unnecessary, after all, since the source of the
hibernation vs CONFIG_NUMA problem turned out to be the fact that
we didn't take the NUMA KVA remapping into account in the
hibernation code.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix crash during hibernation on 32-bit NUMA
The NUMA code on x86_32 creates special memory mapping that allows
each node's pgdat to be located in this node's memory. For this
purpose it allocates a memory area at the end of each node's memory
and maps this area so that it is accessible with virtual addresses
belonging to low memory. As a result, if there is high memory,
these NUMA-allocated areas are physically located in high memory,
although they are mapped to low memory addresses.
Our hibernation code does not take that into account and for this
reason hibernation fails on all x86_32 systems with CONFIG_NUMA=y and
with high memory present. Fix this by adding a special mapping for
the NUMA-allocated memory areas to the temporary page tables created
during the last phase of resume.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'kvm-updates/2.6.28' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm:
KVM: Fix pit memory leak if unable to allocate irq source id
KVM: ia64: fix vmm_spin_{un}lock for !CONFIG_SMP
KVM: VMX: Set IGMT bit in EPT entry
KVM: Require the PCI subsystem
x86: KVM guest: fix section mismatch warning in kvmclock.c
KVM: ia64: Use guest signal mask when blocking
KVM: MMU: increase per-vcpu rmap cache alloc size
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (47 commits)
ACPI: pci_link: remove acpi_irq_balance_set() interface
fujitsu-laptop: Add DMI callback for Lifebook S6420
ACPI: EC: Don't do transaction from GPE handler in poll mode.
ACPI: EC: lower interrupt storm treshold
ACPICA: Use spinlock for acpi_{en|dis}able_gpe
ACPI: EC: restart failed command
ACPI: EC: wait for last write gpe
ACPI: EC: make kernel messages more useful when GPE storm is detected
ACPI: EC: revert msleep patch
thinkpad_acpi: fingers off backlight if video.ko is serving this functionality
sony-laptop: fingers off backlight if video.ko is serving this functionality
msi-laptop: fingers off backlight if video.ko is serving this functionality
fujitsu-laptop: fingers off backlight if video.ko is serving this functionality
eeepc-laptop: fingers off backlight if video.ko is serving this functionality
compal: fingers off backlight if video.ko is serving this functionality
asus-acpi: fingers off backlight if video.ko is serving this functionality
Acer-WMI: fingers off backlight if video.ko is serving this functionality
ACPI video: if no ACPI backlight support, use vendor drivers
ACPI: video: Ignore devices that aren't present in hardware
Delete an unwanted return statement at evgpe.c
...
This removes the acpi_irq_balance_set() interface from the PCI
interrupt link driver.
x86 used acpi_irq_balance_set() to tell the PCI interrupt link
driver to configure links to minimize IRQ sharing. But the link
driver can easily figure out whether to turn on IRQ balancing
based on the IRQ model (PIC/IOAPIC/etc), so we can get rid of
that external interface.
It's better for the driver to figure this out at init-time. If
we set it externally via the x86 code, the interface reduces
modularity, and we depend on the fact that acpi_process_madt()
happens before we process the kernel command line.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
There is a potential issue that, when guest using pagetable without vmexit when
EPT enabled, guest would use PAT/PCD/PWT bits to index PAT msr for it's memory,
which would be inconsistent with host side and would cause host MCE due to
inconsistent cache attribute.
The patch set IGMT bit in EPT entry to ignore guest PAT and use WB as default
memory type to protect host (notice that all memory mapped by KVM should be WB).
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
WARNING: arch/x86/kernel/built-in.o(.text+0x1722c): Section mismatch
in reference from the function kvm_setup_secondary_clock() to the
function .devinit.text:setup_secondary_APIC_clock()
The function kvm_setup_secondary_clock() references
the function __devinit setup_secondary_APIC_clock().
This is often because kvm_setup_secondary_clock lacks a __devinit
annotation or the annotation of setup_secondary_APIC_clock is wrong.
Signed-off-by: Md.Rakib H. Mullick <rakib.mullick@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: handle HRTIMER_CB_IRQSAFE_UNLOCKED correctly from softirq context
nohz: disable tick_nohz_kick_tick() for now
irq: call __irq_enter() before calling the tick_idle_check
x86: HPET: enter hpet_interrupt_handler with interrupts disabled
x86: HPET: read from HPET_Tn_CMP() not HPET_T0_CMP
x86: HPET: convert WARN_ON to WARN_ON_ONCE
The page fault path can use two rmap_desc structures, if:
- walk_addr's dirty pte update allocates one rmap_desc.
- mmu_lock is dropped, sptes are zapped resulting in rmap_desc being
freed.
- fetch->mmu_set_spte allocates another rmap_desc.
Increase to 4 for safety.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Impact: build/boot fix for x86/Voyager
This change:
| commit 3d44223327
| Author: Jens Axboe <jens.axboe@oracle.com>
| Date: Thu Jun 26 11:21:34 2008 +0200
|
| Add generic helpers for arch IPI function calls
didn't wire up the voyager smp call function correctly, so do that
here. Also make CONFIG_USE_GENERIC_SMP_HELPERS a def_bool y again,
since we now use the generic helpers for every x86 architecture.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <Jens.Axboe@oracle.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While investigating the failure of hibernation on 32-bit x86 with
CONFIG_NUMA set, as described in this message
http://marc.info/?l=linux-kernel&m=122634118116226&w=4
I asked some people for help and I was told that it wasn't really
worth the effort, because CONFIG_NUMA was generally broken on 32-bit
x86 systems and it shouldn't be used in such configs. For this
reason, make CONFIG_NUMA depend on BROKEN instead of EXPERIMENTAL on
x86-32.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Pavel Machek <pavel@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some functions that may be called from this handler require that
interrupts are disabled. Also, combining IRQF_DISABLED and
IRQF_SHARED does not reliably disable interrupts in a handler, so
remove IRQF_SHARED from the irq flags (this irq is not shared anyway).
Signed-off-by: Matt Fleming <mjf@gentoo.org>
Cc: mingo@elte.hu
Cc: venkatesh.pallipadi@intel.com
Cc: "Will Newton" <will.newton@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In hpet_next_event() we check that the value we just wrote to
HPET_Tn_CMP(timer) has reached the chip. Currently, we're checking that
the value we wrote to HPET_Tn_CMP(timer) is in HPET_T0_CMP, which, if
timer is anything other than timer 0, is likely to fail.
Signed-off-by: Matt Fleming <mjf@gentoo.org>
Cc: mingo@elte.hu
Cc: venkatesh.pallipadi@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It is possible to flood the console with call traces if the WARN_ON
condition is true because of the frequency with which this function is
called.
Signed-off-by: Matt Fleming <mjf@gentoo.org>
Cc: mingo@elte.hu
Cc: venkatesh.pallipadi@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
a new file was accidentally added to include/asm-x86;
move it to the new arch/x86/include/asm location
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: optimize sched_clock() a bit
sched: improve sched_clock() performance
sched_clock() uses cycles_2_ns() needlessly - which is an irq-disabling
variant of __cycles_2_ns().
Most of the time sched_clock() is called with irqs disabled already.
The few places that call it with irqs enabled need to be updated.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
in scheduler-intense workloads native_read_tsc() overhead accounts for
20% of the system overhead:
659567 system_call 41222.9375
686796 schedule 435.7843
718382 __switch_to 665.1685
823875 switch_mm 4526.7857
1883122 native_read_tsc 55385.9412
9761990 total 2.8468
this is large part due to the rdtsc_barrier() that is done before
and after reading the TSC.
But sched_clock() is not a precise clock in the GTOD sense, using such
barriers is completely pointless. So remove the barriers and only use
them in vget_cycles().
This improves lat_ctx performance by about 5%.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, xen: fix use of pgd_page now that it really does return a page
Fix the counter overflow check for CPUs with counter width > 32
I had a similar change in a different patch that I didn't submit
and I didn't notice the problem earlier because it was always
tested together.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Robert Richter <robert.richter@amd.com>
Xen requires that all mappings of pagetable pages are read-only, so
that they can't be updated illegally. As a result, if a page is being
turned into a pagetable page, we need to make sure all its mappings
are RO.
If the page had been used for ioremap or vmalloc, it may still have
left over mappings as a result of not having been lazily unmapped.
This change makes sure we explicitly mop them all up before pinning
the page.
Unlike aliases created by kmap, the there can be vmalloc aliases even
for non-high pages, so we must do the flush unconditionally.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Linux Memory Management List <linux-mm@kvack.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>