Instead of calling list_entry with head->prev simply call
list_last_entry which makes it obvious which member of the list is
being referred. This allows to remove the extra 'prev' pointer.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit e5d7490236 ("btrfs: derive maximum output size in the
compression implementation") removed @max_out argument in
btrfs_compress_pages() but its comment remained, remove it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Function arguments @len, @compressed_len and @nr_pages
can be declared as unsigned int.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Declare the variables @compressed_len, @nr_pages and
@pg_index size as an unsigned int in the function
btrfs_submit_compressed_read.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When logging an inode we always log all its xattrs, so that we are able
to figure out which ones should be deleted during log replay. However this
is unnecessary when we are doing a fast fsync and no xattrs were added,
changed or deleted since the last time we logged the inode in the current
transaction.
So skip the logging of xattrs when the inode was previously logged in the
current transaction and no xattrs were added, changed or deleted. If any
changes to xattrs happened, than the inode has BTRFS_INODE_COPY_EVERYTHING
set in its runtime flags and the xattrs get logged. This saves time on
scanning for xattrs, allocating memory, COWing log tree extent buffers and
adding more lock contention on the extent buffers when there are multiple
tasks logging in parallel.
The use of xattrs is common when using ACLs, some applications, or when
using security modules like SELinux where every inode gets a security
xattr added to it.
The following test script, using fio, was used on a box with 12 cores, 64G
of RAM, a NVMe device and the default non-debug kernel config from Debian.
It uses 8 concurrent jobs each writing in blocks of 64K to its own 4G file,
each file with a single xattr of 50 bytes (about the same size for an ACL
or SELinux xattr), doing random buffered writes with an fsync after each
write.
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/test
MOUNT_OPTIONS="-o ssd"
MKFS_OPTIONS="-d single -m single"
NUM_JOBS=8
FILE_SIZE=4G
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=randwrite
fsync=1
fallocate=none
group_reporting=1
direct=0
bs=64K
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo "Creating files before fio runs, each with 1 xattr of 50 bytes"
for ((i = 0; i < $NUM_JOBS; i++)); do
path="$MNT/writers.$i.0"
truncate -s $FILE_SIZE $path
setfattr -n user.xa1 -v $(printf '%0.sX' $(seq 50)) $path
done
fio /tmp/fio-job.ini
umount $MNT
fio output before this change:
WRITE: bw=120MiB/s (126MB/s), 120MiB/s-120MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=272145-272145msec
fio output after this change:
WRITE: bw=142MiB/s (149MB/s), 142MiB/s-142MiB/s (149MB/s-149MB/s), io=32.0GiB (34.4GB), run=230408-230408msec
+16.8% throughput, -16.6% runtime
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Accept device name "cancel" as a request to cancel running device
deletion operation. The string is literal, in case there's a real device
named "cancel", pass it as full absolute path or as "./cancel"
This works for v1 and v2 ioctls when the device is specified by name.
Moving chunks from the device uses relocation, use the conditional
exclusive operation start and cancellation helpers
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Accept literal string "cancel" as resize operation and interpret that
as a request to cancel the running operation. If it's running, wait
until it finishes current work and return ECANCELED.
Shrinking resize uses relocation to move the chunks away, use the
conditional exclusive operation start and cancellation helpers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To support optional cancellation of some operations, add helper that will
wrap all the combinations. In normal mode it's same as
btrfs_exclop_start, in cancellation mode it checks if it's already
running and request cancellation and waits until completion.
The error codes can be returned to to user space and semantics is not
changed, adding ECANCELED. This should be evaluated as an error and that
the operation has not completed and the operation should be restarted
or the filesystem status reviewed.
Signed-off-by: David Sterba <dsterba@suse.com>
Add try-lock for exclusive operation start to allow callers to do more
checks. The same operation must already be running. The try-lock and
unlock must pair and are a substitute for btrfs_exclop_start, thus it
must also pair with btrfs_exclop_finish to release the exclop context.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add support code that will allow canceling relocation on the chunk
granularity. This is different and independent of balance, that also
uses relocation but is a higher level operation and manages it's own
state and pause/cancellation requests.
Relocation is used for resize (shrink) and device deletion so this will
be a common point to implement cancellation for both. The context is
entirely in btrfs_relocate_block_group and btrfs_recover_relocation,
enclosing one chunk relocation. The status bit is set and unset between
the chunks. As relocation can take long, the effects may not be
immediate and the request and actual action can slightly race.
The fs_info::reloc_cancel_req is only supposed to be increased and does
not pair with decrement like fs_info::balance_cancel_req.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The exclusive operation is now atomically checked and set using bit
operations. Switch it to protection by spinlock. The super block lock is
not frequently used and adding a new lock seems like an overkill so it
should be safe to reuse it.
The reason to use spinlock is to enhance the locking context so more
checks can be done, eg. allowing the same exclusive operation enter
the exclop section and cancel the running one. This will be used for
resize and device delete.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move header offsetof() to the expression that calculates the address so
it's part of get_eb_offset_in_page where the 2nd parameter is the member
offset.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The verification copies the calculated checksum bytes to a temporary
buffer but this is not necessary. We can map the eb header on the first
page and use the checksum bytes directly.
This saves at least one function call and boundary checks so it could
lead to a minor performance improvement.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The s_id is already printed by message helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several members of compressed_bio are of type that's unnecessarily big
for the values that they'd hold:
- the size of the uncompressed and compressed data is 128K now, we can
keep is as int
- same for number of pages
- the compress type fits to a byte
- the errors is 0/1
The size of the unpatched structure is 80 bytes with several holes.
Reordering nr_pages next to the pages the hole after pending_bios is
filled and the resulting size is 56 bytes. This keeps the csums array
aligned to 8 bytes, which is nice. Further size optimizations may be
possible but right now it looks good to me:
struct compressed_bio {
refcount_t pending_bios; /* 0 4 */
unsigned int nr_pages; /* 4 4 */
struct page * * compressed_pages; /* 8 8 */
struct inode * inode; /* 16 8 */
u64 start; /* 24 8 */
unsigned int len; /* 32 4 */
unsigned int compressed_len; /* 36 4 */
u8 compress_type; /* 40 1 */
u8 errors; /* 41 1 */
/* XXX 2 bytes hole, try to pack */
int mirror_num; /* 44 4 */
struct bio * orig_bio; /* 48 8 */
u8 sums[]; /* 56 0 */
/* size: 56, cachelines: 1, members: 12 */
/* sum members: 54, holes: 1, sum holes: 2 */
/* last cacheline: 56 bytes */
};
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are common values set for the stripe constraints, some of them
are already factored out. Do that for increment and mirror_num as well.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a log recovery is in progress, lots of operations have to take that
into account, so we keep this status per tree during the operation. Long
time ago error handling revamp patch 79787eaab4 ("btrfs: replace many
BUG_ONs with proper error handling") removed clearing of the status in
an error branch. Add it back as was intended in e02119d5a7 ("Btrfs:
Add a write ahead tree log to optimize synchronous operations").
There are probably no visible effects, log replay is done only during
mount and if it fails all structures are cleared so the stale status
won't be kept.
Fixes: 79787eaab4 ("btrfs: replace many BUG_ONs with proper error handling")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The defrag loop processes leaves in batches and starting transaction for
each. The whole defragmentation on a given root is protected by a bit
but in case the transaction fails, the bit is not cleared
In case the transaction fails the bit would prevent starting
defragmentation again, so make sure it's cleared.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The type of discard_bitmap_bytes and discard_extent_bytes is u64 so the
format should be %llu, though the actual values would hardly ever
overflow to negative values.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While stress testing our error handling I noticed that sometimes we
would still commit the transaction even though we had aborted the
transaction.
Currently we track if a trans handle has dirtied any metadata, and if it
hasn't we mark the filesystem as having an error (so no new transactions
can be started), but we will allow the current transaction to complete
as we do not mark the transaction itself as having been aborted.
This sounds good in theory, but we were not properly tracking IO errors
in btrfs_finish_ordered_io, and thus committing the transaction with
bogus free space data. This isn't necessarily a problem per-se with the
free space cache, as the other guards in place would have kept us from
accepting the free space cache as valid, but highlights a real world
case where we had a bug and could have corrupted the filesystem because
of it.
This "skip abort on empty trans handle" is nice in theory, but assumes
we have perfect error handling everywhere, which we clearly do not.
Also we do not allow further transactions to be started, so all this
does is save the last transaction that was happening, which doesn't
necessarily gain us anything other than the potential for real
corruption.
Remove this particular bit of code, if we decide we need to abort the
transaction then abort the current one and keep us from doing real harm
to the file system, regardless of whether this specific trans handle
dirtied anything or not.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_truncate() where we truncate the inode either to the same size
or to a smaller size, we always set the full sync flag on the inode.
This is needed in case the truncation drops or trims any file extent items
that start beyond or cross the new inode size, so that the next fsync
drops all inode items from the log and scans again the fs/subvolume tree
to find all items that must be logged.
However if the truncation does not drop or trims any file extent items, we
do not need to set the full sync flag and force the next fsync to use the
slow code path. So do not set the full sync flag in such cases.
One use case where it is frequent to do truncations that do not change
the inode size and do not drop any extents (no prealloc extents beyond
i_size) is when running Microsoft's SQL Server inside a Docker container.
One example workload is the one Philipp Fent reported recently, in the
thread with a link below. In this workload a large number of fsyncs are
preceded by such truncate operations.
After this change I constantly get the runtime for that workload from
Philipp to be reduced by about -12%, for example from 184 seconds down
to 162 seconds.
Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The comment at the top of btrfs_truncate() mentions that csum items are
dropped or truncated to the new i_size, but this is wrong and non sense,
as they are unrelated to the i_size and are located in the csums tree and
not on a tree with inode items (fs/subvolume tree or a log tree). Instead
that claim applies to file extent items, so fix the comment to refer to
them instead.
While at it make the whole comment for the function more descriptive and
follow the kernel doc style.
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to update the delayed inode we need to abort the transaction,
because we could leave an inode with the improper counts or some other
such corruption behind.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we get an error while looking up the inode item we'll simply bail
without cleaning up the delayed node. This results in this style of
warning happening on commit:
WARNING: CPU: 0 PID: 76403 at fs/btrfs/delayed-inode.c:1365 btrfs_assert_delayed_root_empty+0x5b/0x90
CPU: 0 PID: 76403 Comm: fsstress Tainted: G W 5.13.0-rc1+ #373
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:btrfs_assert_delayed_root_empty+0x5b/0x90
RSP: 0018:ffffb8bb815a7e50 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff95d6d07e1888 RCX: ffff95d6c0fa3000
RDX: 0000000000000002 RSI: 000000000029e91c RDI: ffff95d6c0fc8060
RBP: ffff95d6c0fc8060 R08: 00008d6d701a2c1d R09: 0000000000000000
R10: ffff95d6d1760ea0 R11: 0000000000000001 R12: ffff95d6c15a4d00
R13: ffff95d6c0fa3000 R14: 0000000000000000 R15: ffffb8bb815a7e90
FS: 00007f490e8dbb80(0000) GS:ffff95d73bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6e75555cb0 CR3: 00000001101ce001 CR4: 0000000000370ef0
Call Trace:
btrfs_commit_transaction+0x43c/0xb00
? finish_wait+0x80/0x80
? vfs_fsync_range+0x90/0x90
iterate_supers+0x8c/0x100
ksys_sync+0x50/0x90
__do_sys_sync+0xa/0x10
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Because the iref isn't dropped and this leaves an elevated node->count,
so any release just re-queues it onto the delayed inodes list. Fix this
by going to the out label to handle the proper cleanup of the delayed
node.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Right now we only cleanup the delayed iref if we have
BTRFS_DELAYED_NODE_DEL_IREF set on the node. However we have some error
conditions that need to cleanup the iref if it still exists, so to make
this code cleaner move the test_bit into btrfs_release_delayed_iref
itself and unconditionally call it in each of the cases instead.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add sysfs interface to limit io during scrub. We relied on the ionice
interface to do that, eg. the idle class let the system usable while
scrub was running. This has changed when mq-deadline got widespread and
did not implement the scheduling classes. That was a CFQ thing that got
deleted. We've got numerous complaints from users about degraded
performance.
Currently only BFQ supports that but it's not a common scheduler and we
can't ask everybody to switch to it.
Alternatively the cgroup io limiting can be used but that also a
non-trivial setup (v2 required, the controller must be enabled on the
system). This can still be used if desired.
Other ideas that have been explored: piggy-back on ionice (that is set
per-process and is accessible) and interpret the class and classdata as
bandwidth limits, but this does not have enough flexibility as there are
only 8 allowed and we'd have to map fixed limits to each value. Also
adjusting the value would need to lookup the process that currently runs
scrub on the given device, and the value is not sticky so would have to
be adjusted each time scrub runs.
Running out of options, sysfs does not look that bad:
- it's accessible from scripts, or udev rules
- the name is similar to what MD-RAID has
(/proc/sys/dev/raid/speed_limit_max or /sys/block/mdX/md/sync_speed_max)
- the value is sticky at least for filesystem mount time
- adjusting the value has immediate effect
- sysfs is available in constrained environments (eg. system rescue)
- the limit also applies to device replace
Sysfs:
- raw value is in bytes
- values written to the file accept suffixes like K, M
- file is in the per-device directory /sys/fs/btrfs/FSID/devinfo/DEVID/scrub_speed_max
- 0 means use default priority of IO
The scheduler is a simple deadline one and the accuracy is up to nearest
128K.
Signed-off-by: David Sterba <dsterba@suse.com>
To be able to construct a zone append bio we need to look up the
btrfs_device. The code doing the chunk map lookup to get the device is
present in btrfs_submit_compressed_write and submit_extent_page.
Factor out the lookup calls into a helper and use it in the submission
paths.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When inode defrag is canceled, the error is set to EAGAIN but then
overwritten by number of defragmented bytes. As this would hide the
error, rather return EAGAIN. This does not harm 'btrfs fi defrag', it
will print the error and continue to next file (as it does in for any
other error).
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The io_failure_record::in_validation was introduced to handle failed bio
which cross several sectors. In such case, we still need to verify
which sectors are corrupted.
But since we've changed the way how we handle corrupted sectors, by only
submitting repair for each corrupted sector, there is no need for extra
validation any more.
This patch will cleanup all io_failure_record::in_validation related
code.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_submit_read_repair() has some extra check on whether the
failed bio needs extra validation for repair. But we can avoid all
these extra mechanisms if we submit the repair for each sector.
By this, each read repair can be easily handled without the need to
verify which sector is corrupted.
This will also benefit subpage, as one subpage bvec can contain several
sectors, making the extra verification more complex.
So this patch will:
- Introduce repair_one_sector()
The main code submitting repair, which is more or less the same as old
btrfs_submit_read_repair().
But this time, it only repairs one sector.
- Make btrfs_submit_read_repair() to handle sectors differently
There are 3 different cases:
* Good sector
We need to release the page and extent, set the range uptodate.
* Bad sector and failed to submit repair bio
We need to release the page and extent, but not set the range
uptodate.
* Bad sector but repair bio submitted
The page and extent release will be handled by the submitted repair
bio. Nothing needs to be done.
Since btrfs_submit_read_repair() will handle the page and extent
release now, we need to skip to next bvec even we hit some error.
- Change the lifespan of @uptodate in end_bio_extent_readpage()
Since now btrfs_submit_read_repair() will handle the full bvec
which contains any corruption, we don't need to bother updating
@uptodate bit anymore.
Just let @uptodate to be local variable inside the main loop,
so that any error from one bvec won't affect later bvec.
- Only export btrfs_repair_one_sector(), unexport
btrfs_submit_read_repair()
The only outside caller for read repair is DIO, which already submits
its repair for just one sector.
Only export btrfs_repair_one_sector() for DIO.
This patch will focus on the change on the repair path, the extra
validation code is still kept as is, and will be cleaned up later.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will provide the basis for later per-sector repair for subpage,
while still keeping the existing code happy.
As if all csums match, the return value will be 0, same as now.
Only when csum mismatches, the return value is different.
The new return value will be a bitmap, for 4K sectorsize and 4K page
size, it will be either 1, instead of the -EIO (which is not used
directly by the callers, no effective change).
But for 4K sectorsize and 64K page size, aka subpage case, since the
bvec can contain multiple sectors, knowing which sectors are corrupted
will allow us to submit repair only for corrupted sectors.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The 'check_async_write' function is a helper used in
'btrfs_submit_metadata_bio' and it checks if asynchronous writing can be
used for metadata.
Make the function return bool and get rid of the local variable async in
btrfs_submit_metadata_bio storing the result of check_async_write's
tests.
As this is touching all function call sites, also rename it to
should_async_write as this is more in line with the naming we use.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we can't read a reliable write pointer from a sequential zone fail
creating the block group with an I/O error.
Also if the read write pointer is beyond the end of the respective zone,
fail the creation of the block group on this zone with an I/O error.
While this could also happen in real world scenarios with misbehaving
drives, this issue addresses a problem uncovered by fstests' test case
generic/475.
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This extends patch 784daf2b96 ("btrfs: zoned: sanity check zone
type"), the message was supposed to be there but was lost during merge.
We want to make the error noticeable so add it.
Fixes: 784daf2b96 ("btrfs: zoned: sanity check zone type")
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we decide to flush delalloc from the preemptive flusher, we really do
not want to wait on ordered extents, as it gains us nothing. However
there was logic to go ahead and wait on ordered extents if there was
more ordered bytes than delalloc bytes. We do not want this behavior,
so pass through whether this flushing is for preemption, and do not wait
for ordered extents if that's the case. Also break out of the shrink
loop after the first flushing, as we just want to one shot shrink
delalloc.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While testing heavy delalloc workloads I noticed that sometimes we'd
just stop preemptively flushing when we had loads of delalloc available
to flush. This is because we skip preemptive flushing if delalloc <=
ordered. However if we start with say 4gib of delalloc, and we flush
2gib of that, we'll stop flushing there, when we still have 2gib of
delalloc to flush.
Instead adjust the ordered bytes down by half, this way if 2/3 of our
outstanding delalloc reservations are tied up by ordered extents we
don't bother preemptive flushing, as we're getting close to the state
where we need to wait on ordered extents.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When deciding if we should preemptively flush space, we will add in the
amount of space used by all block rsvs. However this also includes the
global block rsv, which isn't flushable so shouldn't be accounted for in
this calculation. If we decide to use ->bytes_may_use in our used
calculation we need to subtract the global rsv size from this amount so
it most closely matches the flushable space.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We calculate the amount of "free" space available for normal
reservations by taking the total space and subtracting out the hard used
space, which is readonly, used, and reserved space.
However we weren't taking into account the global block rsv, which is
essentially hard used space. Handle this by subtracting it from the
available free space, so that our threshold more closely mirrors
reality.
We need to do the check because it's possible that the global_rsv_size +
used is > total_bytes, sometimes the global reserve can end up being
calculated as larger than the available size (think small filesystems
where we only have the original 8MiB chunk of metadata). It doesn't
usually happen, but that can get us into trouble so this is safer.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Global rsv can't be used for normal allocations, and for very full file
systems we can decide to try and async flush constantly even though
there's really not a lot of space to reclaim. Deal with this by
including the global block rsv size in the "total used" calculation.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were clamping the threshold for preemptive reclaim any time we added
a ticket to wait on, which if we have a lot of threads means we'd
essentially max out the clamp the first time we start to flush.
Instead of doing this, simply do it every time we have to start
flushing, this will make us ramp up gradually instead of going to max
clamping as soon as we start needing to do flushing.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
need_preemptive_reclaim() does some calculations, which aren't heavy,
but if we're already running preemptive reclaim there's no reason to do
them at all, so re-order the checks so that we don't do the calculation
if we're already doing reclaim.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit b2598edf8b ("btrfs: remove unused argument seed from
btrfs_find_device") removed the argument seed from btrfs_find_device
but forgot the comment, so remove it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
try_lock_extent() returns 1 on success or 0 for failure and not an error
code. If try_lock_extent() fails, read_extent_buffer_subpage() returns
zero indicating subpage extent read success.
Return EAGAIN/EWOULDBLOCK if try_lock_extent() fails in locking the
extent.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmDNEFMACgkQxWXV+ddt
WDuZQg/7BpGG3IDhxydM7fUrNT0xmW2/0VG8blXAgNTiaUO1zOrlrlDKm38+dtW6
yEv3ruf68tggrPNRCkyh51n45+ExqNwc7WwrxaKIRKmvYhYDsxnt8JLiNkv64isi
R/CQVETX1cKsMuRhBuqmUq3Sy6VJZoi6coUHIC7ddBcLqnz8c9p7oGqzxBT8J9u3
1CkDSeLM4HKlISlVKhmT4lRG28cQTuy3mSABUt7N5ljJvrrpQAvEN1HCOE9XUQFQ
wHH2DjNnBMvfB7mrGCBL7XGf8DF6ucgcyfofuOj6CQLFJ8bOnVKsk8dk/8XUQod+
rQoNIrVwW91LjmEO/I767JmjrRMtHbXvl3DEw3BvaD/O4efw78SN2VN+DRi4j7Xx
aMtAWWfakfIyyJNZu9IEDa736iCdp+yl4bnq+hZpqmOYRqTq8n/zWuCMWZ5ohNay
JyjxCm+xgo3vH9VEgzje6GDUki3I4Bwe7VlsaMr9F6F5GKzFp/4fb9lCewBrH6le
+Y4gWxRT09plThsC2N3qmBQ9uVIJUyzmvcsYiMJ95tb24srdcPUTCG0C9zBvuMCC
nm+1n5d3ENSEBaRNKQsC3MYcjKIh8VDEaKnntJrHAzHP41hrD+makrw3LVs6wLzu
amGYz40XNq8zK2Xxv/N8O/U/PwQWKGj4bxq/2c1Wi9p9HACWfgk=
=JbJO
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more fix, for a space accounting bug in zoned mode. It happens
when a block group is switched back rw->ro and unusable bytes (due to
zoned constraints) are subtracted twice.
It has user visible effects so I consider it important enough for late
-rc inclusion and backport to stable"
* tag 'for-5.13-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix negative space_info->bytes_readonly
Consider we have a using block group on zoned btrfs.
|<- ZU ->|<- used ->|<---free--->|
`- Alloc offset
ZU: Zone unusable
Marking the block group read-only will migrate the zone unusable bytes
to the read-only bytes. So, we will have this.
|<- RO ->|<- used ->|<--- RO --->|
RO: Read only
When marking it back to read-write, btrfs_dec_block_group_ro()
subtracts the above "RO" bytes from the
space_info->bytes_readonly. And, it moves the zone unusable bytes back
and again subtracts those bytes from the space_info->bytes_readonly,
leading to negative bytes_readonly.
This can be observed in the output as eg.:
Data, single: total=512.00MiB, used=165.21MiB, zone_unusable=16.00EiB
Data, single: total=536870912, used=173256704, zone_unusable=18446744073603186688
This commit fixes the issue by reordering the operations.
Link: https://github.com/naota/linux/issues/37
Reported-by: David Sterba <dsterba@suse.com>
Fixes: 169e0da91a ("btrfs: zoned: track unusable bytes for zones")
CC: stable@vger.kernel.org # 5.12+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replacement is called copy_page_from_iter_atomic(); unlike the old primitive the
callers do *not* need to do iov_iter_advance() after it. In case when they end
up consuming less than they'd been given they need to do iov_iter_revert() on
everything they had not consumed. That, however, needs to be done only on slow
paths.
All in-tree callers converted. And that kills the last user of iterate_all_kinds()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmDAtXUACgkQxWXV+ddt
WDtbdA//ccQ8JL5yC/x/j0ZXLJ2INqXpxIUPjadwwEjtTgOllvx+f1nU0QazeYfM
XvvzDDvpemWajC2Ii54s2HCQbG+dAzO1YBl1XCyve91T0GeNGhzytZwM0pVxZePQ
A+aOyVH7IcfFcmBy9T0yctqiGgtD3lre208kU9kolidsIyomLHxBckBhMYDXvJCK
BOdrjq3f6H5J0zqOqAnWdc/Wc5z5pw3CHxlIuoA3Tp0Gv9TIx366Z/IvmFfCyvCt
kYv2qnUaw10OlFLiqhetlZyv49ibW4waj0RbyY/rZx+69sE/PM4961NYAjLoFJc2
6OoZZO4OHWrNZpBJfbyyX9KVLspix075FID7qVhE/AVW4CYZGOFu5wJyXQiYlysH
1qqkihK3gbKEsB2429UeLZktupmx79LBIgg346+DSQYiMXMTGR8iZY1onbBM2wlf
bep65hsiHhxoC6Z/KhxrTGZM2jyYW2nICw3o0xikhWv7MZPWKfKHrH9NJQ9Lpuhy
gxut0ef9HbPXWP9PgRmY0Z8PsUi8RT1bv0bHVw7EnhLbi62neJLyxY3Q++W+7vBG
LYeaxKWLTTJu73wpBQHLI0pD0UifXLrTkiCI+4gN8zVfzxUl+90mGz2AdSRRFI+U
kNdX/haEHi00WBqYxWt33ae/FuSHjPuYXjiPQA7Kiy/C3n9GAB0=
=mGAq
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes that people hit during testing.
Zoned mode fix:
- fix 32bit value wrapping when calculating superblock offsets
Error handling fixes:
- properly check filesystema and device uuids
- properly return errors when marking extents as written
- do not write supers if we have an fs error"
* tag 'for-5.13-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: promote debugging asserts to full-fledged checks in validate_super
btrfs: return value from btrfs_mark_extent_written() in case of error
btrfs: zoned: fix zone number to sector/physical calculation
btrfs: do not write supers if we have an fs error
Syzbot managed to trigger this assert while performing its fuzzing.
Turns out it's better to have those asserts turned into full-fledged
checks so that in case buggy btrfs images are mounted the users gets
an error and mounting is stopped. Alternatively with CONFIG_BTRFS_ASSERT
disabled such image would have been erroneously allowed to be mounted.
Reported-by: syzbot+a6bf271c02e4fe66b4e4@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add uuids to the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
We always return 0 even in case of an error in btrfs_mark_extent_written().
Fix it to return proper error value in case of a failure. All callers
handle it.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_get_dev_zone_info(), we have "u32 sb_zone" and calculate "sector_t
sector" by shifting it. But, this "sector" is calculated in 32bit, leading
it to be 0 for the 2nd superblock copy.
Since zone number is u32, shifting it to sector (sector_t) or physical
address (u64) can easily trigger a missing cast bug like this.
This commit introduces helpers to convert zone number to sector/LBA, so we
won't fall into the same pitfall again.
Reported-by: Dmitry Fomichev <Dmitry.Fomichev@wdc.com>
Fixes: 12659251ca ("btrfs: implement log-structured superblock for ZONED mode")
CC: stable@vger.kernel.org # 5.11+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection testing uncovered a pretty severe problem where we could
end up committing a super that pointed to the wrong tree roots,
resulting in transid mismatch errors.
The way we commit the transaction is we update the super copy with the
current generations and bytenrs of the important roots, and then copy
that into our super_for_commit. Then we allow transactions to continue
again, we write out the dirty pages for the transaction, and then we
write the super. If the write out fails we'll bail and skip writing the
supers.
However since we've allowed a new transaction to start, we can have a
log attempting to sync at this point, which would be blocked on
fs_info->tree_log_mutex. Once the commit fails we're allowed to do the
log tree commit, which uses super_for_commit, which now points at fs
tree's that were not written out.
Fix this by checking BTRFS_FS_STATE_ERROR once we acquire the
tree_log_mutex. This way if the transaction commit fails we're sure to
see this bit set and we can skip writing the super out. This patch
fixes this specific transid mismatch error I was seeing with this
particular error path.
CC: stable@vger.kernel.org # 5.12+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmC435cACgkQxWXV+ddt
WDuh5w/+IGfsUFfKikJZpZUP7q/2gC0t0dzZemxeZMutJbT/KCZCDd4CjLf6YH6r
oV9uYIgOWGd3aem9fe0R60ErJ4htgszIgeydCw3s2EuTms6WvAVA6Wp+wK/3UNx3
vQgYsqYkhMzIYKm/D4q8G+bqA2nPbBTDRNsXDIDrZYONxwSb+dNbQCGVknBRzRPa
hiCqYhUSyXA7E6UZdlma7MvpDOquZN+iW3RRVx1AULLqVs01PCnG/CEN+0oQm2JE
r9IyRxOZUvSeW6opT80yzZFCoboNSduMjPENTfzLY6Q1xzS/EtP4kM86fB/7AoJv
UI0c3Sr84SC9vOsBsbGJaBHpxP3OpzxohKU///jVQgEDpGv4STPlkVfxk23BHcux
Fdfg7wodkXeLU1Ff4dlJhvCqNYqc5V8lT5Kl52ai9Scct6D4yZBAq4KJp2LmYFC0
cHv6xFxBUv5zFZP1j6NMOmiLlCdDEkOruku2mMweQOBWYW/lHYNU469V5RCvfbLl
HlbDrtZdnQ3m2IhpQrXiTnT47Ib4DPYWkhRVfWbyVJHA+CbcOV62RQfl+r95Bc7j
FB1gM5vwUTJV7wgzErrq7+BD8quxG6/NuLDFjHYRcIj1kSIMK4/I1fOWruzuK+CL
6n7LLvBOojYfFo+ruQMSp2imDn3JJucBuh0/ssOlUWl2zsy6lDA=
=8066
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Error handling improvements, caught by error injection:
- handle errors during checksum deletion
- set error on mapping when ordered extent io cannot be finished
- inode link count fixup in tree-log
- missing return value checks for inode updates in tree-log
- abort transaction in rename exchange if adding second reference
fails
Fixes:
- fix fsync failure after writes to prealloc extents
- fix deadlock when cloning inline extents and low on available space
- fix compressed writes that cross stripe boundary"
* tag 'for-5.13-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
MAINTAINERS: add btrfs IRC link
btrfs: fix deadlock when cloning inline extents and low on available space
btrfs: fix fsync failure and transaction abort after writes to prealloc extents
btrfs: abort in rename_exchange if we fail to insert the second ref
btrfs: check error value from btrfs_update_inode in tree log
btrfs: fixup error handling in fixup_inode_link_counts
btrfs: mark ordered extent and inode with error if we fail to finish
btrfs: return errors from btrfs_del_csums in cleanup_ref_head
btrfs: fix error handling in btrfs_del_csums
btrfs: fix compressed writes that cross stripe boundary
Replace the per-block device bd_mutex with a per-gendisk open_mutex,
thus simplifying locking wherever we deal with partitions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Roger Pau Monné <roger.pau@citrix.com>
Link: https://lore.kernel.org/r/20210525061301.2242282-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are a few cases where cloning an inline extent requires copying data
into a page of the destination inode. For these cases we are allocating
the required data and metadata space while holding a leaf locked. This can
result in a deadlock when we are low on available space because allocating
the space may flush delalloc and two deadlock scenarios can happen:
1) When starting writeback for an inode with a very small dirty range that
fits in an inline extent, we deadlock during the writeback when trying
to insert the inline extent, at cow_file_range_inline(), if the extent
is going to be located in the leaf for which we are already holding a
read lock;
2) After successfully starting writeback, for non-inline extent cases,
the async reclaim thread will hang waiting for an ordered extent to
complete if the ordered extent completion needs to modify the leaf
for which the clone task is holding a read lock (for adding or
replacing file extent items). So the cloning task will wait forever
on the async reclaim thread to make progress, which in turn is
waiting for the ordered extent completion which in turn is waiting
to acquire a write lock on the same leaf.
So fix this by making sure we release the path (and therefore the leaf)
every time we need to copy the inline extent's data into a page of the
destination inode, as by that time we do not need to have the leaf locked.
Fixes: 05a5a7621c ("Btrfs: implement full reflink support for inline extents")
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a series of partial writes to different ranges of preallocated
extents with transaction commits and fsyncs in between, we can end up with
a checksum items in a log tree. This causes an fsync to fail with -EIO and
abort the transaction, turning the filesystem to RO mode, when syncing the
log.
For this to happen, we need to have a full fsync of a file following one
or more fast fsyncs.
The following example reproduces the problem and explains how it happens:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
# Create our test file with 2 preallocated extents. Leave a 1M hole
# between them to ensure that we get two file extent items that will
# never be merged into a single one. The extents are contiguous on disk,
# which will later result in the checksums for their data to be merged
# into a single checksum item in the csums btree.
#
$ xfs_io -f \
-c "falloc 0 1M" \
-c "falloc 3M 3M" \
/mnt/foobar
# Now write to the second extent and leave only 1M of it as unwritten,
# which corresponds to the file range [4M, 5M[.
#
# Then fsync the file to flush delalloc and to clear full sync flag from
# the inode, so that a future fsync will use the fast code path.
#
# After the writeback triggered by the fsync we have 3 file extent items
# that point to the second extent we previously allocated:
#
# 1) One file extent item of type BTRFS_FILE_EXTENT_REG that covers the
# file range [3M, 4M[
#
# 2) One file extent item of type BTRFS_FILE_EXTENT_PREALLOC that covers
# the file range [4M, 5M[
#
# 3) One file extent item of type BTRFS_FILE_EXTENT_REG that covers the
# file range [5M, 6M[
#
# All these file extent items have a generation of 6, which is the ID of
# the transaction where they were created. The split of the original file
# extent item is done at btrfs_mark_extent_written() when ordered extents
# complete for the file ranges [3M, 4M[ and [5M, 6M[.
#
$ xfs_io -c "pwrite -S 0xab 3M 1M" \
-c "pwrite -S 0xef 5M 1M" \
-c "fsync" \
/mnt/foobar
# Commit the current transaction. This wipes out the log tree created by
# the previous fsync.
sync
# Now write to the unwritten range of the second extent we allocated,
# corresponding to the file range [4M, 5M[, and fsync the file, which
# triggers the fast fsync code path.
#
# The fast fsync code path sees that there is a new extent map covering
# the file range [4M, 5M[ and therefore it will log a checksum item
# covering the range [1M, 2M[ of the second extent we allocated.
#
# Also, after the fsync finishes we no longer have the 3 file extent
# items that pointed to 3 sections of the second extent we allocated.
# Instead we end up with a single file extent item pointing to the whole
# extent, with a type of BTRFS_FILE_EXTENT_REG and a generation of 7 (the
# current transaction ID). This is due to the file extent item merging we
# do when completing ordered extents into ranges that point to unwritten
# (preallocated) extents. This merging is done at
# btrfs_mark_extent_written().
#
$ xfs_io -c "pwrite -S 0xcd 4M 1M" \
-c "fsync" \
/mnt/foobar
# Now do some write to our file outside the range of the second extent
# that we allocated with fallocate() and truncate the file size from 6M
# down to 5M.
#
# The truncate operation sets the full sync runtime flag on the inode,
# forcing the next fsync to use the slow code path. It also changes the
# length of the second file extent item so that it represents the file
# range [3M, 5M[ and not the range [3M, 6M[ anymore.
#
# Finally fsync the file. Since this is a fsync that triggers the slow
# code path, it will remove all items associated to the inode from the
# log tree and then it will scan for file extent items in the
# fs/subvolume tree that have a generation matching the current
# transaction ID, which is 7. This means it will log 2 file extent
# items:
#
# 1) One for the first extent we allocated, covering the file range
# [0, 1M[
#
# 2) Another for the first 2M of the second extent we allocated,
# covering the file range [3M, 5M[
#
# When logging the first file extent item we log a single checksum item
# that has all the checksums for the entire extent.
#
# When logging the second file extent item, we also lookup for the
# checksums that are associated with the range [0, 2M[ of the second
# extent we allocated (file range [3M, 5M[), and then we log them with
# btrfs_csum_file_blocks(). However that results in ending up with a log
# that has two checksum items with ranges that overlap:
#
# 1) One for the range [1M, 2M[ of the second extent we allocated,
# corresponding to the file range [4M, 5M[, which we logged in the
# previous fsync that used the fast code path;
#
# 2) One for the ranges [0, 1M[ and [0, 2M[ of the first and second
# extents, respectively, corresponding to the files ranges [0, 1M[
# and [3M, 5M[. This one was added during this last fsync that uses
# the slow code path and overlaps with the previous one logged by
# the previous fast fsync.
#
# This happens because when logging the checksums for the second
# extent, we notice they start at an offset that matches the end of the
# checksums item that we logged for the first extent, and because both
# extents are contiguous on disk, btrfs_csum_file_blocks() decides to
# extend that existing checksums item and append the checksums for the
# second extent to this item. The end result is we end up with two
# checksum items in the log tree that have overlapping ranges, as
# listed before, resulting in the fsync to fail with -EIO and aborting
# the transaction, turning the filesystem into RO mode.
#
$ xfs_io -c "pwrite -S 0xff 0 1M" \
-c "truncate 5M" \
-c "fsync" \
/mnt/foobar
fsync: Input/output error
After running the example, dmesg/syslog shows the tree checker complained
about the checksum items with overlapping ranges and we aborted the
transaction:
$ dmesg
(...)
[756289.557487] BTRFS critical (device sdc): corrupt leaf: root=18446744073709551610 block=30720000 slot=5, csum end range (16777216) goes beyond the start range (15728640) of the next csum item
[756289.560583] BTRFS info (device sdc): leaf 30720000 gen 7 total ptrs 7 free space 11677 owner 18446744073709551610
[756289.562435] BTRFS info (device sdc): refs 2 lock_owner 0 current 2303929
[756289.563654] item 0 key (257 1 0) itemoff 16123 itemsize 160
[756289.564649] inode generation 6 size 5242880 mode 100600
[756289.565636] item 1 key (257 12 256) itemoff 16107 itemsize 16
[756289.566694] item 2 key (257 108 0) itemoff 16054 itemsize 53
[756289.567725] extent data disk bytenr 13631488 nr 1048576
[756289.568697] extent data offset 0 nr 1048576 ram 1048576
[756289.569689] item 3 key (257 108 1048576) itemoff 16001 itemsize 53
[756289.570682] extent data disk bytenr 0 nr 0
[756289.571363] extent data offset 0 nr 2097152 ram 2097152
[756289.572213] item 4 key (257 108 3145728) itemoff 15948 itemsize 53
[756289.573246] extent data disk bytenr 14680064 nr 3145728
[756289.574121] extent data offset 0 nr 2097152 ram 3145728
[756289.574993] item 5 key (18446744073709551606 128 13631488) itemoff 12876 itemsize 3072
[756289.576113] item 6 key (18446744073709551606 128 15728640) itemoff 11852 itemsize 1024
[756289.577286] BTRFS error (device sdc): block=30720000 write time tree block corruption detected
[756289.578644] ------------[ cut here ]------------
[756289.579376] WARNING: CPU: 0 PID: 2303929 at fs/btrfs/disk-io.c:465 csum_one_extent_buffer+0xed/0x100 [btrfs]
[756289.580857] Modules linked in: btrfs dm_zero dm_dust loop dm_snapshot (...)
[756289.591534] CPU: 0 PID: 2303929 Comm: xfs_io Tainted: G W 5.12.0-rc8-btrfs-next-87 #1
[756289.592580] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[756289.594161] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
[756289.595122] Code: 5d c3 e8 76 60 (...)
[756289.597509] RSP: 0018:ffffb51b416cb898 EFLAGS: 00010282
[756289.598142] RAX: 0000000000000000 RBX: fffff02b8a365bc0 RCX: 0000000000000000
[756289.598970] RDX: 0000000000000000 RSI: ffffffffa9112421 RDI: 00000000ffffffff
[756289.599798] RBP: ffffa06500880000 R08: 0000000000000000 R09: 0000000000000000
[756289.600619] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
[756289.601456] R13: ffffa0652b1d8980 R14: ffffa06500880000 R15: 0000000000000000
[756289.602278] FS: 00007f08b23c9800(0000) GS:ffffa0682be00000(0000) knlGS:0000000000000000
[756289.603217] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[756289.603892] CR2: 00005652f32d0138 CR3: 000000025d616003 CR4: 0000000000370ef0
[756289.604725] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[756289.605563] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[756289.606400] Call Trace:
[756289.606704] btree_csum_one_bio+0x244/0x2b0 [btrfs]
[756289.607313] btrfs_submit_metadata_bio+0xb7/0x100 [btrfs]
[756289.608040] submit_one_bio+0x61/0x70 [btrfs]
[756289.608587] btree_write_cache_pages+0x587/0x610 [btrfs]
[756289.609258] ? free_debug_processing+0x1d5/0x240
[756289.609812] ? __module_address+0x28/0xf0
[756289.610298] ? lock_acquire+0x1a0/0x3e0
[756289.610754] ? lock_acquired+0x19f/0x430
[756289.611220] ? lock_acquire+0x1a0/0x3e0
[756289.611675] do_writepages+0x43/0xf0
[756289.612101] ? __filemap_fdatawrite_range+0xa4/0x100
[756289.612800] __filemap_fdatawrite_range+0xc5/0x100
[756289.613393] btrfs_write_marked_extents+0x68/0x160 [btrfs]
[756289.614085] btrfs_sync_log+0x21c/0xf20 [btrfs]
[756289.614661] ? finish_wait+0x90/0x90
[756289.615096] ? __mutex_unlock_slowpath+0x45/0x2a0
[756289.615661] ? btrfs_log_inode_parent+0x3c9/0xdc0 [btrfs]
[756289.616338] ? lock_acquire+0x1a0/0x3e0
[756289.616801] ? lock_acquired+0x19f/0x430
[756289.617284] ? lock_acquire+0x1a0/0x3e0
[756289.617750] ? lock_release+0x214/0x470
[756289.618221] ? lock_acquired+0x19f/0x430
[756289.618704] ? dput+0x20/0x4a0
[756289.619079] ? dput+0x20/0x4a0
[756289.619452] ? lockref_put_or_lock+0x9/0x30
[756289.619969] ? lock_release+0x214/0x470
[756289.620445] ? lock_release+0x214/0x470
[756289.620924] ? lock_release+0x214/0x470
[756289.621415] btrfs_sync_file+0x46a/0x5b0 [btrfs]
[756289.621982] do_fsync+0x38/0x70
[756289.622395] __x64_sys_fsync+0x10/0x20
[756289.622907] do_syscall_64+0x33/0x80
[756289.623438] entry_SYSCALL_64_after_hwframe+0x44/0xae
[756289.624063] RIP: 0033:0x7f08b27fbb7b
[756289.624588] Code: 0f 05 48 3d 00 (...)
[756289.626760] RSP: 002b:00007ffe2583f940 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[756289.627639] RAX: ffffffffffffffda RBX: 00005652f32cd0f0 RCX: 00007f08b27fbb7b
[756289.628464] RDX: 00005652f32cbca0 RSI: 00005652f32cd110 RDI: 0000000000000003
[756289.629323] RBP: 00005652f32cd110 R08: 0000000000000000 R09: 00007f08b28c4be0
[756289.630172] R10: fffffffffffff39a R11: 0000000000000293 R12: 0000000000000001
[756289.631007] R13: 00005652f32cd0f0 R14: 0000000000000001 R15: 00005652f32cc480
[756289.631819] irq event stamp: 0
[756289.632188] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[756289.632911] hardirqs last disabled at (0): [<ffffffffa7e97c29>] copy_process+0x879/0x1cc0
[756289.633893] softirqs last enabled at (0): [<ffffffffa7e97c29>] copy_process+0x879/0x1cc0
[756289.634871] softirqs last disabled at (0): [<0000000000000000>] 0x0
[756289.635606] ---[ end trace 0a039fdc16ff3fef ]---
[756289.636179] BTRFS: error (device sdc) in btrfs_sync_log:3136: errno=-5 IO failure
[756289.637082] BTRFS info (device sdc): forced readonly
Having checksum items covering ranges that overlap is dangerous as in some
cases it can lead to having extent ranges for which we miss checksums
after log replay or getting the wrong checksum item. There were some fixes
in the past for bugs that resulted in this problem, and were explained and
fixed by the following commits:
27b9a8122f ("Btrfs: fix csum tree corruption, duplicate and outdated checksums")
b84b8390d6 ("Btrfs: fix file read corruption after extent cloning and fsync")
40e046acbd ("Btrfs: fix missing data checksums after replaying a log tree")
e289f03ea7 ("btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents")
Fix the issue by making btrfs_csum_file_blocks() taking into account the
start offset of the next checksum item when it decides to extend an
existing checksum item, so that it never extends the checksum to end at a
range that goes beyond the start range of the next checksum item.
When we can not access the next checksum item without releasing the path,
simply drop the optimization of extending the previous checksum item and
fallback to inserting a new checksum item - this happens rarely and the
optimization is not significant enough for a log tree in order to justify
the extra complexity, as it would only save a few bytes (the size of a
struct btrfs_item) of leaf space.
This behaviour is only needed when inserting into a log tree because
for the regular checksums tree we never have a case where we try to
insert a range of checksums that overlap with a range that was previously
inserted.
A test case for fstests will follow soon.
Reported-by: Philipp Fent <fent@in.tum.de>
Link: https://lore.kernel.org/linux-btrfs/93c4600e-5263-5cba-adf0-6f47526e7561@in.tum.de/
CC: stable@vger.kernel.org # 5.4+
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection stress uncovered a problem where we'd leave a dangling
inode ref if we failed during a rename_exchange. This happens because
we insert the inode ref for one side of the rename, and then for the
other side. If this second inode ref insert fails we'll leave the first
one dangling and leave a corrupt file system behind. Fix this by
aborting if we did the insert for the first inode ref.
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection testing uncovered a case where we ended up with invalid
link counts on an inode. This happened because we failed to notice an
error when updating the inode while replaying the tree log, and
committed the transaction with an invalid file system.
Fix this by checking the return value of btrfs_update_inode. This
resolved the link count errors I was seeing, and we already properly
handle passing up the error values in these paths.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function has the following pattern
while (1) {
ret = whatever();
if (ret)
goto out;
}
ret = 0
out:
return ret;
However several places in this while loop we simply break; when there's
a problem, thus clearing the return value, and in one case we do a
return -EIO, and leak the memory for the path.
Fix this by re-arranging the loop to deal with ret == 1 coming from
btrfs_search_slot, and then simply delete the
ret = 0;
out:
bit so everybody can break if there is an error, which will allow for
proper error handling to occur.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While doing error injection testing I saw that sometimes we'd get an
abort that wouldn't stop the current transaction commit from completing.
This abort was coming from finish ordered IO, but at this point in the
transaction commit we should have gotten an error and stopped.
It turns out the abort came from finish ordered io while trying to write
out the free space cache. It occurred to me that any failure inside of
finish_ordered_io isn't actually raised to the person doing the writing,
so we could have any number of failures in this path and think the
ordered extent completed successfully and the inode was fine.
Fix this by marking the ordered extent with BTRFS_ORDERED_IOERR, and
marking the mapping of the inode with mapping_set_error, so any callers
that simply call fdatawait will also get the error.
With this we're seeing the IO error on the free space inode when we fail
to do the finish_ordered_io.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are unconditionally returning 0 in cleanup_ref_head, despite the fact
that btrfs_del_csums could fail. We need to return the error so the
transaction gets aborted properly, fix this by returning ret from
btrfs_del_csums in cleanup_ref_head.
Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection stress would sometimes fail with checksums on disk that
did not have a corresponding extent. This occurred because the pattern
in btrfs_del_csums was
while (1) {
ret = btrfs_search_slot();
if (ret < 0)
break;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
If we got an error from btrfs_search_slot we'd clear the error because
we were breaking instead of goto out. Instead of using goto out, simply
handle the cases where we may leave a random value in ret, and get rid
of the
ret = 0;
out:
pattern and simply allow break to have the proper error reporting. With
this fix we properly abort the transaction and do not commit thinking we
successfully deleted the csum.
Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running btrfs/027 with "-o compress" mount option, it always
crashes with the following call trace:
BTRFS critical (device dm-4): mapping failed logical 298901504 bio len 12288 len 8192
------------[ cut here ]------------
kernel BUG at fs/btrfs/volumes.c:6651!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 31089 Comm: kworker/u24:10 Tainted: G OE 5.13.0-rc2-custom+ #26
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:btrfs_map_bio.cold+0x58/0x5a [btrfs]
Call Trace:
btrfs_submit_compressed_write+0x2d7/0x470 [btrfs]
submit_compressed_extents+0x3b0/0x470 [btrfs]
? mark_held_locks+0x49/0x70
btrfs_work_helper+0x131/0x3e0 [btrfs]
process_one_work+0x28f/0x5d0
worker_thread+0x55/0x3c0
? process_one_work+0x5d0/0x5d0
kthread+0x141/0x160
? __kthread_bind_mask+0x60/0x60
ret_from_fork+0x22/0x30
---[ end trace 63113a3a91f34e68 ]---
[CAUSE]
The critical message before the crash means we have a bio at logical
bytenr 298901504 length 12288, but only 8192 bytes can fit into one
stripe, the remaining 4096 bytes go to another stripe.
In btrfs, all bios are properly split to avoid cross stripe boundary,
but commit 764c7c9a46 ("btrfs: zoned: fix parallel compressed writes")
changed the behavior for compressed writes.
Previously if we find our new page can't be fitted into current stripe,
ie. "submit == 1" case, we submit current bio without adding current
page.
submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 0);
page->mapping = NULL;
if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
PAGE_SIZE) {
But after the modification, we will add the page no matter if it crosses
stripe boundary, leading to the above crash.
submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 0);
if (pg_index == 0 && use_append)
len = bio_add_zone_append_page(bio, page, PAGE_SIZE, 0);
else
len = bio_add_page(bio, page, PAGE_SIZE, 0);
page->mapping = NULL;
if (submit || len < PAGE_SIZE) {
[FIX]
It's no longer possible to revert to the original code style as we have
two different bio_add_*_page() calls now.
The new fix is to skip the bio_add_*_page() call if @submit is true.
Also to avoid @len to be uninitialized, always initialize it to zero.
If @submit is true, @len will not be checked.
If @submit is not true, @len will be the return value of
bio_add_*_page() call.
Either way, the behavior is still the same as the old code.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Fixes: 764c7c9a46 ("btrfs: zoned: fix parallel compressed writes")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When multiple processes write data to the same block group on a
compressed zoned filesystem, the underlying device could report I/O
errors and data corruption is possible.
This happens because on a zoned file system, compressed data writes
where sent to the device via a REQ_OP_WRITE instead of a
REQ_OP_ZONE_APPEND operation. But with REQ_OP_WRITE and parallel
submission it cannot be guaranteed that the data is always submitted
aligned to the underlying zone's write pointer.
The change to using REQ_OP_ZONE_APPEND instead of REQ_OP_WRITE on a
zoned filesystem is non intrusive on a regular file system or when
submitting to a conventional zone on a zoned filesystem, as it is
guarded by btrfs_use_zone_append.
Reported-by: David Sterba <dsterba@suse.com>
Fixes: 9d294a685f ("btrfs: zoned: enable to mount ZONED incompat flag")
CC: stable@vger.kernel.org # 5.12.x: e380adfc21: btrfs: zoned: pass start block to btrfs_use_zone_append
CC: stable@vger.kernel.org # 5.12.x
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_use_zone_append only needs the passed in extent_map's block_start
member, so there's no need to pass in the full extent map.
This also enables the use of btrfs_use_zone_append in places where we only
have a start byte but no extent_map.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCibywACgkQxWXV+ddt
WDs8QhAAlJ1INZGF01lP2mUhzesVIctIAPGBf/77Zsxmcu0rA6E66RVVsYMgGU54
+FWd+LwuFCtC1364OnDa2DnmYtvHfgR4If7EGowpk3qzZFeZQSLqayOFa5tZLYPG
tJStjY32QTerfZRoxPJ1QPcoWjxNMxYqYw/s68G3tTTSHEYtlH9zNHbLm9ny507x
uPHpxqKXdv3/LYHLt6XUypFqsZkMoDW98oOKvo0MZE/fjcqiDcrvAoYe+y8raFC3
FztlfA2TBmmp/PouDXLCspXAksLpVo9mgTQ0kW4K7152cC0X/zWXYNH01uQ+qTAS
OFNKt2DSRIq5TR56ZmReYvRgq0FNMotYpRpxoePSF/rwL+wnsTl7QI3r/d/h/uxQ
IzBeBv1Wd+1ZJcqnmEGx8Mws3nGswKyl4W65x8yin41djVoHgM4tYu3nGqielu+w
ifEBmU5tUGo05z2HA5kpLjDzc6MwWaCIduQvjH/I4Vgo9fhDo6pQO2dyPC50Nkk5
DQ5jfxiXJ/ZSh5NbWtIkB/OQuwkVL1nDy2jtj3qnK06HDKstK1zui5nccFKFNOiX
wtYjnGqd3+vIGIZniMuu9rbPLtG4CCerq44v1gyS6LSEycNW9/r2cOXRaiQk5pej
CoYMdnmAqzwidtn4FZPRNQ7JgyckKCXQQSGCazN2vvLCXisCUrw=
=ue6o
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes:
- fix fiemap to print extents that could get misreported due to
internal extent splitting and logical merging for fiemap output
- fix RCU stalls during delayed iputs
- fix removed dentries still existing after log is synced"
* tag 'for-5.13-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix removed dentries still existing after log is synced
btrfs: return whole extents in fiemap
btrfs: avoid RCU stalls while running delayed iputs
btrfs: return 0 for dev_extent_hole_check_zoned hole_start in case of error
When we move one inode from one directory to another and both the inode
and its previous parent directory were logged before, we are not supposed
to have the dentry for the old parent if we have a power failure after the
log is synced. Only the new dentry is supposed to exist.
Generally this works correctly, however there is a scenario where this is
not currently working, because the old parent of the file/directory that
was moved is not authoritative for a range that includes the dir index and
dir item keys of the old dentry. This case is better explained with the
following example and reproducer:
# The test requires a very specific layout of keys and items in the
# fs/subvolume btree to trigger the bug. So we want to make sure that
# on whatever platform we are, we have the same leaf/node size.
#
# Currently in btrfs the node/leaf size can not be smaller than the page
# size (but it can be greater than the page size). So use the largest
# supported node/leaf size (64K).
$ mkfs.btrfs -f -n 65536 /dev/sdc
$ mount /dev/sdc /mnt
# "testdir" is inode 257.
$ mkdir /mnt/testdir
$ chmod 755 /mnt/testdir
# Create several empty files to have the directory "testdir" with its
# items spread over several leaves (7 in this case).
$ for ((i = 1; i <= 1200; i++)); do
echo -n > /mnt/testdir/file$i
done
# Create our test directory "dira", inode number 1458, which gets all
# its items in leaf 7.
#
# The BTRFS_DIR_ITEM_KEY item for inode 257 ("testdir") that points to
# the entry named "dira" is in leaf 2, while the BTRFS_DIR_INDEX_KEY
# item that points to that entry is in leaf 3.
#
# For this particular filesystem node size (64K), file count and file
# names, we endup with the directory entry items from inode 257 in
# leaves 2 and 3, as previously mentioned - what matters for triggering
# the bug exercised by this test case is that those items are not placed
# in leaf 1, they must be placed in a leaf different from the one
# containing the inode item for inode 257.
#
# The corresponding BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY items for
# the parent inode (257) are the following:
#
# item 460 key (257 DIR_ITEM 3724298081) itemoff 48344 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
#
# and:
#
# item 771 key (257 DIR_INDEX 1202) itemoff 36673 itemsize 34
# location key (1458 INODE_ITEM 0) type DIR
# transid 6 data_len 0 name_len 4
# name: dira
$ mkdir /mnt/testdir/dira
# Make sure everything done so far is durably persisted.
$ sync
# Now do a change to inode 257 ("testdir") that does not result in
# COWing leaves 2 and 3 - the leaves that contain the directory items
# pointing to inode 1458 (directory "dira").
#
# Changing permissions, the owner/group, updating or adding a xattr,
# etc, will not change (COW) leaves 2 and 3. So for the sake of
# simplicity change the permissions of inode 257, which results in
# updating its inode item and therefore change (COW) only leaf 1.
$ chmod 700 /mnt/testdir
# Now fsync directory inode 257.
#
# Since only the first leaf was changed/COWed, we log the inode item of
# inode 257 and only the dentries found in the first leaf, all have a
# key type of BTRFS_DIR_ITEM_KEY, and no keys of type
# BTRFS_DIR_INDEX_KEY, because they sort after the former type and none
# exist in the first leaf.
#
# We also log 3 items that represent ranges for dir items and dir
# indexes for which the log is authoritative:
#
# 1) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [0, 2285968570] (the offset here is the crc32c of the
# dentry's name). The value 2285968570 corresponds to the offset of
# the first key of leaf 2 (which is of type BTRFS_DIR_ITEM_KEY);
#
# 2) a key of type BTRFS_DIR_LOG_ITEM_KEY, which indicates the log is
# authoritative for all BTRFS_DIR_ITEM_KEY keys that have an offset
# in the range [4293818216, (u64)-1] (the offset here is the crc32c
# of the dentry's name). The value 4293818216 corresponds to the
# offset of the highest key of type BTRFS_DIR_ITEM_KEY plus 1
# (4293818215 + 1), which is located in leaf 2;
#
# 3) a key of type BTRFS_DIR_LOG_INDEX_KEY, with an offset of 1203,
# which indicates the log is authoritative for all keys of type
# BTRFS_DIR_INDEX_KEY that have an offset in the range
# [1203, (u64)-1]. The value 1203 corresponds to the offset of the
# last key of type BTRFS_DIR_INDEX_KEY plus 1 (1202 + 1), which is
# located in leaf 3;
#
# Also, because "testdir" is a directory and inode 1458 ("dira") is a
# child directory, we log inode 1458 too.
$ xfs_io -c "fsync" /mnt/testdir
# Now move "dira", inode 1458, to be a child of the root directory
# (inode 256).
#
# Because this inode was previously logged, when "testdir" was fsynced,
# the log is updated so that the old inode reference, referring to inode
# 257 as the parent, is deleted and the new inode reference, referring
# to inode 256 as the parent, is added to the log.
$ mv /mnt/testdir/dira /mnt
# Now change some file and fsync it. This guarantees the log changes
# made by the previous move/rename operation are persisted. We do not
# need to do any special modification to the file, just any change to
# any file and sync the log.
$ xfs_io -c "pwrite -S 0xab 0 64K" -c "fsync" /mnt/testdir/file1
# Simulate a power failure and then mount again the filesystem to
# replay the log tree. We want to verify that we are able to mount the
# filesystem, meaning log replay was successful, and that directory
# inode 1458 ("dira") only has inode 256 (the filesystem's root) as
# its parent (and no longer a child of inode 257).
#
# It used to happen that during log replay we would end up having
# inode 1458 (directory "dira") with 2 hard links, being a child of
# inode 257 ("testdir") and inode 256 (the filesystem's root). This
# resulted in the tree checker detecting the issue and causing the
# mount operation to fail (with -EIO).
#
# This happened because in the log we have the new name/parent for
# inode 1458, which results in adding the new dentry with inode 256
# as the parent, but the previous dentry, under inode 257 was never
# removed - this is because the ranges for dir items and dir indexes
# of inode 257 for which the log is authoritative do not include the
# old dir item and dir index for the dentry of inode 257 referring to
# inode 1458:
#
# - for dir items, the log is authoritative for the ranges
# [0, 2285968570] and [4293818216, (u64)-1]. The dir item at inode 257
# pointing to inode 1458 has a key of (257 DIR_ITEM 3724298081), as
# previously mentioned, so the dir item is not deleted when the log
# replay procedure processes the authoritative ranges, as 3724298081
# is outside both ranges;
#
# - for dir indexes, the log is authoritative for the range
# [1203, (u64)-1], and the dir index item of inode 257 pointing to
# inode 1458 has a key of (257 DIR_INDEX 1202), as previously
# mentioned, so the dir index item is not deleted when the log
# replay procedure processes the authoritative range.
<power failure>
$ mount /dev/sdc /mnt
mount: /mnt: can't read superblock on /dev/sdc.
$ dmesg
(...)
[87849.840509] BTRFS info (device sdc): start tree-log replay
[87849.875719] BTRFS critical (device sdc): corrupt leaf: root=5 block=30539776 slot=554 ino=1458, invalid nlink: has 2 expect no more than 1 for dir
[87849.878084] BTRFS info (device sdc): leaf 30539776 gen 7 total ptrs 557 free space 2092 owner 5
[87849.879516] BTRFS info (device sdc): refs 1 lock_owner 0 current 2099108
[87849.880613] item 0 key (1181 1 0) itemoff 65275 itemsize 160
[87849.881544] inode generation 6 size 0 mode 100644
[87849.882692] item 1 key (1181 12 257) itemoff 65258 itemsize 17
(...)
[87850.562549] item 556 key (1458 12 257) itemoff 16017 itemsize 14
[87850.563349] BTRFS error (device dm-0): block=30539776 write time tree block corruption detected
[87850.564386] ------------[ cut here ]------------
[87850.564920] WARNING: CPU: 3 PID: 2099108 at fs/btrfs/disk-io.c:465 csum_one_extent_buffer+0xed/0x100 [btrfs]
[87850.566129] Modules linked in: btrfs dm_zero dm_snapshot (...)
[87850.573789] CPU: 3 PID: 2099108 Comm: mount Not tainted 5.12.0-rc8-btrfs-next-86 #1
(...)
[87850.587481] Call Trace:
[87850.587768] btree_csum_one_bio+0x244/0x2b0 [btrfs]
[87850.588354] ? btrfs_bio_fits_in_stripe+0xd8/0x110 [btrfs]
[87850.589003] btrfs_submit_metadata_bio+0xb7/0x100 [btrfs]
[87850.589654] submit_one_bio+0x61/0x70 [btrfs]
[87850.590248] submit_extent_page+0x91/0x2f0 [btrfs]
[87850.590842] write_one_eb+0x175/0x440 [btrfs]
[87850.591370] ? find_extent_buffer_nolock+0x1c0/0x1c0 [btrfs]
[87850.592036] btree_write_cache_pages+0x1e6/0x610 [btrfs]
[87850.592665] ? free_debug_processing+0x1d5/0x240
[87850.593209] do_writepages+0x43/0xf0
[87850.593798] ? __filemap_fdatawrite_range+0xa4/0x100
[87850.594391] __filemap_fdatawrite_range+0xc5/0x100
[87850.595196] btrfs_write_marked_extents+0x68/0x160 [btrfs]
[87850.596202] btrfs_write_and_wait_transaction.isra.0+0x4d/0xd0 [btrfs]
[87850.597377] btrfs_commit_transaction+0x794/0xca0 [btrfs]
[87850.598455] ? _raw_spin_unlock_irqrestore+0x32/0x60
[87850.599305] ? kmem_cache_free+0x15a/0x3d0
[87850.600029] btrfs_recover_log_trees+0x346/0x380 [btrfs]
[87850.601021] ? replay_one_extent+0x7d0/0x7d0 [btrfs]
[87850.601988] open_ctree+0x13c9/0x1698 [btrfs]
[87850.602846] btrfs_mount_root.cold+0x13/0xed [btrfs]
[87850.603771] ? kmem_cache_alloc_trace+0x7c9/0x930
[87850.604576] ? vfs_parse_fs_string+0x5d/0xb0
[87850.605293] ? kfree+0x276/0x3f0
[87850.605857] legacy_get_tree+0x30/0x50
[87850.606540] vfs_get_tree+0x28/0xc0
[87850.607163] fc_mount+0xe/0x40
[87850.607695] vfs_kern_mount.part.0+0x71/0x90
[87850.608440] btrfs_mount+0x13b/0x3e0 [btrfs]
(...)
[87850.629477] ---[ end trace 68802022b99a1ea0 ]---
[87850.630849] BTRFS: error (device sdc) in btrfs_commit_transaction:2381: errno=-5 IO failure (Error while writing out transaction)
[87850.632422] BTRFS warning (device sdc): Skipping commit of aborted transaction.
[87850.633416] BTRFS: error (device sdc) in cleanup_transaction:1978: errno=-5 IO failure
[87850.634553] BTRFS: error (device sdc) in btrfs_replay_log:2431: errno=-5 IO failure (Failed to recover log tree)
[87850.637529] BTRFS error (device sdc): open_ctree failed
In this example the inode we moved was a directory, so it was easy to
detect the problem because directories can only have one hard link and
the tree checker immediately detects that. If the moved inode was a file,
then the log replay would succeed and we would end up having both the
new hard link (/mnt/foo) and the old hard link (/mnt/testdir/foo) present,
but only the new one should be present.
Fix this by forcing re-logging of the old parent directory when logging
the new name during a rename operation. This ensures we end up with a log
that is authoritative for a range covering the keys for the old dentry,
therefore causing the old dentry do be deleted when replaying the log.
A test case for fstests will follow up soon.
Fixes: 64d6b281ba ("btrfs: remove unnecessary check_parent_dirs_for_sync()")
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
`xfs_io -c 'fiemap <off> <len>' <file>`
can give surprising results on btrfs that differ from xfs.
btrfs prints out extents trimmed to fit the user input. If the user's
fiemap request has an offset, then rather than returning each whole
extent which intersects that range, we also trim the start extent to not
have start < off.
Documentation in filesystems/fiemap.txt and the xfs_io man page suggests
that returning the whole extent is expected.
Some cases which all yield the same fiemap in xfs, but not btrfs:
dd if=/dev/zero of=$f bs=4k count=1
sudo xfs_io -c 'fiemap 0 1024' $f
0: [0..7]: 26624..26631
sudo xfs_io -c 'fiemap 2048 1024' $f
0: [4..7]: 26628..26631
sudo xfs_io -c 'fiemap 2048 4096' $f
0: [4..7]: 26628..26631
sudo xfs_io -c 'fiemap 3584 512' $f
0: [7..7]: 26631..26631
sudo xfs_io -c 'fiemap 4091 5' $f
0: [7..6]: 26631..26630
I believe this is a consequence of the logic for merging contiguous
extents represented by separate extent items. That logic needs to track
the last offset as it loops through the extent items, which happens to
pick up the start offset on the first iteration, and trim off the
beginning of the full extent. To fix it, start `off` at 0 rather than
`start` so that we keep the iteration/merging intact without cutting off
the start of the extent.
after the fix, all the above commands give:
0: [0..7]: 26624..26631
The merging logic is exercised by fstest generic/483, and I have written
a new fstest for checking we don't have backwards or zero-length fiemaps
for cases like those above.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Generally a delayed iput is added when we might do the final iput, so
usually we'll end up sleeping while processing the delayed iputs
naturally. However there's no guarantee of this, especially for small
files. In production we noticed 5 instances of RCU stalls while testing
a kernel release overnight across 1000 machines, so this is relatively
common:
host count: 5
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: ....: (20998 ticks this GP) idle=59e/1/0x4000000000000002 softirq=12333372/12333372 fqs=3208
(t=21031 jiffies g=27810193 q=41075) NMI backtrace for cpu 1
CPU: 1 PID: 1713 Comm: btrfs-cleaner Kdump: loaded Not tainted 5.6.13-0_fbk12_rc1_5520_gec92bffc1ec9 #1
Call Trace:
<IRQ> dump_stack+0x50/0x70
nmi_cpu_backtrace.cold.6+0x30/0x65
? lapic_can_unplug_cpu.cold.30+0x40/0x40
nmi_trigger_cpumask_backtrace+0xba/0xca
rcu_dump_cpu_stacks+0x99/0xc7
rcu_sched_clock_irq.cold.90+0x1b2/0x3a3
? trigger_load_balance+0x5c/0x200
? tick_sched_do_timer+0x60/0x60
? tick_sched_do_timer+0x60/0x60
update_process_times+0x24/0x50
tick_sched_timer+0x37/0x70
__hrtimer_run_queues+0xfe/0x270
hrtimer_interrupt+0xf4/0x210
smp_apic_timer_interrupt+0x5e/0x120
apic_timer_interrupt+0xf/0x20 </IRQ>
RIP: 0010:queued_spin_lock_slowpath+0x17d/0x1b0
RSP: 0018:ffffc9000da5fe48 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000000 RBX: ffff889fa81d0cd8 RCX: 0000000000000029
RDX: ffff889fff86c0c0 RSI: 0000000000080000 RDI: ffff88bfc2da7200
RBP: ffff888f2dcdd768 R08: 0000000001040000 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff82a55560 R12: ffff88bfc2da7200
R13: 0000000000000000 R14: ffff88bff6c2a360 R15: ffffffff814bd870
? kzalloc.constprop.57+0x30/0x30
list_lru_add+0x5a/0x100
inode_lru_list_add+0x20/0x40
iput+0x1c1/0x1f0
run_delayed_iput_locked+0x46/0x90
btrfs_run_delayed_iputs+0x3f/0x60
cleaner_kthread+0xf2/0x120
kthread+0x10b/0x130
Fix this by adding a cond_resched_lock() to the loop processing delayed
iputs so we can avoid these sort of stalls.
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 7000babdda ("btrfs: assign proper values to a bool variable in
dev_extent_hole_check_zoned") assigned false to the hole_start parameter
of dev_extent_hole_check_zoned().
The hole_start parameter is not boolean and returns the start location of
the found hole.
Fixes: 7000babdda ("btrfs: assign proper values to a bool variable in dev_extent_hole_check_zoned")
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCaiuQACgkQxWXV+ddt
WDv3Ww//bDUlNXqAYEoLKePohy1bupiqG8lKYX4s4bGEq0x0cyh4qVER/Q/lU2l2
AMf8t6Pwr/iBOPwfckreLDuFrhacvWq0K4eMkgpf++3P0Mzbj2sIBX0+XnrWluRL
yFCZudJej+cpM55Ve4l6M8zrk1nbzYJLFPRRdOIFe4HonWkhI/zY6RD7kFybQevW
mAxqMgIpUQAjoj5F/EhwXQ9dk6PXSZj+gaOoNrmQmN7mZMqNgSLHBEoJUHrotm1K
rDlEwIRUTtNPV+rcPxcXD1GFiUxU0cZhg0jts252z89Mvaqb2g/YKaHPAR/IVIt5
enf4llZzoEeiMnHuSj9zCg4HxOvCCFV8zZYXlO7/9IqdgLJjQkElZoqTz45obWdE
aoJrHAWWlulS2jPocJfJ/Zti2xBYGLjQASH0kYS+vjVxjKyqz3fuM1Tsasaf9Mcp
+M2m6yMBjJ0nJMTL2CgBksCd0dHwfiBZ/YYClrMSjYlzYSU6ofA2b2hej0OjqZ4X
FmpEmCBK4lySdJI+JlJKikeneOOxKSpT0xGqU+OMmbpwFH3k1N3oseu0hrG8Xreo
RU1xNbekGTwRbCcCA9l5HQ/RYptT7rt/KqkC70UFEvdIijCNcptOGaTAoYvLS14O
T+yu0Cizt7O0Fdg5E+MAS/qaI2yacXxBfIkMDbPxHGUg7+vUteM=
=Phtq
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"Handle transaction start error in btrfs_fileattr_set()
This is fix for code introduced by the new fileattr merge"
* tag 'for-5.13-rc1-part2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: handle transaction start error in btrfs_fileattr_set
Add error handling in btrfs_fileattr_set in case of an error while
starting a transaction. This fixes btrfs/232 which otherwise used to
fail with below signature on Power.
btrfs/232 [ 1119.474650] run fstests btrfs/232 at 2021-04-21 02:21:22
<...>
[ 1366.638585] BUG: Unable to handle kernel data access on read at 0xffffffffffffff86
[ 1366.638768] Faulting instruction address: 0xc0000000009a5c88
cpu 0x0: Vector: 380 (Data SLB Access) at [c000000014f177b0]
pc: c0000000009a5c88: btrfs_update_root_times+0x58/0xc0
lr: c0000000009a5c84: btrfs_update_root_times+0x54/0xc0
<...>
pid = 24881, comm = fsstress
btrfs_update_inode+0xa0/0x140
btrfs_fileattr_set+0x5d0/0x6f0
vfs_fileattr_set+0x2a8/0x390
do_vfs_ioctl+0x1290/0x1ac0
sys_ioctl+0x6c/0x120
system_call_exception+0x3d4/0x410
system_call_common+0xec/0x278
Fixes: 97fc297754 ("btrfs: convert to fileattr")
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmCZnCIACgkQxWXV+ddt
WDuEvhAAmC+Mkrz25GbQnSIp2FKYCCQK34D0rdghml0Bc0cJcDh3yhgIB6ZTHZ7e
Z+UZu84ISK31OHKDzXtX0MINN2wuU4u4kd6PHtYj0wSVl3cX6E/K5j6YcThfI1Ru
vCW5O87V9SCV5NnykIFt3sbYvsPKtF9lhgPQprj4np+wxaSyNlEF2c+zLTI3J7NV
+8OlM4oi8GocZd1aAwGpVM3qUPyQSHEb9oUEp6aV1ERuAs6LIyeGks3Cag6gjPnq
dYz3jV9HyZB5GtX0dmv4LeRFIog1uFi+SIEFl5RpqhB3sXN3n6XHMka4x20FXiWy
PfX9+Nf4bQGx6F9rGsgHNHQP5dVhHAkZcq3E0n0yshIfNe8wDHBRlmk0wbfj4K7I
VYv85SxEYpigG8KzF5gjiar4EqsaJVQcJioMxVE7z9vrW6xlOWD1lf/ViUZnB3wd
IQEyGz2qOe9eqJD+dnyN7QkN9WKGSUr2p1Q/DngCIwFzKWf1qIlETNXrIL+AZ97r
v4G5mMq9dCxs3s8c5SGbdF9qqK8gEuaV3iWQAoKOciuy6fbc553Q90I1v3OhW+by
j2yVoo3nJbBJBuLBNWPDUlwxQF/EHPQ6nh3fvxNRgwksXgRmqywdJb5dQ8hcKgSH
RsvinJhtKo5rTgtgGgmNvmLAjKIieW1lIVG4ha0O/m49HeaohDE=
=GNNs
-----END PGP SIGNATURE-----
Merge tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"First batch of various fixes, here's a list of notable ones:
- fix unmountable seed device after fstrim
- fix silent data loss in zoned mode due to ordered extent splitting
- fix race leading to unpersisted data and metadata on fsync
- fix deadlock when cloning inline extents and using qgroups"
* tag 'for-5.13-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: initialize return variable in cleanup_free_space_cache_v1
btrfs: zoned: sanity check zone type
btrfs: fix unmountable seed device after fstrim
btrfs: fix deadlock when cloning inline extents and using qgroups
btrfs: fix race leading to unpersisted data and metadata on fsync
btrfs: do not consider send context as valid when trying to flush qgroups
btrfs: zoned: fix silent data loss after failure splitting ordered extent
There are many places where kmap/memset/kunmap patterns occur.
Use the newly lifted memzero_page() to eliminate direct uses of kmap and
leverage the new core functions use of kmap_local_page().
The development of this patch was aided by the following coccinelle
script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memset/kunmap pattern and replace with memset*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// Then the memset pattern
//
@ memset_rule1 @
expression page, V, L, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memset(ptr, 0, L);
+memzero_page(page, 0, L);
|
-memset(ptr + Off, 0, L);
+memzero_page(page, Off, L);
|
-memset(ptr, V, L);
+memset_page(page, V, 0, L);
|
-memset(ptr + Off, V, L);
+memset_page(page, V, Off, L);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule1
@
identifier memset_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Catch all
//
@ memset_rule2 @
expression page;
identifier ptr;
expression GenTo, GenSize, GenValue;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memset/memcpy
// The follow are catch alls which need to be evaluated by hand.
//
-memset(GenTo, 0, GenSize);
+memzero_pageExtra(page, GenTo, GenSize);
|
-memset(GenTo, GenValue, GenSize);
+memset_pageExtra(page, GenValue, GenTo, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule2
@
identifier memset_rule2.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// </smpl>
Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Static analysis reports this problem
free-space-cache.c:3965:2: warning: Undefined or garbage value returned
return ret;
^~~~~~~~~~
ret is set in the node handling loop. Treat doing nothing as a success
and initialize ret to 0, although it's unlikely the loop would be
skipped. We always have block groups, but as it could lead to
transaction abort in the caller it's better to be safe.
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fstests test case generic/475 creates a dm-linear device that gets
changed to a dm-error device. This leads to errors in loading the block
group's zone information when running on a zoned file system, ultimately
resulting in a list corruption. When running on a kernel with list
debugging enabled this leads to the following crash.
BTRFS: error (device dm-2) in cleanup_transaction:1953: errno=-5 IO failure
kernel BUG at lib/list_debug.c:54!
invalid opcode: 0000 [#1] SMP PTI
CPU: 1 PID: 2433 Comm: umount Tainted: G W 5.12.0+ #1018
RIP: 0010:__list_del_entry_valid.cold+0x1d/0x47
RSP: 0018:ffffc90001473df0 EFLAGS: 00010296
RAX: 0000000000000054 RBX: ffff8881038fd000 RCX: ffffc90001473c90
RDX: 0000000100001a31 RSI: 0000000000000003 RDI: 0000000000000003
RBP: ffff888308871108 R08: 0000000000000003 R09: 0000000000000001
R10: 3961373532383838 R11: 6666666620736177 R12: ffff888308871000
R13: ffff8881038fd088 R14: ffff8881038fdc78 R15: dead000000000100
FS: 00007f353c9b1540(0000) GS:ffff888627d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f353cc2c710 CR3: 000000018e13c000 CR4: 00000000000006a0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_free_block_groups+0xc9/0x310 [btrfs]
close_ctree+0x2ee/0x31a [btrfs]
? call_rcu+0x8f/0x270
? mutex_lock+0x1c/0x40
generic_shutdown_super+0x67/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x90
cleanup_mnt+0x13e/0x1b0
task_work_run+0x63/0xb0
exit_to_user_mode_loop+0xd9/0xe0
exit_to_user_mode_prepare+0x3e/0x60
syscall_exit_to_user_mode+0x1d/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xae
As dm-error has no support for zones, btrfs will run it's zone emulation
mode on this device. The zone emulation mode emulates conventional zones,
so bail out if the zone bitmap that gets populated on mount sees the zone
as sequential while we're thinking it's a conventional zone when creating
a block group.
Note: this scenario is unlikely in a real wold application and can only
happen by this (ab)use of device-mapper targets.
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The following test case reproduces an issue of wrongly freeing in-use
blocks on the readonly seed device when fstrim is called on the rw sprout
device. As shown below.
Create a seed device and add a sprout device to it:
$ mkfs.btrfs -fq -dsingle -msingle /dev/loop0
$ btrfstune -S 1 /dev/loop0
$ mount /dev/loop0 /btrfs
$ btrfs dev add -f /dev/loop1 /btrfs
BTRFS info (device loop0): relocating block group 290455552 flags system
BTRFS info (device loop0): relocating block group 1048576 flags system
BTRFS info (device loop0): disk added /dev/loop1
$ umount /btrfs
Mount the sprout device and run fstrim:
$ mount /dev/loop1 /btrfs
$ fstrim /btrfs
$ umount /btrfs
Now try to mount the seed device, and it fails:
$ mount /dev/loop0 /btrfs
mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error.
Block 5292032 is missing on the readonly seed device:
$ dmesg -kt | tail
<snip>
BTRFS error (device loop0): bad tree block start, want 5292032 have 0
BTRFS warning (device loop0): couldn't read-tree root
BTRFS error (device loop0): open_ctree failed
From the dump-tree of the seed device (taken before the fstrim). Block
5292032 belonged to the block group starting at 5242880:
$ btrfs inspect dump-tree -e /dev/loop0 | grep -A1 BLOCK_GROUP
<snip>
item 3 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16169 itemsize 24
block group used 114688 chunk_objectid 256 flags METADATA
<snip>
From the dump-tree of the sprout device (taken before the fstrim).
fstrim used block-group 5242880 to find the related free space to free:
$ btrfs inspect dump-tree -e /dev/loop1 | grep -A1 BLOCK_GROUP
<snip>
item 1 key (5242880 BLOCK_GROUP_ITEM 8388608) itemoff 16226 itemsize 24
block group used 32768 chunk_objectid 256 flags METADATA
<snip>
BPF kernel tracing the fstrim command finds the missing block 5292032
within the range of the discarded blocks as below:
kprobe:btrfs_discard_extent {
printf("freeing start %llu end %llu num_bytes %llu:\n",
arg1, arg1+arg2, arg2);
}
freeing start 5259264 end 5406720 num_bytes 147456
<snip>
Fix this by avoiding the discard command to the readonly seed device.
Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few exceptional cases where cloning an inline extent needs to
copy the inline extent data into a page of the destination inode.
When this happens, we end up starting a transaction while having a dirty
page for the destination inode and while having the range locked in the
destination's inode iotree too. Because when reserving metadata space
for a transaction we may need to flush existing delalloc in case there is
not enough free space, we have a mechanism in place to prevent a deadlock,
which was introduced in commit 3d45f221ce ("btrfs: fix deadlock when
cloning inline extent and low on free metadata space").
However when using qgroups, a transaction also reserves metadata qgroup
space, which can also result in flushing delalloc in case there is not
enough available space at the moment. When this happens we deadlock, since
flushing delalloc requires locking the file range in the inode's iotree
and the range was already locked at the very beginning of the clone
operation, before attempting to start the transaction.
When this issue happens, stack traces like the following are reported:
[72747.556262] task:kworker/u81:9 state:D stack: 0 pid: 225 ppid: 2 flags:0x00004000
[72747.556268] Workqueue: writeback wb_workfn (flush-btrfs-1142)
[72747.556271] Call Trace:
[72747.556273] __schedule+0x296/0x760
[72747.556277] schedule+0x3c/0xa0
[72747.556279] io_schedule+0x12/0x40
[72747.556284] __lock_page+0x13c/0x280
[72747.556287] ? generic_file_readonly_mmap+0x70/0x70
[72747.556325] extent_write_cache_pages+0x22a/0x440 [btrfs]
[72747.556331] ? __set_page_dirty_nobuffers+0xe7/0x160
[72747.556358] ? set_extent_buffer_dirty+0x5e/0x80 [btrfs]
[72747.556362] ? update_group_capacity+0x25/0x210
[72747.556366] ? cpumask_next_and+0x1a/0x20
[72747.556391] extent_writepages+0x44/0xa0 [btrfs]
[72747.556394] do_writepages+0x41/0xd0
[72747.556398] __writeback_single_inode+0x39/0x2a0
[72747.556403] writeback_sb_inodes+0x1ea/0x440
[72747.556407] __writeback_inodes_wb+0x5f/0xc0
[72747.556410] wb_writeback+0x235/0x2b0
[72747.556414] ? get_nr_inodes+0x35/0x50
[72747.556417] wb_workfn+0x354/0x490
[72747.556420] ? newidle_balance+0x2c5/0x3e0
[72747.556424] process_one_work+0x1aa/0x340
[72747.556426] worker_thread+0x30/0x390
[72747.556429] ? create_worker+0x1a0/0x1a0
[72747.556432] kthread+0x116/0x130
[72747.556435] ? kthread_park+0x80/0x80
[72747.556438] ret_from_fork+0x1f/0x30
[72747.566958] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[72747.566961] Call Trace:
[72747.566964] __schedule+0x296/0x760
[72747.566968] ? finish_wait+0x80/0x80
[72747.566970] schedule+0x3c/0xa0
[72747.566995] wait_extent_bit.constprop.68+0x13b/0x1c0 [btrfs]
[72747.566999] ? finish_wait+0x80/0x80
[72747.567024] lock_extent_bits+0x37/0x90 [btrfs]
[72747.567047] btrfs_invalidatepage+0x299/0x2c0 [btrfs]
[72747.567051] ? find_get_pages_range_tag+0x2cd/0x380
[72747.567076] __extent_writepage+0x203/0x320 [btrfs]
[72747.567102] extent_write_cache_pages+0x2bb/0x440 [btrfs]
[72747.567106] ? update_load_avg+0x7e/0x5f0
[72747.567109] ? enqueue_entity+0xf4/0x6f0
[72747.567134] extent_writepages+0x44/0xa0 [btrfs]
[72747.567137] ? enqueue_task_fair+0x93/0x6f0
[72747.567140] do_writepages+0x41/0xd0
[72747.567144] __filemap_fdatawrite_range+0xc7/0x100
[72747.567167] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[72747.567195] btrfs_work_helper+0xc2/0x300 [btrfs]
[72747.567200] process_one_work+0x1aa/0x340
[72747.567202] worker_thread+0x30/0x390
[72747.567205] ? create_worker+0x1a0/0x1a0
[72747.567208] kthread+0x116/0x130
[72747.567211] ? kthread_park+0x80/0x80
[72747.567214] ret_from_fork+0x1f/0x30
[72747.569686] task:fsstress state:D stack: 0 pid:841421 ppid:841417 flags:0x00000000
[72747.569689] Call Trace:
[72747.569691] __schedule+0x296/0x760
[72747.569694] schedule+0x3c/0xa0
[72747.569721] try_flush_qgroup+0x95/0x140 [btrfs]
[72747.569725] ? finish_wait+0x80/0x80
[72747.569753] btrfs_qgroup_reserve_data+0x34/0x50 [btrfs]
[72747.569781] btrfs_check_data_free_space+0x5f/0xa0 [btrfs]
[72747.569804] btrfs_buffered_write+0x1f7/0x7f0 [btrfs]
[72747.569810] ? path_lookupat.isra.48+0x97/0x140
[72747.569833] btrfs_file_write_iter+0x81/0x410 [btrfs]
[72747.569836] ? __kmalloc+0x16a/0x2c0
[72747.569839] do_iter_readv_writev+0x160/0x1c0
[72747.569843] do_iter_write+0x80/0x1b0
[72747.569847] vfs_writev+0x84/0x140
[72747.569869] ? btrfs_file_llseek+0x38/0x270 [btrfs]
[72747.569873] do_writev+0x65/0x100
[72747.569876] do_syscall_64+0x33/0x40
[72747.569879] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[72747.569899] task:fsstress state:D stack: 0 pid:841424 ppid:841417 flags:0x00004000
[72747.569903] Call Trace:
[72747.569906] __schedule+0x296/0x760
[72747.569909] schedule+0x3c/0xa0
[72747.569936] try_flush_qgroup+0x95/0x140 [btrfs]
[72747.569940] ? finish_wait+0x80/0x80
[72747.569967] __btrfs_qgroup_reserve_meta+0x36/0x50 [btrfs]
[72747.569989] start_transaction+0x279/0x580 [btrfs]
[72747.570014] clone_copy_inline_extent+0x332/0x490 [btrfs]
[72747.570041] btrfs_clone+0x5b7/0x7a0 [btrfs]
[72747.570068] ? lock_extent_bits+0x64/0x90 [btrfs]
[72747.570095] btrfs_clone_files+0xfc/0x150 [btrfs]
[72747.570122] btrfs_remap_file_range+0x3d8/0x4a0 [btrfs]
[72747.570126] do_clone_file_range+0xed/0x200
[72747.570131] vfs_clone_file_range+0x37/0x110
[72747.570134] ioctl_file_clone+0x7d/0xb0
[72747.570137] do_vfs_ioctl+0x138/0x630
[72747.570140] __x64_sys_ioctl+0x62/0xc0
[72747.570143] do_syscall_64+0x33/0x40
[72747.570146] entry_SYSCALL_64_after_hwframe+0x44/0xa9
So fix this by skipping the flush of delalloc for an inode that is
flagged with BTRFS_INODE_NO_DELALLOC_FLUSH, meaning it is currently under
such a special case of cloning an inline extent, when flushing delalloc
during qgroup metadata reservation.
The special cases for cloning inline extents were added in kernel 5.7 by
by commit 05a5a7621c ("Btrfs: implement full reflink support for
inline extents"), while having qgroup metadata space reservation flushing
delalloc when low on space was added in kernel 5.9 by commit
c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get
-EDQUOT"). So use a "Fixes:" tag for the later commit to ease stable
kernel backports.
Reported-by: Wang Yugui <wangyugui@e16-tech.com>
Link: https://lore.kernel.org/linux-btrfs/20210421083137.31E3.409509F4@e16-tech.com/
Fixes: c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a fast fsync on a file, there is a race which can result in the
fsync returning success to user space without logging the inode and without
durably persisting new data.
The following example shows one possible scenario for this:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/baz
# Now we have:
# file bar == inode 257
# file baz == inode 258
$ mv /mnt/baz /mnt/foo
# Now we have:
# file bar == inode 257
# file foo == inode 258
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
# fsync bar before foo, it is important to trigger the race.
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
# After this:
# inode 257, file bar, is empty
# inode 258, file foo, has 1M filled with 0xcd
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo should have 1M filled with 0xcd and not 0xab
The following steps explain how the race happens:
1) Before the first fsync of inode 258, when it has the "baz" name, its
->logged_trans is 0, ->last_sub_trans is 0 and ->last_log_commit is -1.
The inode also has the full sync flag set;
2) After the first fsync, we set inode 258 ->logged_trans to 6, which is
the generation of the current transaction, and set ->last_log_commit
to 0, which is the current value of ->last_sub_trans (done at
btrfs_log_inode()).
The full sync flag is cleared from the inode during the fsync.
The log sub transaction that was committed had an ID of 0 and when we
synced the log, at btrfs_sync_log(), we incremented root->log_transid
from 0 to 1;
3) During the rename:
We update inode 258, through btrfs_update_inode(), and that causes its
->last_sub_trans to be set to 1 (the current log transaction ID), and
->last_log_commit remains with a value of 0.
After updating inode 258, because we have previously logged the inode
in the previous fsync, we log again the inode through the call to
btrfs_log_new_name(). This results in updating the inode's
->last_log_commit from 0 to 1 (the current value of its
->last_sub_trans).
The ->last_sub_trans of inode 257 is updated to 1, which is the ID of
the next log transaction;
4) Then a buffered write against inode 258 is made. This leaves the value
of ->last_sub_trans as 1 (the ID of the current log transaction, stored
at root->log_transid);
5) Then an fsync against inode 257 (or any other inode other than 258),
happens. This results in committing the log transaction with ID 1,
which results in updating root->last_log_commit to 1 and bumping
root->log_transid from 1 to 2;
6) Then an fsync against inode 258 starts. We flush delalloc and wait only
for writeback to complete, since the full sync flag is not set in the
inode's runtime flags - we do not wait for ordered extents to complete.
Then, at btrfs_sync_file(), we call btrfs_inode_in_log() before the
ordered extent completes. The call returns true:
static inline bool btrfs_inode_in_log(...)
{
bool ret = false;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit)
ret = true;
spin_unlock(&inode->lock);
return ret;
}
generation has a value of 6 (fs_info->generation), ->logged_trans also
has a value of 6 (set when we logged the inode during the first fsync
and when logging it during the rename), ->last_sub_trans has a value
of 1, set during the rename (step 3), ->last_log_commit also has a
value of 1 (set in step 3) and root->last_log_commit has a value of 1,
which was set in step 5 when fsyncing inode 257.
As a consequence we don't log the inode, any new extents and do not
sync the log, resulting in a data loss if a power failure happens
after the fsync and before the current transaction commits.
Also, because we do not log the inode, after a power failure the mtime
and ctime of the inode do not match those we had before.
When the ordered extent completes before we call btrfs_inode_in_log(),
then the call returns false and we log the inode and sync the log,
since at the end of ordered extent completion we update the inode and
set ->last_sub_trans to 2 (the value of root->log_transid) and
->last_log_commit to 1.
This problem is found after removing the check for the emptiness of the
inode's list of modified extents in the recent commit 209ecbb858
("btrfs: remove stale comment and logic from btrfs_inode_in_log()"),
added in the 5.13 merge window. However checking the emptiness of the
list is not really the way to solve this problem, and was never intended
to, because while that solves the problem for COW writes, the problem
persists for NOCOW writes because in that case the list is always empty.
In the case of NOCOW writes, even though we wait for the writeback to
complete before returning from btrfs_sync_file(), we end up not logging
the inode, which has a new mtime/ctime, and because we don't sync the log,
we never issue disk barriers (send REQ_PREFLUSH to the device) since that
only happens when we sync the log (when we write super blocks at
btrfs_sync_log()). So effectively, for a NOCOW case, when we return from
btrfs_sync_file() to user space, we are not guaranteeing that the data is
durably persisted on disk.
Also, while the example above uses a rename exchange to show how the
problem happens, it is not the only way to trigger it. An alternative
could be adding a new hard link to inode 258, since that also results
in calling btrfs_log_new_name() and updating the inode in the log.
An example reproducer using the addition of a hard link instead of a
rename operation:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/foo
$ ln /mnt/foo /mnt/foo_link
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo often has 1M filled with 0xab and not 0xcd
The reasons leading to the final fsync of file foo, inode 258, not
persisting the new data are the same as for the previous example with
a rename operation.
So fix by never skipping logging and log syncing when there are still any
ordered extents in flight. To avoid making the conditional if statement
that checks if logging an inode is needed harder to read, place all the
logic into an helper function with separate if statements to make it more
manageable and easier to read.
A test case for fstests will follow soon.
For NOCOW writes, the problem existed before commit b5e6c3e170
("btrfs: always wait on ordered extents at fsync time"), introduced in
kernel 4.19, then it went away with that commit since we started to always
wait for ordered extent completion before logging.
The problem came back again once the fast fsync path was changed again to
avoid waiting for ordered extent completion, in commit 487781796d
("btrfs: make fast fsyncs wait only for writeback"), added in kernel 5.10.
However, for COW writes, the race only happens after the recent
commit 209ecbb858 ("btrfs: remove stale comment and logic from
btrfs_inode_in_log()"), introduced in the 5.13 merge window. For NOCOW
writes, the bug existed before that commit. So tag 5.10+ as the release
for stable backports.
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At qgroup.c:try_flush_qgroup() we are asserting that current->journal_info
is either NULL or has the value BTRFS_SEND_TRANS_STUB.
However allowing for BTRFS_SEND_TRANS_STUB makes no sense because:
1) It is misleading, because send operations are read-only and do not
ever need to reserve qgroup space;
2) We already assert that current->journal_info != BTRFS_SEND_TRANS_STUB
at transaction.c:start_transaction();
3) On a kernel without CONFIG_BTRFS_ASSERT=y set, it would result in
a crash if try_flush_qgroup() is ever called in a send context, because
at transaction.c:start_transaction we cast current->journal_info into
a struct btrfs_trans_handle pointer and then dereference it.
So just do allow a send context at try_flush_qgroup() and update the
comment about it.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On a zoned filesystem, sometimes we need to split an ordered extent into 3
different ordered extents. The original ordered extent is shortened, at
the front and at the rear, and we create two other new ordered extents to
represent the trimmed parts of the original ordered extent.
After adjusting the original ordered extent, we create an ordered extent
to represent the pre-range, and that may fail with ENOMEM for example.
After that we always try to create the ordered extent for the post-range,
and if that happens to succeed we end up returning success to the caller
as we overwrite the 'ret' variable which contained the previous error.
This means we end up with a file range for which there is no ordered
extent, which results in the range never getting a new file extent item
pointing to the new data location. And since the split operation did
not return an error, writeback does not fail and the inode's mapping is
not flagged with an error, resulting in a subsequent fsync not reporting
an error either.
It's possibly very unlikely to have the creation of the post-range ordered
extent succeed after the creation of the pre-range ordered extent failed,
but it's not impossible.
So fix this by making sure we only create the post-range ordered extent
if there was no error creating the ordered extent for the pre-range.
Fixes: d22002fd37 ("btrfs: zoned: split ordered extent when bio is sent")
CC: stable@vger.kernel.org # 5.12+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull fileattr conversion updates from Miklos Szeredi via Al Viro:
"This splits the handling of FS_IOC_[GS]ETFLAGS from ->ioctl() into a
separate method.
The interface is reasonably uniform across the filesystems that
support it and gives nice boilerplate removal"
* 'miklos.fileattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (23 commits)
ovl: remove unneeded ioctls
fuse: convert to fileattr
fuse: add internal open/release helpers
fuse: unsigned open flags
fuse: move ioctl to separate source file
vfs: remove unused ioctl helpers
ubifs: convert to fileattr
reiserfs: convert to fileattr
ocfs2: convert to fileattr
nilfs2: convert to fileattr
jfs: convert to fileattr
hfsplus: convert to fileattr
efivars: convert to fileattr
xfs: convert to fileattr
orangefs: convert to fileattr
gfs2: convert to fileattr
f2fs: convert to fileattr
ext4: convert to fileattr
ext2: convert to fileattr
btrfs: convert to fileattr
...
- Clean up list_sort prototypes (Sami Tolvanen)
- Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmCHCR8ACgkQiXL039xt
wCZyFQ//fnUZaXR2K354zDyW6CJljMf+d94RF6rH+J6eMTH2/HXa5v0iJokwABLf
ussP6qF4k5wtmI22Gm9A5Zc3e4iiry5pC0jOdk0mk4gzWwFN9MdgNxJZIGA3xqhS
bsBK4AGrVKjtZl48G1/ZxJuNDeJhVp6GNK2n6/Gl4rZF6R7D/Upz0XelyJRdDpcM
HIGma7jZl6xfGU0mdWCzpOGK1zdMca1WVs7A4YuurSbLn5PZJrcNVWLouDqt/Si2
AduSri1gyPClicgvqWjMOzhUpuw/nJtBLRl1x1EsWk/KSZ1/uNVjlewfzdN4fZrr
zbtFr2gLubYLK6JOX7/LqoHlOTgE3tYLL+WIVN75DsOGZBKgHhmebTmWLyqzV0SL
oqcyM5d3ucC6msdtAK5Fv4MSp8rpjqlK1Ha4SGRT6kC2wut7AhZ3KD7eyRIz8mV9
Sa9mhignGFJnTEUp+LSbYdrAudgSKxB40WyXPmswAXX4VJFRD4ONrrcAON/SzkUT
Hw/JdFRCKkJjgwNQjIQoZcUNMTbFz2PlNIEnjJWm38YImQKQlCb2mXaZKCwBkf45
aheCZk17eKoxTCXFMd+KxlyNEtS2yBfq/PpZgvw7GW/pfFbWUg1+2O41LnihIe5v
zu0hN1wNCQqgfxiMZqX1OTb9C/2vybzGsXILt+9nppjZ8EBU7iU=
=wU6U
-----END PGP SIGNATURE-----
Merge tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull CFI on arm64 support from Kees Cook:
"This builds on last cycle's LTO work, and allows the arm64 kernels to
be built with Clang's Control Flow Integrity feature. This feature has
happily lived in Android kernels for almost 3 years[1], so I'm excited
to have it ready for upstream.
The wide diffstat is mainly due to the treewide fixing of mismatched
list_sort prototypes. Other things in core kernel are to address
various CFI corner cases. The largest code portion is the CFI runtime
implementation itself (which will be shared by all architectures
implementing support for CFI). The arm64 pieces are Acked by arm64
maintainers rather than coming through the arm64 tree since carrying
this tree over there was going to be awkward.
CFI support for x86 is still under development, but is pretty close.
There are a handful of corner cases on x86 that need some improvements
to Clang and objtool, but otherwise works well.
Summary:
- Clean up list_sort prototypes (Sami Tolvanen)
- Introduce CONFIG_CFI_CLANG for arm64 (Sami Tolvanen)"
* tag 'cfi-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: allow CONFIG_CFI_CLANG to be selected
KVM: arm64: Disable CFI for nVHE
arm64: ftrace: use function_nocfi for ftrace_call
arm64: add __nocfi to __apply_alternatives
arm64: add __nocfi to functions that jump to a physical address
arm64: use function_nocfi with __pa_symbol
arm64: implement function_nocfi
psci: use function_nocfi for cpu_resume
lkdtm: use function_nocfi
treewide: Change list_sort to use const pointers
bpf: disable CFI in dispatcher functions
kallsyms: strip ThinLTO hashes from static functions
kthread: use WARN_ON_FUNCTION_MISMATCH
workqueue: use WARN_ON_FUNCTION_MISMATCH
module: ensure __cfi_check alignment
mm: add generic function_nocfi macro
cfi: add __cficanonical
add support for Clang CFI
When a file gets deleted on a zoned file system, the space freed is not
returned back into the block group's free space, but is migrated to
zone_unusable.
As this zone_unusable space is behind the current write pointer it is not
possible to use it for new allocations. In the current implementation a
zone is reset once all of the block group's space is accounted as zone
unusable.
This behaviour can lead to premature ENOSPC errors on a busy file system.
Instead of only reclaiming the zone once it is completely unusable,
kick off a reclaim job once the amount of unusable bytes exceeds a user
configurable threshold between 51% and 100%. It can be set per mounted
filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75%
by default.
Similar to reclaiming unused block groups, these dirty block groups are
added to a to_reclaim list and then on a transaction commit, the reclaim
process is triggered but after we deleted unused block groups, which will
free space for the relocation process.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As a preparation for extending the block group deletion use case, rename
the unused_bgs_mutex to reclaim_bgs_lock.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When relocating a block group the freed up space is not discarded in one
big block, but each extent is discarded on its own with -odisard=sync.
For a zoned filesystem we need to discard the whole block group at once,
so btrfs_discard_extent() will translate the discard into a
REQ_OP_ZONE_RESET operation, which then resets the device's zone.
Failure to reset the zone is not fatal error.
Discussion about the approach and regarding transaction blocking:
https://lore.kernel.org/linux-btrfs/CAL3q7H4SjS_d5rBepfTMhU8Th3bJzdmyYd0g4Z60yUgC_rC_ZA@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs uses internally mapped u64 address space for all its metadata.
Due to the page cache limit on 32bit systems, btrfs can't access
metadata at or beyond (ULONG_MAX + 1) << PAGE_SHIFT. See
how MAX_LFS_FILESIZE and page::index are defined. This is 16T for 4K
page size while 256T for 64K page size.
Users can have a filesystem which doesn't have metadata beyond the
boundary at mount time, but later balance can cause it to create
metadata beyond the boundary.
And modification to MM layer is unrealistic just for such minor use
case. We can't do more than to prevent mounting such filesystem or warn
early when the numbers are still within the limits.
To address such problem, this patch will introduce the following checks:
- Mount time rejection
This will reject any fs which has metadata chunk at or beyond the
boundary.
- Mount time early warning
If there is any metadata chunk beyond 5/8th of the boundary, we do an
early warning and hope the end user will see it.
- Runtime extent buffer rejection
If we're going to allocate an extent buffer at or beyond the boundary,
reject such request with EOVERFLOW.
This is definitely going to cause problems like transaction abort, but
we have no better ways.
- Runtime extent buffer early warning
If an extent buffer beyond 5/8th of the max file size is allocated, do
an early warning.
Above error/warning message will only be printed once for each fs to
reduce dmesg flood.
If the mount is rejected, the filesystem will be mountable only on a
64bit host.
Link: https://lore.kernel.org/linux-btrfs/1783f16d-7a28-80e6-4c32-fdf19b705ed0@gmx.com/
Reported-by: Erik Jensen <erikjensen@rkjnsn.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a device replace on a zoned filesystem, if we find a block
group with ->to_copy == 0, we jump to the label 'done', which will result
in later calling btrfs_unfreeze_block_group(), even though at this point
we never called btrfs_freeze_block_group().
Since at this point we have neither turned the block group to RO mode nor
made any progress, we don't need to jump to the label 'done'. So fix this
by jumping instead to the label 'skip' and dropping our reference on the
block group before the jump.
Fixes: 78ce9fc269 ("btrfs: zoned: mark block groups to copy for device-replace")
CC: stable@vger.kernel.org # 5.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit dbcc7d57bf ("btrfs: fix race when cloning extent buffer during
rewind of an old root"), fixed a race when we need to rewind the extent
buffer of an old root. It was caused by picking a new mod log operation
for the extent buffer while getting a cloned extent buffer with an outdated
number of items (off by -1), because we cloned the extent buffer without
locking it first.
However there is still another similar race, but in the opposite direction.
The cloned extent buffer has a number of items that does not match the
number of tree mod log operations that are going to be replayed. This is
because right after we got the last (most recent) tree mod log operation to
replay and before locking and cloning the extent buffer, another task adds
a new pointer to the extent buffer, which results in adding a new tree mod
log operation and incrementing the number of items in the extent buffer.
So after cloning we have mismatch between the number of items in the extent
buffer and the number of mod log operations we are going to apply to it.
This results in hitting a BUG_ON() that produces the following stack trace:
------------[ cut here ]------------
kernel BUG at fs/btrfs/tree-mod-log.c:675!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 3 PID: 4811 Comm: crawl_1215 Tainted: G W 5.12.0-7d1efdf501f8-misc-next+ #99
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001027090 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8880a8514600 RCX: ffffffffaa9e59b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff8880a851462c
RBP: ffffc900010270e0 R08: 00000000000000c0 R09: ffffed1004333417
R10: ffff88802199a0b7 R11: ffffed1004333416 R12: 000000000000000e
R13: ffff888135af8748 R14: ffff88818766ff00 R15: ffff8880a851462c
FS: 00007f29acf62700(0000) GS:ffff8881f2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0e6013f718 CR3: 000000010d42e003 CR4: 0000000000170ee0
Call Trace:
btrfs_get_old_root+0x16a/0x5c0
? lock_downgrade+0x400/0x400
btrfs_search_old_slot+0x192/0x520
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x340/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? stack_trace_save+0x87/0xb0
? resolve_indirect_refs+0xfc0/0xfc0
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? lockdep_hardirqs_on_prepare+0x210/0x210
? fs_reclaim_acquire+0x67/0xf0
? __kasan_check_read+0x11/0x20
? ___might_sleep+0x10f/0x1e0
? __kasan_kmalloc+0x9d/0xd0
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? trace_hardirqs_on+0x55/0x120
? ulist_free+0x1f/0x30
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? release_extent_buffer+0x225/0x280
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x400/0x400
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x620
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? _raw_spin_unlock+0x22/0x30
? release_extent_buffer+0x225/0x280
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x2038/0x4360
? __kasan_check_write+0x14/0x20
? mmput+0x3b/0x220
? btrfs_ioctl_get_supported_features+0x30/0x30
? __kasan_check_read+0x11/0x20
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __might_fault+0x64/0xd0
? __kasan_check_read+0x11/0x20
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x13/0x210
? _raw_spin_unlock_irqrestore+0x51/0x63
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x400/0x400
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x650
? __task_pid_nr_ns+0xd3/0x250
? __kasan_check_read+0x11/0x20
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f29ae85b427
Code: 00 00 90 48 8b (...)
RSP: 002b:00007f29acf5fcf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f29acf5ff40 RCX: 00007f29ae85b427
RDX: 00007f29acf5ff48 RSI: 00000000c038943b RDI: 0000000000000003
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007f29acf60120
R10: 00005640d5fc7b00 R11: 0000000000000246 R12: 0000000000000003
R13: 00007f29acf5ff48 R14: 00007f29acf5ff40 R15: 00007f29acf5fef8
Modules linked in:
---[ end trace 85e5fce078dfbe04 ]---
(gdb) l *(tree_mod_log_rewind+0x3b1)
0xffffffff819e5b21 is in tree_mod_log_rewind (fs/btrfs/tree-mod-log.c:675).
670 * the modification. As we're going backwards, we do the
671 * opposite of each operation here.
672 */
673 switch (tm->op) {
674 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
675 BUG_ON(tm->slot < n);
676 fallthrough;
677 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
678 case BTRFS_MOD_LOG_KEY_REMOVE:
679 btrfs_set_node_key(eb, &tm->key, tm->slot);
(gdb) quit
The following steps explain in more detail how it happens:
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1.
This is task A;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
3) At btrfs_tree_mod_log_insert_root() we create a tree mod log operation
of type BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, with a ->logical field
pointing to ebX->start. We only have one item in eb X, so we create
only one tree mod log operation, and store in the "tm_list" array;
4) Then, still at btrfs_tree_mod_log_insert_root(), we create a tree mod
log element of operation type BTRFS_MOD_LOG_ROOT_REPLACE, ->logical set
to ebY->start, ->old_root.logical set to ebX->start, ->old_root.level
set to the level of eb X and ->generation set to the generation of eb X;
5) Then btrfs_tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
"tm_list" as argument. After that, tree_mod_log_free_eb() calls
tree_mod_log_insert(). This inserts the mod log operation of type
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING from step 3 into the rbtree
with a sequence number of 2 (and fs_info->tree_mod_seq set to 2);
6) Then, after inserting the "tm_list" single element into the tree mod
log rbtree, the BTRFS_MOD_LOG_ROOT_REPLACE element is inserted, which
gets the sequence number 3 (and fs_info->tree_mod_seq set to 3);
7) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
8) Later some other task B allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
9) The tree mod log user task calls btrfs_search_old_slot(), which calls
btrfs_get_old_root(), and finally that calls tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
10) The first iteration of the while loop finds the tree mod log element
with sequence number 3, for the logical address of eb Y and of type
BTRFS_MOD_LOG_ROOT_REPLACE;
11) Because the operation type is BTRFS_MOD_LOG_ROOT_REPLACE, we don't
break out of the loop, and set root_logical to point to
tm->old_root.logical, which corresponds to the logical address of
eb X;
12) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and
corresponds to the old slot 0 of eb X (eb X had only 1 item in it
before being freed at step 7);
13) We then break out of the while loop and return the tree mod log
operation of type BTRFS_MOD_LOG_ROOT_REPLACE (eb Y), and not the one
for slot 0 of eb X, to btrfs_get_old_root();
14) At btrfs_get_old_root(), we process the BTRFS_MOD_LOG_ROOT_REPLACE
operation and set "logical" to the logical address of eb X, which was
the old root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
15) But before calling tree_mod_log_search(), task B locks eb X, adds a
key to eb X, which results in adding a tree mod log operation of type
BTRFS_MOD_LOG_KEY_ADD, with a sequence number of 4, to the tree mod
log, and increments the number of items in eb X from 0 to 1.
Now fs_info->tree_mod_seq has a value of 4;
16) Task A then calls tree_mod_log_search(), which returns the most recent
tree mod log operation for eb X, which is the one just added by task B
at the previous step, with a sequence number of 4, a type of
BTRFS_MOD_LOG_KEY_ADD and for slot 0;
17) Before task A locks and clones eb X, task A adds another key to eb X,
which results in adding a new BTRFS_MOD_LOG_KEY_ADD mod log operation,
with a sequence number of 5, for slot 1 of eb X, increments the
number of items in eb X from 1 to 2, and unlocks eb X.
Now fs_info->tree_mod_seq has a value of 5;
18) Task A then locks eb X and clones it. The clone has a value of 2 for
the number of items and the pointer "tm" points to the tree mod log
operation with sequence number 4, not the most recent one with a
sequence number of 5, so there is mismatch between the number of
mod log operations that are going to be applied to the cloned version
of eb X and the number of items in the clone;
19) Task A then calls tree_mod_log_rewind() with the clone of eb X, the
tree mod log operation with sequence number 4 and a type of
BTRFS_MOD_LOG_KEY_ADD, and time_seq == 1;
20) At tree_mod_log_rewind(), we set the local variable "n" with a value
of 2, which is the number of items in the clone of eb X.
Then in the first iteration of the while loop, we process the mod log
operation with sequence number 4, which is targeted at slot 0 and has
a type of BTRFS_MOD_LOG_KEY_ADD. This results in decrementing "n" from
2 to 1.
Then we pick the next tree mod log operation for eb X, which is the
tree mod log operation with a sequence number of 2, a type of
BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING and for slot 0, it is the one
added in step 5 to the tree mod log tree.
We go back to the top of the loop to process this mod log operation,
and because its slot is 0 and "n" has a value of 1, we hit the BUG_ON:
(...)
switch (tm->op) {
case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Fix this by checking for a more recent tree mod log operation after locking
and cloning the extent buffer of the old root node, and use it as the first
operation to apply to the cloned extent buffer when rewinding it.
Stable backport notes: due to moved code and renames, in =< 5.11 the
change should be applied to ctree.c:get_old_root.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210404040732.GZ32440@hungrycats.org/
Fixes: 834328a849 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a subvolume we allocate an extent buffer for its root node
after starting a transaction. We setup a root item for the subvolume that
points to that extent buffer and then attempt to insert the root item into
the root tree - however if that fails, due to ENOMEM for example, we do
not free the extent buffer previously allocated and we do not abort the
transaction (as at that point we did nothing that can not be undone).
This means that we effectively do not return the metadata extent back to
the free space cache/tree and we leave a delayed reference for it which
causes a metadata extent item to be added to the extent tree, in the next
transaction commit, without having backreferences. When this happens
'btrfs check' reports the following:
$ btrfs check /dev/sdi
Opening filesystem to check...
Checking filesystem on /dev/sdi
UUID: dce2cb9d-025f-4b05-a4bf-cee0ad3785eb
[1/7] checking root items
[2/7] checking extents
ref mismatch on [30425088 16384] extent item 1, found 0
backref 30425088 root 256 not referenced back 0x564a91c23d70
incorrect global backref count on 30425088 found 1 wanted 0
backpointer mismatch on [30425088 16384]
owner ref check failed [30425088 16384]
ERROR: errors found in extent allocation tree or chunk allocation
[3/7] checking free space cache
[4/7] checking fs roots
[5/7] checking only csums items (without verifying data)
[6/7] checking root refs
[7/7] checking quota groups skipped (not enabled on this FS)
found 212992 bytes used, error(s) found
total csum bytes: 0
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 124669
file data blocks allocated: 65536
referenced 65536
So fix this by freeing the metadata extent if btrfs_insert_root() returns
an error.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running btrfs/071 with inode_need_compress() removed from
compress_file_range(), we got the following crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:compress_file_range+0x476/0x7b0 [btrfs]
Call Trace:
? submit_compressed_extents+0x450/0x450 [btrfs]
async_cow_start+0x16/0x40 [btrfs]
btrfs_work_helper+0xf2/0x3e0 [btrfs]
process_one_work+0x278/0x5e0
worker_thread+0x55/0x400
? process_one_work+0x5e0/0x5e0
kthread+0x168/0x190
? kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x22/0x30
---[ end trace 65faf4eae941fa7d ]---
This is already after the patch "btrfs: inode: fix NULL pointer
dereference if inode doesn't need compression."
[CAUSE]
@pages is firstly created by kcalloc() in compress_file_extent():
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
Then passed to btrfs_compress_pages() to be utilized there:
ret = btrfs_compress_pages(...
pages,
&nr_pages,
...);
btrfs_compress_pages() will initialize each page as output, in
zlib_compress_pages() we have:
pages[nr_pages] = out_page;
nr_pages++;
Normally this is completely fine, but there is a special case which
is in btrfs_compress_pages() itself:
switch (type) {
default:
return -E2BIG;
}
In this case, we didn't modify @pages nor @out_pages, leaving them
untouched, then when we cleanup pages, the we can hit NULL pointer
dereference again:
if (pages) {
for (i = 0; i < nr_pages; i++) {
WARN_ON(pages[i]->mapping);
put_page(pages[i]);
}
...
}
Since pages[i] are all initialized to zero, and btrfs_compress_pages()
doesn't change them at all, accessing pages[i]->mapping would lead to
NULL pointer dereference.
This is not possible for current kernel, as we check
inode_need_compress() before doing pages allocation.
But if we're going to remove that inode_need_compress() in
compress_file_extent(), then it's going to be a problem.
[FIX]
When btrfs_compress_pages() hits its default case, modify @out_pages to
0 to prevent such problem from happening.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212331
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For zoned btrfs, zone append is mandatory to write to a sequential write
only zone, otherwise parallel writes to the same zone could result in
unaligned write errors.
If a zoned block device does not support zone append (e.g. a dm-crypt
zoned device using a non-NULL IV cypher), fail to mount.
CC: stable@vger.kernel.org # 5.12
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between a task aborting a transaction during a commit,
a task doing an fsync and the transaction kthread, which leads to an
use-after-free of the log root tree. When this happens, it results in a
stack trace like the following:
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS: error (device dm-0) in cleanup_transaction:1958: errno=-5 IO failure
BTRFS warning (device dm-0): lost page write due to IO error on /dev/mapper/error-test (-5)
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0xa4e8 len 4096 err no 10
BTRFS error (device dm-0): error writing primary super block to device 1
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e000 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e008 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e010 len 4096 err no 10
BTRFS: error (device dm-0) in write_all_supers:4110: errno=-5 IO failure (1 errors while writing supers)
BTRFS: error (device dm-0) in btrfs_sync_log:3308: errno=-5 IO failure
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b68: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 2458471 Comm: fsstress Not tainted 5.12.0-rc5-btrfs-next-84 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x139/0xa40
Code: c0 74 19 (...)
RSP: 0018:ffff9f18830d7b00 EFLAGS: 00010202
RAX: 6b6b6b6b6b6b6b68 RBX: 0000000000000001 RCX: 0000000000000002
RDX: ffffffffb9c54d13 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9f18830d7bc0 R08: 0000000000000000 R09: 0000000000000000
R10: ffff9f18830d7be0 R11: 0000000000000001 R12: ffff8c6cd199c040
R13: ffff8c6c95821358 R14: 00000000fffffffb R15: ffff8c6cbcf01358
FS: 00007fa9140c2b80(0000) GS:ffff8c6fac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa913d52000 CR3: 000000013d2b4003 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? __btrfs_handle_fs_error+0xde/0x146 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_file+0x40c/0x580 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fa9142a55c3
Code: 8b 15 09 (...)
RSP: 002b:00007fff26278d48 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000563c83cb4560 RCX: 00007fa9142a55c3
RDX: 00007fff26278cb0 RSI: 00007fff26278cb0 RDI: 0000000000000005
RBP: 0000000000000005 R08: 0000000000000001 R09: 00007fff26278d5c
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000340
R13: 00007fff26278de0 R14: 00007fff26278d96 R15: 0000563c83ca57c0
Modules linked in: btrfs dm_zero dm_snapshot dm_thin_pool (...)
---[ end trace ee2f1b19327d791d ]---
The steps that lead to this crash are the following:
1) We are at transaction N;
2) We have two tasks with a transaction handle attached to transaction N.
Task A and Task B. Task B is doing an fsync;
3) Task B is at btrfs_sync_log(), and has saved fs_info->log_root_tree
into a local variable named 'log_root_tree' at the top of
btrfs_sync_log(). Task B is about to call write_all_supers(), but
before that...
4) Task A calls btrfs_commit_transaction(), and after it sets the
transaction state to TRANS_STATE_COMMIT_START, an error happens before
it waits for the transaction's 'num_writers' counter to reach a value
of 1 (no one else attached to the transaction), so it jumps to the
label "cleanup_transaction";
5) Task A then calls cleanup_transaction(), where it aborts the
transaction, setting BTRFS_FS_STATE_TRANS_ABORTED on fs_info->fs_state,
setting the ->aborted field of the transaction and the handle to an
errno value and also setting BTRFS_FS_STATE_ERROR on fs_info->fs_state.
After that, at cleanup_transaction(), it deletes the transaction from
the list of transactions (fs_info->trans_list), sets the transaction
to the state TRANS_STATE_COMMIT_DOING and then waits for the number
of writers to go down to 1, as it's currently 2 (1 for task A and 1
for task B);
6) The transaction kthread is running and sees that BTRFS_FS_STATE_ERROR
is set in fs_info->fs_state, so it calls btrfs_cleanup_transaction().
There it sees the list fs_info->trans_list is empty, and then proceeds
into calling btrfs_drop_all_logs(), which frees the log root tree with
a call to btrfs_free_log_root_tree();
7) Task B calls write_all_supers() and, shortly after, under the label
'out_wake_log_root', it deferences the pointer stored in
'log_root_tree', which was already freed in the previous step by the
transaction kthread. This results in a use-after-free leading to a
crash.
Fix this by deleting the transaction from the list of transactions at
cleanup_transaction() only after setting the transaction state to
TRANS_STATE_COMMIT_DOING and waiting for all existing tasks that are
attached to the transaction to release their transaction handles.
This makes the transaction kthread wait for all the tasks attached to
the transaction to be done with the transaction before dropping the
log roots and doing other cleanups.
Fixes: ef67963dac ("btrfs: drop logs when we've aborted a transaction")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, submit_eb_subpage(), will submit all the dirty extent
buffers in the page.
The major difference between submit_eb_page() and submit_eb_subpage()
is:
- How to grab extent buffer
Now we use find_extent_buffer_nospinlock() other than using
page::private.
All other different handling is already done in functions like
lock_extent_buffer_for_io() and write_one_eb().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For subpage metadata, we don't use page locking at all. So just skip
the page locking part for subpage. The rest of the function can be
reused.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, write_one_subpage_eb(), as a subroutine for subpage
metadata write, will handle the extent buffer bio submission.
The major differences between the new write_one_subpage_eb() and
write_one_eb() is:
- No page locking
When entering write_one_subpage_eb() the page is no longer locked.
We only lock the page for its status update, and unlock immediately.
Now we completely rely on extent io tree locking.
- Extra bitmap update along with page status update
Now page dirty and writeback is controlled by
btrfs_subpage::dirty_bitmap and btrfs_subpage::writeback_bitmap.
They both follow the schema that any sector is dirty/writeback, then
the full page gets dirty/writeback.
- When to update the nr_written number
Now we take a shortcut, if we have cleared the last dirty bit of the
page, we update nr_written.
This is not completely perfect, but should emulate the old behavior
well enough.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The new function, end_bio_subpage_eb_writepage(), will handle the
metadata writeback endio.
The major differences involved are:
- How to grab extent buffer
Now page::private is a pointer to btrfs_subpage, we can no longer grab
extent buffer directly.
Thus we need to use the bv_offset to locate the extent buffer manually
and iterate through the whole range.
- Use btrfs_subpage_end_writeback() caller
This helper will handle the subpage writeback for us.
Since this function is executed under endio context, when grabbing
extent buffers it can't grab eb->refs_lock as that lock is not designed
to be grabbed under hardirq context.
So here introduce a helper, find_extent_buffer_nolock(), for such
situation, and convert find_extent_buffer() to use that helper.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we don't check the return value of
btrfs_commit_transaction in relocation.c. Thankfully all these places
have straightforward error handling, so simply change all of the sites
at once.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a BUG_ON() if we get an error back from btrfs_get_fs_root().
This honestly should never fail, as at this point we have a solid
coordination of fs root to reloc root, and these roots will all be in
memory. But in the name of killing BUG_ON()'s remove these and handle
the error condition properly, ASSERT()'ing for developers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In corruption cases we could have paths from a block up to no root at
all, and thus we'll BUG_ON(!root) in select_one_root. Handle this by
adding an ASSERT() for developers, and returning an error for normal
users.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This probably can't happen even with a corrupt file system, because we
would have failed much earlier on than here. However there's no reason
we can't just check and bail out as appropriate, so do that and convert
the correctness BUG_ON() to an ASSERT().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we have a duplicate entry for a reloc root then we could have fs
corruption that resulted in a double allocation. Since this shouldn't
happen unless there is corruption, add an ASSERT(ret != -EEXIST) to all
of the callers of __add_reloc_root() to catch any logic mistakes for
developers, otherwise normal error handling will happen for normal
users.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can already handle errors appropriately from this function, deal with
an error coming from __add_reloc_root appropriately.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
We already handle some errors in this function, and the callers do the
correct error handling, so clean up the rest of the function to do the
appropriate error handling.
There's a little extra work that needs to be done here, as we create the
inode item before we create the orphan item. We could potentially add
the orphan item, but if we failed to create the inode item we would have
to abort the transaction.
Instead add a helper to delete the inode item we created in the case
that we're unable to look up the inode (this would likely be caused by
an ENOMEM), which if it succeeds means we can avoid a transaction abort
in this particular error case.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These checks are all taken care of for us by the tree checker code:
- the flags don't change or are updated consistently
- the v0 extent item format is invalid and caught in many other places
too
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We need to validate that a data extent item does not have the
FULL_BACKREF flag set on its flags.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can already deal with errors appropriately from do_relocation, simply
handle any errors that come from changing the refs at this point
cleanly. We have to abort the transaction if we fail here as we've
modified metadata at this point.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If any of the reference count manipulation stuff fails in replace_path
we need to abort the transaction, as we've modified the blocks already.
We can simply break at this point and everything will be cleaned up.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The search can fail for various reasons, in case of errors there's no
cleanup to be done so we can pass the error to the caller, adjusting for
the case where the key is not found and search slot returns 1.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we error out COWing the root node when doing a replace_path then we
simply unlock and free the buffer and return the error.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few BUG_ON()'s in replace_path are purely to keep us from making
logical mistakes, so replace them with ASSERT()'s.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We call btrfs_update_root in btrfs_update_reloc_root, which can fail for
all sorts of reasons, including IO errors. Instead of panicing the box
lets return the error, now that all callers properly handle those
errors.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
an error properly in prepare_to_merge.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in insert_dirty_subvol.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will be able to return errors in the future, so change it to return
an error and handle the errors appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in commit_fs_roots.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to setup a root->reloc_root in a different thread that path
will error out, however it still leaves root->reloc_root NULL but would
still appear set up in the transaction. Subsequent calls to
btrfs_record_root_in_transaction would succeed without attempting to
create the reloc root, as the transid has already been updated.
Handle this case by making sure we have a root->reloc_root set after a
btrfs_record_root_in_transaction call so we don't end up dereferencing a
NULL pointer.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do memory allocations here, read blocks from disk, all sorts of
operations that could easily fail at any given point. Instead of
panicing the box, simply return the error back up the chain, all callers
at this point have proper error handling.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
create_reloc_root will return errors in the future, and __add_reloc_root
can return ENOMEM or EEXIST, so handle these errors properly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can create a reloc root when we record the root in the trans, which
can fail for all sorts of different reasons. Propagate this error up
the chain of callers. Future patches will fix the callers of
btrfs_record_root_in_trans() to handle the error.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can currently fail, so handle this failure
properly.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can fail currently, handle this failure properly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
record_root_in_trans can fail currently, so handle this failure
properly.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in start_transaction.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in relocate_tree_block.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in create_subvol.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_recover_log_trees.
This appears tricky, however we have a reference count on the
destination root, so if this fails we need to continue on in the loop to
make sure the proper cleanup is done.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_delete_subvolume.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename_exchange.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Generally speaking this shouldn't ever fail, the corresponding fs root
for the reloc root will already be in memory, so we won't get ENOMEM
here.
However if there is no corresponding root for the reloc root then we
could get ENOMEM when we try to allocate it or we could get ENOENT
when we look it up and see that it doesn't exist.
Convert these BUG_ON()'s into ASSERT()'s and add proper error handling
for the case of corruption.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will record the fs root or the reloc root in the trans in
select_reloc_root. These will actually return errors in the following
patches, so check their return value here and return it up the stack.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several BUG_ON()'s in select_reloc_root() that can be tripped if
there is an extent tree corruption. Convert these to ASSERT()'s, because
if we hit it during testing it really is bad, or could indicate a
problem with the backref walking code.
However if users hit these problems it generally indicates corruption,
I've hit a few machines in the fleet that trip over these with clearly
corrupted extent trees, so be nice and print out an error message and
return an error instead of bringing the whole box down.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently select_reloc_root() doesn't return an error, but followup
patches will make it possible for it to return an error. We do have
proper error recovery in do_relocation however, so handle the
possibility of select_reloc_root() having an error properly instead of
BUG_ON(!root).
I've also adjusted select_reloc_root() to return ERR_PTR(-ENOENT) if we
don't find a root, instead of NULL, to make the error case easier to
deal with. I've replaced the BUG_ON(!root) with an ASSERT(0) for this
case as it indicates we messed up the backref walking code, but it could
also indicate corruption.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a couple of BUG_ON()'s in relocate_tree_block() that can be
tripped if we have file system corruption. Convert these to ASSERT()'s
so developers still get yelled at when they break the backref code, but
error out nicely for users so the whole box doesn't go down.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few of these are checking for correctness, and won't be triggered by
corrupted file systems, so convert them to ASSERT() instead of BUG_ON()
and add a comment explaining their existence.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Implement readahead_batch_length() to determine the number of bytes in
the current batch of readahead pages and use it in btrfs. Also use the
readahead_pos to get the offset.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two forward declarations deep in extent_io.h, move them
to the beginning and remove the duplicate one.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds an overview how btrfs subpage support works:
- limitations
- behavior
- basic implementation points
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current set_btree_ioerr() only accepts @page parameter and grabs extent
buffer from page::private. This works fine for sector size == PAGE_SIZE
case, but not for subpage case.
Add an extra parameter, @eb, for callers to pass extent buffer to this
function, so that subpage code can reuse this function.
And also add subpage special handling to update
btrfs_subpage::error_bitmap.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For set_extent_buffer_dirty() to support subpage sized metadata, just
call btrfs_page_set_dirty() to handle both cases.
For clear_extent_buffer_dirty(), it needs to clear the page dirty if and
only if all extent buffers in the page range are no longer dirty.
Also do the same for page error.
This is pretty different from the existing clear_extent_buffer_dirty()
routine, so add a new helper function,
clear_subpage_extent_buffer_dirty() to do this for subpage metadata.
Also since the main part of clearing page dirty code is still the same,
extract that into btree_clear_page_dirty() so that it can be utilized
for both cases.
But there is a special race between set_extent_buffer_dirty() and
clear_extent_buffer_dirty(), where we can clear the page dirty.
[POSSIBLE RACE WINDOW]
For the race window between clear_subpage_extent_buffer_dirty() and
set_extent_buffer_dirty(), due to the fact that we can't call
clear_page_dirty_for_io() under subpage spin lock, we can race like
below:
T1 (eb1 in the same page) | T2 (eb2 in the same page)
-------------------------------+------------------------------
set_extent_buffer_dirty() | clear_extent_buffer_dirty()
|- was_dirty = false; | |- clear_subpagE_extent_buffer_dirty()
| | |- btrfs_clear_and_test_dirty()
| | | Since eb2 is the last dirty page
| | | we got:
| | | last == true;
| | |
|- btrfs_page_set_dirty() | |
| We set the page dirty and | |
| subpage dirty bitmap | |
| | |- if (last)
| | | Since we don't have subpage lock
| | | held, now @last is no longer
| | | correct
| | |- btree_clear_page_dirty()
| | Now PageDirty == false, even if
| | we have dirty_bitmap not zero.
|- ASSERT(PageDirty()); |
^^^^ CRASH
The solution here is to also lock the eb->pages[0] for subpage case of
set_extent_buffer_dirty(), to prevent racing with
clear_extent_buffer_dirty().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are quite some assert checks on page uptodate in extent buffer
write accessors. They ensure the destination page is already uptodate.
This is fine for regular sector size case, but not for subpage case, as
for subpage we only mark the page uptodate if the page contains no hole
and all its extent buffers are uptodate.
So instead of checking PageUptodate(), for subpage case we check the
uptodate bitmap of btrfs_subpage structure.
To make the check more elegant, introduce a helper,
assert_eb_page_uptodate() to do the check for both subpage and regular
sector size cases.
The following functions are involved:
- write_extent_buffer_chunk_tree_uuid()
- write_extent_buffer_fsid()
- write_extent_buffer()
- memzero_extent_buffer()
- copy_extent_buffer()
- extent_buffer_test_bit()
- extent_buffer_bitmap_set()
- extent_buffer_bitmap_clear()
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In alloc_extent_buffer(), we make sure that the newly allocated page is
never dirty.
This is fine for sector size == PAGE_SIZE case, but for subpage it's
possible that one extent buffer in the page is dirty, thus the whole
page is marked dirty, and could cause false alert.
To support subpage, call btrfs_page_test_dirty() to handle both cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all
dirty extent buffers in one bvec.
Also extract the code of calculating csum for one extent buffer into
csum_one_extent_buffer(), so that both the existing csum_dirty_buffer()
and the new csum_dirty_subpage_buffers() can reuse the same routine.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For btree_set_page_dirty(), we should also check the extent buffer
sanity for subpage support.
Unlike the regular sector size case, since one page can contain multiple
extent buffers, we need to make sure there is at least one dirty extent
buffer in the page.
So this patch will iterate through the btrfs_subpage::dirty_bitmap
to get the extent buffers, and check if any dirty extent buffer in the page
range has EXTENT_BUFFER_DIRTY and proper refs.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduces the following functions to handle subpage writeback status:
- btrfs_subpage_set_writeback()
- btrfs_subpage_clear_writeback()
- btrfs_subpage_test_writeback()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_writeback()
- btrfs_page_clear_writeback()
- btrfs_page_test_writeback()
These helpers can handle both regular sector size and subpage without
problem.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce the following functions to handle subpage dirty status:
- btrfs_subpage_set_dirty()
- btrfs_subpage_clear_dirty()
- btrfs_subpage_test_dirty()
These helpers can only be called when the range is ensured to be
inside the page.
- btrfs_page_set_dirty()
- btrfs_page_clear_dirty()
- btrfs_page_test_dirty()
These helpers can handle both regular sector size and subpage without
problem.
Thus they would be used to replace PageDirty() related calls in
later patches.
There is one special point to note here, just like set_page_dirty() and
clear_page_dirty_for_io(), btrfs_*page_set_dirty() and
btrfs_*page_clear_dirty() must be called with page locked.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we re-declare @tree variable as
btrfs_ordered_inode_tree.
Since it's only used to do the spinlock, we can grab it from inode
directly, and remove the unnecessary declaration completely.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to
update ordered->truncated_len. But we can use min() to replace it
completely and no need for the variable.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Export supported sector sizes in /sys/fs/btrfs/features/supported_sectorsizes.
Currently all architectures have PAGE_SIZE, There's some disparity
between read-only and read-write support but that will be unified in the
future so there's only one file exporting the size.
The read-only support for systems with 64K pages also works for 4K
sector size.
This new sysfs interface would help eg. mkfs.btrfs to print more
accurate warnings about potentially incompatible option combinations.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently a full send operation uses the standard btree readahead when
iterating over the subvolume/snapshot btree, which despite bringing good
performance benefits, it could be improved in a few aspects for use cases
such as full send operations, which are guaranteed to visit every node
and leaf of a btree, in ascending and sequential order. The limitations
of that standard btree readahead implementation are the following:
1) It only triggers readahead for leaves that are physically close
to the leaf being read, within a 64K range;
2) It only triggers readahead for the next or previous leaves if the
leaf being read is not currently in memory;
3) It never triggers readahead for nodes.
So add a new readahead mode that addresses all these points and use it
for full send operations.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
The durations of the full send operation in seconds were the following:
Before this change: 217 seconds
After this change: 205 seconds (-5.7%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we are running out of space for updating the chunk tree, that is,
when we are low on available space in the system space info, if we have
many task concurrently allocating block groups, via fallocate for example,
many of them can end up all allocating new system chunks when only one is
needed. In extreme cases this can lead to exhaustion of the system chunk
array, which has a size limit of 2048 bytes, and results in a transaction
abort with errno EFBIG, producing a trace in dmesg like the following,
which was triggered on a PowerPC machine with a node/leaf size of 64K:
[1359.518899] ------------[ cut here ]------------
[1359.518980] BTRFS: Transaction aborted (error -27)
[1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
[1359.519152] Modules linked in: (...)
[1359.519239] Supported: Yes, External
[1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G X 5.3.18-47-default #1 SLE15-SP3
[1359.519274] NIP: c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8
[1359.519293] REGS: c00000056890b700 TRAP: 0700 Tainted: G X (5.3.18-47-default)
[1359.519317] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48008222 XER: 00000007
[1359.519356] CFAR: c00000000013e170 IRQMASK: 0
[1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026
[1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007
[1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000
[1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0
[1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff
[1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000
[1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0
[1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08
[1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
[1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs]
[1359.519626] Call Trace:
[1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable)
[1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs]
[1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs]
[1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs]
[1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350
[1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0
[1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40
[1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170
[1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278
[1359.520037] Instruction dump:
[1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000
[1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378
[1359.520122] ---[ end trace d6c186e151022e20 ]---
The following steps explain how we can end up in this situation:
1) Task A is at check_system_chunk(), either because it is allocating a
new data or metadata block group, at btrfs_chunk_alloc(), or because
it is removing a block group or turning a block group RO. It does not
matter why;
2) Task A sees that there is not enough free space in the system
space_info object, that is 'left' is < 'thresh'. And at this point
the system space_info has a value of 0 for its 'bytes_may_use'
counter;
3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate
a new system block group (chunk) and then reserves 'thresh' bytes in
the chunk block reserve with the call to btrfs_block_rsv_add(). This
changes the chunk block reserve's 'reserved' and 'size' counters by an
amount of 'thresh', and changes the 'bytes_may_use' counter of the
system space_info object from 0 to 'thresh'.
Also during its call to btrfs_alloc_chunk(), we end up increasing the
value of the 'total_bytes' counter of the system space_info object by
8MiB (the size of a system chunk stripe). This happens through the
call chain:
btrfs_alloc_chunk()
create_chunk()
btrfs_make_block_group()
btrfs_update_space_info()
4) After it finishes the first phase of the block group allocation, at
btrfs_chunk_alloc(), task A unlocks the chunk mutex;
5) At this point the new system block group was added to the transaction
handle's list of new block groups, but its block group item, device
items and chunk item were not yet inserted in the extent, device and
chunk trees, respectively. That only happens later when we call
btrfs_finish_chunk_alloc() through a call to
btrfs_create_pending_block_groups();
Note that only when we update the chunk tree, through the call to
btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter
of the chunk block reserve as we COW/allocate extent buffers,
through:
btrfs_alloc_tree_block()
btrfs_use_block_rsv()
btrfs_block_rsv_use_bytes()
And the system space_info's 'bytes_may_use' is decremented everytime
we allocate an extent buffer for COW operations on the chunk tree,
through:
btrfs_alloc_tree_block()
btrfs_reserve_extent()
find_free_extent()
btrfs_add_reserved_bytes()
If we end up COWing less chunk btree nodes/leaves than expected, which
is the typical case since the amount of space we reserve is always
pessimistic to account for the worst possible case, we release the
unused space through:
btrfs_create_pending_block_groups()
btrfs_trans_release_chunk_metadata()
btrfs_block_rsv_release()
block_rsv_release_bytes()
btrfs_space_info_free_bytes_may_use()
But before task A gets into btrfs_create_pending_block_groups()...
6) Many other tasks start allocating new block groups through fallocate,
each one does the first phase of block group allocation in a
serialized way, since btrfs_chunk_alloc() takes the chunk mutex
before calling check_system_chunk() and btrfs_alloc_chunk().
However before everyone enters the final phase of the block group
allocation, that is, before calling btrfs_create_pending_block_groups(),
new tasks keep coming to allocate new block groups and while at
check_system_chunk(), the system space_info's 'bytes_may_use' keeps
increasing each time a task reserves space in the chunk block reserve.
This means that eventually some other task can end up not seeing enough
free space in the system space_info and decide to allocate yet another
system chunk.
This may repeat several times if yet more new tasks keep allocating
new block groups before task A, and all the other tasks, finish the
creation of the pending block groups, which is when reserved space
in excess is released. Eventually this can result in exhaustion of
system chunk array in the superblock, with btrfs_add_system_chunk()
returning EFBIG, resulting later in a transaction abort.
Even when we don't reach the extreme case of exhausting the system
array, most, if not all, unnecessarily created system block groups
end up being unused since when finishing creation of the first
pending system block group, the creation of the following ones end
up not needing to COW nodes/leaves of the chunk tree, so we never
allocate and deallocate from them, resulting in them never being
added to the list of unused block groups - as a consequence they
don't get deleted by the cleaner kthread - the only exceptions are
if we unmount and mount the filesystem again, which adds any unused
block groups to the list of unused block groups, if a scrub is
run, which also adds unused block groups to the unused list, and
under some circumstances when using a zoned filesystem or async
discard, which may also add unused block groups to the unused list.
So fix this by:
*) Tracking the number of reserved bytes for the chunk tree per
transaction, which is the sum of reserved chunk bytes by each
transaction handle currently being used;
*) When there is not enough free space in the system space_info,
if there are other transaction handles which reserved chunk space,
wait for some of them to complete in order to have enough excess
reserved space released, and then try again. Otherwise proceed with
the creation of a new system chunk.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we reflink to or from a file opened with O_SYNC/O_DSYNC or to/from a
file that has the S_SYNC attribute set, we totally ignore that and do not
durably persist the reflink changes. Since a reflink can change the data
readable from a file (and mtime/ctime, or a file size), it makes sense to
durably persist (fsync) the source and destination files/ranges.
This was previously discussed at:
https://lore.kernel.org/linux-btrfs/20200903035225.GJ6090@magnolia/
The recently introduced test case generic/628, from fstests, exercises
these scenarios and currently fails without this change.
So make sure we fsync the source and destination files/ranges when either
of them was opened with O_SYNC/O_DSYNC or has the S_SYNC attribute set,
just like XFS already does.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
gcc complains that the ctl->max_chunk_size member might be used
uninitialized when none of the three conditions for initializing it in
init_alloc_chunk_ctl_policy_zoned() are true:
In function ‘init_alloc_chunk_ctl_policy_zoned’,
inlined from ‘init_alloc_chunk_ctl’ at fs/btrfs/volumes.c:5023:3,
inlined from ‘btrfs_alloc_chunk’ at fs/btrfs/volumes.c:5340:2:
include/linux/compiler-gcc.h:48:45: error: ‘ctl.max_chunk_size’ may be used uninitialized [-Werror=maybe-uninitialized]
4998 | ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
| ^~~
fs/btrfs/volumes.c: In function ‘btrfs_alloc_chunk’:
fs/btrfs/volumes.c:5316:32: note: ‘ctl’ declared here
5316 | struct alloc_chunk_ctl ctl;
| ^~~
If we ever get into this condition, something is seriously
wrong, as validity is checked in the callers
btrfs_alloc_chunk
init_alloc_chunk_ctl
init_alloc_chunk_ctl_policy_zoned
so the same logic as in init_alloc_chunk_ctl_policy_regular()
and a few other places should be applied. This avoids both further
data corruption, and the compile-time warning.
Fixes: 1cd6121f2a ("btrfs: zoned: implement zoned chunk allocator")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit d77815461f ("btrfs: Avoid trucating page or punching hole
in a already existed hole."), existing holes can be skipped by calling
find_first_non_hole() to adjust start and len. However, if the given len
is invalid and large, when an EXTENT_MAP_HOLE extent is found, len will
not be set to zero because (em->start + em->len) is less than
(start + len). Then the ret will be 1 but len will not be set to 0.
The propagated non-zero ret will result in fallocate failure.
In the while-loop of btrfs_replace_file_extents(), len is not updated
every time before it calls find_first_non_hole(). That is, after
btrfs_drop_extents() successfully drops the last non-hole file extent,
it may fail with ENOSPC when attempting to drop a file extent item
representing a hole. The problem can happen. After it calls
find_first_non_hole(), the cur_offset will be adjusted to be larger
than or equal to end. However, since the len is not set to zero, the
break-loop condition (ret && !len) will not be met. After it leaves the
while-loop, fallocate will return 1, which is an unexpected return
value.
We're not able to construct a reproducible way to let
btrfs_drop_extents() fail with ENOSPC after it drops the last non-hole
file extent but with remaining holes left. However, it's quite easy to
fix. We just need to update and check the len every time before we call
find_first_non_hole(). To make the while loop more readable, we also
pull the variable updates to the bottom of loop like this:
while (cur_offset < end) {
...
// update cur_offset & len
// advance cur_offset & len in hole-punching case if needed
}
Reported-by: Robbie Ko <robbieko@synology.com>
Fixes: d77815461f ("btrfs: Avoid trucating page or punching hole in a already existed hole.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 6e37d24599 ("btrfs: zoned: fix deadlock on log sync") pointed out
a deadlock warning and removed mutex_{lock,unlock} of fs_info::tree_root->log_mutex.
While it looks like it always cause a deadlock, we didn't see actual
deadlock in fstests runs. The reason is log_root_tree->log_mutex !=
fs_info->tree_root->log_mutex, not taking the same lock. So, the warning
was actually a false-positive.
Since btrfs_alloc_log_tree_node() is protected only by
fs_info->tree_root->log_mutex, we can (and should) move the code out of
the lock scope of log_root_tree->log_mutex and silence the warning.
Fixes: 6e37d24599 ("btrfs: zoned: fix deadlock on log sync")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a comment at btrfs_replace_file_extents() that mentions that we
set the full sync flag on an inode when cloning into a file with a size
greater than or equals to 16MiB, through try_release_extent_mapping() when
we truncate the page cache after replacing file extents during a clone
operation.
That is not true anymore since commit 5e548b3201 ("btrfs: do not set
the full sync flag on the inode during page release"), so update the
comment to remove that part and rephrase it slightly to make it more
clear why the full sync flag is set at btrfs_replace_file_extents().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_orphan_cleanup() has a comment referring to find_dead_roots, but
function does not exists since commit cb517eabba ("Btrfs: cleanup the
similar code of the fs root read"). What we use now to find and load dead
roots is btrfs_find_orphan_roots(). So update the comment and make it a
bit more detailed about why we can not delete an orphan item for a root.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We used to encode two different numbers in the tree mod log counter used
for sequence numbers, one in the upper 32 bits and the other one in the
lower 32 bits. However that is no longer the case, we stopped doing that
since commit fcebe4562d ("Btrfs: rework qgroup accounting").
So update the debug message at btrfs_check_delayed_seq to stop extracting
the two 32 bits counters and print instead the 64 bits sequence numbers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places outside the tree mod log module that extract the
lowest sequence number of the tree mod log. These places end up
duplicating code and open coding the logic and internal implementation
details of the tree mod log. So add a helper to the tree mod log module
and header that returns the lowest sequence number or 0 if there aren't
any tree mod log users at the moment.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_tree_mod_log_free_eb() we check if we are dealing with a leaf,
and if so, return immediately and do nothing. However this check can be
removed, because after it we call tree_mod_need_log(), which returns
false when given an extent buffer that corresponds to a leaf.
So just remove the leaf check and pass the extent buffer to
tree_mod_need_log().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of exposing implementation details of the tree mod log to check
if there are active tree mod log users at btrfs_free_tree_block(), use
the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This
way extent-tree.c does not need to known about any of the internals of
the tree mod log and avoids taking a lock unnecessarily as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree modification log functions are called very frequently, basically
they are called every time a btree is modified (a pointer added or removed
to a node, a new root for a btree is set, etc). Because of that, to avoid
heavy lock contention on the lock that protects the list of tree mod log
users, we have checks that test the emptiness of the list with a full
memory barrier before the checks, so that when there are no tree mod log
users we avoid taking the lock.
Replace the memory barrier and list emptiness check with a test for a new
bit set at fs_info->flags. This bit is used to indicate when there are
tree mod log users, set whenever a user is added to the list and cleared
when the last user is removed from the list. This makes the intention a
bit more obvious and possibly more efficient (assuming test_bit() may be
cheaper than a full memory barrier on some architectures).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions of the tree modification log use integers as booleans,
so change them to use booleans instead, making their use more clear.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree modification log, which records modifications done to btrees, is
quite large and currently spread all over ctree.c, which is a huge file
already.
To make things better organized, move all that code into its own separate
source and header files. Functions and definitions that are used outside
of the module (mostly by ctree.c) are renamed so that they start with a
"btrfs_" prefix. Everything else remains unchanged.
This makes it easier to go over the tree modification log code every
time I need to go read it to fix a bug.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfsic_read_block() (which calls kmap()) and
btrfsic_release_block_ctx() (which calls kunmap()) are always called
within a single thread of execution.
Therefore the mappings created within these calls can be a thread local
mapping.
Convert the kmap() of bloc_ctx->pagev to kmap_local_page(). Luckily the
unmap loops backwards through the array pointer so no adjustment needs
to be made to the unmapping order.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Again there is an array of pointers which must be unmapped in the correct
order.
Convert the kmap()'s to kmap_local_page() and adjust the unmapping
to work backwards through the unmapping loop.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These kmaps are thread local and don't need to be atomic. So they can use
the more efficient kmap_local_page(). However, the mapping of pages in
the stripes and the additional parity and qstripe pages are a bit
trickier because the unmapping must occur in the opposite order from the
mapping. Furthermore, the pointer array in __raid_recover_end_io() may
get reordered.
Convert these calls to kmap_local_page() taking care to reverse the
unmappings of any page arrays as well as being careful with the mappings
of any special pages such as the parity and qstripe pages.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use a simple coccinelle script to help convert the most common
kmap()/kunmap() patterns to kmap_local_page()/kunmap_local().
Note that some kmaps which were caught by this script needed to be
handled by hand because of the strict unmapping order of kunmap_local()
so they are not included in this patch. But this script got us started.
There's another temp variable added for the final length write to the
first page so it does not interfere with cpage_out that is used for
mapping other pages.
The development of this patch was aided by the follow script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap and replace with kmap_local_page then mark kunmap
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
@ catch_all @
expression e, e2;
@@
(
-kmap(e)
+kmap_local_page(e)
)
...
(
-kunmap(...)
+kunmap_local()
)
// </smpl>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The in_range() macro is defined twice in btrfs' source, once in ctree.h
and once in misc.h.
Remove the definition in ctree.h and include misc.h in the files depending
on it.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_inode_in_log() checks the list of modified extents of the
inode, and has a comment mentioning why, as it used to be necessary to
make sure if we did something like the following:
mmap write range A
mmap write range B
msync range A (ranged fsync)
msync range B (ranged fsync)
we ended up with both ranges being logged.
If we did not check it, then the second fsync would do nothing because
btrfs_inode_in_log() would return true. This was added in 125c4cf9f3
("Btrfs: set inode's logged_trans/last_log_commit after ranged fsync") and
test case generic/325 from fstests exercises that scenario.
However, as of commit 487781796d ("btrfs: make fast fsyncs wait only
for writeback"), every ranged fsync is now turned into a full ranged fsync
(operates on the range from 0 to LLONG_MAX), so it is now pointless to
test of emptiness of the list of modified extents, and the comment is
clearly outdated.
So just remove the comment and list emptiness check, while also changing
the function's return type to be a boolean instead of an integer.
In case one day we get support for ranged fsyncs again, it will be easy
to notice the check is necessary again, because it will make generic/325
always fail.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing an fsync we flush all delalloc, lock the inode (VFS lock), flush
any new delalloc that might have been created before taking the lock and
then wait either for the ordered extents to complete or just for the
writeback to complete (depending on whether the full sync flag is set or
not). We then start logging the inode and assume that while we are doing it
no one else is touching the inode's file extent items (or adding new ones).
That is generally true because all operations that modify an inode acquire
the inode's lock first, including buffered and direct IO writes. However
there is one exception: memory mapped writes, which do not and can not
acquire the inode's lock.
This can cause two types of issues: ending up logging file extent items
with overlapping ranges, which is detected by the tree checker and will
result in aborting the transaction when starting writeback for a log
tree's extent buffers, or a silent corruption where we log a version of
the file that never existed.
Scenario 1 - logging overlapping extents
The following steps explain how we can end up with file extents items with
overlapping ranges in a log tree due to a race between a fsync and memory
mapped writes:
1) Task A starts an fsync on inode X, which has the full sync runtime flag
set. First it starts by flushing all delalloc for the inode;
2) Task A then locks the inode and flushes any other delalloc that might
have been created after the previous flush and waits for all ordered
extents to complete;
3) In the inode's root we have the following leaf:
Leaf N, generation == current transaction id:
---------------------------------------------------------
| (...) [ file extent item, offset 640K, length 128K ] |
---------------------------------------------------------
The last file extent item in leaf N covers the file range from 640K to
768K;
4) Task B does a memory mapped write for the page corresponding to the
file range from 764K to 768K;
5) Task A starts logging the inode. At copy_inode_items_to_log() it uses
btrfs_search_forward() to search for leafs modified in the current
transaction that contain items for the inode. It finds leaf N and copies
all the inode items from that leaf into the log tree.
Now the log tree has a copy of the last file extent item from leaf N.
At the end of the while loop at copy_inode_items_to_log(), we have the
minimum key set to:
min_key.objectid = <inode X number>
min_key.type = BTRFS_EXTENT_DATA_KEY
min_key.offset = 640K
Then we increment the key's offset by 1 so that the next call to
btrfs_search_forward() leaves us at the first key greater than the key
we just processed.
But before btrfs_search_forward() is called again...
6) Dellaloc for the page at offset 764K, dirtied by task B, is started.
It can be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) When the respective ordered extent completes, it trims the length of
the existing file extent item for file offset 640K from 128K to 124K,
and a new file extent item is added with a key offset of 764K and a
length of 4K;
8) Task A calls btrfs_search_forward(), which returns us a path pointing
to the leaf (can be leaf N or some other) containing the new file extent
item for file offset 764K.
We end up copying this item to the log tree, which overlaps with the
last copied file extent item, which covers the file range from 640K to
768K.
When writeback is triggered for log tree's extent buffers, the issue
will be detected by the tree checker which will dump a trace and an
error message on dmesg/syslog. If the writeback is triggered when
syncing the log, which typically is, then we also end up aborting the
current transaction.
This is the same type of problem fixed in 0c713cbab6 ("Btrfs: fix race
between ranged fsync and writeback of adjacent ranges").
Scenario 2 - logging a version of the file that never existed
This scenario only happens when using the NO_HOLES feature and results in
a silent corruption, in the sense that is not detectable by 'btrfs check'
or the tree checker:
1) We have an inode I with a size of 1M and two file extent items, one
covering an extent with disk_bytenr == X for the file range [0, 512K)
and another one covering another extent with disk_bytenr == Y for the
file range [512K, 1M);
2) A hole is punched for the file range [512K, 1M);
3) Task A starts an fsync of inode I, which has the full sync runtime flag
set. It starts by flushing all existing delalloc, locks the inode (VFS
lock), starts any new delalloc that might have been created before
taking the lock and waits for all ordered extents to complete;
4) Some other task does a memory mapped write for the page corresponding to
the file range [640K, 644K) for example;
5) Task A then logs all items of the inode with the call to
copy_inode_items_to_log();
6) In the meanwhile delalloc for the range [640K, 644K) is started. It can
be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) The ordered extent for the range [640K, 644K) completes and a file
extent item for that range is added to the subvolume tree, pointing
to a 4K extent with a disk_bytenr == Z;
8) Task A then calls btrfs_log_holes(), to scan for implicit holes in
the subvolume tree. It finds two implicit holes:
- one for the file range [512K, 640K)
- one for the file range [644K, 1M)
As a result we end up neither logging a hole for the range [640K, 644K)
nor logging the file extent item with a disk_bytenr == Z.
This means that if we have a power failure and replay the log tree we
end up getting the following file extent layout:
[ disk_bytenr X ] [ hole ] [ disk_bytenr Y ] [ hole ]
0 512K 512K 640K 640K 644K 644K 1M
Which does not corresponding to any layout the file ever had before
the power failure. The only two valid layouts would be:
[ disk_bytenr X ] [ hole ]
0 512K 512K 1M
and
[ disk_bytenr X ] [ hole ] [ disk_bytenr Z ] [ hole ]
0 512K 512K 640K 640K 644K 644K 1M
This can be fixed by serializing memory mapped writes with fsync, and there
are two ways to do it:
1) Make a fsync lock the entire file range, from 0 to (u64)-1 / LLONG_MAX
in the inode's io tree. This prevents the race but also blocks any reads
during the duration of the fsync, which has a negative impact for many
common workloads;
2) Make an fsync write lock the i_mmap_lock semaphore in the inode. This
semaphore was recently added by Josef's patch set:
btrfs: add a i_mmap_lock to our inode
btrfs: cleanup inode_lock/inode_unlock uses
btrfs: exclude mmaps while doing remap
btrfs: exclude mmap from happening during all fallocate operations
and is used to solve races between memory mapped writes and
clone/dedupe/fallocate. This also makes us have the same behaviour we
have regarding other writes (buffered and direct IO) and fsync - block
them while the inode logging is in progress.
This change uses the second approach due to the performance impact of the
first one.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a small window where a deadlock can happen between fallocate and
mmap. This is described in detail by Filipe:
"""
When doing a fallocate operation we lock the inode, flush delalloc within
the target range, wait for any ordered extents to complete and then lock
the file range. Before we lock the range and after we flush delalloc,
there is a time window where another task can come in and do a memory
mapped write for a page within the fallocate range.
This means that after fallocate locks the range, there can be a dirty page
in the range. More often than not, this does not cause any problem.
The exception is when we are low on available metadata space, because an
fallocate operation needs to start a transaction while holding the file
range locked, either through btrfs_prealloc_file_range() or through the
call to btrfs_fallocate_update_isize(). If that's the case, we can end up
in a deadlock. The following list of steps explains how that happens:
1) A fallocate operation starts, locks the inode, flushes delalloc in the
range and waits for ordered extents in the range to complete;
2) Before the fallocate task locks the file range, another task does a
memory mapped write for a page in the fallocate target range. This is
possible since memory mapped writes do not (and can not) lock the
inode;
3) The fallocate task locks the file range. At this point there is one
dirty page in the range (due to the memory mapped write);
4) When the fallocate task attempts to start a transaction, it blocks when
attempting to reserve metadata space, since we are low on available
metadata space. Before blocking (wait on its reservation ticket), it
starts the async reclaim task (if not running already);
5) The async reclaim task is not able to release space through any other
means, so it decides to flush delalloc for inodes with dirty pages.
It finds that the inode used in the fallocate operation has a dirty
page and therefore queues a job (fs_info->flush_workers workqueue) to
flush delalloc for that inode and waits on that job to complete;
6) The flush job blocks when attempting to lock the file range because
it is currently locked by the fallocate task;
7) The fallocate task keeps waiting for its metadata reservation, waiting
for a wakeup on its reservation ticket. The async reclaim task is
waiting on the flush job, which in turn is waiting for locking the file
range that is currently locked by the fallocate task. So unless some
other task is able to release enough metadata space, for example an
ordered extent for some other inode completes, we end up in a deadlock
between all these tasks.
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several tasks waiting for the inode lock held by the fallocate task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd5d90a0 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
R10: 0000560fbd5d7ad0 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000005e R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task:fdm-stress state:D stack: 0 pid:2508243 ppid:2508153 flags:0x00000000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? btrfs_fallocate+0xdcf/0x1260 [btrfs]
btrfs_fallocate+0xdfb/0x1260 [btrfs]
? filename_lookup+0xf1/0x180
vfs_fallocate+0x14f/0x440
ioctl_preallocate+0x92/0xc0
do_vfs_ioctl+0x66b/0x750
? __do_sys_newfstat+0x53/0x60
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix this by disallowing mmaps from happening while we're doing any of
the fallocate operations on this inode.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Darrick reported a potential issue to me where we could allow mmap
writes after validating a page range matched in the case of dedupe.
Generally we rely on lock page -> lock extent with the ordered flush to
protect us, but this is done after we check the pages because we use the
generic helpers, so we could modify the page in between doing the check
and locking the range.
There also exists a deadlock, as described by Filipe
"""
When cloning a file range, we lock the inodes, flush any delalloc within
the respective file ranges, wait for any ordered extents and then lock the
file ranges in both inodes. This means that right after we flush delalloc
and before we lock the file ranges, memory mapped writes can come in and
dirty pages in the file ranges of the clone operation.
Most of the time this is harmless and causes no problems. However, if we
are low on available metadata space, we can later end up in a deadlock
when starting a transaction to replace file extent items. This happens if
when allocating metadata space for the transaction, we need to wait for
the async reclaim thread to release space and the reclaim thread needs to
flush delalloc for the inode that got the memory mapped write and has its
range locked by the clone task.
Basically what happens is the following:
1) A clone operation locks inodes A and B, flushes delalloc for both
inodes in the respective file ranges and waits for any ordered extents
in those ranges to complete;
2) Before the clone task locks the file ranges, another task does a
memory mapped write (which does not lock the inode) for one of the
inodes of the clone operation. So now we have a dirty page in one of
the ranges used by the clone operation;
3) The clone operation locks the file ranges for inodes A and B;
4) Later, when iterating over the file extents of inode A, the clone
task attempts to start a transaction. There's not enough available
free metadata space, so the async reclaim task is started (if not
running already) and we wait for someone to wake us up on our
reservation ticket;
5) The async reclaim task is not able to release space by any other
means and decides to flush delalloc for the inode of the clone
operation;
6) The workqueue job used to flush the inode blocks when starting
delalloc for the inode, since the file range is currently locked by
the clone task;
7) But the clone task is waiting on its reservation ticket and the async
reclaim task is waiting on the flush job to complete, which can't
progress since the clone task has the file range locked. So unless
some other task is able to release space, for example an ordered
extent for some other inode completes, we have a deadlock between all
these tasks;
When this happens stack traces like the following show up in dmesg/syslog:
INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
schedule+0x45/0xe0
lock_extent_bits+0x1e6/0x2d0 [btrfs]
? finish_wait+0x90/0x90
btrfs_invalidatepage+0x32c/0x390 [btrfs]
? __mod_memcg_state+0x8e/0x160
__extent_writepage+0x2d4/0x400 [btrfs]
extent_write_cache_pages+0x2b2/0x500 [btrfs]
? lock_release+0x20e/0x4c0
? trace_hardirqs_on+0x1b/0xf0
extent_writepages+0x43/0x90 [btrfs]
? lock_acquire+0x1a3/0x490
do_writepages+0x43/0xe0
? __filemap_fdatawrite_range+0xa4/0x100
__filemap_fdatawrite_range+0xc5/0x100
btrfs_run_delalloc_work+0x17/0x40 [btrfs]
btrfs_work_helper+0xf1/0x600 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x50/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
Call Trace:
__schedule+0x5d1/0xcf0
? kvm_clock_read+0x14/0x30
? wait_for_completion+0x81/0x110
schedule+0x45/0xe0
schedule_timeout+0x30c/0x580
? _raw_spin_unlock_irqrestore+0x3c/0x60
? lock_acquire+0x1a3/0x490
? try_to_wake_up+0x7a/0xa20
? lock_release+0x20e/0x4c0
? lock_acquired+0x199/0x490
? wait_for_completion+0x81/0x110
wait_for_completion+0xab/0x110
start_delalloc_inodes+0x2af/0x390 [btrfs]
btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
flush_space+0x24f/0x660 [btrfs]
btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
process_one_work+0x24e/0x5e0
worker_thread+0x20f/0x3b0
? process_one_work+0x5e0/0x5e0
kthread+0x153/0x170
? kthread_mod_delayed_work+0xc0/0xc0
ret_from_fork+0x22/0x30
(...)
several other tasks blocked on inode locks held by the clone task below
(...)
RIP: 0033:0x7f61efe73fff
Code: Unable to access opcode bytes at RIP 0x7f61efe73fd5.
RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000202 ORIG_RAX: 000000000000013c
RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73fff
RDX: 00000000ffffff9c RSI: 0000560fbd604690 RDI: 00000000ffffff9c
RBP: 00007ffc3371beb0 R08: 0000000000000002 R09: 0000560fbd5d75f0
R10: 0000560fbd5d81f0 R11: 0000000000000202 R12: 0000000000000002
R13: 000000000000000b R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
task: fdm-stress state:D stack: 0 pid:2508234 ppid:2508153 flags:0x00004000
Call Trace:
__schedule+0x5d1/0xcf0
? _raw_spin_unlock_irqrestore+0x3c/0x60
schedule+0x45/0xe0
__reserve_bytes+0x4a4/0xb10 [btrfs]
? finish_wait+0x90/0x90
btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
btrfs_block_rsv_add+0x1f/0x50 [btrfs]
start_transaction+0x2d1/0x760 [btrfs]
btrfs_replace_file_extents+0x120/0x930 [btrfs]
? lock_release+0x20e/0x4c0
btrfs_clone+0x3e4/0x7e0 [btrfs]
? btrfs_lookup_first_ordered_extent+0x8e/0x100 [btrfs]
btrfs_clone_files+0xf6/0x150 [btrfs]
btrfs_remap_file_range+0x324/0x3d0 [btrfs]
do_clone_file_range+0xd4/0x1f0
vfs_clone_file_range+0x4d/0x230
? lock_release+0x20e/0x4c0
ioctl_file_clone+0x8f/0xc0
do_vfs_ioctl+0x342/0x750
__x64_sys_ioctl+0x62/0xb0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
"""
Fix both of these issues by excluding mmaps from happening we are doing
any sort of remap, which prevents this race completely.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A few places we intermix btrfs_inode_lock with a inode_unlock, and some
places we just use inode_lock/inode_unlock instead of btrfs_inode_lock.
None of these places are using this incorrectly, but as we adjust some
of these callers it would be nice to keep everything consistent, so
convert everybody to use btrfs_inode_lock/btrfs_inode_unlock.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to be able to exclude page_mkwrite from happening concurrently
with certain operations. To facilitate this, add a i_mmap_lock to our
inode, down_read() it in our mkwrite, and add a new ILOCK flag to
indicate that we want to take the i_mmap_lock as well. I used pahole to
check the size of the btrfs_inode, the sizes are as follows
no lockdep:
before: 1120 (3 per 4k page)
after: 1160 (3 per 4k page)
lockdep:
before: 2072 (1 per 4k page)
after: 2224 (1 per 4k page)
We're slightly larger but it doesn't change how many objects we can fit
per page.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The parameter mirror is not used and does not make sense for checksum
verification of the given bio.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
force_cow can be calculated from inode and does not need to be passed as
an argument.
This simplifies run_delalloc_nocow() call from btrfs_run_delalloc_range()
A new function, should_nocow() checks if the range should be NOCOWed or
not. The function returns true iff either BTRFS_INODE_NODATA or
BTRFS_INODE_PREALLOC, but is not a defrag extent.
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix the following coccicheck warnings:
./fs/btrfs/volumes.c:1462:10-11: WARNING: return of 0/1 in function
'dev_extent_hole_check_zoned' with return type bool.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we do not do btree read ahead when doing an incremental send,
however we know that we will read and process any node or leaf in the
send root that has a generation greater than the generation of the parent
root. So triggering read ahead for such nodes and leafs is beneficial
for an incremental send.
This change does that, triggers read ahead of any node or leaf in the
send root that has a generation greater then the generation of the
parent root. As for the parent root, no readahead is triggered because
knowing in advance which nodes/leaves are going to be read is not so
linear and there's often a large time window between visiting nodes or
leaves of the parent root. So I opted to leave out the parent root,
and triggering read ahead for its nodes/leaves seemed to have not made
significant difference.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of ram:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, incremental send duration:
with $initial_file_count == 200000: 51 seconds
with $initial_file_count == 500000: 168 seconds
After this change, incremental send duration:
with $initial_file_count == 200000: 39 seconds (-26.7%)
with $initial_file_count == 500000: 125 seconds (-29.4%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, and 77759 nodes and leaves in the btree of
the second snapshot. The root nodes were at level 2.
While for $initial_file_count == 500000 there are 152476 nodes and leaves
in the btree of the first snapshot, and 190511 nodes and leaves in the
btree of the second snapshot. The root nodes were at level 2 as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a full send we know that we are going to be reading every node
and leaf of the send root, so we benefit from enabling read ahead for the
btree.
This change enables read ahead for full send operations only, incremental
sends will have read ahead enabled in a different way by a separate patch.
The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
MKFS_OPTIONS="--nodesize 16384" # default, just to be explicit
MOUNT_OPTIONS="-o max_inline=2048" # default, just to be explicit
mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
# Create files with inline data to make it easier and faster to create
# large btrees.
add_files()
{
local total=$1
local start_offset=$2
local number_jobs=$3
local total_per_job=$(($total / $number_jobs))
echo "Creating $total new files using $number_jobs jobs"
for ((n = 0; n < $number_jobs; n++)); do
(
local start_num=$(($start_offset + $n * $total_per_job))
for ((i = 1; i <= $total_per_job; i++)); do
local file_num=$((start_num + $i))
local file_path="$MNT/file_${file_num}"
xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
if [ $? -ne 0 ]; then
echo "Failed creating file $file_path"
break
fi
done
) &
worker_pids[$n]=$!
done
wait ${worker_pids[@]}
sync
echo
echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
}
initial_file_count=500000
add_files $initial_file_count 0 4
echo
echo "Creating first snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap1
echo
echo "Adding more files..."
add_files $((initial_file_count / 4)) $initial_file_count 4
echo
echo "Updating 1/50th of the initial files..."
for ((i = 1; i < $initial_file_count; i += 50)); do
xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
done
echo
echo "Creating second snapshot..."
btrfs subvolume snapshot -r $MNT $MNT/snap2
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing full send..."
start=$(date +%s)
btrfs send $MNT/snap1 > /dev/null
end=$(date +%s)
echo
echo "Full send took $((end - start)) seconds"
umount $MNT
echo 3 > /proc/sys/vm/drop_caches
blockdev --flushbufs $DEV &> /dev/null
hdparm -F $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
echo
echo "Testing incremental send..."
start=$(date +%s)
btrfs send -p $MNT/snap1 $MNT/snap2 > /dev/null
end=$(date +%s)
echo
echo "Incremental send took $((end - start)) seconds"
umount $MNT
Before this change, full send duration:
with $initial_file_count == 200000: 165 seconds
with $initial_file_count == 500000: 407 seconds
After this change, full send duration:
with $initial_file_count == 200000: 149 seconds (-10.2%)
with $initial_file_count == 500000: 353 seconds (-14.2%)
For $initial_file_count == 200000 there are 62600 nodes and leaves in the
btree of the first snapshot, while for $initial_file_count == 500000 there
are 152476 nodes and leaves. The roots were at level 2.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_block_rsv_add can return only ENOSPC since it's called with
NO_FLUSH modifier. This so simplify the logic in
btrfs_delayed_inode_reserve_metadata to exploit this invariant.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add assert and comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
It's only used for tracepoint to obtain the inode number, but we already
have the ino from btrfs_delayed_node::inode_id.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer expected to call this function with an open transaction
so all the workarounds concerning this can be removed. In fact it'll
constitute a bug to call this function with a transaction already held
so WARN in this case.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Drop function declarations at the beginning of the file scrub.c. These
functions are defined before they are used in the same file and don't
need forward declaration.
No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() checks if the block group is readonly, the bool
return type should be used.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So
move it from extent-tree.c to inode.c and declare it as static.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_inc_block_group_ro wants to ensure that the current transaction is
not running dirty block groups, if it is it waits and loops again.
That logic is currently implemented using a goto label. Actually using
a proper do {} while() construct doesn't hurt readability nor does it
introduce excessive nesting and makes the relevant code stand out by
being encompassed in the loop construct. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No point in duplicating the functionality just use the generic helper
that has the same semantics.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is small error in comment about BTRFS_ORDERED_* flags, added in
commit 3c198fe064 ("btrfs: rework the order of
btrfs_ordered_extent::flags") but the fixup did not get merged in time.
The 4 types are for ordered extent itself, not for direct io.
Only 3 types support direct io, REGULAR/NOCOW/PREALLOC.
Fix the comment to reflect that.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBy9DoACgkQxWXV+ddt
WDtqdxAAnK4zx79k5ok6nlj8JlOfReimX4wPYYigiiKGY40cfQUZ1YUqbDscvrt+
cbzvqJuMU/V/UVaPW/CLmNi5XpNlSmj0229iwy59BIcpXfgtAMTsa1zsY4teZ/AT
3noNuT15CTeybwii0nT++AkqJbCbwXc5ItccGh9ZMOQwXuA5IUVTAzKrulUJoxXN
zt23lX/ivtSfUH+pMMIG6wMVG2eGIP5m9drw+2n0yK08gt+oprLYnaAaE389mXgb
TIRBafeBY7UA1YEcA4JDBDMNa0L8yWSV+XiMhxw7Ear7KoROAunKNbsG8USll6zb
zBftfO+Gzv86wVvvPXg2KR8Qs9vyJMw2bOROFKzOnd+wQQ76v0XefOhNUUN98E6g
tLTmCH+M1B1Qm1j2hVyOect/PMY51xqJA9xwlTtAbqIcz4qyOtfTR9KqqlWxVKJW
9pAEMII063xEKVxgv2khOhewEjOgqa4v9YFQjVXdcHPKvGTAYBeoJA735+WnQ1HZ
okPC5k3DoEcVZEkUPvespEsAqm+RoBufNxWmQ7hq5N3IwZAXsIwTlhysgrXQWyc9
aTigWBq6rQ/bMz/57vI626+MAMh3StL+UOxlWiT+GToInpjZwoxZ0lgQdD6vUfUm
T90T2930+PTkykQM9sNdQygGiH0J5FzkvneYvpkOYJ/+vphsRiA=
=MuRt
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba:
"One more patch that we'd like to get to 5.12 before release.
It's changing where and how the superblock is stored in the zoned
mode. It is an on-disk format change but so far there are no
implications for users as the proper mkfs support hasn't been merged
and is waiting for the kernel side to settle.
Until now, the superblocks were derived from the zone index, but zone
size can differ per device. This is changed to be based on fixed
offset values, to make it independent of the device zone size.
The work on that got a bit delayed, we discussed the exact locations
to support potential device sizes and usecases. (Partially delayed
also due to my vacation.) Having that in the same release where the
zoned mode is declared usable is highly desired, there are userspace
projects that need to be updated to recognize the feature. Pushing
that to the next release would make things harder to test"
* tag 'for-5.12-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: move superblock logging zone location
Moves the location of the superblock logging zones. The new locations of
the logging zones are now determined based on fixed block addresses
instead of on fixed zone numbers.
The old placement method based on fixed zone numbers causes problems when
one needs to inspect a file system image without access to the drive zone
information. In such case, the super block locations cannot be reliably
determined as the zone size is unknown. By locating the superblock logging
zones using fixed addresses, we can scan a dumped file system image without
the zone information since a super block copy will always be present at or
after the fixed known locations.
Introduce the following three pairs of zones containing fixed offset
locations, regardless of the device zone size.
- primary superblock: offset 0B (and the following zone)
- first copy: offset 512G (and the following zone)
- Second copy: offset 4T (4096G, and the following zone)
If a logging zone is outside of the disk capacity, we do not record the
superblock copy.
The first copy position is much larger than for a non-zoned filesystem,
which is at 64M. This is to avoid overlapping with the log zones for
the primary superblock. This higher location is arbitrary but allows
supporting devices with very large zone sizes, plus some space around in
between.
Such large zone size is unrealistic and very unlikely to ever be seen in
real devices. Currently, SMR disks have a zone size of 256MB, and we are
expecting ZNS drives to be in the 1-4GB range, so this limit gives us
room to breathe. For now, we only allow zone sizes up to 8GB. The
maximum zone size that would still fit in the space is 256G.
The fixed location addresses are somewhat arbitrary, with the intent of
maintaining superblock reliability for smaller and larger devices, with
the preference for the latter. For this reason, there are two superblocks
under the first 1T. This should cover use cases for physical devices and
for emulated/device-mapper devices.
The superblock logging zones are reserved for superblock logging and
never used for data or metadata blocks. Note that we only reserve the
two zones per primary/copy actually used for superblock logging. We do
not reserve the ranges of zones possibly containing superblocks with the
largest supported zone size (0-16GB, 512G-528GB, 4096G-4112G).
The zones containing the fixed location offsets used to store
superblocks on a non-zoned volume are also reserved to avoid confusion.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBctBgACgkQxWXV+ddt
WDu1nA//bzuPwW3nO+enE+ipi4t6UJTJpHLeDgdMshWwhBIHVt+oFxTUIt4Zd0kT
0hJ+mbNrZHzmDmzpb6ifQn0D6k+wq6zbsEgLtwgmPmBszaXIw46FvnYnxd9FtCde
9SQzBKa86i/KMkRtaIvpUcunniIo5Aj0Hvu0oPgTKObqiB4HP2nV6rKody+mP9JW
RanWbBi0JvI4UE/J2Ud1sNWFdDtVpXpcktj1dsI8gbsYNR05HpM08SEUgeF/ts3I
yB/L18I5CUeFHyo/yogbj7kkikugPGsmOj/A86UZ6x3NxWoC+m7UXoGrO2/qlFem
qd3ioXZKlnPqeX29kAy/REa3xjE61istlDVC/vckqmXBfYc6WK/KAJvFAGI+/3VI
9HvIbBokUQzekhFlA02RTqGcasStXX7VSeJyzyAbXjGhZQKfFTHR8ZBtrREiVBC9
58K+g8SSqIb/9iJqYV4h82lSBRSdf9kHx7CSB2gOBuifihY+chVr4Xzhq12IlXbK
TNlue0BTwYLJStwx2dnY2beLbLG34/4FNRsuAR/9JsCio7Bfj0qN8htIyvfsiMxr
mkrH7+Ykd10FqC8uu6MHiW9k428871Era3B97TgyQ0V17ehh4IN0v9V7kckk9EWw
3omaPwuF2FGfFOoTR7ipKO0nDx0/y2knnDSTsWknNG09Ciwa+Ww=
=SuJv
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fixes for issues that have some user visibility and are simple enough
for this time of development cycle:
- a few fixes for rescue= mount option, adding more checks for
missing trees
- fix sleeping in atomic context on qgroup deletion
- fix subvolume deletion on mount
- fix build with M= syntax
- fix checksum mismatch error message for direct io"
* tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix check_data_csum() error message for direct I/O
btrfs: fix sleep while in non-sleep context during qgroup removal
btrfs: fix subvolume/snapshot deletion not triggered on mount
btrfs: fix build when using M=fs/btrfs
btrfs: do not initialize dev replace for bad dev root
btrfs: initialize device::fs_info always
btrfs: do not initialize dev stats if we have no dev_root
btrfs: zoned: remove outdated WARN_ON in direct IO
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBTeBsACgkQxWXV+ddt
WDtwcBAAoto5Pbc3Lvt0aha3qn9q/Ms9lNU3YIwTjqXV3lIRKksWCS7kQmWlFmLz
dILhdRBg1iWVh8qbeqpL5su7yNJduypsY/ImJroukb/BzwQViFRDGy5qIc56qLH2
OVTx4LQ0zdqVdD86Qj0mt9ilSjgXYN+J53IUjsSSyJIpgt3vVcfjCYSkFO8zBiMH
eliRtYShzJHkjEwVWLZRzk76oTnFQEC28IdYJ4y95mYl2wCABfTU2ylSeVDTtc6O
x+fNMHHRmde2nbsHc+0eMm7rYLXuzvyx/tY17u6A6iwEQLGjE4rXOVZ7kA93WgAd
YTXhM/B+YFfirNh029Av/MJP+2t9YBEODAHl1tnOdM0mfvXkpimaW0jvUEhi5f6I
ZGu5FytscsgjyUK827WL7bZKO8WMzTLQvB3ryZ9UcrHm3QbZ7xGdoBE2L86p4Euw
LiXUALdOWeYjFKSW9WWKrtQBtdjlLQYqJt+hL0ifaGlnfoi2G+DQeKtL9ZAKH5Cu
gcjDUewnJtYPLyDOCRjQPFcts/MD5o81qMLeEwshmZT/bNMD9JOGEppCxBWGWSCx
dYGq04Wib/dN710i5jB1XbJboBmT2SZDyBeiKTpCXs5mECBU00uWkkO98oId1YS3
wHu9qyGUOi2g88V27jH593/JstUYn6zyxJYIZX84mzcxOqZlKuo=
=auMP
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"There are still regressions being found and fixed in the zoned mode
and subpage code, the rest are fixes for bugs reported by users.
Regressions:
- subpage block support:
- readahead works on the proper block size
- fix last page zeroing
- zoned mode:
- linked list corruption for tree log
Fixes:
- qgroup leak after falloc failure
- tree mod log and backref resolving:
- extent buffer cloning race when resolving backrefs
- pin deleted leaves with active tree mod log users
- drop debugging flag from slab cache"
* tag 'for-5.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: always pin deleted leaves when there are active tree mod log users
btrfs: fix race when cloning extent buffer during rewind of an old root
btrfs: fix slab cache flags for free space tree bitmap
btrfs: subpage: make readahead work properly
btrfs: subpage: fix wild pointer access during metadata read failure
btrfs: zoned: fix linked list corruption after log root tree allocation failure
btrfs: fix qgroup data rsv leak caused by falloc failure
btrfs: track qgroup released data in own variable in insert_prealloc_file_extent
btrfs: fix wrong offset to zero out range beyond i_size
Commit 1dae796aabf6 ("btrfs: inode: sink parameter start and len to
check_data_csum()") replaced the start parameter to check_data_csum()
with page_offset(), but page_offset() is not meaningful for direct I/O
pages. Bring back the start parameter.
Fixes: 265d4ac03f ("btrfs: sink parameter start and len to check_data_csum")
CC: stable@vger.kernel.org # 5.11+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During the mount procedure we are calling btrfs_orphan_cleanup() against
the root tree, which will find all orphans items in this tree. When an
orphan item corresponds to a deleted subvolume/snapshot (instead of an
inode space cache), it must not delete the orphan item, because that will
cause btrfs_find_orphan_roots() to not find the orphan item and therefore
not add the corresponding subvolume root to the list of dead roots, which
results in the subvolume's tree never being deleted by the cleanup thread.
The same applies to the remount from RO to RW path.
Fix this by making btrfs_find_orphan_roots() run before calling
btrfs_orphan_cleanup() against the root tree.
A test case for fstests will follow soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Link: https://lore.kernel.org/linux-btrfs/b19f4310-35e0-606e-1eea-2dd84d28c5da@synology.com/
Fixes: 638331fa56 ("btrfs: fix transaction leak and crash after cleaning up orphans on RO mount")
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are people building the module with M= that's supposed to be used
for external modules. This got broken in e9aa7c285d ("btrfs: enable
W=1 checks for btrfs").
$ make M=fs/btrfs
scripts/Makefile.lib:10: *** Recursive variable 'KBUILD_CFLAGS' references itself (eventually). Stop.
make: *** [Makefile:1755: modules] Error 2
There's a difference compared to 'make fs/btrfs/btrfs.ko' which needs
to rebuild a few more things and also the dependency modules need to be
available. It could fail with eg.
WARNING: Symbol version dump "Module.symvers" is missing.
Modules may not have dependencies or modversions.
In some environments it's more convenient to rebuild just the btrfs
module by M= so let's make it work.
The problem is with recursive variable evaluation in += so the
conditional C options are stored in a temporary variable to avoid the
recursion.
Signed-off-by: David Sterba <dsterba@suse.com>
While helping Neal fix his broken file system I added a debug patch to
catch if we were calling btrfs_search_slot with a NULL root, and this
stack trace popped:
we tried to search with a NULL root
CPU: 0 PID: 1760 Comm: mount Not tainted 5.11.0-155.nealbtrfstest.1.fc34.x86_64 #1
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/22/2020
Call Trace:
dump_stack+0x6b/0x83
btrfs_search_slot.cold+0x11/0x1b
? btrfs_init_dev_replace+0x36/0x450
btrfs_init_dev_replace+0x71/0x450
open_ctree+0x1054/0x1610
btrfs_mount_root.cold+0x13/0xfa
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x131/0x3d0
? legacy_get_tree+0x27/0x40
? btrfs_show_options+0x640/0x640
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x441/0xa80
__x64_sys_mount+0xf4/0x130
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f644730352e
Fix this by not starting the device replace stuff if we do not have a
NULL dev root.
Reported-by: Neal Gompa <ngompa13@gmail.com>
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Neal reported a panic trying to use -o rescue=all
BUG: kernel NULL pointer dereference, address: 0000000000000030
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 0 PID: 696 Comm: mount Tainted: G W 5.12.0-rc2+ #296
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:btrfs_device_init_dev_stats+0x1d/0x200
RSP: 0018:ffffafaec1483bb8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff9a5715bcb298 RCX: 0000000000000070
RDX: ffff9a5703248000 RSI: ffff9a57052ea150 RDI: ffff9a5715bca400
RBP: ffff9a57052ea150 R08: 0000000000000070 R09: ffff9a57052ea150
R10: 000130faf0741c10 R11: 0000000000000000 R12: ffff9a5703700000
R13: 0000000000000000 R14: ffff9a5715bcb278 R15: ffff9a57052ea150
FS: 00007f600d122c40(0000) GS:ffff9a577bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 0000000112a46005 CR4: 0000000000370ef0
Call Trace:
? btrfs_init_dev_stats+0x1f/0xf0
? kmem_cache_alloc+0xef/0x1f0
btrfs_init_dev_stats+0x5f/0xf0
open_ctree+0x10cb/0x1720
btrfs_mount_root.cold+0x12/0xea
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x10d/0x380
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x433/0xa00
__x64_sys_mount+0xe3/0x120
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
This happens because when we call btrfs_init_dev_stats we do
device->fs_info->dev_root. However device->fs_info isn't initialized
because we were only calling btrfs_init_devices_late() if we properly
read the device root. However we don't actually need the device root to
init the devices, this function simply assigns the devices their
->fs_info pointer properly, so this needs to be done unconditionally
always so that we can properly dereference device->fs_info in rescue
cases.
Reported-by: Neal Gompa <ngompa13@gmail.com>
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_submit_direct() there's a WAN_ON_ONCE() that will trigger if
we're submitting a DIO write on a zoned filesystem but are not using
REQ_OP_ZONE_APPEND to submit the IO to the block device.
This is a left over from a previous version where btrfs_dio_iomap_begin()
didn't use btrfs_use_zone_append() to check for sequential write only
zones.
It is an oversight from the development phase. In v11 (I think) I've
added 08f455593f ("btrfs: zoned: cache if block group is on a
sequential zone") and forgot to remove the WARN_ON_ONCE() for
544d24f9de ("btrfs: zoned: enable zone append writing for direct IO").
When developing auto relocation I got hit by the WARN as a block groups
where relocated to conventional zone and the dio code calls
btrfs_use_zone_append() introduced by 08f455593f to check if it can
use zone append (a.k.a. if it's a sequential zone) or not and sets the
appropriate flags for iomap.
I've never hit it in testing before, as I was relying on emulation to
test the conventional zones code but this one case wasn't hit, because
on emulation fs_info->max_zone_append_size is 0 and the WARN doesn't
trigger either.
Fixes: 544d24f9de ("btrfs: zoned: enable zone append writing for direct IO")
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When freeing a tree block we may end up adding its extent back to the
free space cache/tree, as long as there are no more references for it,
it was created in the current transaction and writeback for it never
happened. This is generally fine, however when we have tree mod log
operations it can result in inconsistent versions of a btree after
unwinding extent buffers with the recorded tree mod log operations.
This is because:
* We only log operations for nodes (adding and removing key/pointers),
for leaves we don't do anything;
* This means that we can log a MOD_LOG_KEY_REMOVE_WHILE_FREEING operation
for a node that points to a leaf that was deleted;
* Before we apply the logged operation to unwind a node, we can have
that leaf's extent allocated again, either as a node or as a leaf, and
possibly for another btree. This is possible if the leaf was created in
the current transaction and writeback for it never started, in which
case btrfs_free_tree_block() returns its extent back to the free space
cache/tree;
* Then, before applying the tree mod log operation, some task allocates
the metadata extent just freed before, and uses it either as a leaf or
as a node for some btree (can be the same or another one, it does not
matter);
* After applying the MOD_LOG_KEY_REMOVE_WHILE_FREEING operation we now
get the target node with an item pointing to the metadata extent that
now has content different from what it had before the leaf was deleted.
It might now belong to a different btree and be a node and not a leaf
anymore.
As a consequence, the results of searches after the unwinding can be
unpredictable and produce unexpected results.
So make sure we pin extent buffers corresponding to leaves when there
are tree mod log users.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While resolving backreferences, as part of a logical ino ioctl call or
fiemap, we can end up hitting a BUG_ON() when replaying tree mod log
operations of a root, triggering a stack trace like the following:
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:1210!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 1 PID: 19054 Comm: crawl_335 Tainted: G W 5.11.0-2d11c0084b02-misc-next+ #89
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:__tree_mod_log_rewind+0x3b1/0x3c0
Code: 05 48 8d 74 10 (...)
RSP: 0018:ffffc90001eb70b8 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffff88812344e400 RCX: ffffffffb28933b6
RDX: 0000000000000007 RSI: dffffc0000000000 RDI: ffff88812344e42c
RBP: ffffc90001eb7108 R08: 1ffff11020b60a20 R09: ffffed1020b60a20
R10: ffff888105b050f9 R11: ffffed1020b60a1f R12: 00000000000000ee
R13: ffff8880195520c0 R14: ffff8881bc958500 R15: ffff88812344e42c
FS: 00007fd1955e8700(0000) GS:ffff8881f5600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007efdb7928718 CR3: 000000010103a006 CR4: 0000000000170ee0
Call Trace:
btrfs_search_old_slot+0x265/0x10d0
? lock_acquired+0xbb/0x600
? btrfs_search_slot+0x1090/0x1090
? free_extent_buffer.part.61+0xd7/0x140
? free_extent_buffer+0x13/0x20
resolve_indirect_refs+0x3e9/0xfc0
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? add_prelim_ref.part.11+0x150/0x150
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? do_raw_spin_unlock+0xa8/0x140
? rb_insert_color+0x30/0x360
? prelim_ref_insert+0x12d/0x430
find_parent_nodes+0x5c3/0x1830
? resolve_indirect_refs+0xfc0/0xfc0
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x160/0x210
? lock_release+0xc8/0x620
? fs_reclaim_acquire+0x67/0xf0
? lock_acquire+0xc7/0x510
? poison_range+0x38/0x40
? unpoison_range+0x14/0x40
? trace_hardirqs_on+0x55/0x120
btrfs_find_all_roots_safe+0x142/0x1e0
? find_parent_nodes+0x1830/0x1830
? btrfs_inode_flags_to_xflags+0x50/0x50
iterate_extent_inodes+0x20e/0x580
? tree_backref_for_extent+0x230/0x230
? lock_downgrade+0x3d0/0x3d0
? read_extent_buffer+0xdd/0x110
? lock_downgrade+0x3d0/0x3d0
? __kasan_check_read+0x11/0x20
? lock_acquired+0xbb/0x600
? __kasan_check_write+0x14/0x20
? _raw_spin_unlock+0x22/0x30
? __kasan_check_write+0x14/0x20
iterate_inodes_from_logical+0x129/0x170
? iterate_inodes_from_logical+0x129/0x170
? btrfs_inode_flags_to_xflags+0x50/0x50
? iterate_extent_inodes+0x580/0x580
? __vmalloc_node+0x92/0xb0
? init_data_container+0x34/0xb0
? init_data_container+0x34/0xb0
? kvmalloc_node+0x60/0x80
btrfs_ioctl_logical_to_ino+0x158/0x230
btrfs_ioctl+0x205e/0x4040
? __might_sleep+0x71/0xe0
? btrfs_ioctl_get_supported_features+0x30/0x30
? getrusage+0x4b6/0x9c0
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __might_fault+0x64/0xd0
? lock_acquire+0xc7/0x510
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? do_vfs_ioctl+0xfc/0x9d0
? ioctl_file_clone+0xe0/0xe0
? lock_downgrade+0x3d0/0x3d0
? lockdep_hardirqs_on_prepare+0x210/0x210
? __kasan_check_read+0x11/0x20
? lock_release+0xc8/0x620
? __task_pid_nr_ns+0xd3/0x250
? lock_acquire+0xc7/0x510
? __fget_files+0x160/0x230
? __fget_light+0xf2/0x110
__x64_sys_ioctl+0xc3/0x100
do_syscall_64+0x37/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fd1976e2427
Code: 00 00 90 48 8b 05 (...)
RSP: 002b:00007fd1955e5cf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fd1955e5f40 RCX: 00007fd1976e2427
RDX: 00007fd1955e5f48 RSI: 00000000c038943b RDI: 0000000000000004
RBP: 0000000001000000 R08: 0000000000000000 R09: 00007fd1955e6120
R10: 0000557835366b00 R11: 0000000000000246 R12: 0000000000000004
R13: 00007fd1955e5f48 R14: 00007fd1955e5f40 R15: 00007fd1955e5ef8
Modules linked in:
---[ end trace ec8931a1c36e57be ]---
(gdb) l *(__tree_mod_log_rewind+0x3b1)
0xffffffff81893521 is in __tree_mod_log_rewind (fs/btrfs/ctree.c:1210).
1205 * the modification. as we're going backwards, we do the
1206 * opposite of each operation here.
1207 */
1208 switch (tm->op) {
1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 BUG_ON(tm->slot < n);
1211 fallthrough;
1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 case MOD_LOG_KEY_REMOVE:
1214 btrfs_set_node_key(eb, &tm->key, tm->slot);
Here's what happens to hit that BUG_ON():
1) We have one tree mod log user (through fiemap or the logical ino ioctl),
with a sequence number of 1, so we have fs_info->tree_mod_seq == 1;
2) Another task is at ctree.c:balance_level() and we have eb X currently as
the root of the tree, and we promote its single child, eb Y, as the new
root.
Then, at ctree.c:balance_level(), we call:
tree_mod_log_insert_root(eb X, eb Y, 1);
3) At tree_mod_log_insert_root() we create tree mod log elements for each
slot of eb X, of operation type MOD_LOG_KEY_REMOVE_WHILE_FREEING each
with a ->logical pointing to ebX->start. These are placed in an array
named tm_list.
Lets assume there are N elements (N pointers in eb X);
4) Then, still at tree_mod_log_insert_root(), we create a tree mod log
element of operation type MOD_LOG_ROOT_REPLACE, ->logical set to
ebY->start, ->old_root.logical set to ebX->start, ->old_root.level set
to the level of eb X and ->generation set to the generation of eb X;
5) Then tree_mod_log_insert_root() calls tree_mod_log_free_eb() with
tm_list as argument. After that, tree_mod_log_free_eb() calls
__tree_mod_log_insert() for each member of tm_list in reverse order,
from highest slot in eb X, slot N - 1, to slot 0 of eb X;
6) __tree_mod_log_insert() sets the sequence number of each given tree mod
log operation - it increments fs_info->tree_mod_seq and sets
fs_info->tree_mod_seq as the sequence number of the given tree mod log
operation.
This means that for the tm_list created at tree_mod_log_insert_root(),
the element corresponding to slot 0 of eb X has the highest sequence
number (1 + N), and the element corresponding to the last slot has the
lowest sequence number (2);
7) Then, after inserting tm_list's elements into the tree mod log rbtree,
the MOD_LOG_ROOT_REPLACE element is inserted, which gets the highest
sequence number, which is N + 2;
8) Back to ctree.c:balance_level(), we free eb X by calling
btrfs_free_tree_block() on it. Because eb X was created in the current
transaction, has no other references and writeback did not happen for
it, we add it back to the free space cache/tree;
9) Later some other task T allocates the metadata extent from eb X, since
it is marked as free space in the space cache/tree, and uses it as a
node for some other btree;
10) The tree mod log user task calls btrfs_search_old_slot(), which calls
get_old_root(), and finally that calls __tree_mod_log_oldest_root()
with time_seq == 1 and eb_root == eb Y;
11) First iteration of the while loop finds the tree mod log element with
sequence number N + 2, for the logical address of eb Y and of type
MOD_LOG_ROOT_REPLACE;
12) Because the operation type is MOD_LOG_ROOT_REPLACE, we don't break out
of the loop, and set root_logical to point to tm->old_root.logical
which corresponds to the logical address of eb X;
13) On the next iteration of the while loop, the call to
tree_mod_log_search_oldest() returns the smallest tree mod log element
for the logical address of eb X, which has a sequence number of 2, an
operation type of MOD_LOG_KEY_REMOVE_WHILE_FREEING and corresponds to
the old slot N - 1 of eb X (eb X had N items in it before being freed);
14) We then break out of the while loop and return the tree mod log operation
of type MOD_LOG_ROOT_REPLACE (eb Y), and not the one for slot N - 1 of
eb X, to get_old_root();
15) At get_old_root(), we process the MOD_LOG_ROOT_REPLACE operation
and set "logical" to the logical address of eb X, which was the old
root. We then call tree_mod_log_search() passing it the logical
address of eb X and time_seq == 1;
16) Then before calling tree_mod_log_search(), task T adds a key to eb X,
which results in adding a tree mod log operation of type
MOD_LOG_KEY_ADD to the tree mod log - this is done at
ctree.c:insert_ptr() - but after adding the tree mod log operation
and before updating the number of items in eb X from 0 to 1...
17) The task at get_old_root() calls tree_mod_log_search() and gets the
tree mod log operation of type MOD_LOG_KEY_ADD just added by task T.
Then it enters the following if branch:
if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
(...)
} (...)
Calls read_tree_block() for eb X, which gets a reference on eb X but
does not lock it - task T has it locked.
Then it clones eb X while it has nritems set to 0 in its header, before
task T sets nritems to 1 in eb X's header. From hereupon we use the
clone of eb X which no other task has access to;
18) Then we call __tree_mod_log_rewind(), passing it the MOD_LOG_KEY_ADD
mod log operation we just got from tree_mod_log_search() in the
previous step and the cloned version of eb X;
19) At __tree_mod_log_rewind(), we set the local variable "n" to the number
of items set in eb X's clone, which is 0. Then we enter the while loop,
and in its first iteration we process the MOD_LOG_KEY_ADD operation,
which just decrements "n" from 0 to (u32)-1, since "n" is declared with
a type of u32. At the end of this iteration we call rb_next() to find the
next tree mod log operation for eb X, that gives us the mod log operation
of type MOD_LOG_KEY_REMOVE_WHILE_FREEING, for slot 0, with a sequence
number of N + 1 (steps 3 to 6);
20) Then we go back to the top of the while loop and trigger the following
BUG_ON():
(...)
switch (tm->op) {
case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
BUG_ON(tm->slot < n);
fallthrough;
(...)
Because "n" has a value of (u32)-1 (4294967295) and tm->slot is 0.
Fix this by taking a read lock on the extent buffer before cloning it at
ctree.c:get_old_root(). This should be done regardless of the extent
buffer having been freed and reused, as a concurrent task might be
modifying it (while holding a write lock on it).
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/20210227155037.GN28049@hungrycats.org/
Fixes: 834328a849 ("Btrfs: tree mod log's old roots could still be part of the tree")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The free space tree bitmap slab cache is created with SLAB_RED_ZONE but
that's a debugging flag and not always enabled. Also the other slabs are
created with at least SLAB_MEM_SPREAD that we want as well to average
the memory placement cost.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 3acd48507d ("btrfs: fix allocation of free space cache v1 bitmap pages")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: David Sterba <dsterba@suse.com>
In readahead infrastructure, we are using a lot of hard coded PAGE_SHIFT
while we're not doing anything specific to PAGE_SIZE.
One of the most affected part is the radix tree operation of
btrfs_fs_info::reada_tree.
If using PAGE_SHIFT, subpage metadata readahead is broken and does no
help reading metadata ahead.
Fix the problem by using btrfs_fs_info::sectorsize_bits so that
readahead could work for subpage.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running fstests for btrfs subpage read-write test, it has a very
high chance to crash at generic/475 with the following stack:
BTRFS warning (device dm-8): direct IO failed ino 510 rw 1,34817 sector 0xcdf0 len 94208 err no 10
Unable to handle kernel paging request at virtual address ffff80001157e7c0
CPU: 2 PID: 687125 Comm: kworker/u12:4 Tainted: G WC 5.12.0-rc2-custom+ #5
Hardware name: Khadas VIM3 (DT)
Workqueue: btrfs-endio-meta btrfs_work_helper [btrfs]
pc : queued_spin_lock_slowpath+0x1a0/0x390
lr : do_raw_spin_lock+0xc4/0x11c
Call trace:
queued_spin_lock_slowpath+0x1a0/0x390
_raw_spin_lock+0x68/0x84
btree_readahead_hook+0x38/0xc0 [btrfs]
end_bio_extent_readpage+0x504/0x5f4 [btrfs]
bio_endio+0x170/0x1a4
end_workqueue_fn+0x3c/0x60 [btrfs]
btrfs_work_helper+0x1b0/0x1b4 [btrfs]
process_one_work+0x22c/0x430
worker_thread+0x70/0x3a0
kthread+0x13c/0x140
ret_from_fork+0x10/0x30
Code: 910020e0 8b0200c2 f861d884 aa0203e1 (f8246827)
[CAUSE]
In end_bio_extent_readpage(), if we hit an error during read, we will
handle the error differently for data and metadata.
For data we queue a repair, while for metadata, we record the error and
let the caller choose what to do.
But the code is still using page->private to grab extent buffer, which
no longer points to extent buffer for subpage metadata pages.
Thus this wild pointer access leads to above crash.
[FIX]
Introduce a helper, find_extent_buffer_readpage(), to grab extent
buffer.
The difference against find_extent_buffer_nospinlock() is:
- Also handles regular sectorsize == PAGE_SIZE case
- No extent buffer refs increase/decrease
As extent buffer under IO must have non-zero refs, so this is safe
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When using a zoned filesystem, while syncing the log, if we fail to
allocate the root node for the log root tree, we are not removing the
log context we allocated on stack from the list of log contexts of the
log root tree. This means after the return from btrfs_sync_log() we get
a corrupted linked list.
Fix this by allocating the node before adding our stack allocated context
to the list of log contexts of the log root tree.
Fixes: 3ddebf27fc ("btrfs: zoned: reorder log node allocation on zoned filesystem")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running fsstress with only falloc workload, and a very low qgroup
limit set, we can get qgroup data rsv leak at unmount time.
BTRFS warning (device dm-0): qgroup 0/5 has unreleased space, type 0 rsv 20480
BTRFS error (device dm-0): qgroup reserved space leaked
The minimal reproducer looks like:
#!/bin/bash
dev=/dev/test/test
mnt="/mnt/btrfs"
fsstress=~/xfstests-dev/ltp/fsstress
runtime=8
workload()
{
umount $dev &> /dev/null
umount $mnt &> /dev/null
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
btrfs quota en $mnt
btrfs quota rescan -w $mnt
btrfs qgroup limit 16m 0/5 $mnt
$fsstress -w -z -f creat=10 -f fallocate=10 -p 2 -n 100 \
-d $mnt -v > /tmp/fsstress
umount $mnt
if dmesg | grep leak ; then
echo "!!! FAILED !!!"
exit 1
fi
}
for (( i=0; i < $runtime; i++)); do
echo "=== $i/$runtime==="
workload
done
Normally it would fail before round 4.
[CAUSE]
In function insert_prealloc_file_extent(), we first call
btrfs_qgroup_release_data() to know how many bytes are reserved for
qgroup data rsv.
Then use that @qgroup_released number to continue our work.
But after we call btrfs_qgroup_release_data(), we should either queue
@qgroup_released to delayed ref or free them manually in error path.
Unfortunately, we lack the error handling to free the released bytes,
leaking qgroup data rsv.
All the error handling function outside won't help at all, as we have
released the range, meaning in inode io tree, the EXTENT_QGROUP_RESERVED
bit is already cleared, thus all btrfs_qgroup_free_data() call won't
free any data rsv.
[FIX]
Add free_qgroup tag to manually free the released qgroup data rsv.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: David Sterba <dsterba@suse.cz>
Fixes: 9729f10a60 ("btrfs: inode: move qgroup reserved space release to the callers of insert_reserved_file_extent()")
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a piece of weird code in insert_prealloc_file_extent(), which
looks like:
ret = btrfs_qgroup_release_data(inode, file_offset, len);
if (ret < 0)
return ERR_PTR(ret);
if (trans) {
ret = insert_reserved_file_extent(trans, inode,
file_offset, &stack_fi,
true, ret);
...
}
extent_info.is_new_extent = true;
extent_info.qgroup_reserved = ret;
...
Note how the variable @ret is abused here, and if anyone is adding code
just after btrfs_qgroup_release_data() call, it's super easy to
overwrite the @ret and cause tons of qgroup related bugs.
Fix such abuse by introducing new variable @qgroup_released, so that we
won't reuse the existing variable @ret.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The test generic/091 fails , with the following output:
fsx -N 10000 -o 128000 -l 500000 -r PSIZE -t BSIZE -w BSIZE -Z -W
mapped writes DISABLED
Seed set to 1
main: filesystem does not support fallocate mode FALLOC_FL_COLLAPSE_RANGE, disabling!
main: filesystem does not support fallocate mode FALLOC_FL_INSERT_RANGE, disabling!
skipping zero size read
truncating to largest ever: 0xe400
copying to largest ever: 0x1f400
cloning to largest ever: 0x70000
cloning to largest ever: 0x77000
fallocating to largest ever: 0x7a120
Mapped Read: non-zero data past EOF (0x3a7ff) page offset 0x800 is 0xf2e1 <<<
...
[CAUSE]
In commit c28ea613fa ("btrfs: subpage: fix the false data csum mismatch error")
end_bio_extent_readpage() changes to only zero the range inside the bvec
for incoming subpage support.
But that commit is using incorrect offset to calculate the start.
For subpage, we can have a case that the whole bvec is beyond isize,
thus we need to calculate the correct offset.
But the offending commit is using @end (bvec end), other than @start
(bvec start) to calculate the start offset.
This means, we only zero the last byte of the bvec, not from the isize.
This stupid bug makes the range beyond isize is not properly zeroed, and
failed above test.
[FIX]
Use correct @start to calculate the range start.
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: c28ea613fa ("btrfs: subpage: fix the false data csum mismatch error")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBLzKsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpi0ID/9djN1db0OrAjQgWdOQsKwzcPG4fmVRHJAu
Zi8SPRj0ByonWGaPWjiSi297/j00dfYFFIXaB1Pfo4j0wX0IK8bJINl0G8SN6Dag
WYBBrT/5rCQgD8fjQ1XhuzuqLwxwcZfYXAnCAlqABG18nPk532D4dX2CMEasl8F7
XWTTj5PqHDN4bCcriH1GEA5S+2nmoz5YXjNZEDcY3/pQMdyb8Jo9mRfZubkrnRxK
c9fz2LjUz0IRaSb+9PILY5qDLOSIh+vHOIk/3BKW9DoqU/S3kTTr4twqnOclfVPH
VgJM9b+sHveVCztCJ9bnNGkW7HWjUQa8gb/B40NBxKEhw7w/HCjykhhxd+QTUQTM
GJVMRGYWhzuUEuU1M1hArPua0GLmPKSvC0CRgbKRmgPNjshTquZPJnBBFwv2wZKQ
GkrwktdK9ihE1ya4gu20MupST3PIpT3jtc6NAizr6DCy0wJ0Z1X5KYnFdbtS79No
I9qPC8lu3AcZq6NXdBfTO9ngIdiUwi9AfSYj7koS/4dmnVccVJmaj0/NNmVp2Ro3
HtaObanBnTi9v8YHl8WgX6lq5RjuQ204fXmd0No4mHFvgxsl7YaX+JBts7S3A2Nf
PoQLqmulcLmzT3EVuEg279aXw2rbnyWHARbF/5/tIr4JcugtLJhwFnBA5YgFreq9
lSbqgoKSHw==
=qHyO
-----END PGP SIGNATURE-----
Merge tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"Mostly just random fixes all over the map.
The only odd-one-out change is finally getting the rename of
BIO_MAX_PAGES to BIO_MAX_VECS done. This should've been done with the
multipage bvec change, but it's been left.
Do it now to avoid hassles around changes piling up for the next merge
window.
Summary:
- NVMe pull request:
- one more quirk (Dmitry Monakhov)
- fix max_zone_append_sectors initialization (Chaitanya Kulkarni)
- nvme-fc reset/create race fix (James Smart)
- fix status code on aborts/resets (Hannes Reinecke)
- fix the CSS check for ZNS namespaces (Chaitanya Kulkarni)
- fix a use after free in a debug printk in nvme-rdma (Lv Yunlong)
- Follow-up NVMe error fix for NULL 'id' (Christoph)
- Fixup for the bd_size_lock being IRQ safe, now that the offending
driver has been dropped (Damien).
- rsxx probe failure error return (Jia-Ju)
- umem probe failure error return (Wei)
- s390/dasd unbind fixes (Stefan)
- blk-cgroup stats summing fix (Xunlei)
- zone reset handling fix (Damien)
- Rename BIO_MAX_PAGES to BIO_MAX_VECS (Christoph)
- Suppress uevent trigger for hidden devices (Daniel)
- Fix handling of discard on busy device (Jan)
- Fix stale cache issue with zone reset (Shin'ichiro)"
* tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block:
nvme: fix the nsid value to print in nvme_validate_or_alloc_ns
block: Discard page cache of zone reset target range
block: Suppress uevent for hidden device when removed
block: rename BIO_MAX_PAGES to BIO_MAX_VECS
nvme-pci: add the DISABLE_WRITE_ZEROES quirk for a Samsung PM1725a
nvme-rdma: Fix a use after free in nvmet_rdma_write_data_done
nvme-core: check ctrl css before setting up zns
nvme-fc: fix racing controller reset and create association
nvme-fc: return NVME_SC_HOST_ABORTED_CMD when a command has been aborted
nvme-fc: set NVME_REQ_CANCELLED in nvme_fc_terminate_exchange()
nvme: add NVME_REQ_CANCELLED flag in nvme_cancel_request()
nvme: simplify error logic in nvme_validate_ns()
nvme: set max_zone_append_sectors nvme_revalidate_zones
block: rsxx: fix error return code of rsxx_pci_probe()
block: Fix REQ_OP_ZONE_RESET_ALL handling
umem: fix error return code in mm_pci_probe()
blk-cgroup: Fix the recursive blkg rwstat
s390/dasd: fix hanging IO request during DASD driver unbind
s390/dasd: fix hanging DASD driver unbind
block: Try to handle busy underlying device on discard
Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been
horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop
confusing users of the bio API.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmBCOi4ACgkQxWXV+ddt
WDtXvw//TWx3m05qHJqqG8V90uel8hB2J5vd4CA2r62Je1G8RDho57Bo7fyvL4l+
mdCPt+INajb0mpp0IoHMtyLHefojgNOsrX6FAK1/gjnLkjRLFZ3wQqkA34Ue9pNs
2u+rMY6eB105iaS3VejEmiebr++MZfjfQRV+GXU336AEeOEDZdgol8o6jMyde5TO
zRH9Dni5Sy/YAGGAb0vaoG2BMyVigrqkbjkzwjYChbUj/KuyffAgQj0v8BvsC9Y6
DnPD5yrt5kSZzuqQFH7c2jxLN0cvW+tJ0znCpnwn/nmiCALbl6y2a4dmewC32TwJ
II+3OPGpYudafLJEP15qafsJb7LmEfnGwUIrfEZbyb4lQG12uyYOdP3IN7+8td14
fd29GE62w5aErsmurcMFj/x43k4DIfcqC8b+Y+S27JZF1szh7ExCfoYC/6c5e5Qf
j6/6RtRSVqdxImRd0QYv3mCIeSG0CH2UR/1otvC81jRTHRyB3r6TV8wPLo+5K/Rk
ongKZ+BQa5RUk8skdFburhrkDDKgfBcjlexl5Gsqw+D/xTGNAcVnNQrTtW9sTSle
hB3b7CunXA1eCyui2SIqN1dR8hwao4b9RzYNs3y2jWjSPZD/Bp0BdQ8oxSPvIWkX
a8kauFGhKhY2Tdqau+CQ4UbbQWzEB7FulkPCOLiHDDZjyxIvAA4=
=tlU3
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"More regression fixes and stabilization.
Regressions:
- zoned mode
- count zone sizes in wider int types
- fix space accounting for read-only block groups
- subpage: fix page tail zeroing
Fixes:
- fix spurious warning when remounting with free space tree
- fix warning when creating a directory with smack enabled
- ioctl checks for qgroup inheritance when creating a snapshot
- qgroup
- fix missing unlock on error path in zero range
- fix amount of released reservation on error
- fix flushing from unsafe context with open transaction,
potentially deadlocking
- minor build warning fixes"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: do not account freed region of read-only block group as zone_unusable
btrfs: zoned: use sector_t for zone sectors
btrfs: subpage: fix the false data csum mismatch error
btrfs: fix warning when creating a directory with smack enabled
btrfs: don't flush from btrfs_delayed_inode_reserve_metadata
btrfs: export and rename qgroup_reserve_meta
btrfs: free correct amount of space in btrfs_delayed_inode_reserve_metadata
btrfs: fix spurious free_space_tree remount warning
btrfs: validate qgroup inherit for SNAP_CREATE_V2 ioctl
btrfs: unlock extents in btrfs_zero_range in case of quota reservation errors
btrfs: ref-verify: use 'inline void' keyword ordering
We migrate zone unusable bytes to read-only bytes when a block group is
set to read-only, and account all the free region as bytes_readonly.
Thus, we should not increase block_group->zone_unusable when the block
group is read-only.
Fixes: 169e0da91a ("btrfs: zoned: track unusable bytes for zones")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need to use sector_t for zone_sectors, or it would set the zone size
to zero when the size >= 4GB (= 2^24 sectors) by shifting the
zone_sectors value by SECTOR_SHIFT. We're assuming zones sizes up to
8GiB.
Fixes: 5b31646898 ("btrfs: get zone information of zoned block devices")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running fstresss, we can hit strange data csum mismatch where the
on-disk data is in fact correct (passes scrub).
With some extra debug info added, we have the following traces:
0482us: btrfs_do_readpage: root=5 ino=284 offset=393216, submit force=0 pgoff=0 iosize=8192
0494us: btrfs_do_readpage: root=5 ino=284 offset=401408, submit force=0 pgoff=8192 iosize=4096
0498us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=393216 len=8192
0591us: btrfs_do_readpage: root=5 ino=284 offset=405504, submit force=0 pgoff=12288 iosize=36864
0594us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=401408 len=4096
0863us: btrfs_submit_data_bio: root=5 ino=284 bio first bvec=405504 len=36864
0933us: btrfs_verify_data_csum: root=5 ino=284 offset=393216 len=8192
0967us: btrfs_do_readpage: root=5 ino=284 offset=442368, skip beyond isize pgoff=49152 iosize=16384
1047us: btrfs_verify_data_csum: root=5 ino=284 offset=401408 len=4096
1163us: btrfs_verify_data_csum: root=5 ino=284 offset=405504 len=36864
1290us: check_data_csum: !!! root=5 ino=284 offset=438272 pg_off=45056 !!!
7387us: end_bio_extent_readpage: root=5 ino=284 before pending_read_bios=0
[CAUSE]
Normally we expect all submitted bio reads to only touch the range we
specified, and under subpage context, it means we should only touch the
range specified in each bvec.
But in data read path, inside end_bio_extent_readpage(), we have page
zeroing which only takes regular page size into consideration.
This means for subpage if we have an inode whose content looks like below:
0 16K 32K 48K 64K
|///////| |///////| |
|//| = data needs to be read from disk
| | = hole
And i_size is 64K initially.
Then the following race can happen:
T1 | T2
--------------------------------+--------------------------------
btrfs_do_readpage() |
|- isize = 64K; |
| At this time, the isize is |
| 64K |
| |
|- submit_extent_page() |
| submit previous assembled bio|
| assemble bio for [0, 16K) |
| |
|- submit_extent_page() |
submit read bio for [0, 16K) |
assemble read bio for |
[32K, 48K) |
|
| btrfs_setsize()
| |- i_size_write(, 16K);
| Now i_size is only 16K
end_io() for [0K, 16K) |
|- end_bio_extent_readpage() |
|- btrfs_verify_data_csum() |
| No csum error |
|- i_size = 16K; |
|- zero_user_segment(16K, |
PAGE_SIZE); |
!!! We zeroed range |
!!! [32K, 48K) |
| end_io for [32K, 48K)
| |- end_bio_extent_readpage()
| |- btrfs_verify_data_csum()
| ! CSUM MISMATCH !
| ! As the range is zeroed now !
[FIX]
To fix the problem, make end_bio_extent_readpage() to only zero the
range of bvec.
The bug only affects subpage read-write support, as for full read-only
mount we can't change i_size thus won't hit the race condition.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we have smack enabled, during the creation of a directory smack may
attempt to add a "smack transmute" xattr on the inode, which results in
the following warning and trace:
WARNING: CPU: 3 PID: 2548 at fs/btrfs/transaction.c:537 start_transaction+0x489/0x4f0
Modules linked in: nft_objref nf_conntrack_netbios_ns (...)
CPU: 3 PID: 2548 Comm: mkdir Not tainted 5.9.0-rc2smack+ #81
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:start_transaction+0x489/0x4f0
Code: e9 be fc ff ff (...)
RSP: 0018:ffffc90001887d10 EFLAGS: 00010202
RAX: ffff88816f1e0000 RBX: 0000000000000201 RCX: 0000000000000003
RDX: 0000000000000201 RSI: 0000000000000002 RDI: ffff888177849000
RBP: ffff888177849000 R08: 0000000000000001 R09: 0000000000000004
R10: ffffffff825e8f7a R11: 0000000000000003 R12: ffffffffffffffe2
R13: 0000000000000000 R14: ffff88803d884270 R15: ffff8881680d8000
FS: 00007f67317b8440(0000) GS:ffff88817bcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f67247a22a8 CR3: 000000004bfbc002 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? slab_free_freelist_hook+0xea/0x1b0
? trace_hardirqs_on+0x1c/0xe0
btrfs_setxattr_trans+0x3c/0xf0
__vfs_setxattr+0x63/0x80
smack_d_instantiate+0x2d3/0x360
security_d_instantiate+0x29/0x40
d_instantiate_new+0x38/0x90
btrfs_mkdir+0x1cf/0x1e0
vfs_mkdir+0x14f/0x200
do_mkdirat+0x6d/0x110
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f673196ae6b
Code: 8b 05 11 (...)
RSP: 002b:00007ffc3c679b18 EFLAGS: 00000246 ORIG_RAX: 0000000000000053
RAX: ffffffffffffffda RBX: 00000000000001ff RCX: 00007f673196ae6b
RDX: 0000000000000000 RSI: 00000000000001ff RDI: 00007ffc3c67a30d
RBP: 00007ffc3c67a30d R08: 00000000000001ff R09: 0000000000000000
R10: 000055d3e39fe930 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffc3c679cd8 R14: 00007ffc3c67a30d R15: 00007ffc3c679ce0
irq event stamp: 11029
hardirqs last enabled at (11037): [<ffffffff81153fe6>] console_unlock+0x486/0x670
hardirqs last disabled at (11044): [<ffffffff81153c01>] console_unlock+0xa1/0x670
softirqs last enabled at (8864): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20
softirqs last disabled at (8851): [<ffffffff81e0102f>] asm_call_on_stack+0xf/0x20
This happens because at btrfs_mkdir() we call d_instantiate_new() while
holding a transaction handle, which results in the following call chain:
btrfs_mkdir()
trans = btrfs_start_transaction(root, 5);
d_instantiate_new()
smack_d_instantiate()
__vfs_setxattr()
btrfs_setxattr_trans()
btrfs_start_transaction()
start_transaction()
WARN_ON()
--> a tansaction start has TRANS_EXTWRITERS
set in its type
h->orig_rsv = h->block_rsv
h->block_rsv = NULL
btrfs_end_transaction(trans)
Besides the warning triggered at start_transaction, we set the handle's
block_rsv to NULL which may cause some surprises later on.
So fix this by making btrfs_setxattr_trans() not start a transaction when
we already have a handle on one, stored in current->journal_info, and use
that handle. We are good to use the handle because at btrfs_mkdir() we did
reserve space for the xattr and the inode item.
Reported-by: Casey Schaufler <casey@schaufler-ca.com>
CC: stable@vger.kernel.org # 5.4+
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Tested-by: Casey Schaufler <casey@schaufler-ca.com>
Link: https://lore.kernel.org/linux-btrfs/434d856f-bd7b-4889-a6ec-e81aaebfa735@schaufler-ca.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:
* ae5e070eac ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")
* 6f23277a49 ("btrfs: qgroup: don't commit transaction when we already
hold the handle")
Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:
PID: 6963 TASK: ffff8c7f3f94c000 CPU: 2 COMMAND: "test"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_timeout at ffffffffa52a1bdd
#3 wait_for_completion at ffffffffa529eeea <-- sleeps with delayed node mutex held
#4 start_delalloc_inodes at ffffffffc0380db5
#5 btrfs_start_delalloc_snapshot at ffffffffc0393836
#6 try_flush_qgroup at ffffffffc03f04b2
#7 __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6 <-- tries to reserve space and starts delalloc inodes.
#8 btrfs_delayed_update_inode at ffffffffc03e31aa <-- acquires delayed node mutex
#9 btrfs_update_inode at ffffffffc0385ba8
#10 btrfs_dirty_inode at ffffffffc038627b <-- TRANSACTIION OPENED
#11 touch_atime at ffffffffa4cf0000
#12 generic_file_read_iter at ffffffffa4c1f123
#13 new_sync_read at ffffffffa4ccdc8a
#14 vfs_read at ffffffffa4cd0849
#15 ksys_read at ffffffffa4cd0bd1
#16 do_syscall_64 at ffffffffa4a052eb
#17 entry_SYSCALL_64_after_hwframe at ffffffffa540008c
This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:
PID: 455 TASK: ffff8c8085fa4000 CPU: 5 COMMAND: "kworker/u16:30"
#0 __schedule at ffffffffa529e07d
#1 schedule at ffffffffa529e4ff
#2 schedule_preempt_disabled at ffffffffa529e80a
#3 __mutex_lock at ffffffffa529fdcb <-- goes to sleep, never wakes up.
#4 btrfs_delayed_update_inode at ffffffffc03e3143 <-- tries to acquire the mutex
#5 btrfs_update_inode at ffffffffc0385ba8 <-- this is the same inode that pid 6963 is holding
#6 cow_file_range_inline.constprop.78 at ffffffffc0386be7
#7 cow_file_range at ffffffffc03879c1
#8 btrfs_run_delalloc_range at ffffffffc038894c
#9 writepage_delalloc at ffffffffc03a3c8f
#10 __extent_writepage at ffffffffc03a4c01
#11 extent_write_cache_pages at ffffffffc03a500b
#12 extent_writepages at ffffffffc03a6de2
#13 do_writepages at ffffffffa4c277eb
#14 __filemap_fdatawrite_range at ffffffffa4c1e5bb
#15 btrfs_run_delalloc_work at ffffffffc0380987 <-- starts running delayed nodes
#16 normal_work_helper at ffffffffc03b706c
#17 process_one_work at ffffffffa4aba4e4
#18 worker_thread at ffffffffa4aba6fd
#19 kthread at ffffffffa4ac0a3d
#20 ret_from_fork at ffffffffa54001ff
To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.
Fixes: c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following commit f218ea6c47 ("btrfs: delayed-inode: Remove wrong
qgroup meta reservation calls") this function now reserves num_bytes,
rather than the fixed amount of nodesize. As such this requires the
same amount to be freed in case of failure. Fix this by adjusting
the amount we are freeing.
Fixes: f218ea6c47 ("btrfs: delayed-inode: Remove wrong qgroup meta reservation calls")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The intended logic of the check is to catch cases where the desired
free_space_tree setting doesn't match the mounted setting, and the
remount is anything but ro->rw. However, it makes the mistake of
checking equality on a masked integer (btrfs_test_opt) against a boolean
(btrfs_fs_compat_ro).
If you run the reproducer:
$ mount -o space_cache=v2 dev mnt
$ mount -o remount,ro mnt
you would expect no warning, because the remount is not attempting to
change the free space tree setting, but we do see the warning.
To fix this, add explicit bool type casts to the condition.
I tested a variety of transitions:
sudo mount -o space_cache=v2 /dev/vg0/lv0 mnt/lol
(fst enabled)
mount -o remount,ro mnt/lol
(no warning, no fst change)
sudo mount -o remount,rw,space_cache=v1,clear_cache
(no warning, ro->rw)
sudo mount -o remount,rw,space_cache=v2 mnt
(warning, rw->rw with change)
sudo mount -o remount,ro mnt
(no warning, no fst change)
sudo mount -o remount,rw,space_cache=v2 mnt
(no warning, no fst change)
Reported-by: Chris Murphy <lists@colorremedies.com>
CC: stable@vger.kernel.org # 5.11
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The problem is we're copying "inherit" from user space but we don't
necessarily know that we're copying enough data for a 64 byte
struct. Then the next problem is that 'inherit' has a variable size
array at the end, and we have to verify that array is the size we
expected.
Fixes: 6f72c7e20d ("Btrfs: add qgroup inheritance")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If btrfs_qgroup_reserve_data returns an error (i.e quota limit reached)
the handling logic directly goes to the 'out' label without first
unlocking the extent range between lockstart, lockend. This results in
deadlocks as other processes try to lock the same extent.
Fixes: a7f8b1c2ac ("btrfs: file: reserve qgroup space after the hole punch range is locked")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix build warnings of function signature when CONFIG_STACKTRACE is not
enabled by reordering the 'inline' and 'void' keywords.
../fs/btrfs/ref-verify.c:221:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static void inline __save_stack_trace(struct ref_action *ra)
../fs/btrfs/ref-verify.c:225:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull kmap conversion updates from David Sterba:
"This contains changes regarding kmap API use and eg conversion from
kmap_atomic to kmap_local_page.
The API belongs to memory management but to save cross-tree
dependency headaches we've agreed to take it through the btrfs tree
because there are some trivial conversions possible, while the rest
will need some time and getting the easy cases out of the way would be
convenient.
The changes can be grouped:
- function exports, new helpers
- new VM_BUG_ON for additional verification; it's been discussed if
it should be VM_BUG_ON or BUG_ON, the former was chosen due to
performance reasons
- code replaced by relevant helpers"
[ This is an updated version of a request that originally came in during
the merge window, but I asked for some updates:
https://lore.kernel.org/lkml/cover.1614090658.git.dsterba@suse.com/
which is why this got merge after the merge window closed. - Linus ]
* 'kmap-conversion-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: use copy_highpage() instead of 2 kmaps()
btrfs: use memcpy_[to|from]_page() and kmap_local_page()
mm/highmem: Add VM_BUG_ON() to mem*_page() calls
mm/highmem: Introduce memcpy_page(), memmove_page(), and memset_page()
mm/highmem: Convert memcpy_[to|from]_page() to kmap_local_page()
mm/highmem: Lift memcpy_[to|from]_page to core
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt
WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM
E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw
eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx
JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y
kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt
jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK
11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso
t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp
fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a
5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR
NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw=
=QJEy
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is the first batch of fixes that usually arrive during the merge
window code freeze. Regressions and stable material.
Regressions:
- fix deadlock in log sync in zoned mode
- fix bugs in subpage mode still wrongly assuming sectorsize == page
size
Fixes:
- fix missing kunmap of the Q stripe in RAID6
- block group fixes:
- fix race between extent freeing/allocation when using bitmaps
- avoid double put of block group when emptying cluster
- swapfile fixes:
- fix swapfile writes vs running scrub
- fix swapfile activation vs snapshot creation
- fix stale data exposure after cloning a hole with NO_HOLES enabled
- remove tree-checker check that does not work in case information
from other leaves is necessary"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix deadlock on log sync
btrfs: avoid double put of block group when emptying cluster
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
btrfs: tree-checker: do not error out if extent ref hash doesn't match
btrfs: fix race between swap file activation and snapshot creation
btrfs: fix race between writes to swap files and scrub
btrfs: avoid checking for RO block group twice during nocow writeback
btrfs: fix race between extent freeing/allocation when using bitmaps
btrfs: make check_compressed_csum() to be subpage compatible
btrfs: make btrfs_submit_compressed_read() subpage compatible
btrfs: fix raid6 qstripe kmap
There are many places where kmap/memove/kunmap patterns occur.
This pattern exists in the core common function copy_highpage().
Use copy_highpage to avoid open coding the use of kmap and leverages the
core functions use of kmap_local_page().
Development of this patch was aided by the following coccinelle script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/copypage/kunmap pattern and replace with copy_highpage calls
//
// NOTE: The expressions in the copy page version of this kmap pattern are
// overly complex and so these all need individual attention.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// Then a copy_page where we have 2 pages involved.
//
@ copy_page_rule @
expression page, page2, To, From, Size;
identifier ptr, ptr2;
type VP, VP2;
@@
/* kmap */
(
-VP ptr = kmap(page);
...
-VP2 ptr2 = kmap(page2);
|
-VP ptr = kmap_atomic(page);
...
-VP2 ptr2 = kmap_atomic(page2);
|
-ptr = kmap(page);
...
-ptr2 = kmap(page2);
|
-ptr = kmap_atomic(page);
...
-ptr2 = kmap_atomic(page2);
)
// 1 or more copy versions of the entire page
<+...
(
-copy_page(To, From);
+copy_highpage(To, From);
|
-memmove(To, From, Size);
+memmoveExtra(To, From, Size);
)
...+>
/* kunmap */
(
-kunmap(page2);
...
-kunmap(page);
|
-kunmap(page);
...
-kunmap(page2);
|
-kmap_atomic(ptr2);
...
-kmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on copy_page_rule
@
identifier copy_page_rule.ptr;
identifier copy_page_rule.ptr2;
type VP, VP1;
type VP2, VP21;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
-VP2 ptr2;
... when != ptr2;
? VP21 ptr2;
// </smpl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many places where the pattern kmap/memcpy/kunmap occurs.
This pattern was lifted to the core common functions
memcpy_[to|from]_page().
Use these new functions to reduce the code, eliminate direct uses of
kmap, and leverage the new core functions use of kmap_local_page().
Also, there is 1 place where a kmap/memcpy is followed by an
optional memset. Here we leave the kmap open coded to avoid remapping
the page but use kmap_local_page() directly.
Development of this patch was aided by the coccinelle script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// simple memcpy version
//
@ memcpy_rule1 @
expression page, T, F, B, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memcpy(ptr + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(ptr, F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, ptr + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, ptr, B);
+memcpy_from_page(T, page, 0, B);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule1
@
identifier memcpy_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Some callers kmap without a temp pointer
//
@ memcpy_rule2 @
expression page, T, Off, F, B;
@@
<+...
(
-memcpy(kmap(page) + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(kmap(page), F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, kmap(page) + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, kmap(page), B);
+memcpy_from_page(T, page, 0, B);
)
...+>
-kunmap(page);
// No need for the ptr variable removal
//
// Catch all
//
@ memcpy_rule3 @
expression page;
expression GenTo, GenFrom, GenSize;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memcpy
// match a catch all to be evaluated by hand.
//
-memcpy(GenTo, GenFrom, GenSize);
+memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize);
+memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule3
@
identifier memcpy_rule3.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// <smpl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename generic_file_buffered_read to match the naming of filemap_fault,
also update the written parameter to a more descriptive name and improve
the kerneldoc comment.
Link: https://lkml.kernel.org/r/20210122160140.223228-18-willy@infradead.org
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
Lockdep with fstests test case btrfs/041 detected a unsafe locking
scenario when we allocate the log node on a zoned filesystem.
btrfs/041
============================================
WARNING: possible recursive locking detected
5.11.0-rc7+ #939 Not tainted
--------------------------------------------
xfs_io/698 is trying to acquire lock:
ffff88810cd673a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x3d1/0xee0 [btrfs]
but task is already holding lock:
ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&root->log_mutex);
lock(&root->log_mutex);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by xfs_io/698:
#0: ffff88810cd66620 (sb_internal){.+.+}-{0:0}, at: btrfs_sync_file+0x2c3/0x570 [btrfs]
#1: ffff88810b0fc3a0 (&root->log_mutex){+.+.}-{3:3}, at: btrfs_sync_log+0x313/0xee0 [btrfs]
stack backtrace:
CPU: 0 PID: 698 Comm: xfs_io Not tainted 5.11.0-rc7+ #939
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack+0x77/0x97
__lock_acquire.cold+0xb9/0x32a
lock_acquire+0xb5/0x400
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
__mutex_lock+0x7b/0x8d0
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? btrfs_sync_log+0x3d1/0xee0 [btrfs]
? find_first_extent_bit+0x9f/0x100 [btrfs]
? __mutex_unlock_slowpath+0x35/0x270
btrfs_sync_log+0x3d1/0xee0 [btrfs]
btrfs_sync_file+0x3a8/0x570 [btrfs]
__x64_sys_fsync+0x34/0x60
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This happens, because we are taking the ->log_mutex albeit it has already
been locked.
Also while at it, fix the bogus unlock of the tree_log_mutex in the error
handling.
Fixes: 3ddebf27fc ("btrfs: zoned: reorder log node allocation on zoned filesystem")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's wrong calling btrfs_put_block_group in
__btrfs_return_cluster_to_free_space if the block group passed is
different than the block group the cluster represents. As this means the
cluster doesn't have a reference to the passed block group. This results
in double put and a use-after-free bug.
Fix this by simply bailing if the block group we passed in does not
match the block group on the cluster.
Fixes: fa9c0d795f ("Btrfs: rework allocation clustering")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
When using the NO_HOLES feature, if we clone a file range that spans only
a hole into a range that is at or beyond the current i_size of the
destination file, we end up not setting the full sync runtime flag on the
inode. As a result, if we then fsync the destination file and have a power
failure, after log replay we can end up exposing stale data instead of
having a hole for that range.
The conditions for this to happen are the following:
1) We have a file with a size of, for example, 1280K;
2) There is a written (non-prealloc) extent for the file range from 1024K
to 1280K with a length of 256K;
3) This particular file extent layout is durably persisted, so that the
existing superblock persisted on disk points to a subvolume root where
the file has that exact file extent layout and state;
4) The file is truncated to a smaller size, to an offset lower than the
start offset of its last extent, for example to 800K. The truncate sets
the full sync runtime flag on the inode;
6) Fsync the file to log it and clear the full sync runtime flag;
7) Clone a region that covers only a hole (implicit hole due to NO_HOLES)
into the file with a destination offset that starts at or beyond the
256K file extent item we had - for example to offset 1024K;
8) Since the clone operation does not find extents in the source range,
we end up in the if branch at the bottom of btrfs_clone() where we
punch a hole for the file range starting at offset 1024K by calling
btrfs_replace_file_extents(). There we end up not setting the full
sync flag on the inode, because we don't know we are being called in
a clone context (and not fallocate's punch hole operation), and
neither do we create an extent map to represent a hole because the
requested range is beyond eof;
9) A further fsync to the file will be a fast fsync, since the clone
operation did not set the full sync flag, and therefore it relies on
modified extent maps to correctly log the file layout. But since
it does not find any extent map marking the range from 1024K (the
previous eof) to the new eof, it does not log a file extent item
for that range representing the hole;
10) After a power failure no hole for the range starting at 1024K is
punched and we end up exposing stale data from the old 256K extent.
Turning this into exact steps:
$ mkfs.btrfs -f -O no-holes /dev/sdi
$ mount /dev/sdi /mnt
# Create our test file with 3 extents of 256K and a 256K hole at offset
# 256K. The file has a size of 1280K.
$ xfs_io -f -s \
-c "pwrite -S 0xab -b 256K 0 256K" \
-c "pwrite -S 0xcd -b 256K 512K 256K" \
-c "pwrite -S 0xef -b 256K 768K 256K" \
-c "pwrite -S 0x73 -b 256K 1024K 256K" \
/mnt/sdi/foobar
# Make sure it's durably persisted. We want the last committed super
# block to point to this particular file extent layout.
sync
# Now truncate our file to a smaller size, falling within a position of
# the second extent. This sets the full sync runtime flag on the inode.
# Then fsync the file to log it and clear the full sync flag from the
# inode. The third extent is no longer part of the file and therefore
# it is not logged.
$ xfs_io -c "truncate 800K" -c "fsync" /mnt/foobar
# Now do a clone operation that only clones the hole and sets back the
# file size to match the size it had before the truncate operation
# (1280K).
$ xfs_io \
-c "reflink /mnt/foobar 256K 1024K 256K" \
-c "fsync" \
/mnt/foobar
# File data before power failure:
$ od -A d -t x1 /mnt/foobar
0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
*
0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
*
0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
*
0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
1310720
<power fail>
# Mount the fs again to replay the log tree.
$ mount /dev/sdi /mnt
# File data after power failure:
$ od -A d -t x1 /mnt/foobar
0000000 ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
*
0262144 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0524288 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
*
0786432 ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef ef
*
0819200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
1048576 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73
*
1310720
The range from 1024K to 1280K should correspond to a hole but instead it
points to stale data, to the 256K extent that should not exist after the
truncate operation.
The issue does not exists when not using NO_HOLES, because for that case
we use file extent items to represent holes, these are found and copied
during the loop that iterates over extents at btrfs_clone(), and that
causes btrfs_replace_file_extents() to be called with a non-NULL
extent_info argument and therefore set the full sync runtime flag on the
inode.
So fix this by making the code that deals with a trailing hole during
cloning, at btrfs_clone(), to set the full sync flag on the inode, if the
range starts at or beyond the current i_size.
A test case for fstests will follow soon.
Backporting notes: for kernel 5.4 the change goes to ioctl.c into
btrfs_clone before the last call to btrfs_punch_hole_range.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree checker checks the extent ref hash at read and write time to
make sure we do not corrupt the file system. Generally extent
references go inline, but if we have enough of them we need to make an
item, which looks like
key.objectid = <bytenr>
key.type = <BTRFS_EXTENT_DATA_REF_KEY|BTRFS_TREE_BLOCK_REF_KEY>
key.offset = hash(tree, owner, offset)
However if key.offset collide with an unrelated extent reference we'll
simply key.offset++ until we get something that doesn't collide.
Obviously this doesn't match at tree checker time, and thus we error
while writing out the transaction. This is relatively easy to
reproduce, simply do something like the following
xfs_io -f -c "pwrite 0 1M" file
offset=2
for i in {0..10000}
do
xfs_io -c "reflink file 0 ${offset}M 1M" file
offset=$(( offset + 2 ))
done
xfs_io -c "reflink file 0 17999258914816 1M" file
xfs_io -c "reflink file 0 35998517829632 1M" file
xfs_io -c "reflink file 0 53752752058368 1M" file
btrfs filesystem sync
And the sync will error out because we'll abort the transaction. The
magic values above are used because they generate hash collisions with
the first file in the main subvol.
The fix for this is to remove the hash value check from tree checker, as
we have no idea which offset ours should belong to.
Reported-by: Tuomas Lähdekorpi <tuomas.lahdekorpi@gmail.com>
Fixes: 0785a9aacf ("btrfs: tree-checker: Add EXTENT_DATA_REF check")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment]
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a snapshot we check if the current number of swap files, in
the root, is non-zero, and if it is, we error out and warn that we can not
create the snapshot because there are active swap files.
However this is racy because when a task started activation of a swap
file, another task might have started already snapshot creation and might
have seen the counter for the number of swap files as zero. This means
that after the swap file is activated we may end up with a snapshot of the
same root successfully created, and therefore when the first write to the
swap file happens it has to fall back into COW mode, which should never
happen for active swap files.
Basically what can happen is:
1) Task A starts snapshot creation and enters ioctl.c:create_snapshot().
There it sees that root->nr_swapfiles has a value of 0 so it continues;
2) Task B enters btrfs_swap_activate(). It is not aware that another task
started snapshot creation but it did not finish yet. It increments
root->nr_swapfiles from 0 to 1;
3) Task B checks that the file meets all requirements to be an active
swap file - it has NOCOW set, there are no snapshots for the inode's
root at the moment, no file holes, no reflinked extents, etc;
4) Task B returns success and now the file is an active swap file;
5) Task A commits the transaction to create the snapshot and finishes.
The swap file's extents are now shared between the original root and
the snapshot;
6) A write into an extent of the swap file is attempted - there is a
snapshot of the file's root, so we fall back to COW mode and therefore
the physical location of the extent changes on disk.
So fix this by taking the snapshot lock during swap file activation before
locking the extent range, as that is the order in which we lock these
during buffered writes.
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During the nocow writeback path, we currently iterate the rbtree of block
groups twice: once for checking if the target block group is RO with the
call to btrfs_extent_readonly()), and once again for getting a nocow
reference on the block group with a call to btrfs_inc_nocow_writers().
Since btrfs_inc_nocow_writers() already returns false when the target
block group is RO, remove the call to btrfs_extent_readonly(). Not only
we avoid searching the blocks group rbtree twice, it also helps reduce
contention on the lock that protects it (specially since it is a spin
lock and not a read-write lock). That may make a noticeable difference
on very large filesystems, with thousands of allocated block groups.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During allocation the allocator will try to allocate an extent using
cluster policy. Once the current cluster is exhausted it will remove the
entry under btrfs_free_cluster::lock and subsequently acquire
btrfs_free_space_ctl::tree_lock to dispose of the already-deleted entry
and adjust btrfs_free_space_ctl::total_bitmap. This poses a problem
because there exists a race condition between removing the entry under
one lock and doing the necessary accounting holding a different lock
since extent freeing only uses the 2nd lock. This can result in the
following situation:
T1: T2:
btrfs_alloc_from_cluster insert_into_bitmap <holds tree_lock>
if (entry->bytes == 0) if (block_group && !list_empty(&block_group->cluster_list)) {
rb_erase(entry)
spin_unlock(&cluster->lock);
(total_bitmaps is still 4) spin_lock(&cluster->lock);
<doesn't find entry in cluster->root>
spin_lock(&ctl->tree_lock); <goes to new_bitmap label, adds
<blocked since T2 holds tree_lock> <a new entry and calls add_new_bitmap>
recalculate_thresholds <crashes,
due to total_bitmaps
becoming 5 and triggering
an ASSERT>
To fix this ensure that once depleted, the cluster entry is deleted when
both cluster lock and tree locks are held in the allocator (T1), this
ensures that even if there is a race with a concurrent
insert_into_bitmap call it will correctly find the entry in the cluster
and add the new space to it.
CC: <stable@vger.kernel.org> # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>