The low-level idle code in arch_cpu_idle() and its callees runs at a
time where where portions of the kernel environment aren't available.
For example, RCU may not be watching, and lockdep state may be
out-of-sync with the hardware. Due to this, it is not sound to
instrument this code.
We generally avoid instrumentation by marking the entry functions as
`noinstr`, but currently this doesn't inhibit KCOV instrumentation.
Prevent this by factoring these functions into a new idle.c so that we
can disable KCOV for the entire compilation unit, as is done for the
core idle code in kernel/sched/idle.c.
We'd like to keep instrumentation of the rest of process.c, and for the
existing code in cpuidle.c, so a new compilation unit is preferable. The
arch_cpu_idle_dead() function in process.c is a cpu hotplug function
that is safe to instrument, so it is left as-is in process.c.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-21-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The code in entry-common.c runs at exception entry and return
boundaries, where portions of the kernel environment aren't available.
For example, RCU may not be watching, and lockdep state may be
out-of-sync with the hardware. Due to this, it is not sound to
instrument this code.
We generally avoid instrumentation by marking the entry functions as
`noinstr`, but currently this doesn't inhibit KCOV instrumentation.
Prevent this by disabling KCOV for the entire compilation unit.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-20-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
We'd like to keep all the entry sequencing in entry-common.c, as this
will allow us to ensure this is consistent, and free from any unsound
instrumentation.
Currently __sdei_handler() performs the NMI entry/exit sequences in
sdei.c. Let's split the low-level entry sequence from the event
handling, moving the former to entry-common.c and keeping the latter in
sdei.c. The event handling function is renamed to do_sdei_event(),
matching the do_${FOO}() pattern used for other exception handlers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-18-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
We'd like to keep all the entry sequencing in entry-common.c, as this
will allow us to ensure this is consistent, and free from any unsound
instrumentation.
Currently handle_bad_stack() performs the NMI entry sequence in traps.c.
Let's split the low-level entry sequence from the reporting, moving the
former to entry-common.c and keeping the latter in traps.c. To make it
clear that reporting function never returns, it is renamed to
panic_bad_stack().
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-17-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
An unexpected synchronous exception from EL1h could happen at any time,
and for robustness we should treat this as an NMI, making minimal
assumptions about the context the exception was taken from.
Currently el1_inv() assumes we can use enter_from_kernel_mode(), and
also assumes that we should inherit the original DAIF value. Neither of
these are desireable when we take an unexpected exception. Further,
after el1_inv() calls __panic_unhandled(), the remainder of the function
is unreachable, and therefore superfluous.
Let's address this and simplify things by having el1h_64_sync_handler()
call __panic_unhandled() directly, without any of the redundant logic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reported-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-16-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
We have 16 architectural exception vectors, and depending on kernel
configuration we handle 8 or 12 of these with C code, with the remaining
8 or 4 of these handled as special cases in the entry assembly.
It would be nicer if the entry assembly were uniform for all exceptions,
and we deferred any specific handling of the exceptions to C code. This
way the entry assembly can be more easily templated without ifdeffery or
special cases, and it's easier to modify the handling of these cases in
future (e.g. to dump additional registers other context).
This patch reworks the entry code so that we always have a C handler for
every architectural exception vector, with the entry assembly being
completely uniform. We now have to handle exceptions from EL1t and EL1h,
and also have to handle exceptions from AArch32 even when the kernel is
built without CONFIG_COMPAT. To make this clear and to simplify
templating, we rename the top-level exception handlers with a consistent
naming scheme:
asm: <el+sp>_<regsize>_<type>
c: <el+sp>_<regsize>_<type>_handler
.. where:
<el+sp> is `el1t`, `el1h`, or `el0t`
<regsize> is `64` or `32`
<type> is `sync`, `irq`, `fiq`, or `error`
... e.g.
asm: el1h_64_sync
c: el1h_64_sync_handler
... with lower-level handlers simply using "el1" and "compat" as today.
For unexpected exceptions, this information is passed to
__panic_unhandled(), so it can report the specific vector an unexpected
exception was taken from, e.g.
| Unhandled 64-bit el1t sync exception
For vectors we never expect to enter legitimately, the C code is
generated using a macro to avoid code duplication. The exceptions are
handled via __panic_unhandled(), replacing bad_mode() (which is
removed).
The `kernel_ventry` and `entry_handler` assembly macros are updated to
handle the new naming scheme. In theory it should be possible to
generate the entry functions at the same time as the vectors using a
single table, but this will require reworking the linker script to split
the two into separate sections, so for now we have separate tables.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-15-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Our use of bad_mode() has a few rough edges:
* AArch64 doesn't use the term "mode", and refers to "Execution
states", "Exception levels", and "Selected stack pointer".
* We log the exception type (SYNC/IRQ/FIQ/SError), but not the actual
"mode" (though this can be decoded from the SPSR value).
* We use bad_mode() as a second-level handler for unexpected synchronous
exceptions, where the "mode" is legitimate, but the specific exception
is not.
* We dump the ESR value, but call this "code", and so it's not clear to
all readers that this is the ESR.
... and all of this can be somewhat opaque to those who aren't extremely
familiar with the code.
Let's make this a bit clearer by having bad_mode() log "Unhandled
${TYPE} exception" rather than "Bad mode in ${TYPE} handler", using
"ESR" rather than "code", and having the final panic() log "Unhandled
exception" rather than "Bad mode".
In future we'd like to log the specific architectural vector rather than
just the type of exception, so we also split the core of bad_mode() out
into a helper called __panic_unhandled(), which takes the vector as a
string argument.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-13-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In subsequent patches we'll rework the way bad_mode() is called by
exception entry code. In preparation for this, let's move bad_mode()
itself into entry-common.c.
Let's also mark it as noinstr (e.g. to prevent it being kprobed), and
let's also make the `handler` array a local variable, as this is only
use by bad_mode(), and will be removed entirely in a subsequent patch.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-12-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In subsequent patches we'll rename the entry handlers based on their
original EL, register width, and exception class. To do so, we need to
make all 3 mandatory arguments to the `kernel_ventry` macro, and
distinguish EL1h from EL1t.
In preparation for this, let's make the current set of arguments
mandatory, and move the `regsize` column before the branch label suffix,
making the vectors easier to read column-wise.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-10-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In entry.S we have two comments which distinguish EL0 and EL1 exception
handlers, but the code isn't actually laid out to match, and there are a
few other inconsistencies that would be good to clear up.
This patch organizes the entry handers consistently:
* The handlers are laid out in order of the vectors, to make them easier
to navigate.
* The inconsistently-applied alignment is removed
* The handlers are consistently marked with SYM_CODE_START_LOCAL()
rather than SYM_CODE_START_LOCAL_NOALIGN(), giving them the same
default alignment as other assembly code snippets.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-9-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
For various reasons we'd like to convert the bulk of arm64's exception
triage logic to C. As a step towards that, this patch converts the EL1
and EL0 IRQ+FIQ triage logic to C.
Separate C functions are added for the native and compat cases so that
in subsequent patches we can handle native/compat differences in C.
Since the triage functions can now call arm64_apply_bp_hardening()
directly, the do_el0_irq_bp_hardening() wrapper function is removed.
Since the user_exit_irqoff macro is now unused, it is removed. The
user_enter_irqoff macro is still used by the ret_to_user code, and
cannot be removed at this time.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-8-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
When handling IRQ/FIQ exceptions the entry assembly may transition from
a task's stack to a CPU's IRQ stack (and IRQ shadow call stack).
In subsequent patches we want to migrate the IRQ/FIQ triage logic to C,
and as we want to perform some actions on the task stack (e.g. EL1
preemption), we need to switch stacks within the C handler. So that we
can do so, this patch adds a helper to call a function on a CPU's IRQ
stack (and shadow stack as appropriate).
Subsequent patches will make use of the new helper function.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-7-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently portions of our preempt logic are written in C while other
parts are written in assembly. Let's clean this up a little bit by
moving the NMI preempt checks to C. For now, the preempt count (and
need_resched) checking is left in assembly, and will be converted
with the body of the IRQ handler in subsequent patches.
Other than the increased lockdep coverage there should be no functional
change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-6-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
For non-fatal exceptions taken from EL0, we expect that at some point
during exception handling it is possible to return to a regular process
context with all exceptions unmasked (e.g. as we do in
do_notify_resume()), and we generally aim to unmask exceptions wherever
possible.
While handling SError and debug exceptions from EL0, we need to leave
some exceptions masked during handling. Handling SError requires us to
mask SError (which also requires masking IRQ+FIQ), and handing debug
exceptions requires us to mask debug (which also requires masking
SError+IRQ+FIQ).
Once do_serror() or do_debug_exception() has returned, we no longer need
to mask exceptions, and can unmask them all, which is what we did prior
to commit:
9034f62515 ("arm64: Do not enable IRQs for ct_user_exit")
... where we had to mask IRQs as for context_tracking_user_exit()
expected IRQs to be masked.
Since then, we realised that our context tracking wasn't entirely
correct, and reworked the entry code to fix this. As of commit:
23529049c6 ("arm64: entry: fix non-NMI user<->kernel transitions")
... we replaced the call to context_tracking_user_exit() with a call to
user_exit_irqoff() as part of enter_from_user_mode(), which occurs
earlier, before we run the body of the handler and unmask exceptions in
DAIF.
When we return to userspace, we go via ret_to_user(), which masks
exceptions in DAIF prior to calling user_enter_irqoff() as part of
exit_to_user_mode().
Thus, there's no longer a reason to leave IRQs or FIQs masked at the end
of the EL0 debug or error handlers, as neither the user exit context
tracking nor the user entry context tracking requires this. Let's bring
these into line with other EL0 exception handlers and ensure that IRQ
and FIQ are unmasked in DAIF at some point during the handler.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210607094624.34689-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Kprobes has a counter 'nmissed', that is used to count the number of
times a probe handler was not called. This generally happens when we hit
a kprobe while handling another kprobe.
However, if one of the probe handlers causes a fault, we are currently
incrementing 'nmissed'. The comment in fault handler indicates that this
can be used to account faults taken by the probe handlers. But, this has
never been the intention as is evident from the comment above 'nmissed'
in 'struct kprobe':
/*count the number of times this probe was temporarily disarmed */
unsigned long nmissed;
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20210601120150.672652-1-naveen.n.rao@linux.vnet.ibm.com
The only user we have of Normal Write-Through memory is in the ACPI code
when mapping memory regions advertised as EFI_MEMORY_WT. Since most (all?)
CPUs treat write-through as non-cacheable under the hood, don't bother
with the extra memory type here and just treat EFI_MEMORY_WT the same way
as EFI_MEMORY_WC by mapping it to the Normal-NC memory type instead and
emitting a warning if we have failed to find an alternative EFI memory
type.
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210527110319.22157-3-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The reason for kprobe::fault_handler(), as given by their comment:
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
Is just plain bad. Those other handlers are ran from non-preemptible
context and had better use _nofault() functions. Also, there is no
upstream usage of this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210525073213.561116662@infradead.org
Aarch64 instruction set encoding and decoding logic can prove useful
for some features/tools both part of the kernel and outside the kernel.
Isolate the function dealing only with encoding/decoding instructions,
with minimal dependency on kernel utilities in order to be able to reuse
that code.
Code was only moved, no code should have been added, removed nor
modifier.
Signed-off-by: Julien Thierry <jthierry@redhat.com>
Link: https://lore.kernel.org/r/20210303170536.1838032-5-jthierry@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
Now that we have a consistent place to initialize CPU context registers
early in the boot path, let's also initialize the per-cpu offset here.
This makes the primary and secondary boot paths more consistent, and
allows for the use of per-cpu operations earlier, which will be
necessary for instrumentation with KCSAN.
Note that smp_prepare_boot_cpu() still needs to re-initialize CPU0's
offset as immediately prior to this the per-cpu areas may be
reallocated, and hence the boot-time offset may be stale. A comment is
added to make this clear.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210520115031.18509-7-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Once we enable the MMU, we have to initialize:
* SP_EL0 to point at the active task
* SP to point at the active task's stack
* SCS_SP to point at the active task's shadow stack
For all tasks (including init_task), this information can be derived
from the task's task_struct.
Let's unify __primary_switched and __secondary_switched to consistently
acquire this information from the relevant task_struct. At the same
time, let's fold this together with initializing a task's final frame.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210520115031.18509-6-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
SMCCC v1.2 allows x8-x17 to be used as parameter registers and x4—x17
to be used as result registers in SMC64/HVC64. Arm Firmware Framework
for Armv8-A specification makes use of x0-x7 as parameter and result
registers. There are other users like Hyper-V who intend to use beyond
x0-x7 as well.
Current SMCCC interface in the kernel just use x0-x7 as parameter and
x0-x3 as result registers as required by SMCCCv1.0. Let us add new
interface to support this extended set of input/output registers namely
x0-x17 as both parameter and result registers.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210518163618.43950-1-sudeep.holla@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Although naming across the codebase isn't that consistent, it
tends to follow certain patterns. Moreover, the term "flush"
isn't defined in the Arm Architecture reference manual, and might
be interpreted to mean clean, invalidate, or both for a cache.
Rename arm64-internal functions to make the naming internally
consistent, as well as making it consistent with the Arm ARM, by
specifying whether it applies to the instruction, data, or both
caches, whether the operation is a clean, invalidate, or both.
Also specify which point the operation applies to, i.e., to the
point of unification (PoU), coherency (PoC), or persistence
(PoP).
This commit applies the following sed transformation to all files
under arch/arm64:
"s/\b__flush_cache_range\b/caches_clean_inval_pou_macro/g;"\
"s/\b__flush_icache_range\b/caches_clean_inval_pou/g;"\
"s/\binvalidate_icache_range\b/icache_inval_pou/g;"\
"s/\b__flush_dcache_area\b/dcache_clean_inval_poc/g;"\
"s/\b__inval_dcache_area\b/dcache_inval_poc/g;"\
"s/__clean_dcache_area_poc\b/dcache_clean_poc/g;"\
"s/\b__clean_dcache_area_pop\b/dcache_clean_pop/g;"\
"s/\b__clean_dcache_area_pou\b/dcache_clean_pou/g;"\
"s/\b__flush_cache_user_range\b/caches_clean_inval_user_pou/g;"\
"s/\b__flush_icache_all\b/icache_inval_all_pou/g;"
Note that __clean_dcache_area_poc is deliberately missing a word
boundary check at the beginning in order to match the efistub
symbols in image-vars.h.
Also note that, despite its name, __flush_icache_range operates
on both instruction and data caches. The name change here
reflects that.
No functional change intended.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210524083001.2586635-19-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
To be consistent with other functions with similar names and
functionality in cacheflush.h, cache.S, and cachetlb.rst, change
to specify the range in terms of start and end, as opposed to
start and size.
Because the code is shared with __dma_clean_area, it changes the
parameters for that as well. However, __dma_clean_area is local to
cache.S, so no other users are affected.
No functional change intended.
Reported-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210524083001.2586635-14-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
To be consistent with other functions with similar names and
functionality in cacheflush.h, cache.S, and cachetlb.rst, change
to specify the range in terms of start and end, as opposed to
start and size.
Because the code is shared with __dma_inv_area, it changes the
parameters for that as well. However, __dma_inv_area is local to
cache.S, so no other users are affected.
No functional change intended.
Reported-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210524083001.2586635-11-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Many comments refer to the function flush_icache_range, where the
intent is in fact __flush_icache_range. Fix these comments to
refer to the intended function.
That's probably due to commit 3b8c9f1cdf ("arm64: IPI each
CPU after invalidating the I-cache for kernel mappings"), which
renamed flush_icache_range() to __flush_icache_range() and added
a wrapper.
No functional change intended.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210524083001.2586635-10-tabba@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Reliable stacktracing requires that we identify when a stacktrace is
terminated early. We can do this by ensuring all tasks have a final
frame record at a known location on their task stack, and checking
that this is the final frame record in the chain.
We'd like to use task_pt_regs(task)->stackframe as the final frame
record, as this is already setup upon exception entry from EL0. For
kernel tasks we need to consistently reserve the pt_regs and point x29
at this, which we can do with small changes to __primary_switched,
__secondary_switched, and copy_process().
Since the final frame record must be at a specific location, we must
create the final frame record in __primary_switched and
__secondary_switched rather than leaving this to start_kernel and
secondary_start_kernel. Thus, __primary_switched and
__secondary_switched will now show up in stacktraces for the idle tasks.
Since the final frame record is now identified by its location rather
than by its contents, we identify it at the start of unwind_frame(),
before we read any values from it.
External debuggers may terminate the stack trace when FP == 0. In the
pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the
debugger may print an extra record 0x0 at the end. While this is not
pretty, this does not do any harm. This is a small price to pay for
having reliable stack trace termination in the kernel. That said, gdb
does not show the extra record probably because it uses DWARF and not
frame pointers for stack traces.
Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
[Mark: rebase, use ASM_BUG(), update comments, update commit message]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>