Instead of exporting the very low-level internals of the FPU state
save/restore code (ie things like 'fpu_owner_task'), we should export
the higher-level interfaces.
Inlining these things is pointless anyway: sure, sometimes the end
result is small, but while 'stts()' can result in just three x86
instructions, those are not cheap instructions (writing %cr0 is a
serializing instruction and a very slow one at that).
So the overhead of a function call is not noticeable, and we really
don't want random modules mucking about with our internal state save
logic anyway.
So this unexports 'fpu_owner_task', and instead uninlines and exports
the actual functions that modules can use: fpu_kernel_begin/end() and
unlazy_fpu().
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211339590.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This makes us recognize when we try to restore FPU state that matches
what we already have in the FPU on this CPU, and avoids the restore
entirely if so.
To do this, we add two new data fields:
- a percpu 'fpu_owner_task' variable that gets written any time we
update the "has_fpu" field, and thus acts as a kind of back-pointer
to the task that owns the CPU. The exception is when we save the FPU
state as part of a context switch - if the save can keep the FPU
state around, we leave the 'fpu_owner_task' variable pointing at the
task whose FP state still remains on the CPU.
- a per-thread 'last_cpu' field, that indicates which CPU that thread
used its FPU on last. We update this on every context switch
(writing an invalid CPU number if the last context switch didn't
leave the FPU in a lazily usable state), so we know that *that*
thread has done nothing else with the FPU since.
These two fields together can be used when next switching back to the
task to see if the CPU still matches: if 'fpu_owner_task' matches the
task we are switching to, we know that no other task (or kernel FPU
usage) touched the FPU on this CPU in the meantime, and if the current
CPU number matches the 'last_cpu' field, we know that this thread did no
other FP work on any other CPU, so the FPU state on the CPU must match
what was saved on last context switch.
In that case, we can avoid the 'f[x]rstor' entirely, and just clear the
CR0.TS bit.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This inlines what is usually just a couple of instructions, but more
importantly it also fixes the theoretical error case (can that FPU
restore really ever fail? Maybe we should remove the checking).
We can't start sending signals from within the scheduler, we're much too
deep in the kernel and are holding the runqueue lock etc. So don't
bother even trying.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes sure we clear the FPU usage counter for newly created tasks,
just so that we start off in a known state (for example, don't try to
preload the FPU state on the first task switch etc).
It also fixes a thinko in when we increment the fpu_counter at task
switch time, introduced by commit 34ddc81a23 ("i387: re-introduce FPU
state preloading at context switch time"). We should increment the
*new* task fpu_counter, not the old task, and only if we decide to use
that state (whether lazily or preloaded).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After all the FPU state cleanups and finally finding the problem that
caused all our FPU save/restore problems, this re-introduces the
preloading of FPU state that was removed in commit b3b0870ef3 ("i387:
do not preload FPU state at task switch time").
However, instead of simply reverting the removal, this reimplements
preloading with several fixes, most notably
- properly abstracted as a true FPU state switch, rather than as
open-coded save and restore with various hacks.
In particular, implementing it as a proper FPU state switch allows us
to optimize the CR0.TS flag accesses: there is no reason to set the
TS bit only to then almost immediately clear it again. CR0 accesses
are quite slow and expensive, don't flip the bit back and forth for
no good reason.
- Make sure that the same model works for both x86-32 and x86-64, so
that there are no gratuitous differences between the two due to the
way they save and restore segment state differently due to
architectural differences that really don't matter to the FPU state.
- Avoid exposing the "preload" state to the context switch routines,
and in particular allow the concept of lazy state restore: if nothing
else has used the FPU in the meantime, and the process is still on
the same CPU, we can avoid restoring state from memory entirely, just
re-expose the state that is still in the FPU unit.
That optimized lazy restore isn't actually implemented here, but the
infrastructure is set up for it. Of course, older CPU's that use
'fnsave' to save the state cannot take advantage of this, since the
state saving also trashes the state.
In other words, there is now an actual _design_ to the FPU state saving,
rather than just random historical baggage. Hopefully it's easier to
follow as a result.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the bit that indicates whether a thread has ownership of the
FPU from the TS_USEDFPU bit in thread_info->status to a word of its own
(called 'has_fpu') in task_struct->thread.has_fpu.
This fixes two independent bugs at the same time:
- changing 'thread_info->status' from the scheduler causes nasty
problems for the other users of that variable, since it is defined to
be thread-synchronous (that's what the "TS_" part of the naming was
supposed to indicate).
So perfectly valid code could (and did) do
ti->status |= TS_RESTORE_SIGMASK;
and the compiler was free to do that as separate load, or and store
instructions. Which can cause problems with preemption, since a task
switch could happen in between, and change the TS_USEDFPU bit. The
change to TS_USEDFPU would be overwritten by the final store.
In practice, this seldom happened, though, because the 'status' field
was seldom used more than once, so gcc would generally tend to
generate code that used a read-modify-write instruction and thus
happened to avoid this problem - RMW instructions are naturally low
fat and preemption-safe.
- On x86-32, the current_thread_info() pointer would, during interrupts
and softirqs, point to a *copy* of the real thread_info, because
x86-32 uses %esp to calculate the thread_info address, and thus the
separate irq (and softirq) stacks would cause these kinds of odd
thread_info copy aliases.
This is normally not a problem, since interrupts aren't supposed to
look at thread information anyway (what thread is running at
interrupt time really isn't very well-defined), but it confused the
heck out of irq_fpu_usable() and the code that tried to squirrel
away the FPU state.
(It also caused untold confusion for us poor kernel developers).
It also turns out that using 'task_struct' is actually much more natural
for most of the call sites that care about the FPU state, since they
tend to work with the task struct for other reasons anyway (ie
scheduling). And the FPU data that we are going to save/restore is
found there too.
Thanks to Arjan Van De Ven <arjan@linux.intel.com> for pointing us to
the %esp issue.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Reported-and-tested-by: Raphael Prevost <raphael@buro.asia>
Acked-and-tested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
pending. In order to not leak FIP state from one process to another, we
need to do a floating point load after the fxsave of the old process,
and before the fxrstor of the new FPU state. That resets the state to
the (uninteresting) kernel load, rather than some potentially sensitive
user information.
We used to do this directly after the FPU state save, but that is
actually very inconvenient, since it
(a) corrupts what is potentially perfectly good FPU state that we might
want to lazy avoid restoring later and
(b) on x86-64 it resulted in a very annoying ordering constraint, where
"__unlazy_fpu()" in the task switch needs to be delayed until after
the DS segment has been reloaded just to get the new DS value.
Coupling it to the fxrstor instead of the fxsave automatically avoids
both of these issues, and also ensures that we only do it when actually
necessary (the FP state after a save may never actually get used). It's
simply a much more natural place for the leaked state cleanup.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yes, taking the trap to re-load the FPU/MMX state is expensive, but so
is spending several days looking for a bug in the state save/restore
code. And the preload code has some rather subtle interactions with
both paravirtualization support and segment state restore, so it's not
nearly as simple as it should be.
Also, now that we no longer necessarily depend on a single bit (ie
TS_USEDFPU) for keeping track of the state of the FPU, we migth be able
to do better. If we are really switching between two processes that
keep touching the FP state, save/restore is inevitable, but in the case
of having one process that does most of the FPU usage, we may actually
be able to do much better than the preloading.
In particular, we may be able to keep track of which CPU the process ran
on last, and also per CPU keep track of which process' FP state that CPU
has. For modern CPU's that don't destroy the FPU contents on save time,
that would allow us to do a lazy restore by just re-enabling the
existing FPU state - with no restore cost at all!
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This creates three helper functions that do the TS_USEDFPU accesses, and
makes everybody that used to do it by hand use those helpers instead.
In addition, there's a couple of helper functions for the "change both
CR0.TS and TS_USEDFPU at the same time" case, and the places that do
that together have been changed to use those. That means that we have
fewer random places that open-code this situation.
The intent is partly to clarify the code without actually changing any
semantics yet (since we clearly still have some hard to reproduce bug in
this area), but also to make it much easier to use another approach
entirely to caching the CR0.TS bit for software accesses.
Right now we use a bit in the thread-info 'status' variable (this patch
does not change that), but we might want to make it a full field of its
own or even make it a per-cpu variable.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Touching TS_USEDFPU without touching CR0.TS is confusing, so don't do
it. By moving it into the callers, we always do the TS_USEDFPU next to
the CR0.TS accesses in the source code, and it's much easier to see how
the two go hand in hand.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5b1cbac377 ("i387: make irq_fpu_usable() tests more robust")
added a sanity check to the #NM handler to verify that we never cause
the "Device Not Available" exception in kernel mode.
However, that check actually pinpointed a (fundamental) race where we do
cause that exception as part of the signal stack FPU state save/restore
code.
Because we use the floating point instructions themselves to save and
restore state directly from user mode, we cannot do that atomically with
testing the TS_USEDFPU bit: the user mode access itself may cause a page
fault, which causes a task switch, which saves and restores the FP/MMX
state from the kernel buffers.
This kind of "recursive" FP state save is fine per se, but it means that
when the signal stack save/restore gets restarted, it will now take the
'#NM' exception we originally tried to avoid. With preemption this can
happen even without the page fault - but because of the user access, we
cannot just disable preemption around the save/restore instruction.
There are various ways to solve this, including using the
"enable/disable_page_fault()" helpers to not allow page faults at all
during the sequence, and fall back to copying things by hand without the
use of the native FP state save/restore instructions.
However, the simplest thing to do is to just allow the #NM from kernel
space, but fix the race in setting and clearing CR0.TS that this all
exposed: the TS bit changes and the TS_USEDFPU bit absolutely have to be
atomic wrt scheduling, so while the actual state save/restore can be
interrupted and restarted, the act of actually clearing/setting CR0.TS
and the TS_USEDFPU bit together must not.
Instead of just adding random "preempt_disable/enable()" calls to what
is already excessively ugly code, this introduces some helper functions
that mostly mirror the "kernel_fpu_begin/end()" functionality, just for
the user state instead.
Those helper functions should probably eventually replace the other
ad-hoc CR0.TS and TS_USEDFPU tests too, but I'll need to think about it
some more: the task switching functionality in particular needs to
expose the difference between the 'prev' and 'next' threads, while the
new helper functions intentionally were written to only work with
'current'.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The check for save_init_fpu() (introduced in commit 5b1cbac377: "i387:
make irq_fpu_usable() tests more robust") was the wrong way around, but
I hadn't noticed, because my "tests" were bogus: the FPU exceptions are
disabled by default, so even doing a divide by zero never actually
triggers this code at all unless you do extra work to enable them.
So if anybody did enable them, they'd get one spurious warning.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some code - especially the crypto layer - wants to use the x86
FP/MMX/AVX register set in what may be interrupt (typically softirq)
context.
That *can* be ok, but the tests for when it was ok were somewhat
suspect. We cannot touch the thread-specific status bits either, so
we'd better check that we're not going to try to save FP state or
anything like that.
Now, it may be that the TS bit is always cleared *before* we set the
USEDFPU bit (and only set when we had already cleared the USEDFP
before), so the TS bit test may actually have been sufficient, but it
certainly was not obviously so.
So this explicitly verifies that we will not touch the TS_USEDFPU bit,
and adds a few related sanity-checks. Because it seems that somehow
AES-NI is corrupting user FP state. The cause is not clear, and this
patch doesn't fix it, but while debugging it I really wanted the code to
be more obviously correct and robust.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was marked asmlinkage for some really old and stale legacy reasons.
Fix that and the equally stale comment.
Noticed when debugging the irq_fpu_usable() bugs.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch changes fields in cpustat from a structure, to an
u64 array. Math gets easier, and the code is more flexible.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Tuner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1322498719-2255-2-git-send-email-glommer@parallels.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Checkin d7acb92fea made use of fxsaveq
in fpu_fxsave() if the assembler supports it; this adds
fxsaveq/fxrstorq to fxrstor_checking() and fxsave_user() as well.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <AANLkTi=RKyHLNTq6iomZOXkc6Zw1j9iAgsq8388XmzwN@mail.gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Kbuild allows for us to probe for the existence of specific constructs
in the assembler, use them to find out if we can use fxsave64 and
permit the compiler to generate better code.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Make 64-bit use the 32-bit version of fpu_save_init(). Remove
unused clear_fpu_state().
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-13-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Rewrite fpu_save_init() to prepare for merging with 64-bit.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-12-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The PSHUFB_XMM5_* macros are no longer used.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-11-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Remove ifdefs for code that the compiler can optimize away on 64-bit.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-10-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use the "R" constraint (legacy register) instead of listing all the
possible registers. Clean up the comments as well.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-8-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Consolidates code and fixes the below race for 64-bit.
commit 9fa2f37bfeb798728241cc4a19578ce6e4258f25
Author: torvalds <torvalds>
Date: Tue Sep 2 07:37:25 2003 +0000
Be a lot more careful about TS_USEDFPU and preemption
We had some races where we testecd (or set) TS_USEDFPU together
with sequences that depended on the setting (like clearing or
setting the TS flag in %cr0) and we could be preempted in between,
which screws up the FPU state, since preemption will itself change
USEDFPU and the TS flag.
This makes it a lot more explicit: the "internal" low-level FPU
functions ("__xxxx_fpu()") all require preemption to be disabled,
and the exported "real" functions will make sure that is the case.
One case - in __switch_to() - was switched to the non-preempt-safe
internal version, since the scheduler itself has already disabled
preemption.
BKrev: 3f5448b5WRiQuyzAlbajs3qoQjSobw
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-6-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
__save_init_fpu() is identical for 32-bit and 64-bit.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-5-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Commit e2e75c91 merged the math exception handler, allowing both 32-bit
and 64-bit to handle math exceptions from kernel mode. Switch to using
the 64-bit version of tolerant_fwait() without fnclex, which simply
ignores the exception if one is still pending from userspace.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1283563039-3466-4-git-send-email-brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'x86-xsave-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, xsave: Make xstate_enable_boot_cpu() __init, protect on CPU 0
x86, xsave: Add __init attribute to setup_xstate_features()
x86, xsave: Make init_xstate_buf static
x86, xsave: Check cpuid level for XSTATE_CPUID (0x0d)
x86, xsave: Introduce xstate enable functions
x86, xsave: Separate fpu and xsave initialization
x86, xsave: Move boot cpu initialization to xsave_init()
x86, xsave: 32/64 bit boot cpu check unification in initialization
x86, xsave: Do not include asm/i387.h in asm/xsave.h
x86, xsave: Use xsaveopt in context-switch path when supported
x86, xsave: Sync xsave memory layout with its header for user handling
x86, xsave: Track the offset, size of state in the xsave layout
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clean up arch/x86/kernel/cpu/mtrr/cleanup.c: use ";" not "," to terminate statements
* 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, vmware: Preset lpj values when on VMware.
* 'x86-mtrr-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, mtrr: Use stop machine context to rendezvous all the cpu's
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86/apic/es7000_32: Remove unused variable
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Avoid unnecessary __clear_user() and xrstor in signal handling
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, vdso: Unmap vdso pages
As xsave also supports other than fpu features, it should be
initialized independently of the fpu. This patch moves this out of fpu
initialization.
There is also a lot of cross referencing between fpu and xsave
code. This patch reduces this by making xsave_cntxt_init() and
init_thread_xstate() static functions.
The patch moves the cpu_has_xsave check at the beginning of
xsave_init(). All other checks may removed then.
Signed-off-by: Robert Richter <robert.richter@amd.com>
LKML-Reference: <1279731838-1522-2-git-send-email-robert.richter@amd.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
xsaveopt is a more optimized form of xsave specifically designed
for the context switch usage. xsaveopt doesn't save the state that's not
modified from the prior xrstor. And if a specific feature state gets
modified to the init state, then xsaveopt just updates the header bit
in the xsave memory layout without updating the corresponding memory
layout.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100719230205.604014179@sbs-t61.sc.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With xsaveopt, if a processor implementation discern that a processor state
component is in its initialized state it may modify the corresponding bit in
the xsave_hdr.xstate_bv as '0', with out modifying the corresponding memory
layout. Hence wHile presenting the xstate information to the user, we always
ensure that the memory layout of a feature will be in the init state if the
corresponding header bit is zero. This ensures the consistency and avoids the
condition of the user seeing some some stale state in the memory layout during
signal handling, debugging etc.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100719230205.351459480@sbs-t61.sc.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
fxsave/xsave doesn't touch all the bytes in the memory layout used by
these instructions. Specifically SW reserved (bytes 464..511) fields
in the fxsave frame and the reserved fields in the xsave header.
To present a clean context for the signal handling, just clear these fields
instead of clearing the complete fxsave/xsave memory layout, when we dump these
registers directly to the user signal frame.
Also avoid the call to second xrstor (which inits the state not passed
in the signal frame) in restore_user_xstate() if all the state has already
been restored by the first xrstor.
These changes improve the performance of signal handling(by ~3-5% as measured
by the lat_sig).
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1277249017.2847.85.camel@sbs-t61.sc.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
use_xsave() is now just a special case of static_cpu_has(), so use
static_cpu_has().
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-2-git-send-email-avi@redhat.com>
The proper constraint for a receiving 8-bit variable is "=qm", not
"=g" which equals "=rim"; even though the "i" will never match, bugs
can and do happen due to the difference between "q" and "r".
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-2-git-send-email-avi@redhat.com>
Currently all fpu state access is through tsk->thread.xstate. Since we wish
to generalize fpu access to non-task contexts, wrap the state in a new
'struct fpu' and convert existing access to use an fpu API.
Signal frame handlers are not converted to the API since they will remain
task context only things.
Signed-off-by: Avi Kivity <avi@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-3-git-send-email-avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The fpu code currently uses current->thread_info->status & TS_XSAVE as
a way to distinguish between XSAVE capable processors and older processors.
The decision is not really task specific; instead we use the task status to
avoid a global memory reference - the value should be the same across all
threads.
Eliminate this tie-in into the task structure by using an alternative
instruction keyed off the XSAVE cpu feature; this results in shorter and
faster code, without introducing a global memory reference.
[ hpa: in the future, this probably should use an asm jmp ]
Signed-off-by: Avi Kivity <avi@redhat.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <1273135546-29690-2-git-send-email-avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Add the xstate regset support which helps extend the kernel ptrace and the
core-dump interfaces to support AVX state etc.
This regset interface is designed to support all the future state that gets
supported using xsave/xrstor infrastructure.
Looking at the memory layout saved by "xsave", one can't say which state
is represented in the memory layout. This is because if a particular state is
in init state, in the xsave hdr it can be represented by bit '0'. And hence
we can't really say by the xsave header wether a state is in init state or
the state is not saved in the memory layout.
And hence the xsave memory layout available through this regset
interface uses SW usable bytes [464..511] to convey what state is represented
in the memory layout.
First 8 bytes of the sw_usable_bytes[464..467] will be set to OS enabled xstate
mask(which is same as the 64bit mask returned by the xgetbv's xCR0).
The note NT_X86_XSTATE represents the extended state information in the
core file, using the above mentioned memory layout.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100211195614.802495327@sbs-t61.sc.intel.com>
Signed-off-by: Hongjiu Lu <hjl.tools@gmail.com>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-64: move clts into batch cpu state updates when preloading fpu
x86-64: move unlazy_fpu() into lazy cpu state part of context switch
x86-32: make sure clts is batched during context switch
x86: split out core __math_state_restore
This function measures whether the FPU/SSE state can be touched in
interrupt context. If the interrupted code is in user space or has no
valid FPU/SSE context (CR0.TS == 1), FPU/SSE state can be used in IRQ
or soft_irq context too.
This is used by AES-NI accelerated AES implementation and PCLMULQDQ
accelerated GHASH implementation.
v3:
- Renamed to irq_fpu_usable to reflect the purpose of the function.
v2:
- Renamed to irq_is_fpu_using to reflect the real situation.
Signed-off-by: Huang Ying <ying.huang@intel.com>
CC: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Split the core fpu state restoration out into __math_state_restore, which
assumes that cr0.TS is clear and that the fpu context has been initialized.
This will be used during context switch. There are two reasons this is
desireable:
- There's a small clarification. When __switch_to() calls math_state_restore,
it relies on the fact that tsk_used_math() returns true, and so will
never do a blocking init_fpu(). __math_state_restore() does not have
(or need) that logic, so the question never arises.
- It allows the clts() to be moved earler in __switch_to() so it can be performed
while cpu context updates are batched (will be done in a later patch).
[ Impact: refactor code to make reuse cleaner; no functional change ]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clear TS in irq_ts_save() when in an atomic section
x86: Detect use of extended APIC ID for AMD CPUs
x86: memtest: remove 64-bit division
x86, UV: Fix macros for multiple coherency domains
x86: Fix non-lazy GS handling in sys_vm86()
x86: Add quirk for reboot stalls on a Dell Optiplex 360
x86: Fix UV BAU activation descriptor init
Impact: cleanup
The comments which fxrstor_checking and fxsave_uset refer to is
now in fxsave. Change the comments appropriately.
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
LKML-Reference: <1239190320-23952-3-git-send-email-jirislaby@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
On x86_32, separate f*rstor to an inline function which makes
restore_fpu_checking the same on both platforms -> move it
outside the ifdefs.
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
LKML-Reference: <1239190320-23952-2-git-send-email-jirislaby@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, prepare FPU code unificaton
Like on x86_64, return an error from restore_fpu and kill the task
if it fails.
Also rename restore_fpu to restore_fpu_checking which allows ifdefs
to be removed in math_state_restore().
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
LKML-Reference: <1239190320-23952-1-git-send-email-jirislaby@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix math-emu related crash while using GDB/ptrace
init_fpu() calls finit to initialize a task's xstate, while finit always
works on the current task. If we use PTRACE_GETFPREGS on another
process and both processes did not already use floating point, we get
a null pointer exception in finit.
This patch creates a new function finit_task that takes a task_struct
parameter. finit becomes a wrapper that simply calls finit_task with
current. On the plus side this avoids many calls to get_current which
would each resolve to an inline assembler mov instruction.
An empty finit_task has been added to i387.h to avoid linker errors in
case the compiler still emits the call in init_fpu when
CONFIG_MATH_EMULATION is not defined.
The declaration of finit in i387.h has been removed as the remaining
code using this function gets its prototype from fpu_proto.h.
Signed-off-by: Daniel Glöckner <dg@emlix.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: "Pallipadi Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Bill Metzenthen <billm@melbpc.org.au>
LKML-Reference: <E1Lew31-0004il-Fg@mailer.emlix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:
a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>