(suppose: memcg->use_hierarchy == 0 and memcg->swappiness == 60)
echo 10 > /memcg/0/swappiness |
mem_cgroup_swappiness_write() |
... | echo 1 > /memcg/0/use_hierarchy
| mkdir /mnt/0/1
| sub_memcg->swappiness = 60;
memcg->swappiness = 10; |
In the above scenario, we end up having 2 different swappiness
values in a single hierarchy.
We should hold cgroup_lock() when cheking cgrp->children list.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At system boot when creating the top cgroup, mem_cgroup_create() calls
enable_swap_cgroup() which is marked as __init, so mark
mem_cgroup_create() as __ref to avoid false section mismatch warning.
Reported-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by; KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In previous implementation, mem_cgroup_try_charge checked the return
value of mem_cgroup_try_to_free_pages, and just retried if some pages
had been reclaimed.
But now, try_charge(and mem_cgroup_hierarchical_reclaim called from it)
only checks whether the usage is less than the limit.
This patch tries to change the behavior as before to cause oom less
frequently.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If root_mem has no children, last_scaned_child is set to root_mem itself.
But after some children added to root_mem, mem_cgroup_get_next_node can
mem_cgroup_put the root_mem although root_mem has not been mem_cgroup_get.
This patch fixes this behavior by:
- Set last_scanned_child to NULL if root_mem has no children or DFS
search has returned to root_mem itself(root_mem is not a "child" of
root_mem). Make mem_cgroup_get_first_node return root_mem in this case.
There are no mem_cgroup_get/put for root_mem.
- Rename mem_cgroup_get_next_node to __mem_cgroup_get_next_node, and
mem_cgroup_get_first_node to mem_cgroup_get_next_node. Make
mem_cgroup_hierarchical_reclaim call only new mem_cgroup_get_next_node.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a bug in error path of mem_cgroup_move_parent.
Extra refcnt got from try_charge should be dropped, and usages incremented
by try_charge should be decremented in both error paths:
A: failure at get_page_unless_zero
B: failure at isolate_lru_page
This bug makes this parent directory unremovable.
In case of A, rmdir doesn't return, because res.usage doesn't go down to 0
at mem_cgroup_force_empty even after all the pc in lru are removed.
In case of B, rmdir fails and returns -EBUSY, because it has extra ref
counts even after res.usage goes down to 0.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the memory controller to use its hierarchy_mutex rather than
calling cgroup_lock() to protected against cgroup_mkdir()/cgroup_rmdir()
from occurring in its hierarchy.
Signed-off-by: Paul Menage <menage@google.com>
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, you can see following even when swap accounting is enabled.
1. Create Group 01, and 02.
2. allocate a "file" on tmpfs by a task under 01.
3. swap out the "file" (by memory pressure)
4. Read "file" from a task in group 02.
5. the charge of "file" is moved to group 02.
This is not ideal behavior. This is because SwapCache which was loaded
by read-ahead is not taken into account..
This is a patch to fix shmem's swapcache behavior.
- remove mem_cgroup_cache_charge_swapin().
- Add SwapCache handler routine to mem_cgroup_cache_charge().
By this, shmem's file cache is charged at add_to_page_cache()
with GFP_NOWAIT.
- pass the page of swapcache to shrink_mem_cgroup.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, a page can be deleted from SwapCache while do_swap_page().
memcg-fix-swap-accounting-leak-v3.patch handles that, but, LRU handling is
still broken. (above behavior broke assumption of memcg-synchronized-lru
patch.)
This patch is a fix for LRU handling (especially for per-zone counters).
At charging SwapCache,
- Remove page_cgroup from LRU if it's not used.
- Add page cgroup to LRU if it's not linked to.
Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From:KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
css_tryget() newly is added and we can know css is alive or not and get
refcnt of css in very safe way. ("alive" here means "rmdir/destroy" is
not called.)
This patch replaces css_get() to css_tryget(), where I cannot explain
why css_get() is safe. And removes memcg->obsolete flag.
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix swapin charge operation of memcg.
Now, memcg has hooks to swap-out operation and checks SwapCache is really
unused or not. That check depends on contents of struct page. I.e. If
PageAnon(page) && page_mapped(page), the page is recoginized as
still-in-use.
Now, reuse_swap_page() calles delete_from_swap_cache() before establishment
of any rmap. Then, in followinig sequence
(Page fault with WRITE)
try_charge() (charge += PAGESIZE)
commit_charge() (Check page_cgroup is used or not..)
reuse_swap_page()
-> delete_from_swapcache()
-> mem_cgroup_uncharge_swapcache() (charge -= PAGESIZE)
......
New charge is uncharged soon....
To avoid this, move commit_charge() after page_mapcount() goes up to 1.
By this,
try_charge() (usage += PAGESIZE)
reuse_swap_page() (may usage -= PAGESIZE if PCG_USED is set)
commit_charge() (If page_cgroup is not marked as PCG_USED,
add new charge.)
Accounting will be correct.
Changelog (v2) -> (v3)
- fixed invalid charge to swp_entry==0.
- updated documentation.
Changelog (v1) -> (v2)
- fixed comment.
[nishimura@mxp.nes.nec.co.jp: swap accounting leak doc fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_hierarchicl_reclaim() works properly even when !use_hierarchy
now (by memcg-hierarchy-avoid-unnecessary-reclaim.patch), so, instead of
try_to_free_mem_cgroup_pages(), it should be used in many cases.
The only exception is force_empty. The group has no children in this
case.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mpol_rebind_mm(), which can be called from cpuset_attach(), does
down_write(mm->mmap_sem). This means down_write(mm->mmap_sem) can be
called under cgroup_mutex.
OTOH, page fault path does down_read(mm->mmap_sem) and calls
mem_cgroup_try_charge_xxx(), which may eventually calls
mem_cgroup_out_of_memory(). And mem_cgroup_out_of_memory() calls
cgroup_lock(). This means cgroup_lock() can be called under
down_read(mm->mmap_sem).
If those two paths race, deadlock can happen.
This patch avoid this deadlock by:
- remove cgroup_lock() from mem_cgroup_out_of_memory().
- define new mutex (memcg_tasklist) and serialize mem_cgroup_move_task()
(->attach handler of memory cgroup) and mem_cgroup_out_of_memory.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After previous patch, mem_cgroup_try_charge is not used by anyone, so we
can remove it.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I think triggering OOM at mem_cgroup_prepare_migration would be just a bit
overkill. Returning -ENOMEM would be enough for
mem_cgroup_prepare_migration. The caller would handle the case anyway.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show "real" limit of memcg. This helps my debugging and maybe useful for
users.
While testing hierarchy like this
mount -t cgroup none /cgroup -t memory
mkdir /cgroup/A
set use_hierarchy==1 to "A"
mkdir /cgroup/A/01
mkdir /cgroup/A/01/02
mkdir /cgroup/A/01/03
mkdir /cgroup/A/01/03/04
mkdir /cgroup/A/08
mkdir /cgroup/A/08/01
....
and set each own limit to them, "real" limit of each memcg is unclear.
This patch shows real limit by checking all ancestors.
Changelog: (v1) -> (v2)
- remove "if" and use "min(a,b)"
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, inactive_ratio of memcg is calculated at setting limit.
because page_alloc.c does so and current implementation is straightforward
porting.
However, memcg introduced hierarchy feature recently. In hierarchy
restriction, memory limit is not only decided memory.limit_in_bytes of
current cgroup, but also parent limit and sibling memory usage.
Then, The optimal inactive_ratio is changed frequently. So, everytime
calculation is better.
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, /proc/sys/vm/swappiness can change swappiness ratio for global
reclaim. However, memcg reclaim doesn't have tuning parameter for itself.
In general, the optimal swappiness depend on workload. (e.g. hpc
workload need to low swappiness than the others.)
Then, per cgroup swappiness improve administrator tunability.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, mem_cgroup doesn't have own lock and almost its member doesn't
need. (e.g. mem_cgroup->info is protected by zone lock, mem_cgroup->stat
is per cpu variable)
However, there is one explict exception. mem_cgroup->prev_priorit need
lock, but doesn't protect. Luckly, this is NOT bug because prev_priority
isn't used for current reclaim code.
However, we plan to use prev_priority future again. Therefore, fixing is
better.
In addition, we plan to reuse this lock for another member. Then
"reclaim_param_lock" name is better than "prev_priority_lock".
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, get_scan_ratio() return correct value although memcg reclaim. Then,
mem_cgroup_calc_reclaim() can be removed.
So, memcg reclaim get the same capability of anon/file reclaim balancing
as global reclaim now.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inactive_anon_is_low() is key component of active/inactive anon
balancing on reclaim. However current inactive_anon_is_low() function
only consider global reclaim.
Therefore, we need following ugly scan_global_lru() condition.
if (lru == LRU_ACTIVE_ANON &&
(!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
shrink_active_list(nr_to_scan, zone, sc, priority, file);
return 0;
it cause that memcg reclaim always deactivate pages when shrink_list() is
called. To make mem_cgroup_inactive_anon_is_low() improve active/inactive
anon balancing of memcgroup.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: "Pekka Enberg" <penberg@cs.helsinki.fi>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
css's refcnt is dropped before end of following access.
Hold it until end of access.
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are scatterd calls of res_counter_check_under_limit(), and most of
them don't take mem+swap accounting into account.
define mem_cgroup_check_under_limit() and avoid direct use of
res_counter_check_limit().
Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My patch, memcg-fix-gfp_mask-of-callers-of-charge.patch changed gfp_mask
of callers of charge to be GFP_HIGHUSER_MOVABLE for showing what will
happen at memory reclaim.
But in recent discussion, it's NACKed because it sounds ugly.
This patch is for reverting it and add some clean up to gfp_mask of
callers of charge. No behavior change but need review before generating
HUNK in deep queue.
This patch also adds explanation to meaning of gfp_mask passed to charge
functions in memcontrol.h.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
check_under_limit logic was wrong and this check should be against
mem_over_limit rather than mem.
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Jan Blunck <jblunck@suse.de>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current mmtom has new oom function as pagefault_out_of_memory(). It's
added for select bad process rathar than killing current.
When memcg hit limit and calls OOM at page_fault, this handler called and
system-wide-oom handling happens. (means kernel panics if panic_on_oom is
true....)
To avoid overkill, check memcg's recent behavior before starting
system-wide-oom.
And this patch also fixes to guarantee "don't accnout against process with
TIF_MEMDIE". This is necessary for smooth OOM.
[akpm@linux-foundation.org: build fix]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Jan Blunck <jblunck@suse.de>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't enable multiple hierarchy support by default. This patch introduces
a features element that can be set to enable the nested depth hierarchy
feature. This feature can only be enabled when the cgroup for which the
feature this is enabled, has no children.
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces hierarchical reclaim. When an ancestor goes over
its limit, the charging routine points to the parent that is above its
limit. The reclaim process then starts from the last scanned child of the
ancestor and reclaims until the ancestor goes below its limit.
[akpm@linux-foundation.org: coding-style fixes]
[d-nishimura@mtf.biglobe.ne.jp: mem_cgroup_from_res_counter should handle both mem->res and mem->memsw]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for building hierarchies in resource counters. Cgroups allows
us to build a deep hierarchy, but we currently don't link the resource
counters belonging to the memory controller control groups, in the same
fashion as the corresponding cgroup entries in the cgroup hierarchy. This
patch provides the infrastructure for resource counters that have the same
hiearchy as their cgroup counter parts.
These set of patches are based on the resource counter hiearchy patches
posted by Pavel Emelianov.
NOTE: Building hiearchies is expensive, deeper hierarchies imply charging
the all the way up to the root. It is known that hiearchies are
expensive, so the user needs to be careful and aware of the trade-offs
before creating very deep ones.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We check mem_cgroup is disabled or not by checking
mem_cgroup_subsys.disabled. I think it has more references than expected,
now.
replacing
if (mem_cgroup_subsys.disabled)
with
if (mem_cgroup_disabled())
give us good look, I think.
[kamezawa.hiroyu@jp.fujitsu.com: fix typo]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A big patch for changing memcg's LRU semantics.
Now,
- page_cgroup is linked to mem_cgroup's its own LRU (per zone).
- LRU of page_cgroup is not synchronous with global LRU.
- page and page_cgroup is one-to-one and statically allocated.
- To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
- lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);
- SwapCache is handled.
And, when we handle LRU list of page_cgroup, we do following.
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc); .....................(1)
mz = page_cgroup_zoneinfo(pc);
spin_lock(&mz->lru_lock);
.....add to LRU
spin_unlock(&mz->lru_lock);
unlock_page_cgroup(pc);
But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.
This is a trial to remove this dirty nesting of locks.
This patch changes mz->lru_lock to be zone->lru_lock.
Then, above sequence will be written as
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
mem_cgroup_add/remove/etc_lru() {
pc = lookup_page_cgroup(page);
mz = page_cgroup_zoneinfo(pc);
if (PageCgroupUsed(pc)) {
....add to LRU
}
spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
This is much simpler.
(*) We're safe even if we don't take lock_page_cgroup(pc). Because..
1. When pc->mem_cgroup can be modified.
- at charge.
- at account_move().
2. at charge
the PCG_USED bit is not set before pc->mem_cgroup is fixed.
3. at account_move()
the page is isolated and not on LRU.
Pros.
- easy for maintenance.
- memcg can make use of laziness of pagevec.
- we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
- LRU status of memcg will be synchronized with global LRU's one.
- # of locks are reduced.
- account_move() is simplified very much.
Cons.
- may increase cost of LRU rotation.
(no impact if memcg is not configured.)
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements per cgroup limit for usage of memory+swap. However
there are SwapCache, double counting of swap-cache and swap-entry is
avoided.
Mem+Swap controller works as following.
- memory usage is limited by memory.limit_in_bytes.
- memory + swap usage is limited by memory.memsw_limit_in_bytes.
This has following benefits.
- A user can limit total resource usage of mem+swap.
Without this, because memory resource controller doesn't take care of
usage of swap, a process can exhaust all the swap (by memory leak.)
We can avoid this case.
And Swap is shared resource but it cannot be reclaimed (goes back to memory)
until it's used. This characteristic can be trouble when the memory
is divided into some parts by cpuset or memcg.
Assume group A and group B.
After some application executes, the system can be..
Group A -- very large free memory space but occupy 99% of swap.
Group B -- under memory shortage but cannot use swap...it's nearly full.
Ability to set appropriate swap limit for each group is required.
Maybe someone wonder "why not swap but mem+swap ?"
- The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
mem+swap.
In other words, when we want to limit the usage of swap without affecting
global LRU, mem+swap limit is better than just limiting swap.
Accounting target information is stored in swap_cgroup which is
per swap entry record.
Charge is done as following.
map
- charge page and memsw.
unmap
- uncharge page/memsw if not SwapCache.
swap-out (__delete_from_swap_cache)
- uncharge page
- record mem_cgroup information to swap_cgroup.
swap-in (do_swap_page)
- charged as page and memsw.
record in swap_cgroup is cleared.
memsw accounting is decremented.
swap-free (swap_free())
- if swap entry is freed, memsw is uncharged by PAGE_SIZE.
There are people work under never-swap environments and consider swap as
something bad. For such people, this mem+swap controller extension is just an
overhead. This overhead is avoided by config or boot option.
(see Kconfig. detail is not in this patch.)
TODO:
- maybe more optimization can be don in swap-in path. (but not very safe.)
But we just do simple accounting at this stage.
[nishimura@mxp.nes.nec.co.jp: make resize limit hold mutex]
[hugh@veritas.com: memswap controller core swapcache fixes]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Config and control variable for mem+swap controller.
This patch adds CONFIG_CGROUP_MEM_RES_CTLR_SWAP
(memory resource controller swap extension.)
For accounting swap, it's obvious that we have to use additional memory to
remember "who uses swap". This adds more overhead. So, it's better to
offer "choice" to users. This patch adds 2 choices.
This patch adds 2 parameters to enable swap extension or not.
- CONFIG
- boot option
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SwapCache support for memory resource controller (memcg)
Before mem+swap controller, memcg itself should handle SwapCache in proper
way. This is cut-out from it.
In current memcg, SwapCache is just leaked and the user can create tons of
SwapCache. This is a leak of account and should be handled.
SwapCache accounting is done as following.
charge (anon)
- charged when it's mapped.
(because of readahead, charge at add_to_swap_cache() is not sane)
uncharge (anon)
- uncharged when it's dropped from swapcache and fully unmapped.
means it's not uncharged at unmap.
Note: delete from swap cache at swap-in is done after rmap information
is established.
charge (shmem)
- charged at swap-in. this prevents charge at add_to_page_cache().
uncharge (shmem)
- uncharged when it's dropped from swapcache and not on shmem's
radix-tree.
at migration, check against 'old page' is modified to handle shmem.
Comparing to the old version discussed (and caused troubles), we have
advantages of
- PCG_USED bit.
- simple migrating handling.
So, situation is much easier than several months ago, maybe.
[hugh@veritas.com: memcg: handle swap caches build fix]
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By memcg-move-all-accounts-to-parent-at-rmdir.patch, there is no leak of
memory usage and force_empty is removed.
This patch adds "force_empty" again, in reasonable manner.
memory.force_empty file works when
#echo 0 (or some) > memory.force_empty
and have following function.
1. only works when there are no task in this cgroup.
2. free all page under this cgroup as much as possible.
3. page which cannot be freed will be moved up to parent.
4. Then, memcg will be empty after above echo returns.
This is much better behavior than old "force_empty" which just forget
all accounts. This patch also check signal_pending() and above "echo"
can be stopped by "Ctrl-C".
[akpm@linux-foundation.org: cleanup]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As Jan Blunck <jblunck@suse.de> pointed out, allocating per-cpu stat for
memcg to the size of NR_CPUS is not good.
This patch changes mem_cgroup's cpustat allocation not based on NR_CPUS
but based on nr_cpu_ids.
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides a function to move account information of a page
between mem_cgroups and rewrite force_empty to make use of this.
This moving of page_cgroup is done under
- lru_lock of source/destination mem_cgroup is held.
- lock_page_cgroup() is held.
Then, a routine which touches pc->mem_cgroup without lock_page_cgroup()
should confirm pc->mem_cgroup is still valid or not. Typical code can be
following.
(while page is not under lock_page())
mem = pc->mem_cgroup;
mz = page_cgroup_zoneinfo(pc)
spin_lock_irqsave(&mz->lru_lock);
if (pc->mem_cgroup == mem)
...../* some list handling */
spin_unlock_irqrestore(&mz->lru_lock);
Of course, better way is
lock_page_cgroup(pc);
....
unlock_page_cgroup(pc);
But you should confirm the nest of lock and avoid deadlock.
If you treats page_cgroup from mem_cgroup's LRU under mz->lru_lock,
you don't have to worry about what pc->mem_cgroup points to.
moved pages are added to head of lru, not to tail.
Expected users of this routine is:
- force_empty (rmdir)
- moving tasks between cgroup (for moving account information.)
- hierarchy (maybe useful.)
force_empty(rmdir) uses this move_account and move pages to its parent.
This "move" will not cause OOM (I added "oom" parameter to try_charge().)
If the parent is busy (not enough memory), force_empty calls try_to_free_page()
and reduce usage.
Purpose of this behavior is
- Fix "forget all" behavior of force_empty and avoid leak of accounting.
- By "moving first, free if necessary", keep pages on memory as much as
possible.
Adding a switch to change behavior of force_empty to
- free first, move if necessary
- free all, if there is mlocked/busy pages, return -EBUSY.
is under consideration. (I'll add if someone requtests.)
This patch also removes memory.force_empty file, a brutal debug-only interface.
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, management of "charge" under page migration is done under following
manner. (Assume migrate page contents from oldpage to newpage)
before
- "newpage" is charged before migration.
at success.
- "oldpage" is uncharged at somewhere(unmap, radix-tree-replace)
at failure
- "newpage" is uncharged.
- "oldpage" is charged if necessary (*1)
But (*1) is not reliable....because of GFP_ATOMIC.
This patch tries to change behavior as following by charge/commit/cancel ops.
before
- charge PAGE_SIZE (no target page)
success
- commit charge against "newpage".
failure
- commit charge against "oldpage".
(PCG_USED bit works effectively to avoid double-counting)
- if "oldpage" is obsolete, cancel charge of PAGE_SIZE.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix misuse of gfp_kernel.
Now, most of callers of mem_cgroup_charge_xxx functions uses GFP_KERNEL.
I think that this is from the fact that page_cgroup *was* dynamically
allocated.
But now, we allocate all page_cgroup at boot. And
mem_cgroup_try_to_free_pages() reclaim memory from GFP_HIGHUSER_MOVABLE +
specified GFP_RECLAIM_MASK.
* This is because we just want to reduce memory usage.
"Where we should reclaim from ?" is not a problem in memcg.
This patch modifies gfp masks to be GFP_HIGUSER_MOVABLE if possible.
Note: This patch is not for fixing behavior but for showing sane information
in source code.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a small race in do_swap_page(). When the page swapped-in is
charged, the mapcount can be greater than 0. But, at the same time some
process (shares it ) call unmap and make mapcount 1->0 and the page is
uncharged.
CPUA CPUB
mapcount == 1.
(1) charge if mapcount==0 zap_pte_range()
(2) mapcount 1 => 0.
(3) uncharge(). (success)
(4) set page's rmap()
mapcount 0=>1
Then, this swap page's account is leaked.
For fixing this, I added a new interface.
- charge
account to res_counter by PAGE_SIZE and try to free pages if necessary.
- commit
register page_cgroup and add to LRU if necessary.
- cancel
uncharge PAGE_SIZE because of do_swap_page failure.
CPUA
(1) charge (always)
(2) set page's rmap (mapcount > 0)
(3) commit charge was necessary or not after set_pte().
This protocol uses PCG_USED bit on page_cgroup for avoiding over accounting.
Usual mem_cgroup_charge_common() does charge -> commit at a time.
And this patch also adds following function to clarify all charges.
- mem_cgroup_newpage_charge() ....replacement for mem_cgroup_charge()
called against newly allocated anon pages.
- mem_cgroup_charge_migrate_fixup()
called only from remove_migration_ptes().
we'll have to rewrite this later.(this patch just keeps old behavior)
This function will be removed by additional patch to make migration
clearer.
Good for clarifying "what we do"
Then, we have 4 following charge points.
- newpage
- swap-in
- add-to-cache.
- migration.
[akpm@linux-foundation.org: add missing inline directives to stubs]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse output following warnings.
mm/memcontrol.c:782:5: warning: symbol 'mem_cgroup_resize_limit' was not
declared. Should it be static?
cleanup here.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_cgroup_init() is called from mem_cgroup_init(). But at this
point, we cannot call alloc_bootmem().
(and this caused panic at boot.)
This patch moves page_cgroup_init() to init/main.c.
Time table is following:
==
parse_args(). # we can trust mem_cgroup_subsys.disabled bit after this.
....
cgroup_init_early() # "early" init of cgroup.
....
setup_arch() # memmap is allocated.
...
page_cgroup_init();
mem_init(); # we cannot call alloc_bootmem after this.
....
cgroup_init() # mem_cgroup is initialized.
==
Before page_cgroup_init(), mem_map must be initialized. So,
I added page_cgroup_init() to init/main.c directly.
(*) maybe this is not very clean but
- cgroup_init_early() is too early
- in cgroup_init(), we have to use vmalloc instead of alloc_bootmem().
use of vmalloc area in x86-32 is important and we should avoid very large
vmalloc() in x86-32. So, we want to use alloc_bootmem() and added page_cgroup_init()
directly to init/main.c
[akpm@linux-foundation.org: remove unneeded/bad mem_cgroup_subsys declaration]
[akpm@linux-foundation.org: fix build]
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocate all page_cgroup at boot and remove page_cgroup poitner from
struct page. This patch adds an interface as
struct page_cgroup *lookup_page_cgroup(struct page*)
All FLATMEM/DISCONTIGMEM/SPARSEMEM and MEMORY_HOTPLUG is supported.
Remove page_cgroup pointer reduces the amount of memory by
- 4 bytes per PAGE_SIZE.
- 8 bytes per PAGE_SIZE
if memory controller is disabled. (even if configured.)
On usual 8GB x86-32 server, this saves 8MB of NORMAL_ZONE memory.
On my x86-64 server with 48GB of memory, this saves 96MB of memory.
I think this reduction makes sense.
By pre-allocation, kmalloc/kfree in charge/uncharge are removed.
This means
- we're not necessary to be afraid of kmalloc faiulre.
(this can happen because of gfp_mask type.)
- we can avoid calling kmalloc/kfree.
- we can avoid allocating tons of small objects which can be fragmented.
- we can know what amount of memory will be used for this extra-lru handling.
I added printk message as
"allocated %ld bytes of page_cgroup"
"please try cgroup_disable=memory option if you don't want"
maybe enough informative for users.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>