Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There's a relatively rare race where we look at the per-cpu preallocated
IDA bitmap, see it's NULL, allocate a new one, and atomically update it.
If the kmalloc() happened to sleep and we were rescheduled to a different
CPU, or an interrupt came in at the exact right time, another task
might have successfully allocated a bitmap and already deposited it.
I forgot what the semantics of cmpxchg() were and ended up freeing the
wrong bitmap leading to KASAN reporting a use-after-free.
Dmitry found the bug with syzkaller & wrote the patch. I wrote the test
case that will reproduce the bug without his patch being applied.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
If the -l flag is set, run the tests for 100 seconds each instead of
the normal 10 seconds.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Rehas Sachdeva <aquannie@gmail.com>
Make the output of radix tree test suite less verbose by default and add
-v and -vv command line options for increasing level of verbosity.
Signed-off-by: Rehas Sachdeva <aquannie@gmail.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
The IDR is very similar to the radix tree. It has some functionality that
the radix tree did not have (alloc next free, cyclic allocation, a
callback-based for_each, destroy tree), which is readily implementable on
top of the radix tree. A few small changes were needed in order to use a
tag to represent nodes with free space below them. More extensive
changes were needed to support storing NULL as a valid entry in an IDR.
Plain radix trees still interpret NULL as a not-present entry.
The IDA is reimplemented as a client of the newly enhanced radix tree. As
in the current implementation, it uses a bitmap at the last level of the
tree.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The random iteration test only inserts order-0 entries currently.
Update it to insert entries of order between 7 and 0. Also make the
maximum index configurable, make some variables static, make the test
duration variable, remove some useless spinning, and add a fifth thread
which calls tag_tagged_items().
Link: http://lkml.kernel.org/r/1480369871-5271-62-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an exceptionally complicated function with just one caller
(tag_pages_for_writeback). We devote a large portion of the runtime of
the test suite to testing this one function which has one caller. By
introducing the new function radix_tree_iter_tag_set(), we can eliminate
all of the complexity while keeping the performance. The caller can now
use a fairly standard radix_tree_for_each() loop, and it doesn't need to
worry about tricksy things like 'start' wrapping.
The test suite continues to spend a large amount of time investigating
this function, but now it's testing the underlying primitives such as
radix_tree_iter_resume() and the radix_tree_for_each_tagged() iterator
which are also used by other parts of the kernel.
Link: http://lkml.kernel.org/r/1480369871-5271-57-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This rather complicated function can be better implemented as an
iterator. It has only one caller, so move the functionality to the only
place that needs it. Update the test suite to follow the same pattern.
Link: http://lkml.kernel.org/r/1480369871-5271-56-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling rcu_barrier() allows all of the rcu-freed memory to be actually
returned to the pool, and allows nr_allocated to return to 0. As well
as allowing diffs between runs to be more useful, it also lets us
pinpoint leaks more effectively.
Link: http://lkml.kernel.org/r/1480369871-5271-44-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds simple benchmark for iterator similar to one I've used for
commit 78c1d78488 ("radix-tree: introduce bit-optimized iterator")
Building with make BENCHMARK=1 set radix tree order to 6, this allows to
get performance comparable to in kernel performance.
Link: http://lkml.kernel.org/r/1480369871-5271-43-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of reseeding the random number generator every time around the
loop in big_gang_check(), seed it at the beginning of execution. Use
rand_r() and an independent base seed for each thread in
iteration_test() so they don't stomp all over each others state. Since
this particular test depends on the kernel scheduler, the iteration test
can't be reproduced based purely on the random seed, but at least it
won't pollute the other tests.
Print the seed, and allow the seed to be specified so that a run which
hits a problem can be reproduced.
Link: http://lkml.kernel.org/r/1480369871-5271-41-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can be a source of mild concern when the test suite shows that we're
leaking nodes. While poring over the source code looking for leaks can
lead to some fascinating bugs being discovered, sometimes the leak is
simply that these nodes were preallocated and are sitting on the per-CPU
list. Free them by calling the CPU dead callback.
Link: http://lkml.kernel.org/r/1480369871-5271-40-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than simply NOP out preempt_enable() and preempt_disable(), keep
track of preempt_count and display it regularly in case either the test
suite or the code under test is forgetting to balance the enables &
disables. Only found a test-case that was forgetting to re-enable
preemption, but it's a possibility worth checking.
Link: http://lkml.kernel.org/r/1480369871-5271-39-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are four cases I can see where we could end up with a NULL 'slot' in
radix_tree_next_slot(). This unit test exercises all four of them, making
sure that if in the future we have an unsafe path through
radix_tree_next_slot(), we'll catch it.
Here are details on the four cases:
1) radix_tree_iter_retry() via a non-tagged iteration like
radix_tree_for_each_slot(). In this case we currently aren't seeing a bug
because radix_tree_iter_retry() sets
iter->next_index = iter->index;
which means that in in the else case in radix_tree_next_slot(), 'count' is
zero, so we skip over the while() loop and effectively just return NULL
without ever dereferencing 'slot'.
2) radix_tree_iter_retry() via tagged iteration like
radix_tree_for_each_tagged(). This case was giving us NULL pointer
dereferences in testing, and was fixed with this commit:
commit 3cb9185c67 ("radix-tree: fix radix_tree_iter_retry() for tagged
iterators.")
This fix doesn't explicitly check for 'slot' being NULL, though, it works
around the NULL pointer dereference by instead zeroing iter->tags in
radix_tree_iter_retry(), which makes us bail out of the if() case in
radix_tree_next_slot() before we dereference 'slot'.
3) radix_tree_iter_next() via via a non-tagged iteration like
radix_tree_for_each_slot(). This currently happens in shmem_tag_pins()
and shmem_partial_swap_usage().
As with non-tagged iteration, 'count' in the else case of
radix_tree_next_slot() is zero, so we skip over the while() loop and
effectively just return NULL without ever dereferencing 'slot'.
4) radix_tree_iter_next() via tagged iteration like
radix_tree_for_each_tagged(). This happens in shmem_wait_for_pins().
radix_tree_iter_next() zeros out iter->tags, so we end up exiting
radix_tree_next_slot() here:
if (flags & RADIX_TREE_ITER_TAGGED) {
void *canon = slot;
iter->tags >>= 1;
if (unlikely(!iter->tags))
return NULL;
Link: http://lkml.kernel.org/r/20160815194237.25967-3-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a unit test that provides coverage for the bug fixed in the commit
entitled "radix-tree: rewrite radix_tree_locate_item fix" from Hugh
Dickins. I've verified that this test fails before his patch due to
miscalculated 'index' values in __locate() in lib/radix-tree.c, and
passes with his fix.
Link: http://lkml.kernel.org/r/1462307263-20623-1-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new multi-order support functions to rewrite
radix_tree_locate_item(). Modify the locate tests to test multiorder
entries too.
[hughd@google.com: radix_tree_locate_item() is often returning the wrong index]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1605012108490.1166@eggly.anvils
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test suite infrastructure for working with multiorder entries.
The test itself is pretty basic: Add an entry, check that all expected
indices return that entry and that indices around that entry don't
return an entry. Then delete the entry and check no index returns that
entry. Tests a few edge conditions including the multiorder entry at
index 0 and at a higher index. Also tests deleting through an alias as
well as through the canonical index.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the full suite of regression tests take upwards of 30 minutes
to run on my development machine. The vast majority of this time is
taken by the big_gang_check() and copy_tag_check() tests, which each run
their tests through thousands of iterations...does this have value?
Without big_gang_check() and copy_tag_check(), the test suite runs in
around 15 seconds on my box.
Honestly the first time I ever ran through the entire test suite was to
gather the timings for this email - it simply takes too long to be
useful on a normal basis.
Instead, hide the excessive iterations through big_gang_check() and
copy_tag_check() tests behind an '-l' flag (for "long run") in case they
are still useful, but allow the regression test suite to complete in a
reasonable amount of time. We still run each of these tests a few times
(3 at present) to try and keep the test coverage.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fairly simple tests; add various items to the tree, then make sure we
can find them again. Also check that a pointer that we know isn't in
the tree is not found.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After calling radix_tree_iter_retry(), 'slot' will be set to NULL. This
can cause radix_tree_next_slot() to dereference the NULL pointer. Add
Konstantin Khlebnikov's test to the regression framework.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reported-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code is mostly from Andrew Morton and Nick Piggin; tarball downloaded
from http://ozlabs.org/~akpm/rtth.tar.gz with sha1sum
0ce679db9ec047296b5d1ff7a1dfaa03a7bef1bd
Some small modifications were necessary to the test harness to fix the
build with the current Linux source code.
I also made minor modifications to automatically test the radix-tree.c
and radix-tree.h files that are in the current source tree, as opposed
to a copied and slightly modified version. I am sure more could be done
to tidy up the harness, as well as adding more tests.
[koct9i@gmail.com: fix compilation]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>