The cpuset fields that manage partition root state do not strictly
follow the cpuset locking rule that update to cpuset has to be done
with both the callback_lock and cpuset_mutex held. This is now fixed
by making sure that the locking rule is upheld.
Fixes: 3881b86128 ("cpuset: Add an error state to cpuset.sched.partition")
Fixes: 4b842da276 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In cpuset_hotplug_workfn(), the detection of whether the cpu list
has been changed is done by comparing the effective cpus of the top
cpuset with the cpu_active_mask. However, in the rare case that just
all the CPUs in the subparts_cpus are offlined, the detection fails
and the partition states are not updated correctly. Fix it by forcing
the cpus_updated flag to true in this particular case.
Fixes: 4b842da276 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use more descriptive variable names for update_prstate(), remove
unnecessary code and fix some typos. There is no functional change.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Git rid of an outdated comment.
Since cgroup was fully switched to fs_context, cgroup_mount() is gone and
it's confusing to mention in comments of cgroup_kill_sb(). Delete it.
Signed-off-by: zhaoxiaoqiang11 <zhaoxiaoqiang11@jd.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This reverts commit b7eb335e26.
It turns out that the problem with the clang -Wimplicit-fallthrough
warning is not about the kernel source code, but about clang itself, and
that the warning is unusable until clang fixes its broken ways.
In particular, when you enable this warning for clang, you not only get
warnings about implicit fallthroughs. You also get this:
warning: fallthrough annotation in unreachable code [-Wimplicit-fallthrough]
which is completely broken becasue it
(a) doesn't even tell you where the problem is (seriously: no line
numbers, no filename, no nothing).
(b) is fundamentally broken anyway, because there are perfectly valid
reasons to have a fallthrough statement even if it turns out that
it can perhaps not be reached.
In the kernel, an example of that second case is code in the scheduler:
switch (state) {
case cpuset:
if (IS_ENABLED(CONFIG_CPUSETS)) {
cpuset_cpus_allowed_fallback(p);
state = possible;
break;
}
fallthrough;
case possible:
where if CONFIG_CPUSETS is enabled you actually never hit the
fallthrough case at all. But that in no way makes the fallthrough
wrong.
So the warning is completely broken, and enabling it for clang is a very
bad idea.
In the meantime, we can keep the gcc option enabled, and make the gcc
build use
-Wimplicit-fallthrough=5
which means that we will at least continue to require a proper
fallthrough statement, and that gcc won't silently accept the magic
comment versions. Because gcc does this all correctly, and while the odd
"=5" part is kind of obscure, it's documented in [1]:
"-Wimplicit-fallthrough=5 doesn’t recognize any comments as
fallthrough comments, only attributes disable the warning"
so if clang ever fixes its bad behavior we can try enabling it there again.
Link: https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html [1]
Cc: Kees Cook <keescook@chromium.org>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull configfs fix from Christoph Hellwig:
- fix the read and write iterators (Bart Van Assche)
* tag 'configfs-5.13-1' of git://git.infradead.org/users/hch/configfs:
configfs: fix the read and write iterators
Pull pwm fixes from Thierry Reding:
"A couple of fixes from Uwe that I missed for v5.14-rc1"
* tag 'pwm/for-5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry.reding/linux-pwm:
pwm: ep93xx: Ensure configuring period and duty_cycle isn't wrongly skipped
pwm: berlin: Ensure configuring period and duty_cycle isn't wrongly skipped
pwm: tiecap: Ensure configuring period and duty_cycle isn't wrongly skipped
pwm: spear: Ensure configuring period and duty_cycle isn't wrongly skipped
pwm: sprd: Ensure configuring period and duty_cycle isn't wrongly skipped
Pull fallthrough fixes from Gustavo Silva:
"This fixes many fall-through warnings when building with Clang and
-Wimplicit-fallthrough, and also enables -Wimplicit-fallthrough for
Clang, globally.
It's also important to notice that since we have adopted the use of
the pseudo-keyword macro fallthrough, we also want to avoid having
more /* fall through */ comments being introduced. Contrary to GCC,
Clang doesn't recognize any comments as implicit fall-through markings
when the -Wimplicit-fallthrough option is enabled.
So, in order to avoid having more comments being introduced, we use
the option -Wimplicit-fallthrough=5 for GCC, which similar to Clang,
will cause a warning in case a code comment is intended to be used as
a fall-through marking. The patch for Makefile also enforces this.
We had almost 4,000 of these issues for Clang in the beginning, and
there might be a couple more out there when building some
architectures with certain configurations. However, with the recent
fixes I think we are in good shape and it is now possible to enable
the warning for Clang"
* tag 'Wimplicit-fallthrough-clang-5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (27 commits)
Makefile: Enable -Wimplicit-fallthrough for Clang
powerpc/smp: Fix fall-through warning for Clang
dmaengine: mpc512x: Fix fall-through warning for Clang
usb: gadget: fsl_qe_udc: Fix fall-through warning for Clang
powerpc/powernv: Fix fall-through warning for Clang
MIPS: Fix unreachable code issue
MIPS: Fix fall-through warnings for Clang
ASoC: Mediatek: MT8183: Fix fall-through warning for Clang
power: supply: Fix fall-through warnings for Clang
dmaengine: ti: k3-udma: Fix fall-through warning for Clang
s390: Fix fall-through warnings for Clang
dmaengine: ipu: Fix fall-through warning for Clang
iommu/arm-smmu-v3: Fix fall-through warning for Clang
mmc: jz4740: Fix fall-through warning for Clang
PCI: Fix fall-through warning for Clang
scsi: libsas: Fix fall-through warning for Clang
video: fbdev: Fix fall-through warning for Clang
math-emu: Fix fall-through warning
cpufreq: Fix fall-through warning for Clang
drm/msm: Fix fall-through warning in msm_gem_new_impl()
...
Merge misc fixes from Andrew Morton:
"13 patches.
Subsystems affected by this patch series: mm (kasan, pagealloc, rmap,
hmm, and hugetlb), and hfs"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm/hugetlb: fix refs calculation from unaligned @vaddr
hfs: add lock nesting notation to hfs_find_init
hfs: fix high memory mapping in hfs_bnode_read
hfs: add missing clean-up in hfs_fill_super
lib/test_hmm: remove set but unused page variable
mm: fix the try_to_unmap prototype for !CONFIG_MMU
mm/page_alloc: further fix __alloc_pages_bulk() return value
mm/page_alloc: correct return value when failing at preparing
mm/page_alloc: avoid page allocator recursion with pagesets.lock held
Revert "mm/page_alloc: make should_fail_alloc_page() static"
kasan: fix build by including kernel.h
kasan: add memzero init for unaligned size at DEBUG
mm: move helper to check slub_debug_enabled
Pull kvm fixes from Paolo Bonzini:
- Allow again loading KVM on 32-bit non-PAE builds
- Fixes for host SMIs on AMD
- Fixes for guest SMIs on AMD
- Fixes for selftests on s390 and ARM
- Fix memory leak
- Enforce no-instrumentation area on vmentry when hardware breakpoints
are in use.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
KVM: selftests: smm_test: Test SMM enter from L2
KVM: nSVM: Restore nested control upon leaving SMM
KVM: nSVM: Fix L1 state corruption upon return from SMM
KVM: nSVM: Introduce svm_copy_vmrun_state()
KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
KVM: SVM: add module param to control the #SMI interception
KVM: SVM: remove INIT intercept handler
KVM: SVM: #SMI interception must not skip the instruction
KVM: VMX: Remove vmx_msr_index from vmx.h
KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
...
Pull iommu fixes from Joerg Roedel:
- Revert a patch which caused boot failures with QCOM IOMMU
- Two fixes for Intel VT-d context table handling
- Physical address decoding fix for Rockchip IOMMU
- Add a reviewer for AMD IOMMU
* tag 'iommu-fixes-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu:
MAINTAINERS: Add Suravee Suthikulpanit as Reviewer for AMD IOMMU (AMD-Vi)
iommu/rockchip: Fix physical address decoding
iommu/vt-d: Fix clearing real DMA device's scalable-mode context entries
iommu/vt-d: Global devTLB flush when present context entry changed
iommu/qcom: Revert "iommu/arm: Cleanup resources in case of probe error path"
The author of commit b3b64ebd38 ("mm/page_alloc: do bulk array
bounds check after checking populated elements") was possibly
confused by the mixture of return values throughout the function.
The API contract is clear that the function "Returns the number of pages
on the list or array." It does not list zero as a unique return value with
a special meaning. Therefore zero is a plausible return value only if
@nr_pages is zero or less.
Clean up the return logic to make it clear that the returned value is
always the total number of pages in the array/list, not the number of
pages that were allocated during this call.
The only change in behavior with this patch is the value returned if
prepare_alloc_pages() fails. To match the API contract, the number of
pages currently in the array/list is returned in this case.
The call site in __page_pool_alloc_pages_slow() also seems to be confused
on this matter. It should be attended to by someone who is familiar with
that code.
[mel@techsingularity.net: Return nr_populated if 0 pages are requested]
Link: https://lkml.kernel.org/r/20210713152100.10381-4-mgorman@techsingularity.net
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Cc: Zhang Qiang <Qiang.Zhang@windriver.com>
Cc: Yanfei Xu <yanfei.xu@windriver.com>
Cc: Matteo Croce <mcroce@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot is reporting potential deadlocks due to pagesets.lock when
PAGE_OWNER is enabled. One example from Desmond Cheong Zhi Xi is as
follows
__alloc_pages_bulk()
local_lock_irqsave(&pagesets.lock, flags) <---- outer lock here
prep_new_page():
post_alloc_hook():
set_page_owner():
__set_page_owner():
save_stack():
stack_depot_save():
alloc_pages():
alloc_page_interleave():
__alloc_pages():
get_page_from_freelist():
rm_queue():
rm_queue_pcplist():
local_lock_irqsave(&pagesets.lock, flags);
*** DEADLOCK ***
Zhang, Qiang also reported
BUG: sleeping function called from invalid context at mm/page_alloc.c:5179
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
.....
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:96
___might_sleep.cold+0x1f1/0x237 kernel/sched/core.c:9153
prepare_alloc_pages+0x3da/0x580 mm/page_alloc.c:5179
__alloc_pages+0x12f/0x500 mm/page_alloc.c:5375
alloc_page_interleave+0x1e/0x200 mm/mempolicy.c:2147
alloc_pages+0x238/0x2a0 mm/mempolicy.c:2270
stack_depot_save+0x39d/0x4e0 lib/stackdepot.c:303
save_stack+0x15e/0x1e0 mm/page_owner.c:120
__set_page_owner+0x50/0x290 mm/page_owner.c:181
prep_new_page mm/page_alloc.c:2445 [inline]
__alloc_pages_bulk+0x8b9/0x1870 mm/page_alloc.c:5313
alloc_pages_bulk_array_node include/linux/gfp.h:557 [inline]
vm_area_alloc_pages mm/vmalloc.c:2775 [inline]
__vmalloc_area_node mm/vmalloc.c:2845 [inline]
__vmalloc_node_range+0x39d/0x960 mm/vmalloc.c:2947
__vmalloc_node mm/vmalloc.c:2996 [inline]
vzalloc+0x67/0x80 mm/vmalloc.c:3066
There are a number of ways it could be fixed. The page owner code could
be audited to strip GFP flags that allow sleeping but it'll impair the
functionality of PAGE_OWNER if allocations fail. The bulk allocator could
add a special case to release/reacquire the lock for prep_new_page and
lookup PCP after the lock is reacquired at the cost of performance. The
pages requiring prep could be tracked using the least significant bit and
looping through the array although it is more complicated for the list
interface. The options are relatively complex and the second one still
incurs a performance penalty when PAGE_OWNER is active so this patch takes
the simple approach -- disable bulk allocation of PAGE_OWNER is active.
The caller will be forced to allocate one page at a time incurring a
performance penalty but PAGE_OWNER is already a performance penalty.
Link: https://lkml.kernel.org/r/20210708081434.GV3840@techsingularity.net
Fixes: dbbee9d5cd ("mm/page_alloc: convert per-cpu list protection to local_lock")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reported-by: "Zhang, Qiang" <Qiang.Zhang@windriver.com>
Reported-by: syzbot+127fd7828d6eeb611703@syzkaller.appspotmail.com
Tested-by: syzbot+127fd7828d6eeb611703@syzkaller.appspotmail.com
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The <linux/kasan.h> header relies on _RET_IP_ being defined, and had been
receiving that definition via inclusion of bug.h which includes kernel.h.
However, since f39650de68 ("kernel.h: split out panic and oops helpers")
that is no longer the case and get the following build error when building
CONFIG_KASAN_HW_TAGS on arm64:
In file included from arch/arm64/mm/kasan_init.c:10:
include/linux/kasan.h: In function 'kasan_slab_free':
include/linux/kasan.h:230:39: error: '_RET_IP_' undeclared (first use in this function)
230 | return __kasan_slab_free(s, object, _RET_IP_, init);
Fix it by including kernel.h from kasan.h.
Link: https://lkml.kernel.org/r/20210705072716.2125074-1-elver@google.com
Fixes: f39650de68 ("kernel.h: split out panic and oops helpers")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the VM was migrated while in SMM, no nested state was saved/restored,
and therefore svm_leave_smm has to load both save and control area
of the vmcb12. Save area is already loaded from HSAVE area,
so now load the control area as well from the vmcb12.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMCB split commit 4995a3685f ("KVM: SVM: Use a separate vmcb for the
nested L2 guest") broke return from SMM when we entered there from guest
(L2) mode. Gen2 WS2016/Hyper-V is known to do this on boot. The problem
manifests itself like this:
kvm_exit: reason EXIT_RSM rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_smm_transition: vcpu 0: leaving SMM, smbase 0x7ffb3000
kvm_nested_vmrun: rip: 0x000000007ffbb280 vmcb: 0x0000000008224000
nrip: 0xffffffffffbbe119 int_ctl: 0x01020000 event_inj: 0x00000000
npt: on
kvm_nested_intercepts: cr_read: 0000 cr_write: 0010 excp: 40060002
intercepts: fd44bfeb 0000217f 00000000
kvm_entry: vcpu 0, rip 0xffffffffffbbe119
kvm_exit: reason EXIT_NPF rip 0xffffffffffbbe119 info
200000006 1ab000
kvm_nested_vmexit: vcpu 0 reason npf rip 0xffffffffffbbe119 info1
0x0000000200000006 info2 0x00000000001ab000 intr_info 0x00000000
error_code 0x00000000
kvm_page_fault: address 1ab000 error_code 6
kvm_nested_vmexit_inject: reason EXIT_NPF info1 200000006 info2 1ab000
int_info 0 int_info_err 0
kvm_entry: vcpu 0, rip 0x7ffbb280
kvm_exit: reason EXIT_EXCP_GP rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_inj_exception: #GP (0x0)
Note: return to L2 succeeded but upon first exit to L1 its RIP points to
'RSM' instruction but we're not in SMM.
The problem appears to be that VMCB01 gets irreversibly destroyed during
SMM execution. Previously, we used to have 'hsave' VMCB where regular
(pre-SMM) L1's state was saved upon nested_svm_vmexit() but now we just
switch to VMCB01 from VMCB02.
Pre-split (working) flow looked like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() restores L1's state from 'hsave'
- SMM -> RSM
- enter_svm_guest_mode() switches to L2 but keeps 'hsave' intact so we have
pre-SMM (and pre L2 VMRUN) L1's state there
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from L1.
This was always broken with regards to svm_get_nested_state()/
svm_set_nested_state(): 'hsave' was never a part of what's being
save and restored so migration happening during SMM triggered from L2 would
never restore L1's state correctly.
Post-split flow (broken) looks like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() switches to VMCB01 from VMCB02
- SMM -> RSM
- enter_svm_guest_mode() switches from VMCB01 to VMCB02 but pre-SMM VMCB01
is already lost.
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from VMCB01 but it is corrupted
(reflects the state during 'RSM' execution).
VMX doesn't have this problem because unlike VMCB, VMCS keeps both guest
and host state so when we switch back to VMCS02 L1's state is intact there.
To resolve the issue we need to save L1's state somewhere. We could've
created a third VMCB for SMM but that would require us to modify saved
state format. L1's architectural HSAVE area (pointed by MSR_VM_HSAVE_PA)
seems appropriate: L0 is free to save any (or none) of L1's state there.
Currently, KVM does 'none'.
Note, for nested state migration to succeed, both source and destination
hypervisors must have the fix. We, however, don't need to create a new
flag indicating the fact that HSAVE area is now populated as migration
during SMM triggered from L2 was always broken.
Fixes: 4995a3685f ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the code setting non-VMLOAD-VMSAVE state from
svm_set_nested_state() into its own function. This is going to be
re-used from svm_enter_smm()/svm_leave_smm().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APM states that "The address written to the VM_HSAVE_PA MSR, which holds
the address of the page used to save the host state on a VMRUN, must point
to a hypervisor-owned page. If this check fails, the WRMSR will fail with
a #GP(0) exception. Note that a value of 0 is not considered valid for the
VM_HSAVE_PA MSR and a VMRUN that is attempted while the HSAVE_PA is 0 will
fail with a #GP(0) exception."
svm_set_msr() already checks that the supplied address is valid, so only
check for '0' is missing. Add it to nested_svm_vmrun().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-3-vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APM states that #GP is raised upon write to MSR_VM_HSAVE_PA when
the supplied address is not page-aligned or is outside of "maximum
supported physical address for this implementation".
page_address_valid() check seems suitable. Also, forcefully page-align
the address when it's written from VMM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
[Add comment about behavior for host-provided values. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In theory there are no side effects of not intercepting #SMI,
because then #SMI becomes transparent to the OS and the KVM.
Plus an observation on recent Zen2 CPUs reveals that these
CPUs ignore #SMI interception and never deliver #SMI VMexits.
This is also useful to test nested KVM to see that L1
handles #SMIs correctly in case when L1 doesn't intercept #SMI.
Finally the default remains the same, the SMI are intercepted
by default thus this patch doesn't have any effect unless
non default module param value is used.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kernel never sends real INIT even to CPUs, other than on boot.
Thus INIT interception is an error which should be caught
by a check for an unknown VMexit reason.
On top of that, the current INIT VM exit handler skips
the current instruction which is wrong.
That was added in commit 5ff3a351f6 ("KVM: x86: Move trivial
instruction-based exit handlers to common code").
Fixes: 5ff3a351f6 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5ff3a351f6 ("KVM: x86: Move trivial instruction-based
exit handlers to common code"), unfortunately made a mistake of
treating nop_on_interception and nop_interception in the same way.
Former does truly nothing while the latter skips the instruction.
SMI VM exit handler should do nothing.
(SMI itself is handled by the host when we do STGI)
Fixes: 5ff3a351f6 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_msr_index was used to record the list of MSRs which can be lazily
restored when kvm returns to userspace. It is now reimplemented as
kvm_uret_msrs_list, a common x86 list which is only used inside x86.c.
So just remove the obsolete declaration in vmx.h.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210707235702.31595-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the host is using debug registers but the guest is not using them
nor is the guest in guest-debug state, the kvm code does not reset
the host debug registers before kvm_x86->run(). Rather, it relies on
the hardware vmentry instruction to automatically reset the dr7 registers
which ensures that the host breakpoints do not affect the guest.
This however violates the non-instrumentable nature around VM entry
and exit; for example, when a host breakpoint is set on vcpu->arch.cr2,
Another issue is consistency. When the guest debug registers are active,
the host breakpoints are reset before kvm_x86->run(). But when the
guest debug registers are inactive, the host breakpoints are delayed to
be disabled. The host tracing tools may see different results depending
on what the guest is doing.
To fix the problems, we clear %db7 unconditionally before kvm_x86->run()
if the host has set any breakpoints, no matter if the guest is using
them or not.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20210628172632.81029-1-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
[Only clear %db7 instead of reloading all debug registers. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit a75a895e64 ("KVM: selftests: Unconditionally use memslot 0 for
vaddr allocations") removed the memslot parameters from vm_vaddr_alloc.
It addressed all callers except one under lib/aarch64/, due to a race
with commit e3db7579ef ("KVM: selftests: Add exception handling
support for aarch64")
Fix the vm_vaddr_alloc call in lib/aarch64/processor.c.
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Message-Id: <20210702201042.4036162-1-ricarkol@google.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull networking fixes from Jakub Kicinski.
"Including fixes from bpf and netfilter.
Current release - regressions:
- sock: fix parameter order in sock_setsockopt()
Current release - new code bugs:
- netfilter: nft_last:
- fix incorrect arithmetic when restoring last used
- honor NFTA_LAST_SET on restoration
Previous releases - regressions:
- udp: properly flush normal packet at GRO time
- sfc: ensure correct number of XDP queues; don't allow enabling the
feature if there isn't sufficient resources to Tx from any CPU
- dsa: sja1105: fix address learning getting disabled on the CPU port
- mptcp: addresses a rmem accounting issue that could keep packets in
subflow receive buffers longer than necessary, delaying MPTCP-level
ACKs
- ip_tunnel: fix mtu calculation for ETHER tunnel devices
- do not reuse skbs allocated from skbuff_fclone_cache in the napi
skb cache, we'd try to return them to the wrong slab cache
- tcp: consistently disable header prediction for mptcp
Previous releases - always broken:
- bpf: fix subprog poke descriptor tracking use-after-free
- ipv6:
- allocate enough headroom in ip6_finish_output2() in case
iptables TEE is used
- tcp: drop silly ICMPv6 packet too big messages to avoid
expensive and pointless lookups (which may serve as a DDOS
vector)
- make sure fwmark is copied in SYNACK packets
- fix 'disable_policy' for forwarded packets (align with IPv4)
- netfilter: conntrack:
- do not renew entry stuck in tcp SYN_SENT state
- do not mark RST in the reply direction coming after SYN packet
for an out-of-sync entry
- mptcp: cleanly handle error conditions with MP_JOIN and syncookies
- mptcp: fix double free when rejecting a join due to port mismatch
- validate lwtstate->data before returning from skb_tunnel_info()
- tcp: call sk_wmem_schedule before sk_mem_charge in zerocopy path
- mt76: mt7921: continue to probe driver when fw already downloaded
- bonding: fix multiple issues with offloading IPsec to (thru?) bond
- stmmac: ptp: fix issues around Qbv support and setting time back
- bcmgenet: always clear wake-up based on energy detection
Misc:
- sctp: move 198 addresses from unusable to private scope
- ptp: support virtual clocks and timestamping
- openvswitch: optimize operation for key comparison"
* tag 'net-5.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (158 commits)
net: dsa: properly check for the bridge_leave methods in dsa_switch_bridge_leave()
sfc: add logs explaining XDP_TX/REDIRECT is not available
sfc: ensure correct number of XDP queues
sfc: fix lack of XDP TX queues - error XDP TX failed (-22)
net: fddi: fix UAF in fza_probe
net: dsa: sja1105: fix address learning getting disabled on the CPU port
net: ocelot: fix switchdev objects synced for wrong netdev with LAG offload
net: Use nlmsg_unicast() instead of netlink_unicast()
octeontx2-pf: Fix uninitialized boolean variable pps
ipv6: allocate enough headroom in ip6_finish_output2()
net: hdlc: rename 'mod_init' & 'mod_exit' functions to be module-specific
net: bridge: multicast: fix MRD advertisement router port marking race
net: bridge: multicast: fix PIM hello router port marking race
net: phy: marvell10g: fix differentiation of 88X3310 from 88X3340
dsa: fix for_each_child.cocci warnings
virtio_net: check virtqueue_add_sgs() return value
mptcp: properly account bulk freed memory
selftests: mptcp: fix case multiple subflows limited by server
mptcp: avoid processing packet if a subflow reset
mptcp: fix syncookie process if mptcp can not_accept new subflow
...
The following sequence can be used to trigger a UAF:
int fscontext_fd = fsopen("cgroup");
int fd_null = open("/dev/null, O_RDONLY);
int fsconfig(fscontext_fd, FSCONFIG_SET_FD, "source", fd_null);
close_range(3, ~0U, 0);
The cgroup v1 specific fs parser expects a string for the "source"
parameter. However, it is perfectly legitimate to e.g. specify a file
descriptor for the "source" parameter. The fs parser doesn't know what
a filesystem allows there. So it's a bug to assume that "source" is
always of type fs_value_is_string when it can reasonably also be
fs_value_is_file.
This assumption in the cgroup code causes a UAF because struct
fs_parameter uses a union for the actual value. Access to that union is
guarded by the param->type member. Since the cgroup paramter parser
didn't check param->type but unconditionally moved param->string into
fc->source a close on the fscontext_fd would trigger a UAF during
put_fs_context() which frees fc->source thereby freeing the file stashed
in param->file causing a UAF during a close of the fd_null.
Fix this by verifying that param->type is actually a string and report
an error if not.
In follow up patches I'll add a new generic helper that can be used here
and by other filesystems instead of this error-prone copy-pasta fix.
But fixing it in here first makes backporting a it to stable a lot
easier.
Fixes: 8d2451f499 ("cgroup1: switch to option-by-option parsing")
Reported-by: syzbot+283ce5a46486d6acdbaf@syzkaller.appspotmail.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@kernel.org>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AMD platform does not support the functions Ah CPUID leaf. The returned
results for this entry should all remain zero just like the native does:
AMD host:
0x0000000a 0x00: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00000000
(uncanny) AMD guest:
0x0000000a 0x00: eax=0x00000000 ebx=0x00000000 ecx=0x00000000 edx=0x00008000
Fixes: cadbaa039b ("perf/x86/intel: Make anythread filter support conditional")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210628074354.33848-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d04 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e132 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210625020354.431829-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore "dynamic" host adjustments to the physical address mask when
generating the masks for guest PTEs, i.e. the guest PA masks. The host
physical address space and guest physical address space are two different
beasts, e.g. even though SEV's C-bit is the same bit location for both
host and guest, disabling SME in the host (which clears shadow_me_mask)
does not affect the guest PTE->GPA "translation".
For non-SEV guests, not dropping bits is the correct behavior. Assuming
KVM and userspace correctly enumerate/configure guest MAXPHYADDR, bits
that are lost as collateral damage from memory encryption are treated as
reserved bits, i.e. KVM will never get to the point where it attempts to
generate a gfn using the affected bits. And if userspace wants to create
a bogus vCPU, then userspace gets to deal with the fallout of hardware
doing odd things with bad GPAs.
For SEV guests, not dropping the C-bit is technically wrong, but it's a
moot point because KVM can't read SEV guest's page tables in any case
since they're always encrypted. Not to mention that the current KVM code
is also broken since sme_me_mask does not have to be non-zero for SEV to
be supported by KVM. The proper fix would be to teach all of KVM to
correctly handle guest private memory, but that's a task for the future.
Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: stable@vger.kernel.org
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-5-seanjc@google.com>
[Use a new header instead of adding header guards to paging_tmpl.h. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use boot_cpu_data.x86_phys_bits instead of the raw CPUID information to
enumerate the MAXPHYADDR for KVM guests when TDP is disabled (the guest
version is only relevant to NPT/TDP).
When using shadow paging, any reductions to the host's MAXPHYADDR apply
to KVM and its guests as well, i.e. using the raw CPUID info will cause
KVM to misreport the number of PA bits available to the guest.
Unconditionally zero out the "Physical Address bit reduction" entry.
For !TDP, the adjustment is already done, and for TDP enumerating the
host's reduction is wrong as the reduction does not apply to GPAs.
Fixes: 9af9b94068 ("x86/cpu/AMD: Handle SME reduction in physical address size")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore the guest MAXPHYADDR reported by CPUID.0x8000_0008 if TDP, i.e.
NPT, is disabled, and instead use the host's MAXPHYADDR. Per AMD'S APM:
Maximum guest physical address size in bits. This number applies only
to guests using nested paging. When this field is zero, refer to the
PhysAddrSize field for the maximum guest physical address size.
Fixes: 24c82e576b ("KVM: Sanitize cpuid")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210623230552.4027702-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>