For DSI operation in videomode, DISPC logic levels for the signals HSYNC, VSYNC
and DE need to be specified to DSI via the fields VP_HSYNC_POL, VP_VSYNC_POL and
VP_DE_POL in DSI_CTRL registers.
This information is completely internal to DSS as logic levels for the above
signals hold no meaning on the DSI bus. Hence a DSI panel driver should be
totally oblivious of these fields.
Fix the logic levels/polarities in the DISPC and DSI registers to a default
value. This is done by overriding these fields in omap_video_timings struct
filled by the panel driver for DISPC, and use the equivalent default values
when programming DSI_CTRL registers. Also, remove the redundant polarity related
fields in omap_dss_dsi_videomode_data.
Signed-off-by: Archit Taneja <archit@ti.com>
Add a parameter called interlace which tells whether the timings are in
interlaced or progressive mode. This aligns the omap_video_timings struct with
the Xorg modeline configuration.
It also removes the hack needed to write to divide the manager height by 2 if
the connected interface is VENC.
Signed-off-by: Archit Taneja <archit@ti.com>
omap_panel_config contains fields which are finally written to DISPC_POL_FREQo
registers. These are now held by omap_video_timings and are set when the manager
timings are applied.
Remove the omap_panel_config enum, and remove all it's references from panel or
interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
Some panel timing related fields are contained in omap_panel_config in the form
of flags. The fields are:
- Hsync logic level
- Vsync logic level
- Data driven on rising/falling edge of pixel clock
- Output enable/Data enable logic level
- HSYNC/VSYNC driven on rising/falling edge of pixel clock
Out of these parameters, Hsync and Vsync logic levels are a part of the timings
in the Xorg modeline configuration. So it makes sense to move the to
omap_video_timings. The rest aren't a part of modeline, but it still makes
sense to move these since they are related to panel timings.
These fields stored in omap_panel_config in dssdev are configured for LCD
panels, and the corresponding LCD managers in the DISPC_POL_FREQo registers.
Add the above fields in omap_video_timings. Represent their state via new enums.
Add these parameters to the omap_video_timings instances in the panel drivers.
Keep the corresponding IVS, IHS, IPC, IEO, RF and ONOFF flags in
omap_panel_config for now. The struct will be removed later.
Signed-off-by: Archit Taneja <archit@ti.com>
Remove omap_lcd_display_type enum
The enum omap_lcd_display_type is used to configure the lcd display type in
DISPC. Remove this enum and always set display type to TFT by creating function
dss_mgr_set_lcd_type_tft().
Signed-off-by: Archit Taneja <archit@ti.com>
Remove OMAP_DSS_LCD_TFT as a omap_panel_config flag.
We don't support passive matrix displays any more. Remove this flag from all the
panel drivers.
Force the display_type to OMAP_DSS_LCD_DISPLAY_TFT in the interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
The support for LCD3 manager has been added into the manager module. LCD3 panel
has registers as DISPC_CONTROL3 and DISPC_CONFIG3 just like those in LCD and
LCD2 panels. These registers control the Display Controller (DISPC) module for
LCD3 output. The three LCDs support Display Serial Interface (DSI), Remote Frame
Buffer Interface (RFBI) and Parallel CMOS Output Interface (DPI). These LCDs can
be connected through parallel output interface using DISPC and RFBI or DPI. For
serial interface DSS uses DSI.
The LCD3 panel, just like LCD and LCD2 panels, has a clock switch in DSS_CTRL
register which has been enabled. The clock switch chooses between DSS_CLK and
DPLL_DSI1_C_CLK1 as source for LCD3_CLK. New IRQs as DISPC_IRQ_VSYNC3,
DISPC_IRQ_FRAMEDONE3, DISPC_IRQ_ACBIAS_COUNT_STAT3 and DISPC_IRQ_SYNC_LOST3 have
been added specific to the new manager.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP5 Display Subsystem (DSS) architecture comes with a additional LCD3 channel
with its own dedicated overlay manager. The current patch adds LCD3 channel and
basic register support for LCD3 channel. It adds register addresses for various
Display Controller (DISPC) registers like DISPC_DEFAULT_COLOR, DISPC_TIMING_H,
DISPC_DIVISORo, etc.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We have two almost the same enums: omap_channel and
omap_dss_overlay_managers. omap_channel is used almost everywhere, and
omap_channel assigns explicit values to the enum values which are needed
for proper operation.
omap_dss_overlay_managers is only used in one place, so it's easy to
remove it, which is what this patch does.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
TILER is a block in OMAP4's DMM which lets DSS fetch frames in a rotated manner.
Physical memory can be mapped to a portion of OMAP's system address space called
TILER address space. The TILER address space is split into 8 views. Each view
represents a rotated or mirrored form of the mapped physical memory. When a
DISPC overlay's base address is programmed to one of these views, the TILER
fetches the pixels according to the orientation of the view. A view is further
split into 4 containers, each container holds elements of a particular size.
Rotation can be achieved at the granularity of elements in the container. For
more information on TILER, refer to the Memory Subsytem section in OMAP4 TRM.
Rotation type TILER has been added which is used to exploit the capabilities of
these 8 views for performing various rotations.
When fetching from addresses mapped to TILER space, the DISPC DMA can fetch
pixels in either 1D or 2D bursts. The fetch depends on which TILER container we
are accessing. Accessing 8, 16 and 32 bit sized containers requires 2D bursts,
and page mode sized containers require 1D bursts.
The DSS2 user is expected to provide the Tiler address of the view that it is
interested in. This is passed to the paddr and p_uv_addr parameters in
omap_overlay_info. It is also expected to provide the stride value based on the
view's orientation and container type, this should be passed to the screen_width
parameter of omap_overlay_info. In calc_tiler_rotation_offset screen_width is
used to calculate the required row_inc for DISPC. x_predecim and y_predecim are
also used to calculate row_inc and pix_inc thereby adding predecimation support
for TILER.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There exist several display technologies and standards that support audio as
well. Hence, it is relevant to update the DSS device driver to provide an audio
interface that may be used by an audio driver or any other driver interested in
the functionality.
The audio_enable function is intended to prepare the relevant
IP for playback (e.g., enabling an audio FIFO, taking in/out of reset
some IP, enabling companion chips, etc). It is intended to be called before
audio_start. The audio_disable function performs the reverse operation and is
intended to be called after audio_stop.
While a given DSS device driver may support audio, it is possible that for
certain configurations audio is not supported (e.g., an HDMI display using a
VESA video timing). The audio_supported function is intended to query whether
the current configuration of the display supports audio.
The audio_config function is intended to configure all the relevant audio
parameters of the display. In order to make the function independent of any
specific DSS device driver, a struct omap_dss_audio is defined. Its purpose
is to contain all the required parameters for audio configuration. At the
moment, such structure contains pointers to IEC-60958 channel status word and
CEA-861 audio infoframe structures. This should be enough to support HDMI and
DisplayPort, as both are based on CEA-861 and IEC-60958. The omap_dss_audio
structure may be extended in the future if required.
The audio_enable/disable, audio_config and audio_supported functions could be
implemented as functions that may sleep. Hence, they should not be called
while holding a spinlock or a readlock.
The audio_start/audio_stop function is intended to effectively start/stop audio
playback after the configuration has taken place. These functions are designed
to be used in an atomic context. Hence, audio_start should return quickly and be
called only after all the needed resources for audio playback (audio FIFOs,
DMA channels, companion chips, etc) have been enabled to begin data transfers.
audio_stop is designed to only stop the audio transfers. The resources used
for playback are released using audio_disable.
A new enum omap_dss_audio_state is introduced to help the implementations of
the interface to keep track of the audio state. The initial state is _DISABLED;
then, the state transitions to _CONFIGURED, and then, when it is ready to
play audio, to _ENABLED. The state _PLAYING is used when the audio is being
rendered.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
The omapdss pdata handling is a mess. This is more evident when trying
to use device tree for DSS, as we don't have platform data anymore in
that case. This patch cleans the pdata handling by:
- Remove struct omap_display_platform_data. It was used just as a
wrapper for struct omap_dss_board_info.
- Pass the platform data only to omapdss device. The drivers for omap
dss hwmods do not need the platform data. This should also work better
for DT, as we can create omapdss device programmatically in generic omap
boot code, and thus we can pass the pdata to it.
- Create dss functions for get_ctx_loss_count and dsi_enable/disable_pads
that the dss hwmod drivers can call.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Conflicts:
drivers/video/omap2/displays/panel-taal.c
Merge OMAP DSS related board file changes. The branch will also be
merged through linux-omap tree to solve conflicts.
In preparation for device tree, this patch changes how the DSI pins are
configured. The current configuration method is only doable with board
files and the configuration data is OMAP specific.
This patch moves the configuration data to the panel's platform data,
and the data can easily be given via DT in the future. The configuration
data format is also changed to a generic one which should be suitable
for all platforms.
The new format is an array of pin numbers, where the array items start
from clock + and -, then data1 + and -, and so on. For example:
{
0, // pin num for clock lane +
1, // pin num for clock lane -
2, // pin num for data1 lane +
3, // pin num for data1 lane -
...
}
The pin numbers are translated by the DSI driver and used to configure
the hardware appropriately.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
With this we can eliminate some duplicate code in panel drivers.
Also lgphilips-lb035q02, nec-nl8048hl11-01b, picodlp and
tpo-td043mtea1 gain support of reading timings over sysfs.
Signed-off-by: Grazvydas Ignotas <notasas@gmail.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss driver needs to use the omap_pm_set_min_bus_tput(), so add a new
entry for that in omapdss's platform data, and set it.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Paul Walmsley <paul@pwsan.com>
Acked-by: Kevin Hilman <khilman@ti.com>
A hardware bug in the OMAP4 HDMI PHY causes physical damage to the board
if the HDMI PHY is kept powered on when the cable is not connected.
This patch solves the problem by adding hot-plug-detection into the HDMI
IP driver. This is not a real HPD support in the sense that nobody else
than the IP driver gets to know about the HPD events, but is only meant
to fix the HW bug.
The strategy is simple: If the display device is turned off by the user,
the PHY power is set to OFF. When the display device is turned on by the
user, the PHY power is set either to LDOON or TXON, depending on whether
the HDMI cable is connected.
The reason to avoid PHY OFF when the display device is on, but the cable
is disconnected, is that when the PHY is turned OFF, the HDMI IP is not
"ticking" and thus the DISPC does not receive pixel clock from the HDMI
IP. This would, for example, prevent any VSYNCs from happening, and
would thus affect the users of omapdss. By using LDOON when the cable is
disconnected we'll avoid the HW bug, but keep the HDMI working as usual
from the user's point of view.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Disables the internal pull resistor for SDA and SCL which are enabled by
default, as there are external pull up's in 4460 and 4430 ES2.3
SDP, Blaze and Panda Boards, It is done to avoid the EDID read failure.
Signed-off-by: Ricardo Salveti de Araujo <ricardo.salveti@linaro.org>
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Move duplicate HDMI mux_init code from omap4 and panda board file
to display file.
Signed-off-by: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_overlay_manager contains device_changed field, which no longer has
any use. So remove the field and the few places where it is touched.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Setting overlay's output channel is currently handled at the same time
as other overlay attributes. This is not right, as the normal attributes
should only affect one overlay and manager, but changing the channel
affects two managers.
This patch moves the channel field into the "extra_info" set, handled
together with enabled-status.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
struct omap_overlayr contains info and info_dirty fields, both of which
should be internal to apply.c.
This patch moves those fields into ovl_priv data, and names them
user_info and user_info_dirty.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
struct omap_overlay_manager contains info and info_dirty fields, both of
which should be internal to apply.c.
This patch moves those fields into mgr_priv data, and names them
user_info and user_info_dirty.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Overlays are currently enabled and disabled with a boolean in the struct
omap_overlay_info. The overlay info is set with ovl->set_overlay_info(),
and made into use with mgr->apply().
This doesn't work properly, as the enable/disable status may affect also
other overlays, for example when using fifo-merge. Thus the enabling and
disabling of the overlay needs to be done outside the normal overlay
configuration.
This patch achieves that by doing the following things:
1) Add function pointers to struct omap_overlay: enable(), disable() and
is_enabled(). These are used to do the obvious. The functions may block.
2) Move the "enabled" field from struct omap_overlay to ovl_priv_data.
3) Add a new route for settings to be applied to the HW, called
"extra_info". The status of the normal info and extra_info are tracked
separately.
The point here is to allow the normal info to be changed and
applied in non-blocking matter, whereas the extra_info can only be
changed when holding the mutex. This makes it possible to, for example,
set the overlay enable flag, apply it, and wait until the HW has taken
the flag into use.
This is not possible if the enable flag would be in the normal info, as
a new value for the flag could be set at any time from the users of
omapdss.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
struct omap_overlay_manager contains "enabled"-field, used to track if
the manager is enabled or not. This field should be internal to apply.c.
This patch moves the field to mgr_priv_data, and applies the necessary
locking when accessing the field.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The current code uses dsi_video_mode_enable/disable functions to
enable/disable DISPC output for video mode displays. For command mode
displays we have no notion in the DISPC side of whether the panel is
enabled, except when a dss_mgr_start_update() call is made.
However, to properly maintain the DISPC state in apply.c, we need to
know if a manager used for a manual update display is currently in use.
This patch achieves that by changing dsi_video_mode_enable/disable to
dsi_enable/disable_video_output, which is called by both video and
command mode displays. For video mode displays it starts the actual
pixel stream, as it did before. For command mode displays it doesn't do
anything else than mark that the manager is currently in use.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Current way of handling overlay-manager links is a bit strange: each
manager has a static array, containing pointers to all the overlays
(even those used by other managers). The overlays contain a pointer to
the manager being used.
This patch makes the system a bit saner: each manager has a linked list
of overlays, and only the overlays linked to that manager are in the
list.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Overlay managers are stored in a linked list. There's no need for this
list, as an array would do just as fine.
This patch changes the code to use an array for overlay managers.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add "enabled" field to struct omap_overlay_manager, which tells if the
output is enabled or not. This will be used in apply.c in the following
patches.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_overlay_manager struct contains enable() and disable() functions.
However, these are only meant to be used from inside omapdss, and thus
it's bad to expose the functions.
This patch adds dss_mgr_enable() and dss_mgr_disable() functions to
apply.c, which handle enabling and disabling the output.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Partial update for manual update displays has never worked quite well:
* The HW has limitations on the update area, and the x and width need to
be even.
* Showing a part of a scaled overlay causes artifacts.
* Makes the management of dispc very complex
Considering the above points and the fact that partial update is not
used anywhere, this and the following patches remove the partial update
support. This will greatly simplify the following re-write of the apply
mechanism to get proper locking and additional features like fifo-merge.
This patch removes the partial update from the dsi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
This patch adds a custom DSS reset function used on OMAPs from OMAP2
forward.
The function doesn't actually do a reset, it only waits for the reset to
complete. The reason for this is that on OMAP4 there is no possibility
to do a SW reset, and on OMAP2/3 doing a SW reset for dss_core resets
all the other DSS modules also, thus breaking the HWMOD model where
every DSS module is handled independently.
This fixes the problem with DSS reset on OMAP4, caused by the fact that
because there's no SW reset for dss_core on OMAP4, the HWMOD framework
doesn't try to reset dss_core and thus the DSS clocks were never enabled
at the same time. This causes causes the HWMOD reset to fail for
dss_dispc and dss_rfbi.
The common reset function will also allow us to fix another problem in
the future: before doing a reset we need to disable DSS outputs, which
are in some cases enabled by the bootloader, as otherwise DSS HW seems
to get more or less stuck, requiring a power reset to recover.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
[paul@pwsan.com: modified to build arch/arm/mach-omap2/display.o
unconditionally to avoid an error when !CONFIG_OMAP2_DSS]
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Add zorder support on OMAP4, this feature allows deciding the visibility order
of the overlays based on the zorder value provided as an overlay info parameter
or a sysfs attribute of the overlay object.
Use the overlay cap OMAP_DSS_OVL_CAP_ZORDER to determine whether zorder is
supported for the overlay or not. Use dss feature FEAT_ALPHA_FREE_ZORDER
if the caps are not available.
Ensure that all overlays that are enabled and connected to the same manager
have different zorders. Swapping zorders of 2 enabled overlays currently
requires disabling one of the overlays.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add support for VIDEO3 pipeline on OMAP4:
- Add VIDEO3 pipeline information in dss_features and omapdss.h
- Add VIDEO3 pipeline register coefficients in dispc.h
- Create a new overlay structure corresponding to VIDEO3.
- Make changes in dispc.c for VIDEO3
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP3, in order to enable alpha blending for LCD and TV managers, we needed
to set LCDALPHABLENDERENABLE/TVALPHABLENDERENABLE bits in DISPC_CONFIG. On
OMAP4, alpha blending is always enabled by default, if the above bits are set,
we switch to an OMAP3 compatibility mode where the zorder values in the pipeline
attribute registers are ignored and a fixed priority is configured.
Rename the manager_info member "alpha_enabled" to "partial_alpha_enabled" for
more clarity. Introduce two dss_features FEAT_ALPHA_FIXED_ZORDER and
FEAT_ALPHA_FREE_ZORDER which represent OMAP3-alpha compatibility mode and OMAP4
alpha mode respectively. Introduce an overlay cap for ZORDER. The DSS2 user is
expected to check for the ZORDER cap, if an overlay doesn't have this cap, the
user is expected to set the parameter partial_alpha_enabled. If the overlay has
ZORDER cap, the DSS2 user can assume that alpha blending is already enabled.
Don't support OMAP3 compatibility mode for now. Trying to read/write to
alpha_blending_enabled sysfs attribute issues a warning for OMAP4 and does not
set the LCDALPHABLENDERENABLE/TVALPHABLENDERENABLE bits.
Change alpha_enabled to partial_alpha_enabled in the omap_vout driver. Use
overlay cap "OMAP_DSS_OVL_CAP_GLOBAL_ALPHA" to check if overlay supports alpha
blending or not. Replace this with checks for VIDEO1 pipeline.
Cc: linux-media@vger.kernel.org
Cc: Lajos Molnar <molnar@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
Acked-by: Vaibhav Hiremath <hvaibhav@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
overlay_info struct, used to configure overlays, currently includes both
physical and virtual addresses for the pixels. The vaddr was added to
support more exotic configurations where CPU would be used to update a
display, but it is not currently used and there has been no interest in
the feature. Using CPU to update a screen is also less interesting now
that OMAP4 has two LCD outputs.
This patch removes the vaddr field, and modifies the users of omapdss
accordingly. This makes the use of omapdss a bit simpler, as the user
doesn't need to think if it needs to give the vaddr.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
regn divider is currently programmed to the registers without change,
but when calculating clock frequencies it is used as regn+1.
To make this similar to how DSI handles the dividers this patch changes
the regn value to be used as such for calculations, but the value
programmed to registers is regn-1.
This simplifies the clock frequency calculations, makes it similar to
DSI, and also allows us to use regn value 0 as undefined.
Cc: Mythri P K <mythripk@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add initial support for DSI video mode panels:
- Add a new structure omap_dss_dsi_videomode_data in the member "panel" in
omap_dss_device struct. This allows panel driver to configure dsi video_mode
specific parameters.
- Configure basic DSI video mode timing parameters: HBP, HFP, HSA, VBP, VFP, VSA,
TL and VACT.
- Configure DSI protocol engine registers for video_mode support.
- Introduce functions dsi_video_mode_enable() and dsi_video_mode_disable() which
enable/disable video mode for a given virtual channel and a given pixel format
type.
Things left for later
- Add functions to check for errors in video mode timings provided by panel.
- Configure timing registers required for command mode interleaving.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently, DSI pixel info is only represented by the pixel size in bits using
the pixel_size parameter in omap_dss_device struct's ctrl member.
This is not sufficient information for DSI video mode usage, as two of the
supported formats(RGB666 loosely packed, and RGB888) have the same pixel
container size, but different data_type values for the video mode packet header.
Create enum "omap_dss_dsi_pixel_format" which describes the pixel data format
the panel is configured for. Create helper function dsi_get_pixel_size() which
returns the pixel size of the given pixel format.
Modify functions omapdss_default_get_recommended_bpp() and dss_use_replication()
to use dsi_get_pixel_size().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce read functions which use generic Processor-to-Peripheral
transaction types. These are needed by some devices which may not support
corresponding DCS commands.
Add function dsi_vc_generic_send_read_request() which can send
a short packet with 0, 1 or 2 bytes of request data and the corresponding
generic data type.
Rename function dsi_vc_dcs_read_rx_fifo() to dsi_vc_read_rx_fifo() and modify
it to take the enum "dss_dsi_content_type" as an argument to use either DCS
or GENERIC Peripheral-to-Processor transaction types while parsing data read
from the device.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove functions dsi_vc_dcs_read_1() and dsi_vc_dcs_read_2(), these are used
when the panel is expected to return 1 and 2 bytes respecitvely. This was manily
used for debugging purposes. These functions should be implemented in the panel
driver if needed.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Intoduce enum "dss_dsi_content_type" to differentiate between DCS and generic
content types.
Introduce short and long packet write functions which use generic
Processor-to-Peripheral transaction types. These are needed by some devices
which may not support corresponding DCS commands. Create common write functions
which allow code reuse between DCS and generic write functions.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create an enum for DSI operation modes, use this to set the capabilities of the
device in dsi_init_display().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add OMAP_DSS_OVL_CAP_GLOBAL_ALPHA and OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA to
overlay capabilities. Use these instead of FEAT_GLOBAL_ALPHA,
FEAT_GLOBAL_ALPHA_VID1 and FEAT_PRE_MULT_ALPHA in code.
Remove FEAT_GLOBAL_ALPHA_VID1 and FEAT_PRE_MULT_ALPHA which are no
longer used. FEAT_GLOBAL_ALPHA is still used to decide if the HW has
global alpha register.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Archit Taneja <archit@ti.com>
Remove support for non-DISPC overlays and overlay managers.
The support to possibly have non-DISPC overlays and managers was made to
make it possible to use CPU and/or sDMA to update RFBI or DSI command
mode displays. It is ok to remove the support, because:
- No one has used the feature.
- Display update without DISPC is very slow, so it is debatable if the
update would even be usable.
- Removal cleans up code.
- If such a feature is needed later, it is better implemented outside
omapdss driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Archit Taneja <archit@ti.com>