totalram_pages and totalhigh_pages are made static inline function.
Main motivation was that managed_page_count_lock handling was complicating
things. It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
Currently, you can use /proc/self/task/*/stack to cause a stack walk on
a task you control while it is running on another CPU. That means that
the stack can change under the stack walker. The stack walker does
have guards against going completely off the rails and into random
kernel memory, but it can interpret random data from your kernel stack
as instruction pointers and stack pointers. This can cause exposure of
kernel stack contents to userspace.
Restrict the ability to inspect kernel stacks of arbitrary tasks to root
in order to prevent a local attacker from exploiting racy stack unwinding
to leak kernel task stack contents. See the added comment for a longer
rationale.
There don't seem to be any users of this userspace API that can't
gracefully bail out if reading from the file fails. Therefore, I believe
that this change is unlikely to break things. In the case that this patch
does end up needing a revert, the next-best solution might be to fake a
single-entry stack based on wchan.
Link: http://lkml.kernel.org/r/20180927153316.200286-1-jannh@google.com
Fixes: 2ec220e27f ("proc: add /proc/*/stack")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ken Chen <kenchen@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about
tasks via the /proc file system. In particular, /proc/<pid>/stack_depth
shows the maximum kernel stack consumption for the current and previous
syscalls. Although this information is not precise, it can be useful for
estimating the STACKLEAK performance impact for your workloads.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
->latency_record is defined as
struct latency_record[LT_SAVECOUNT];
so use the same macro whie iterating.
Link: http://lkml.kernel.org/r/20180627200534.GA18434@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code checks if write is done by current to its own attributes.
For that get/put pair is unnecessary as it can be done under RCU.
Note: rcu_read_unlock() can be done even earlier since pointer to a task
is not dereferenced. It depends if /proc code should look scary or not:
rcu_read_lock();
task = pid_task(...);
rcu_read_unlock();
if (!task)
return -ESRCH;
if (task != current)
return -EACCESS:
P.S.: rename "length" variable. Code like this
length = -EINVAL;
should not exist.
Link: http://lkml.kernel.org/r/20180627200218.GF18113@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "cleanups and refactor of /proc/pid/smaps*".
The recent regression in /proc/pid/smaps made me look more into the code.
Especially the issues with smaps_rollup reported in [1] as explained in
Patch 4, which fixes them by refactoring the code. Patches 2 and 3 are
preparations for that. Patch 1 is me realizing that there's a lot of
boilerplate left from times where we tried (unsuccessfuly) to mark thread
stacks in the output.
Originally I had also plans to rework the translation from
/proc/pid/*maps* file offsets to the internal structures. Now the offset
means "vma number", which is not really stable (vma's can come and go
between read() calls) and there's an extra caching of last vma's address.
My idea was that offsets would be interpreted directly as addresses, which
would also allow meaningful seeks (see the ugly seek_to_smaps_entry() in
tools/testing/selftests/vm/mlock2.h). However loff_t is (signed) long
long so that might be insufficient somewhere for the unsigned long
addresses.
So the result is fixed issues with skewed /proc/pid/smaps_rollup results,
simpler smaps code, and a lot of unused code removed.
[1] https://marc.info/?l=linux-mm&m=151927723128134&w=2
This patch (of 4):
Commit b76437579d ("procfs: mark thread stack correctly in
proc/<pid>/maps") introduced differences between /proc/PID/maps and
/proc/PID/task/TID/maps to mark thread stacks properly, and this was
also done for smaps and numa_maps. However it didn't work properly and
was ultimately removed by commit b18cb64ead ("fs/proc: Stop trying to
report thread stacks").
Now the is_pid parameter for the related show_*() functions is unused
and we can remove it together with wrapper functions and ops structures
that differ for PID and TID cases only in this parameter.
Link: http://lkml.kernel.org/r/20180723111933.15443-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Daniel Colascione <dancol@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rewrite of the cmdline fetching missed the fact that we used to also
return the final terminating NUL character of the last argument. I
hadn't noticed, and none of the tools I tested cared, but something
obviously must care, because Michal Kubecek noticed the change in
behavior.
Tweak the "find the end" logic to actually include the NUL character,
and once past the eend of argv, always start the strnlen() at the
expected (original) argument end.
This whole "allow people to rewrite their arguments in place" is a nasty
hack and requires that odd slop handling at the end of the argv array,
but it's our traditional model, so we continue to support it.
Repored-and-bisected-by: Michal Kubecek <mkubecek@suse.cz>
Reviewed-and-tested-by: Michal Kubecek <mkubecek@suse.cz>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code is structured like this:
for ( ... p < last; p++) {
if (memcmp == 0)
break;
}
if (p >= last)
ERROR
OK
gcc doesn't see that if if lookup succeeds than post loop branch will
never be taken and skip it.
[akpm@linux-foundation.org: proc_pident_instantiate() no longer takes an inode*]
Link: http://lkml.kernel.org/r/20180423213954.GD9043@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge proc_cmdline simplifications.
This re-writes the get_mm_cmdline() logic to be rather simpler than it
used to be, and makes the semantics for "cmdline goes past the end of
the original area" more natural.
You _can_ use prctl(PR_SET_MM) to just point your command line somewhere
else entirely, but the traditional model is to just edit things in place
and that still needs to continue to work. At least this way the code
makes some sense.
* proc-cmdline:
fs/proc: simplify and clarify get_mm_cmdline() function
fs/proc: re-factor proc_pid_cmdline_read() a bit
Pull proc_fill_cache regression fix from Al Viro:
"Regression fix for proc_fill_cache() braino introduced when switching
instantiate() callback to d_splice_alias()"
* 'work.lookup' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fix proc_fill_cache() in case of d_alloc_parallel() failure
If d_alloc_parallel() returns ERR_PTR(...), we don't want to dput()
that. Small reorganization allows to have all error-in-lookup
cases rejoin the main codepath after dput(child), avoiding the
entire problem.
Spotted-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Fixes: 0168b9e38c "procfs: switch instantiate_t to d_splice_alias()"
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct stack_trace::nr_entries is defined as "unsigned int" (YAY!) so
the iterator should be unsigned as well.
It saves 1 byte of code or something like that.
Link: http://lkml.kernel.org/r/20180423215248.GG9043@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All those lengths are unsigned as they should be.
Link: http://lkml.kernel.org/r/20180423213751.GC9043@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code can be sonsolidated if a dummy region of 0 length is used in normal
case of \0-separated command line:
1) [arg_start, arg_end) + [dummy len=0]
2) [arg_start, arg_end) + [env_start, env_end)
Link: http://lkml.kernel.org/r/20180221193335.GB28678@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"rv" variable is used both as a counter of bytes transferred and an
error value holder but it can be reduced solely to error values if
original start of userspace buffer is stashed and used at the very end.
[akpm@linux-foundation.org: simplify cleanup code]
Link: http://lkml.kernel.org/r/20180221193009.GA28678@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"final" variable is OK but we can get away with less lines.
Link: http://lkml.kernel.org/r/20180221192751.GC28548@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
access_remote_vm() doesn't return negative errors, it returns number of
bytes read/written (0 if error occurs). This allows to delete some
comparisons which never trigger.
Reuse "nr_read" variable while I'm at it.
Link: http://lkml.kernel.org/r/20180221192605.GB28548@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mmap_sem is on the hot path of kernel, and it very contended, but it is
abused too. It is used to protect arg_start|end and evn_start|end when
reading /proc/$PID/cmdline and /proc/$PID/environ, but it doesn't make
sense since those proc files just expect to read 4 values atomically and
not related to VM, they could be set to arbitrary values by C/R.
And, the mmap_sem contention may cause unexpected issue like below:
INFO: task ps:14018 blocked for more than 120 seconds.
Tainted: G E 4.9.79-009.ali3000.alios7.x86_64 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this
message.
ps D 0 14018 1 0x00000004
Call Trace:
schedule+0x36/0x80
rwsem_down_read_failed+0xf0/0x150
call_rwsem_down_read_failed+0x18/0x30
down_read+0x20/0x40
proc_pid_cmdline_read+0xd9/0x4e0
__vfs_read+0x37/0x150
vfs_read+0x96/0x130
SyS_read+0x55/0xc0
entry_SYSCALL_64_fastpath+0x1a/0xc5
Both Alexey Dobriyan and Michal Hocko suggested to use dedicated lock
for them to mitigate the abuse of mmap_sem.
So, introduce a new spinlock in mm_struct to protect the concurrent
access to arg_start|end, env_start|end and others, as well as replace
write map_sem to read to protect the race condition between prctl and
sys_brk which might break check_data_rlimit(), and makes prctl more
friendly to other VM operations.
This patch just eliminates the abuse of mmap_sem, but it can't resolve
the above hung task warning completely since the later
access_remote_vm() call needs acquire mmap_sem. The mmap_sem
scalability issue will be solved in the future.
[yang.shi@linux.alibaba.com: add comment about mmap_sem and arg_lock]
Link: http://lkml.kernel.org/r/1524077799-80690-1-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1523730291-109696-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull workqueue updates from Tejun Heo:
- make kworkers report the workqueue it is executing or has executed
most recently in /proc/PID/comm (so they show up in ps/top)
- CONFIG_SMP shuffle to move stuff which isn't necessary for UP builds
inside CONFIG_SMP.
* 'for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: move function definitions within CONFIG_SMP block
workqueue: Make sure struct worker is accessible for wq_worker_comm()
workqueue: Show the latest workqueue name in /proc/PID/{comm,stat,status}
proc: Consolidate task->comm formatting into proc_task_name()
workqueue: Set worker->desc to workqueue name by default
workqueue: Make worker_attach/detach_pool() update worker->pool
workqueue: Replace pool->attach_mutex with global wq_pool_attach_mutex
Pull dcache lookup cleanups from Al Viro:
"Cleaning ->lookup() instances up - mostly d_splice_alias() conversions"
* 'work.lookup' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (29 commits)
switch the rest of procfs lookups to d_splice_alias()
procfs: switch instantiate_t to d_splice_alias()
don't bother with tid_fd_revalidate() in lookups
proc_lookupfd_common(): don't bother with instantiate unless the file is open
procfs: get rid of ancient BS in pid_revalidate() uses
cifs_lookup(): switch to d_splice_alias()
cifs_lookup(): cifs_get_inode_...() never returns 0 with *inode left NULL
9p: unify paths in v9fs_vfs_lookup()
ncp_lookup(): use d_splice_alias()
hfsplus: switch to d_splice_alias()
hfs: don't allow mounting over .../rsrc
hfs: use d_splice_alias()
omfs_lookup(): report IO errors, use d_splice_alias()
orangefs_lookup: simplify
openpromfs: switch to d_splice_alias()
xfs_vn_lookup: simplify a bit
adfs_lookup: do not fail with ENOENT on negatives, use d_splice_alias()
adfs_lookup_byname: .. *is* taken care of in fs/namei.c
romfs_lookup: switch to d_splice_alias()
qnx6_lookup: switch to d_splice_alias()
...
First of all, calling pid_revalidate() in the end of <pid>/* lookups
is *not* about closing any kind of races; that used to be true once
upon a time, but these days those comments are actively misleading.
Especially since pid_revalidate() doesn't even do d_drop() on
failure anymore. It doesn't matter, anyway, since once
pid_revalidate() starts returning false, ->d_delete() of those
dentries starts saying "don't keep"; they won't get stuck in
dcache any longer than they are pinned.
These calls cannot be just removed, though - the side effect of
pid_revalidate() (updating i_uid/i_gid/etc.) is what we are calling
it for here.
Let's separate the "update ownership" into a new helper (pid_update_inode())
and use it, both in lookups and in pid_revalidate() itself.
The comments in pid_revalidate() are also out of date - they refer to
the time when pid_revalidate() used to call d_drop() directly...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
proc shows task->comm in three places - comm, stat, status - and each
is fetching and formatting task->comm slighly differently. This patch
renames task_name() to proc_task_name(), makes it more generic, and
updates all three paths to use it.
This will enable expanding comm reporting for workqueue workers.
Signed-off-by: Tejun Heo <tj@kernel.org>
We have some very odd semantics for reading the command line through
/proc, because we allow people to rewrite their own command line pretty
much at will, and things get positively funky when you extend your
command line past the point that used to be the end of the command line,
and is now in the environment variable area.
But our weird semantics doesn't mean that we should write weird and
complex code to handle them.
So re-write get_mm_cmdline() to be much simpler, and much more explicit
about what it is actually doing and why. And avoid the extra check for
"is there a NUL character at the end of the command line where I expect
one to be", by simply making the NUL character handling be part of the
normal "once you hit the end of the command line, stop at the first NUL
character" logic.
It's quite possible that we should stop the crazy "walk into
environment" entirely, but happily it's not really the usual case.
NOTE! We tried to really simplify and limit our odd cmdline parsing some
time ago, but people complained. See commit c2c0bb4462 ("proc: fix
PAGE_SIZE limit of /proc/$PID/cmdline") for details about why we have
this complexity.
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Jarod Wilson <jarod@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a pure refactoring of the function, preparing for some further
cleanups. The thing was pretty illegible, and the core functionality
still is, but now the core loop is a bit more isolated from the thing
that goes on around it.
This was "inspired" by the confluence of kworker workqueue name cleanups
by Tejun, currently scheduled for 4.18, and commit 7f7ccc2ccc ("proc:
do not access cmdline nor environ from file-backed areas").
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_pid_cmdline_read() and environ_read() directly access the target
process' VM to retrieve the command line and environment. If this
process remaps these areas onto a file via mmap(), the requesting
process may experience various issues such as extra delays if the
underlying device is slow to respond.
Let's simply refuse to access file-backed areas in these functions.
For this we add a new FOLL_ANON gup flag that is passed to all calls
to access_remote_vm(). The code already takes care of such failures
(including unmapped areas). Accesses via /proc/pid/mem were not
changed though.
This was assigned CVE-2018-1120.
Note for stable backports: the patch may apply to kernels prior to 4.11
but silently miss one location; it must be checked that no call to
access_remote_vm() keeps zero as the last argument.
Reported-by: Qualys Security Advisory <qsa@qualys.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Factor out retrieving the per-sb pid namespaces from the sb private data
into an easier to understand helper.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
task_dump_owner() has the following code:
mm = task->mm;
if (mm) {
if (get_dumpable(mm) != SUID_DUMP_USER) {
uid = ...
}
}
Check for ->mm is buggy -- kernel thread might be borrowing mm
and inode will go to some random uid:gid pair.
Link: http://lkml.kernel.org/r/20180412220109.GA20978@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm_struct is not needed while printing as all the data was already
extracted.
Link: http://lkml.kernel.org/r/20180309223120.GC3843@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I totally forgot that _parse_integer() accepts arbitrary amount of
leading zeroes leading to the following lookups:
OK
# readlink /proc/1/map_files/56427ecba000-56427eddc000
/lib/systemd/systemd
bogus
# readlink /proc/1/map_files/00000000000056427ecba000-56427eddc000
/lib/systemd/systemd
# readlink /proc/1/map_files/56427ecba000-00000000000056427eddc000
/lib/systemd/systemd
Link: http://lkml.kernel.org/r/20180303215130.GA23480@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_wchan() accesses stack page before permissions are checked, let's
not play this game.
Link: http://lkml.kernel.org/r/20180217071923.GA16074@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hardwall is a tile specific feature, and with the removal of the
tile architecture, this has become dead code, so let's remove it.
Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
/proc/self inode numbers, value of proc_inode_cache and st_nlink of
/proc/$TGID are fixed constants.
Link: http://lkml.kernel.org/r/20180103184707.GA31849@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dentry name can be evaluated later, right before calling into VFS.
Also, spend less time under ->mmap_sem.
Link: http://lkml.kernel.org/r/20171110163034.GA2534@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current code does:
if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
However sscanf() is broken garbage.
It silently accepts whitespace between format specifiers
(did you know that?).
It silently accepts valid strings which result in integer overflow.
Do not use sscanf() for any even remotely reliable parsing code.
OK
# readlink '/proc/1/map_files/55a23af39000-55a23b05b000'
/lib/systemd/systemd
broken
# readlink '/proc/1/map_files/ 55a23af39000-55a23b05b000'
/lib/systemd/systemd
broken
# readlink '/proc/1/map_files/55a23af39000-55a23b05b000 '
/lib/systemd/systemd
very broken
# readlink '/proc/1/map_files/1000000000000000055a23af39000-55a23b05b000'
/lib/systemd/systemd
Andrei said:
: This patch breaks criu. It was a bug in criu. And this bug is on a minor
: path, which works when memfd_create() isn't available. It is a reason why
: I ask to not backport this patch to stable kernels.
:
: In CRIU this bug can be triggered, only if this patch will be backported
: to a kernel which version is lower than v3.16.
Link: http://lkml.kernel.org/r/20171120212706.GA14325@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
READ_ONCE and WRITE_ONCE are useless when there is only one read/write
is being made.
Link: http://lkml.kernel.org/r/20171120204033.GA9446@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PROC_NUMBUF is 13 which is enough for "negative int + \n + \0".
However PIDs and TGIDs are never negative and newline is not a concern,
so use just 10 per integer.
Link: http://lkml.kernel.org/r/20171120203005.GA27743@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Alexander Viro <viro@ftp.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's a user pointer, and while the permissions of the file are pretty
questionable (should it really be readable to everybody), hashing the
pointer isn't going to be the solution.
We should take a closer look at more of the /proc/<pid> file permissions
in general. Sure, we do want many of them to often be readable (for
'ps' and friends), but I think we should probably do a few conversions
from S_IRUGO to S_IRUSR.
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This just changes the file to report them as zero, although maybe even
that could be removed. I checked, and at least procps doesn't actually
seem to parse the 'stack' file at all.
And since the file doesn't necessarily even exist (it requires
CONFIG_STACKTRACE), possibly other tools don't really use it either.
That said, in case somebody parses it with tools, just having that zero
there should keep such tools happy.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull mode_t whack-a-mole from Al Viro:
"For all internal uses we want umode_t, which is arch-independent;
mode_t (or __kernel_mode_t, for that matter) is wrong outside of
userland ABI.
Unfortunately, that crap keeps coming back and needs to be put down
from time to time..."
* 'work.whack-a-mole' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
mode_t whack-a-mole: task_dump_owner()
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
GFP_TEMPORARY was introduced by commit e12ba74d8f ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/proc/pid/smaps_rollup is a new proc file that improves the performance
of user programs that determine aggregate memory statistics (e.g., total
PSS) of a process.
Android regularly "samples" the memory usage of various processes in
order to balance its memory pool sizes. This sampling process involves
opening /proc/pid/smaps and summing certain fields. For very large
processes, sampling memory use this way can take several hundred
milliseconds, due mostly to the overhead of the seq_printf calls in
task_mmu.c.
smaps_rollup improves the situation. It contains most of the fields of
/proc/pid/smaps, but instead of a set of fields for each VMA,
smaps_rollup instead contains one synthetic smaps-format entry
representing the whole process. In the single smaps_rollup synthetic
entry, each field is the summation of the corresponding field in all of
the real-smaps VMAs. Using a common format for smaps_rollup and smaps
allows userspace parsers to repurpose parsers meant for use with
non-rollup smaps for smaps_rollup, and it allows userspace to switch
between smaps_rollup and smaps at runtime (say, based on the
availability of smaps_rollup in a given kernel) with minimal fuss.
By using smaps_rollup instead of smaps, a caller can avoid the
significant overhead of formatting, reading, and parsing each of a large
process's potentially very numerous memory mappings. For sampling
system_server's PSS in Android, we measured a 12x speedup, representing
a savings of several hundred milliseconds.
One alternative to a new per-process proc file would have been including
PSS information in /proc/pid/status. We considered this option but
thought that PSS would be too expensive (by a few orders of magnitude)
to collect relative to what's already emitted as part of
/proc/pid/status, and slowing every user of /proc/pid/status for the
sake of readers that happen to want PSS feels wrong.
The code itself works by reusing the existing VMA-walking framework we
use for regular smaps generation and keeping the mem_size_stats
structure around between VMA walks instead of using a fresh one for each
VMA. In this way, summation happens automatically. We let seq_file
walk over the VMAs just as it does for regular smaps and just emit
nothing to the seq_file until we hit the last VMA.
Benchmarks:
using smaps:
iterations:1000 pid:1163 pss:220023808
0m29.46s real 0m08.28s user 0m20.98s system
using smaps_rollup:
iterations:1000 pid:1163 pss:220702720
0m04.39s real 0m00.03s user 0m04.31s system
We're using the PSS samples we collect asynchronously for
system-management tasks like fine-tuning oom_adj_score, memory use
tracking for debugging, application-level memory-use attribution, and
deciding whether we want to kill large processes during system idle
maintenance windows. Android has been using PSS for these purposes for
a long time; as the average process VMA count has increased and and
devices become more efficiency-conscious, PSS-collection inefficiency
has started to matter more. IMHO, it'd be a lot safer to optimize the
existing PSS-collection model, which has been fine-tuned over the years,
instead of changing the memory tracking approach entirely to work around
smaps-generation inefficiency.
Tim said:
: There are two main reasons why Android gathers PSS information:
:
: 1. Android devices can show the user the amount of memory used per
: application via the settings app. This is a less important use case.
:
: 2. We log PSS to help identify leaks in applications. We have found
: an enormous number of bugs (in the Android platform, in Google's own
: apps, and in third-party applications) using this data.
:
: To do this, system_server (the main process in Android userspace) will
: sample the PSS of a process three seconds after it changes state (for
: example, app is launched and becomes the foreground application) and about
: every ten minutes after that. The net result is that PSS collection is
: regularly running on at least one process in the system (usually a few
: times a minute while the screen is on, less when screen is off due to
: suspend). PSS of a process is an incredibly useful stat to track, and we
: aren't going to get rid of it. We've looked at some very hacky approaches
: using RSS ("take the RSS of the target process, subtract the RSS of the
: zygote process that is the parent of all Android apps") to reduce the
: accounting time, but it regularly overestimated the memory used by 20+
: percent. Accordingly, I don't think that there's a good alternative to
: using PSS.
:
: We started looking into PSS collection performance after we noticed random
: frequency spikes while a phone's screen was off; occasionally, one of the
: CPU clusters would ramp to a high frequency because there was 200-300ms of
: constant CPU work from a single thread in the main Android userspace
: process. The work causing the spike (which is reasonable governor
: behavior given the amount of CPU time needed) was always PSS collection.
: As a result, Android is burning more power than we should be on PSS
: collection.
:
: The other issue (and why I'm less sure about improving smaps as a
: long-term solution) is that the number of VMAs per process has increased
: significantly from release to release. After trying to figure out why we
: were seeing these 200-300ms PSS collection times on Android O but had not
: noticed it in previous versions, we found that the number of VMAs in the
: main system process increased by 50% from Android N to Android O (from
: ~1800 to ~2700) and varying increases in every userspace process. Android
: M to N also had an increase in the number of VMAs, although not as much.
: I'm not sure why this is increasing so much over time, but thinking about
: ASLR and ways to make ASLR better, I expect that this will continue to
: increase going forward. I would not be surprised if we hit 5000 VMAs on
: the main Android process (system_server) by 2020.
:
: If we assume that the number of VMAs is going to increase over time, then
: doing anything we can do to reduce the overhead of each VMA during PSS
: collection seems like the right way to go, and that means outputting an
: aggregate statistic (to avoid whatever overhead there is per line in
: writing smaps and in reading each line from userspace).
Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.com
Signed-off-by: Daniel Colascione <dancol@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>