The MCA_IPID register uniquely identifies a bank's type on Scalable MCA
(SMCA) systems. When an MCA bank is not populated, the MCA_IPID register
will read as zero and writes to it will be ignored.
On a hw-type error injection (injection which writes the actual MCA
registers in an attempt to cause a real MCE) check the value of this
register before trying to inject the error.
Do not impose any limitations on a sw injection and allow the user to
test out all the decoding paths without relying on the available hardware,
as its purpose is to just test the code.
[ bp: Heavily massage. ]
Link: https://lkml.kernel.org/r/20211019233641.140275-2-Smita.KoralahalliChannabasappa@amd.com
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211104215846.254012-2-Smita.KoralahalliChannabasappa@amd.com
Move the switching code into a function so that it can be re-used and
add a global TLB flush. This makes sure that usage of memory which is
not mapped in the trampoline page-table is reliably caught.
Also move the clearing of CR4.PCIDE before the CR3 switch because the
cr4_clear_bits() function will access data not mapped into the
trampoline page-table.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211202153226.22946-4-joro@8bytes.org
The AP bringup code uses the trampoline_pgd page-table which
establishes global mappings in the user range of the address space.
Flush the global TLB entries after the indentity mappings are removed so
no stale entries remain in the TLB.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211202153226.22946-3-joro@8bytes.org
Properly type the operands being passed to __put_user()/__get_user().
Otherwise, these routines truncate data for dependent instructions
(e.g., INSW) and only read/write one byte.
This has been tested by sending a string with REP OUTSW to a port and
then reading it back in with REP INSW on the same port.
Previous behavior was to only send and receive the first char of the
size. For example, word operations for "abcd" would only read/write
"ac". With change, the full string is now written and read back.
Fixes: f980f9c31a (x86/sev-es: Compile early handler code into kernel image)
Signed-off-by: Michael Sterritt <sterritt@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Gonda <pgonda@google.com>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20211119232757.176201-1-sterritt@google.com
There are cases that the TSC clocksource is wrongly judged as unstable by
the clocksource watchdog mechanism which tries to validate the TSC against
HPET, PM_TIMER or jiffies. While there is hardly a general reliable way to
check the validity of a watchdog, Thomas Gleixner proposed [1]:
"I'm inclined to lift that requirement when the CPU has:
1) X86_FEATURE_CONSTANT_TSC
2) X86_FEATURE_NONSTOP_TSC
3) X86_FEATURE_NONSTOP_TSC_S3
4) X86_FEATURE_TSC_ADJUST
5) At max. 4 sockets
After two decades of horrors we're finally at a point where TSC seems
to be halfway reliable and less abused by BIOS tinkerers. TSC_ADJUST
was really key as we can now detect even small modifications reliably
and the important point is that we can cure them as well (not pretty
but better than all other options)."
As feature #3 X86_FEATURE_NONSTOP_TSC_S3 only exists on several generations
of Atom processorz, and is always coupled with X86_FEATURE_CONSTANT_TSC
and X86_FEATURE_NONSTOP_TSC, skip checking it, and also be more defensive
to use maximal 2 sockets.
The check is done inside tsc_init() before registering 'tsc-early' and
'tsc' clocksources, as there were cases that both of them had been
wrongly judged as unreliable.
For more background of tsc/watchdog, there is a good summary in [2]
[tglx} Update vs. jiffies:
On systems where the only remaining clocksource aside of TSC is jiffies
there is no way to make this work because that creates a circular
dependency. Jiffies accuracy depends on not missing a periodic timer
interrupt, which is not guaranteed. That could be detected by TSC, but as
TSC is not trusted this cannot be compensated. The consequence is a
circulus vitiosus which results in shutting down TSC and falling back to
the jiffies clocksource which is even more unreliable.
[1]. https://lore.kernel.org/lkml/87eekfk8bd.fsf@nanos.tec.linutronix.de/
[2]. https://lore.kernel.org/lkml/87a6pimt1f.ffs@nanos.tec.linutronix.de/
[ tglx: Refine comment and amend changelog ]
Fixes: 6e3cd95234 ("x86/hpet: Use another crystalball to evaluate HPET usability")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211117023751.24190-2-feng.tang@intel.com
Some thread flags can be set remotely, and so even when IRQs are disabled,
the flags can change under our feet. Generally this is unlikely to cause a
problem in practice, but it is somewhat unsound, and KCSAN will
legitimately warn that there is a data race.
To avoid such issues, a snapshot of the flags has to be taken prior to
using them. Some places already use READ_ONCE() for that, others do not.
Convert them all to the new flag accessor helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20211129130653.2037928-12-mark.rutland@arm.com
Fix:
WARNING: modpost: vmlinux.o(.text.unlikely+0x64d0): Section mismatch in reference \
from the function prepare_command_line() to the variable .init.data:command_line
The function prepare_command_line() references
the variable __initdata command_line.
This is often because prepare_command_line lacks a __initdata
annotation or the annotation of command_line is wrong.
Apparently some toolchains do different inlining decisions.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YZySgpmBcNNM2qca@zn.tnic
Pull x86 fixes from Thomas Gleixner:
- Move the command line preparation and the early command line parsing
earlier so that the command line parameters which affect
early_reserve_memory(), e.g. efi=nosftreserve, are taken into
account. This was broken when the invocation of
early_reserve_memory() was moved recently.
- Use an atomic type for the SGX page accounting, which is read and
written locklessly, to plug various race conditions related to it.
* tag 'x86-urgent-2021-11-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Fix free page accounting
x86/boot: Pull up cmdline preparation and early param parsing
Pull exit-vs-signal handling fixes from Eric Biederman:
"This is a small set of changes where debuggers were no longer able to
intercept synchronous SIGTRAP and SIGSEGV, introduced by the exit
cleanups.
This is essentially the change you suggested with all of i's dotted
and the t's crossed so that ptrace can intercept all of the cases it
has been able to intercept the past, and all of the cases that made it
to exit without giving ptrace a chance still don't give ptrace a
chance"
* 'SA_IMMUTABLE-fixes-for-v5.16-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
signal: Replace force_fatal_sig with force_exit_sig when in doubt
signal: Don't always set SA_IMMUTABLE for forced signals
Recently to prevent issues with SECCOMP_RET_KILL and similar signals
being changed before they are delivered SA_IMMUTABLE was added.
Unfortunately this broke debuggers[1][2] which reasonably expect
to be able to trap synchronous SIGTRAP and SIGSEGV even when
the target process is not configured to handle those signals.
Add force_exit_sig and use it instead of force_fatal_sig where
historically the code has directly called do_exit. This has the
implementation benefits of going through the signal exit path
(including generating core dumps) without the danger of allowing
userspace to ignore or change these signals.
This avoids userspace regressions as older kernels exited with do_exit
which debuggers also can not intercept.
In the future is should be possible to improve the quality of
implementation of the kernel by changing some of these force_exit_sig
calls to force_fatal_sig. That can be done where it matters on
a case-by-case basis with careful analysis.
Reported-by: Kyle Huey <me@kylehuey.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
[1] https://lkml.kernel.org/r/CAP045AoMY4xf8aC_4QU_-j7obuEPYgTcnQQP3Yxk=2X90jtpjw@mail.gmail.com
[2] https://lkml.kernel.org/r/20211117150258.GB5403@xsang-OptiPlex-9020
Fixes: 00b06da29c ("signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed")
Fixes: a3616a3c02 ("signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die")
Fixes: 83a1f27ad7 ("signal/powerpc: On swapcontext failure force SIGSEGV")
Fixes: 9bc508cf07 ("signal/s390: Use force_sigsegv in default_trap_handler")
Fixes: 086ec444f8 ("signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig")
Fixes: c317d306d5 ("signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails")
Fixes: 695dd0d634 ("signal/x86: In emulate_vsyscall force a signal instead of calling do_exit")
Fixes: 1fbd60df8a ("signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.")
Fixes: 941edc5bf1 ("exit/syscall_user_dispatch: Send ordinary signals on failure")
Link: https://lkml.kernel.org/r/871r3dqfv8.fsf_-_@email.froward.int.ebiederm.org
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The SGX driver maintains a single global free page counter,
sgx_nr_free_pages, that reflects the number of free pages available
across all NUMA nodes. Correspondingly, a list of free pages is
associated with each NUMA node and sgx_nr_free_pages is updated
every time a page is added or removed from any of the free page
lists. The main usage of sgx_nr_free_pages is by the reclaimer
that runs when it (sgx_nr_free_pages) goes below a watermark
to ensure that there are always some free pages available to, for
example, support efficient page faults.
With sgx_nr_free_pages accessed and modified from a few places
it is essential to ensure that these accesses are done safely but
this is not the case. sgx_nr_free_pages is read without any
protection and updated with inconsistent protection by any one
of the spin locks associated with the individual NUMA nodes.
For example:
CPU_A CPU_B
----- -----
spin_lock(&nodeA->lock); spin_lock(&nodeB->lock);
... ...
sgx_nr_free_pages--; /* NOT SAFE */ sgx_nr_free_pages--;
spin_unlock(&nodeA->lock); spin_unlock(&nodeB->lock);
Since sgx_nr_free_pages may be protected by different spin locks
while being modified from different CPUs, the following scenario
is possible:
CPU_A CPU_B
----- -----
{sgx_nr_free_pages = 100}
spin_lock(&nodeA->lock); spin_lock(&nodeB->lock);
sgx_nr_free_pages--; sgx_nr_free_pages--;
/* LOAD sgx_nr_free_pages = 100 */ /* LOAD sgx_nr_free_pages = 100 */
/* sgx_nr_free_pages-- */ /* sgx_nr_free_pages-- */
/* STORE sgx_nr_free_pages = 99 */ /* STORE sgx_nr_free_pages = 99 */
spin_unlock(&nodeA->lock); spin_unlock(&nodeB->lock);
In the above scenario, sgx_nr_free_pages is decremented from two CPUs
but instead of sgx_nr_free_pages ending with a value that is two less
than it started with, it was only decremented by one while the number
of free pages were actually reduced by two. The consequence of
sgx_nr_free_pages not being protected is that its value may not
accurately reflect the actual number of free pages on the system,
impacting the availability of free pages in support of many flows.
The problematic scenario is when the reclaimer does not run because it
believes there to be sufficient free pages while any attempt to allocate
a page fails because there are no free pages available. In the SGX driver
the reclaimer's watermark is only 32 pages so after encountering the
above example scenario 32 times a user space hang is possible when there
are no more free pages because of repeated page faults caused by no
free pages made available.
The following flow was encountered:
asm_exc_page_fault
...
sgx_vma_fault()
sgx_encl_load_page()
sgx_encl_eldu() // Encrypted page needs to be loaded from backing
// storage into newly allocated SGX memory page
sgx_alloc_epc_page() // Allocate a page of SGX memory
__sgx_alloc_epc_page() // Fails, no free SGX memory
...
if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) // Wake reclaimer
wake_up(&ksgxd_waitq);
return -EBUSY; // Return -EBUSY giving reclaimer time to run
return -EBUSY;
return -EBUSY;
return VM_FAULT_NOPAGE;
The reclaimer is triggered in above flow with the following code:
static bool sgx_should_reclaim(unsigned long watermark)
{
return sgx_nr_free_pages < watermark &&
!list_empty(&sgx_active_page_list);
}
In the problematic scenario there were no free pages available yet the
value of sgx_nr_free_pages was above the watermark. The allocation of
SGX memory thus always failed because of a lack of free pages while no
free pages were made available because the reclaimer is never started
because of sgx_nr_free_pages' incorrect value. The consequence was that
user space kept encountering VM_FAULT_NOPAGE that caused the same
address to be accessed repeatedly with the same result.
Change the global free page counter to an atomic type that
ensures simultaneous updates are done safely. While doing so, move
the updating of the variable outside of the spin lock critical
section to which it does not belong.
Cc: stable@vger.kernel.org
Fixes: 901ddbb9ec ("x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a95a40743bbd3f795b465f30922dde7f1ea9e0eb.1637004094.git.reinette.chatre@intel.com
Add a separate, local mask for tracking AVX512 usage which does not
include the opmask xfeature set. Opmask registers usage does not cause
frequency throttling so it is a completely unnecessary false positive.
While at it, carve it out into a separate function to keep that
abomination extracted out.
[ bp: Rediff and cleanup ontop of 5.16-rc1. ]
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20210920053951.4093668-1-goldstein.w.n@gmail.com
Provide a recovery function sgx_memory_failure(). If the poison was
consumed synchronously then send a SIGBUS. Note that the virtual
address of the access is not included with the SIGBUS as is the case
for poison outside of SGX enclaves. This doesn't matter as addresses
of code/data inside an enclave is of little to no use to code executing
outside the (now dead) enclave.
Poison found in a free page results in the page being moved from the
free list to the per-node poison page list.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20211026220050.697075-5-tony.luck@intel.com
A memory controller patrol scrubber can report poison in a page
that isn't currently being used.
Add "poison" field in the sgx_epc_page that can be set for an
sgx_epc_page. Check for it:
1) When sanitizing dirty pages
2) When freeing epc pages
Poison is a new field separated from flags to avoid having to make all
updates to flags atomic, or integrate poison state changes into some
other locking scheme to protect flags (Currently just sgx_reclaimer_lock
which protects the SGX_EPC_PAGE_RECLAIMER_TRACKED bit in page->flags).
In both cases place the poisoned page on a per-node list of poisoned
epc pages to make sure it will not be reallocated.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20211026220050.697075-4-tony.luck@intel.com
X86 machine check architecture reports a physical address when there
is a memory error. Handling that error requires a method to determine
whether the physical address reported is in any of the areas reserved
for EPC pages by BIOS.
SGX EPC pages do not have Linux "struct page" associated with them.
Keep track of the mapping from ranges of EPC pages to the sections
that contain them using an xarray. N.B. adds CONFIG_XARRAY_MULTI to
the SGX dependecies. So "select" that in arch/x86/Kconfig for X86/SGX.
Create a function arch_is_platform_page() that simply reports whether an
address is an EPC page for use elsewhere in the kernel. The ACPI error
injection code needs this function and is typically built as a module,
so export it.
Note that arch_is_platform_page() will be slower than other similar
"what type is this page" functions that can simply check bits in the
"struct page". If there is some future performance critical user of
this function it may need to be implemented in a more efficient way.
Note also that the current implementation of xarray allocates a few
hundred kilobytes for this usage on a system with 4GB of SGX EPC memory
configured. This isn't ideal, but worth it for the code simplicity.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20211026220050.697075-3-tony.luck@intel.com
SGX EPC pages go through the following life cycle:
DIRTY ---> FREE ---> IN-USE --\
^ |
\-----------------/
Recovery action for poison for a DIRTY or FREE page is simple. Just
make sure never to allocate the page. IN-USE pages need some extra
handling.
Add a new flag bit SGX_EPC_PAGE_IS_FREE that is set when a page
is added to a free list and cleared when the page is allocated.
Notes:
1) These transitions are made while holding the node->lock so that
future code that checks the flags while holding the node->lock
can be sure that if the SGX_EPC_PAGE_IS_FREE bit is set, then the
page is on the free list.
2) Initially while the pages are on the dirty list the
SGX_EPC_PAGE_IS_FREE bit is cleared.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20211026220050.697075-2-tony.luck@intel.com
Explicitly check for MSR_HYPERCALL and MSR_VP_INDEX support when probing
for running as a Hyper-V guest instead of waiting until hyperv_init() to
detect the bogus configuration. Add messages to give the admin a heads
up that they are likely running on a broken virtual machine setup.
At best, silently disabling Hyper-V is confusing and difficult to debug,
e.g. the kernel _says_ it's using all these fancy Hyper-V features, but
always falls back to the native versions. At worst, the half baked setup
will crash/hang the kernel.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20211104182239.1302956-3-seanjc@google.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Dan reports that Anjaneya Chagam can no longer use the efi=nosoftreserve
kernel command line parameter to suppress "soft reservation" behavior.
This is due to the fact that the following call-chain happens at boot:
early_reserve_memory
|-> efi_memblock_x86_reserve_range
|-> efi_fake_memmap_early
which does
if (!efi_soft_reserve_enabled())
return;
and that would have set EFI_MEM_NO_SOFT_RESERVE after having parsed
"nosoftreserve".
However, parse_early_param() gets called *after* it, leading to the boot
cmdline not being taken into account.
Therefore, carve out the command line preparation into a separate
function which does the early param parsing too. So that it all goes
together.
And then call that function before early_reserve_memory() so that the
params would have been parsed by then.
Fixes: 8aa83e6395 ("x86/setup: Call early_reserve_memory() earlier")
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Anjaneya Chagam <anjaneya.chagam@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/e8dd8993c38702ee6dd73b3c11f158617e665607.camel@intel.com
Pull x86 static call update from Thomas Gleixner:
"A single fix for static calls to make the trampoline patching more
robust by placing explicit signature bytes after the call trampoline
to prevent patching random other jumps like the CFI jump table
entries"
* tag 'locking-urgent-2021-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
static_call,x86: Robustify trampoline patching
Pull scheduler fixes from Borislav Petkov:
- Avoid touching ~100 config files in order to be able to select the
preemption model
- clear cluster CPU masks too, on the CPU unplug path
- prevent use-after-free in cfs
- Prevent a race condition when updating CPU cache domains
- Factor out common shared part of smp_prepare_cpus() into a common
helper which can be called by both baremetal and Xen, in order to fix
a booting of Xen PV guests
* tag 'sched_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
preempt: Restore preemption model selection configs
arch_topology: Fix missing clear cluster_cpumask in remove_cpu_topology()
sched/fair: Prevent dead task groups from regaining cfs_rq's
sched/core: Mitigate race cpus_share_cache()/update_top_cache_domain()
x86/smp: Factor out parts of native_smp_prepare_cpus()
Pull x86 fixes from Borislav Petkov:
- Add the model number of a new, Raptor Lake CPU, to intel-family.h
- Do not log spurious corrected MCEs on SKL too, due to an erratum
- Clarify the path of paravirt ops patches upstream
- Add an optimization to avoid writing out AMX components to sigframes
when former are in init state
* tag 'x86_urgent_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Raptor Lake to Intel family
x86/mce: Add errata workaround for Skylake SKX37
MAINTAINERS: Add some information to PARAVIRT_OPS entry
x86/fpu: Optimize out sigframe xfeatures when in init state
Pull more kvm updates from Paolo Bonzini:
"New x86 features:
- Guest API and guest kernel support for SEV live migration
- SEV and SEV-ES intra-host migration
Bugfixes and cleanups for x86:
- Fix misuse of gfn-to-pfn cache when recording guest steal time /
preempted status
- Fix selftests on APICv machines
- Fix sparse warnings
- Fix detection of KVM features in CPUID
- Cleanups for bogus writes to MSR_KVM_PV_EOI_EN
- Fixes and cleanups for MSR bitmap handling
- Cleanups for INVPCID
- Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
Bugfixes for ARM:
- Fix finalization of host stage2 mappings
- Tighten the return value of kvm_vcpu_preferred_target()
- Make sure the extraction of ESR_ELx.EC is limited to architected
bits"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (34 commits)
KVM: SEV: unify cgroup cleanup code for svm_vm_migrate_from
KVM: x86: move guest_pv_has out of user_access section
KVM: x86: Drop arbitrary KVM_SOFT_MAX_VCPUS
KVM: Move INVPCID type check from vmx and svm to the common kvm_handle_invpcid()
KVM: VMX: Add a helper function to retrieve the GPR index for INVPCID, INVVPID, and INVEPT
KVM: nVMX: Clean up x2APIC MSR handling for L2
KVM: VMX: Macrofy the MSR bitmap getters and setters
KVM: nVMX: Handle dynamic MSR intercept toggling
KVM: nVMX: Query current VMCS when determining if MSR bitmaps are in use
KVM: x86: Don't update vcpu->arch.pv_eoi.msr_val when a bogus value was written to MSR_KVM_PV_EOI_EN
KVM: x86: Rename kvm_lapic_enable_pv_eoi()
KVM: x86: Make sure KVM_CPUID_FEATURES really are KVM_CPUID_FEATURES
KVM: x86: Add helper to consolidate core logic of SET_CPUID{2} flows
kvm: mmu: Use fast PF path for access tracking of huge pages when possible
KVM: x86/mmu: Properly dereference rcu-protected TDP MMU sptep iterator
KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active
kvm: x86: Convert return type of *is_valid_rdpmc_ecx() to bool
KVM: x86: Fix recording of guest steal time / preempted status
selftest: KVM: Add intra host migration tests
selftest: KVM: Add open sev dev helper
...
Pull vm86 fix from Eric Biederman:
"Just the removal of an unnecessary (and incorrect) test from a BUG_ON"
* 'exit-cleanups-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
signal/vm86_32: Remove pointless test in BUG_ON
kernel test robot <oliver.sang@intel.com> writes[1]:
>
> Greeting,
>
> FYI, we noticed the following commit (built with gcc-9):
>
> commit: 1a4d21a23c ("signal/vm86_32: Replace open coded BUG_ON with an actual BUG_ON")
> https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git master
>
> in testcase: trinity
> version: trinity-static-i386-x86_64-1c734c75-1_2020-01-06
> with following parameters:
>
>
> [ 70.645554][ T3747] kernel BUG at arch/x86/kernel/vm86_32.c:109!
> [ 70.646185][ T3747] invalid opcode: 0000 [#1] SMP
> [ 70.646682][ T3747] CPU: 0 PID: 3747 Comm: trinity-c6 Not tainted 5.15.0-rc1-00009-g1a4d21a23c4c #1
> [ 70.647598][ T3747] EIP: save_v86_state (arch/x86/kernel/vm86_32.c:109 (discriminator 3))
> [ 70.648113][ T3747] Code: 89 c3 64 8b 35 60 b8 25 c2 83 ec 08 89 55 f0 8b 96 10 19 00 00 89 55 ec e8 c6 2d 0c 00 fb 8b 55 ec 85 d2 74 05 83 3a 00 75 02 <0f> 0b 8b 86 10 19 00 00 8b 4b 38 8b 78 48 31 cf 89 f8 8b 7a 4c 81
> [ 70.650136][ T3747] EAX: 00000001 EBX: f5f49fac ECX: 0000000b EDX: f610b600
> [ 70.650852][ T3747] ESI: f5f79cc0 EDI: f5f79cc0 EBP: f5f49f04 ESP: f5f49ef0
> [ 70.651593][ T3747] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 EFLAGS: 00010246
> [ 70.652413][ T3747] CR0: 80050033 CR2: 00004000 CR3: 35fc7000 CR4: 000406d0
> [ 70.653169][ T3747] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000
> [ 70.653897][ T3747] DR6: fffe0ff0 DR7: 00000400
> [ 70.654382][ T3747] Call Trace:
> [ 70.654719][ T3747] arch_do_signal_or_restart (arch/x86/kernel/signal.c:792 arch/x86/kernel/signal.c:867)
> [ 70.655288][ T3747] exit_to_user_mode_prepare (kernel/entry/common.c:174 kernel/entry/common.c:209)
> [ 70.655854][ T3747] irqentry_exit_to_user_mode (kernel/entry/common.c:126 kernel/entry/common.c:317)
> [ 70.656450][ T3747] irqentry_exit (kernel/entry/common.c:406)
> [ 70.656897][ T3747] exc_page_fault (arch/x86/mm/fault.c:1535)
> [ 70.657369][ T3747] ? sysvec_kvm_asyncpf_interrupt (arch/x86/mm/fault.c:1488)
> [ 70.657989][ T3747] handle_exception (arch/x86/entry/entry_32.S:1085)
vm86_32.c:109 is: "BUG_ON(!vm86 || !vm86->user_vm86)"
When trying to understand the failure Brian Gerst pointed out[2] that
the code does not need protection against vm86->user_vm86 being NULL.
The copy_from_user code will already handles that case if the address
is going to fault.
Looking futher I realized that if we care about not allowing struct
vm86plus_struct at address 0 it should be do_sys_vm86 (the system
call) that does the filtering. Not way down deep when the emulation
has completed in save_v86_state.
So let's just remove the silly case of attempting to filter a
userspace address with a BUG_ON. Existing userspace can't break and
it won't make the kernel any more attackable as the userspace access
helpers will handle it, if it isn't a good userspace pointer.
I have run the reproducer the fuzzer gave me before I made this change
and it reproduced, and after I made this change and I have not seen
the reported failure. So it does looks like this fixes the reported
issue.
[1] https://lkml.kernel.org/r/20211112074030.GB19820@xsang-OptiPlex-9020
[2] https://lkml.kernel.org/r/CAMzpN2jkK5sAv-Kg_kVnCEyVySiqeTdUORcC=AdG1gV6r8nUew@mail.gmail.com
Suggested-by: Brian Gerst <brgerst@gmail.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status
* Fix selftests on APICv machines
* Fix sparse warnings
* Fix detection of KVM features in CPUID
* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN
* Fixes and cleanups for MSR bitmap handling
* Cleanups for INVPCID
* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.
This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.
NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
into processor.h to avoid having duplicate code for the iteration
over possible hypervisor base leaves.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add guest api and guest kernel support for SEV live migration.
Introduces a new hypercall to notify the host of changes to the page
encryption status. If the page is encrypted then it must be migrated
through the SEV firmware or a helper VM sharing the key. If page is
not encrypted then it can be migrated normally by userspace. This new
hypercall is invoked using paravirt_ops.
Conflicts: sev_active() replaced by cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT).
Reset the host's shared pages list related to kernel
specific page encryption status settings before we load a
new kernel by kexec. We cannot reset the complete
shared pages list here as we need to retain the
UEFI/OVMF firmware specific settings.
The host's shared pages list is maintained for the
guest to keep track of all unencrypted guest memory regions,
therefore we need to explicitly mark all shared pages as
encrypted again before rebooting into the new guest kernel.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Message-Id: <3e051424ab839ea470f88333273d7a185006754f.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The guest support for detecting and enabling SEV Live migration
feature uses the following logic :
- kvm_init_plaform() checks if its booted under the EFI
- If not EFI,
i) if kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL), issue a wrmsrl()
to enable the SEV live migration support
- If EFI,
i) If kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL), read
the UEFI variable which indicates OVMF support for live migration
ii) the variable indicates live migration is supported, issue a wrmsrl() to
enable the SEV live migration support
The EFI live migration check is done using a late_initcall() callback.
Also, ensure that _bss_decrypted section is marked as decrypted in the
hypervisor's guest page encryption status tracking.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Message-Id: <b4453e4c87103ebef12217d2505ea99a1c3e0f0f.1629726117.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 66558b730f ("sched: Add cluster scheduler level for x86")
introduced cpu_l2c_shared_map mask which is expected to be initialized
by smp_op.smp_prepare_cpus(). That commit only updated
native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus().
As result Xen PV guests crash in set_cpu_sibling_map().
While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can
see that both versions of smp_prepare_cpus ops share a number of common
operations that can be factored out. So do that instead.
Fixes: 66558b730f ("sched: Add cluster scheduler level for x86")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
Add a few signature bytes after the static call trampoline and verify
those bytes match before patching the trampoline. This avoids patching
random other JMPs (such as CFI jump-table entries) instead.
These bytes decode as:
d: 53 push %rbx
e: 43 54 rex.XB push %r12
And happen to spell "SCT".
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211030074758.GT174703@worktop.programming.kicks-ass.net
Pull exit cleanups from Eric Biederman:
"While looking at some issues related to the exit path in the kernel I
found several instances where the code is not using the existing
abstractions properly.
This set of changes introduces force_fatal_sig a way of sending a
signal and not allowing it to be caught, and corrects the misuse of
the existing abstractions that I found.
A lot of the misuse of the existing abstractions are silly things such
as doing something after calling a no return function, rolling BUG by
hand, doing more work than necessary to terminate a kernel thread, or
calling do_exit(SIGKILL) instead of calling force_sig(SIGKILL).
In the review a deficiency in force_fatal_sig and force_sig_seccomp
where ptrace or sigaction could prevent the delivery of the signal was
found. I have added a change that adds SA_IMMUTABLE to change that
makes it impossible to interrupt the delivery of those signals, and
allows backporting to fix force_sig_seccomp
And Arnd found an issue where a function passed to kthread_run had the
wrong prototype, and after my cleanup was failing to build."
* 'exit-cleanups-for-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (23 commits)
soc: ti: fix wkup_m3_rproc_boot_thread return type
signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed
signal: Replace force_sigsegv(SIGSEGV) with force_fatal_sig(SIGSEGV)
exit/r8188eu: Replace the macro thread_exit with a simple return 0
exit/rtl8712: Replace the macro thread_exit with a simple return 0
exit/rtl8723bs: Replace the macro thread_exit with a simple return 0
signal/x86: In emulate_vsyscall force a signal instead of calling do_exit
signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig
signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails
exit/syscall_user_dispatch: Send ordinary signals on failure
signal: Implement force_fatal_sig
exit/kthread: Have kernel threads return instead of calling do_exit
signal/s390: Use force_sigsegv in default_trap_handler
signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.
signal/vm86_32: Replace open coded BUG_ON with an actual BUG_ON
signal/sparc: In setup_tsb_params convert open coded BUG into BUG
signal/powerpc: On swapcontext failure force SIGSEGV
signal/sh: Use force_sig(SIGKILL) instead of do_group_exit(SIGKILL)
signal/mips: Update (_save|_restore)_fp_context to fail with -EFAULT
signal/sparc32: Remove unreachable do_exit in do_sparc_fault
...
Pull xen updates from Juergen Gross:
- a series to speed up the boot of Xen PV guests
- some cleanups in Xen related code
- replacement of license texts with the appropriate SPDX headers and
fixing of wrong SPDX headers in Xen header files
- a small series making paravirtualized interrupt masking much simpler
and at the same time removing complaints of objtool
- a fix for Xen ballooning hogging workqueues for too long
- enablement of the Xen pciback driver for Arm
- some further small fixes/enhancements
* tag 'for-linus-5.16b-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (22 commits)
xen/balloon: fix unused-variable warning
xen/balloon: rename alloc/free_xenballooned_pages
xen/balloon: add late_initcall_sync() for initial ballooning done
x86/xen: remove 32-bit awareness from startup_xen
xen: remove highmem remnants
xen: allow pv-only hypercalls only with CONFIG_XEN_PV
x86/xen: remove 32-bit pv leftovers
xen-pciback: allow compiling on other archs than x86
x86/xen: switch initial pvops IRQ functions to dummy ones
x86/xen: remove xen_have_vcpu_info_placement flag
x86/pvh: add prototype for xen_pvh_init()
xen: Fix implicit type conversion
xen: fix wrong SPDX headers of Xen related headers
xen/pvcalls-back: Remove redundant 'flush_workqueue()' calls
x86/xen: Remove redundant irq_enter/exit() invocations
xen-pciback: Fix return in pm_ctrl_init()
xen/x86: restrict PV Dom0 identity mapping
xen/x86: there's no highmem anymore in PV mode
xen/x86: adjust handling of the L3 user vsyscall special page table
xen/x86: adjust xen_set_fixmap()
...
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
Let's support multiple registered callbacks, making sure that
registering vmcore callbacks cannot fail. Make the callback return a
bool instead of an int, handling how to deal with errors internally.
Drop unused HAVE_OLDMEM_PFN_IS_RAM.
We soon want to make use of this infrastructure from other drivers:
virtio-mem, registering one callback for each virtio-mem device, to
prevent reading unplugged virtio-mem memory.
Handle it via a generic vmcore_cb structure, prepared for future
extensions: for example, once we support virtio-mem on s390x where the
vmcore is completely constructed in the second kernel, we want to detect
and add plugged virtio-mem memory ranges to the vmcore in order for them
to get dumped properly.
Handle corner cases that are unexpected and shouldn't happen in sane
setups: registering a callback after the vmcore has already been opened
(warn only) and unregistering a callback after the vmcore has already been
opened (warn and essentially read only zeroes from that point on).
Link: https://lkml.kernel.org/r/20211005121430.30136-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>