61fc5771f5
30636 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
61fc5771f5 |
audit/stable-5.3 PR 20190702
-----BEGIN PGP SIGNATURE----- iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAl0bgNYUHHBhdWxAcGF1 bC1tb29yZS5jb20ACgkQ6iDy2pc3iXONcRAAqpeGVh3/eU5bmGeiOWZJ5TREx0Qf 4M8Z3CElxtbPF4nz1nARUbH424zF91AOa0B4JVO8BFCgxWN5M3dDOLjqLLfJkfbE mQMmiPoua1qXTMRi/9S+3kNFYO4IL/sFFiiqY6XVcW6xIUzp3rLwEjcHC/deszP7 /e8IqLUFAqj853W0k7qyLMRFEQVBzrABgtiSX+X06sCB8OmAVxhpevSRR1lmmfEu sjwuAvxexVlmojwI6HkoANyRzqJRX6y7sMGSbr10I/T9YJTk4VPfeFwSS3qBsf15 z9gTbvFrRcXKoA9U8iG45K0lUinka9OuGxJD/AxuJv+ncyJjWqX+aokvzeo7Wmv6 sbAyD+ikl9kxvE+sZ3l9yZEVHjFIbjmZY/gzG+ZZD2EEwKBuaQBN5mmSjrUkySJk sbF+oBABLptitJIa/cZJ5QHeAPR1NBqSXKhnhG26IR8iwQqpZhefa8yXpF/x3Tn8 FckvY+YpIakOAMQ/ezVvFaaEELieiRZqqI/ShrochJzwRXHnnbCTPRtNb9NyjOeU DZCBASPhrYfBJz3n0fZR2HCnpMZwCSGBgmVn3jmh3YyxKnILdQ4DxKgJCv730jwh 9T1+1g2/MW554Gted7KLlkE+aj+BzORx6XJ9H8SKmYB85NF5KnnJMiVktjfl4Jr4 A8meV9KGwAcyBOU= =8HBN -----END PGP SIGNATURE----- Merge tag 'audit-pr-20190702' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit Pull audit updates from Paul Moore: "This pull request is a bit early, but with some vacation time coming up I wanted to send this out now just in case the remote Internet Gods decide not to smile on me once the merge window opens. The patchset for v5.3 is pretty minor this time, the highlights include: - When the audit daemon is sent a signal, ensure we deliver information about the sender even when syscall auditing is not enabled/supported. - Add the ability to filter audit records based on network address family. - Tighten the audit field filtering restrictions on string based fields. - Cleanup the audit field filtering verification code. - Remove a few BUG() calls from the audit code" * tag 'audit-pr-20190702' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit: audit: remove the BUG() calls in the audit rule comparison functions audit: enforce op for string fields audit: add saddr_fam filter field audit: re-structure audit field valid checks audit: deliver signal_info regarless of syscall |
||
Linus Torvalds
|
dad1c12ed8 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ... |
||
Linus Torvalds
|
e192832869 |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "The main changes in this cycle are: - rwsem scalability improvements, phase #2, by Waiman Long, which are rather impressive: "On a 2-socket 40-core 80-thread Skylake system with 40 reader and writer locking threads, the min/mean/max locking operations done in a 5-second testing window before the patchset were: 40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810 40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255 After the patchset, they became: 40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741 40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098" There's a lot of changes to the locking implementation that makes it similar to qrwlock, including owner handoff for more fair locking. Another microbenchmark shows how across the spectrum the improvements are: "With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 2-socket Skylake system with equal numbers of readers and writers (mixed) before and after this patchset were: # of Threads Before Patch After Patch ------------ ------------ ----------- 2 2,618 4,193 4 1,202 3,726 8 802 3,622 16 729 3,359 32 319 2,826 64 102 2,744" The changes are extensive and the patch-set has been through several iterations addressing various locking workloads. There might be more regressions, but unless they are pathological I believe we want to use this new implementation as the baseline going forward. - jump-label optimizations by Daniel Bristot de Oliveira: the primary motivation was to remove IPI disturbance of isolated RT-workload CPUs, which resulted in the implementation of batched jump-label updates. Beyond the improvement of the real-time characteristics kernel, in one test this patchset improved static key update overhead from 57 msecs to just 1.4 msecs - which is a nice speedup as well. - atomic64_t cross-arch type cleanups by Mark Rutland: over the last ~10 years of atomic64_t existence the various types used by the APIs only had to be self-consistent within each architecture - which means they became wildly inconsistent across architectures. Mark puts and end to this by reworking all the atomic64 implementations to use 's64' as the base type for atomic64_t, and to ensure that this type is consistently used for parameters and return values in the API, avoiding further problems in this area. - A large set of small improvements to lockdep by Yuyang Du: type cleanups, output cleanups, function return type and othr cleanups all around the place. - A set of percpu ops cleanups and fixes by Peter Zijlstra. - Misc other changes - please see the Git log for more details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) locking/lockdep: increase size of counters for lockdep statistics locking/atomics: Use sed(1) instead of non-standard head(1) option locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING x86/jump_label: Make tp_vec_nr static x86/percpu: Optimize raw_cpu_xchg() x86/percpu, sched/fair: Avoid local_clock() x86/percpu, x86/irq: Relax {set,get}_irq_regs() x86/percpu: Relax smp_processor_id() x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}() locking/rwsem: Guard against making count negative locking/rwsem: Adaptive disabling of reader optimistic spinning locking/rwsem: Enable time-based spinning on reader-owned rwsem locking/rwsem: Make rwsem->owner an atomic_long_t locking/rwsem: Enable readers spinning on writer locking/rwsem: Clarify usage of owner's nonspinaable bit locking/rwsem: Wake up almost all readers in wait queue locking/rwsem: More optimal RT task handling of null owner locking/rwsem: Always release wait_lock before waking up tasks locking/rwsem: Implement lock handoff to prevent lock starvation locking/rwsem: Make rwsem_spin_on_owner() return owner state ... |
||
Linus Torvalds
|
46f1ec23a4 |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: "The changes in this cycle are: - RCU flavor consolidation cleanups and optmizations - Documentation updates - Miscellaneous fixes - SRCU updates - RCU-sync flavor consolidation - Torture-test updates - Linux-kernel memory-consistency-model updates, most notably the addition of plain C-language accesses" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits) tools/memory-model: Improve data-race detection tools/memory-model: Change definition of rcu-fence tools/memory-model: Expand definition of barrier tools/memory-model: Do not use "herd" to refer to "herd7" tools/memory-model: Fix comment in MP+poonceonces.litmus Documentation: atomic_t.txt: Explain ordering provided by smp_mb__{before,after}_atomic() rcu: Don't return a value from rcu_assign_pointer() rcu: Force inlining of rcu_read_lock() rcu: Fix irritating whitespace error in rcu_assign_pointer() rcu: Upgrade sync_exp_work_done() to smp_mb() rcutorture: Upper case solves the case of the vanishing NULL pointer torture: Suppress propagating trace_printk() warning rcutorture: Dump trace buffer for callback pipe drain failures torture: Add --trust-make to suppress "make clean" torture: Make --cpus override idleness calculations torture: Run kernel build in source directory torture: Add function graph-tracing cheat sheet torture: Capture qemu output rcutorture: Tweak kvm options rcutorture: Add trivial RCU implementation ... |
||
Linus Torvalds
|
0902d5011c |
Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x96 apic updates from Thomas Gleixner: "Updates for the x86 APIC interrupt handling and APIC timer: - Fix a long standing issue with spurious interrupts which was caused by the big vector management rework a few years ago. Robert Hodaszi provided finally enough debug data and an excellent initial failure analysis which allowed to understand the underlying issues. This contains a change to the core interrupt management code which is required to handle this correctly for the APIC/IO_APIC. The core changes are NOOPs for most architectures except ARM64. ARM64 is not impacted by the change as confirmed by Marc Zyngier. - Newer systems allow to disable the PIT clock for power saving causing panic in the timer interrupt delivery check of the IO/APIC when the HPET timer is not enabled either. While the clock could be turned on this would cause an endless whack a mole game to chase the proper register in each affected chipset. These systems provide the relevant frequencies for TSC, CPU and the local APIC timer via CPUID and/or MSRs, which allows to avoid the PIT/HPET based calibration. As the calibration code is the only usage of the legacy timers on modern systems and is skipped anyway when the frequencies are known already, there is no point in setting up the PIT and actually checking for the interrupt delivery via IO/APIC. To achieve this on a wide variety of platforms, the CPUID/MSR based frequency readout has been made more robust, which also allowed to remove quite some workarounds which turned out to be not longer required. Thanks to Daniel Drake for analysis, patches and verification" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/irq: Seperate unused system vectors from spurious entry again x86/irq: Handle spurious interrupt after shutdown gracefully x86/ioapic: Implement irq_get_irqchip_state() callback genirq: Add optional hardware synchronization for shutdown genirq: Fix misleading synchronize_irq() documentation genirq: Delay deactivation in free_irq() x86/timer: Skip PIT initialization on modern chipsets x86/apic: Use non-atomic operations when possible x86/apic: Make apic_bsp_setup() static x86/tsc: Set LAPIC timer period to crystal clock frequency x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period' x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency |
||
Linus Torvalds
|
927ba67a63 |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner: "The timer and timekeeping departement delivers: Core: - The consolidation of the VDSO code into a generic library including the conversion of x86 and ARM64. Conversion of ARM and MIPS are en route through the relevant maintainer trees and should end up in 5.4. This gets rid of the unnecessary different copies of the same code and brings all architectures on the same level of VDSO functionality. - Make the NTP user space interface more robust by restricting the TAI offset to prevent undefined behaviour. Includes a selftest. - Validate user input in the compat settimeofday() syscall to catch invalid values which would be turned into valid values by a multiplication overflow - Consolidate the time accessors - Small fixes, improvements and cleanups all over the place Drivers: - Support for the NXP system counter, TI davinci timer - Move the Microsoft HyperV clocksource/events code into the drivers/clocksource directory so it can be shared between x86 and ARM64. - Overhaul of the Tegra driver - Delay timer support for IXP4xx - Small fixes, improvements and cleanups as usual" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits) time: Validate user input in compat_settimeofday() timer: Document TIMER_PINNED clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic clocksource/drivers: Make Hyper-V clocksource ISA agnostic MAINTAINERS: Fix Andy's surname and the directory entries of VDSO hrtimer: Use a bullet for the returns bullet list arm64: vdso: Fix compilation with clang older than 8 arm64: compat: Fix __arch_get_hw_counter() implementation arm64: Fix __arch_get_hw_counter() implementation lib/vdso: Make delta calculation work correctly MAINTAINERS: Add entry for the generic VDSO library arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system arm64: vdso: Remove unnecessary asm-offsets.c definitions vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h clocksource/drivers/davinci: Add support for clocksource clocksource/drivers/davinci: Add support for clockevents clocksource/drivers/tegra: Set up maximum-ticks limit properly clocksource/drivers/tegra: Cycles can't be 0 clocksource/drivers/tegra: Restore base address before cleanup clocksource/drivers/tegra: Add verbose definition for 1MHz constant ... |
||
Linus Torvalds
|
2a1ccd3142 |
Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner: "The irq departement provides the usual mixed bag: Core: - Further improvements to the irq timings code which aims to predict the next interrupt for power state selection to achieve better latency/power balance - Add interrupt statistics to the core NMI handlers - The usual small fixes and cleanups Drivers: - Support for Renesas RZ/A1, Annapurna Labs FIC, Meson-G12A SoC and Amazon Gravition AMR/GIC interrupt controllers. - Rework of the Renesas INTC controller driver - ACPI support for Socionext SoCs - Enhancements to the CSKY interrupt controller - The usual small fixes and cleanups" * 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits) irq/irqdomain: Fix comment typo genirq: Update irq stats from NMI handlers irqchip/gic-pm: Remove PM_CLK dependency irqchip/al-fic: Introduce Amazon's Annapurna Labs Fabric Interrupt Controller Driver dt-bindings: interrupt-controller: Add Amazon's Annapurna Labs FIC softirq: Use __this_cpu_write() in takeover_tasklets() irqchip/mbigen: Stop printing kernel addresses irqchip/gic: Add dependency for ARM_GIC_MAX_NR genirq/affinity: Remove unused argument from [__]irq_build_affinity_masks() genirq/timings: Add selftest for next event computation genirq/timings: Add selftest for irqs circular buffer genirq/timings: Add selftest for circular array genirq/timings: Encapsulate storing function genirq/timings: Encapsulate timings push genirq/timings: Optimize the period detection speed genirq/timings: Fix timings buffer inspection genirq/timings: Fix next event index function irqchip/qcom: Use struct_size() in devm_kzalloc() irqchip/irq-csky-mpintc: Remove unnecessary loop in interrupt handler dt-bindings: interrupt-controller: Update csky mpintc ... |
||
Linus Torvalds
|
e0e86b111b |
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP/hotplug updates from Thomas Gleixner: "A small set of updates for SMP and CPU hotplug: - Abort disabling secondary CPUs in the freezer when a wakeup is pending instead of evaluating it only after all CPUs have been offlined. - Remove the shared annotation for the strict per CPU cfd_data in the smp function call core code. - Remove the return values of smp_call_function() and on_each_cpu() as they are unconditionally 0. Fixup the few callers which actually bothered to check the return value" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp: Remove smp_call_function() and on_each_cpu() return values smp: Do not mark call_function_data as shared cpu/hotplug: Abort disabling secondary CPUs if wakeup is pending cpu/hotplug: Fix notify_cpu_starting() reference in bringup_wait_for_ap() |
||
Linus Torvalds
|
1758feddb0 |
s390 updates for the 5.3 merge window
- Improve stop_machine wait logic: replace cpu_relax_yield call in generic stop_machine function with a weak stop_machine_yield function. This is overridden on s390, which yields the current cpu to the neighbouring cpu after a couple of retries, instead of blindly giving up the cpu to the hipervisor. This significantly improves stop_machine performance on s390 in overcommitted scenarios. This includes common code changes which have been Acked by Peter Zijlstra and Thomas Gleixner. - Improve jump label transformation speed: transform jump labels without using stop_machine. - Refactoring of the vfio-ccw cp handling, simplifying the code and avoiding unneeded allocating/copying. - Various vfio-ccw fixes (ccw translation, state machine). - Add support for vfio-ap queue interrupt control in the guest. This includes s390 kvm changes which have been Acked by Christian Borntraeger. - Add protected virtualization support for virtio-ccw. - Enforce both CONFIG_SMP and CONFIG_HOTPLUG_CPU, which allows to remove some code which most likely isn't working at all, besides that s390 didn't even compile for !CONFIG_SMP. - Support for special flagged EP11 CPRBs for zcrypt. - Handle PCI devices with no support for new MIO instructions. - Avoid KASAN false positives in reworked stack unwinder. - Couple of fixes for the QDIO layer. - Convert s390 specific documentation to ReST format. - Let s390 crypto modules return -ENODEV instead of -EOPNOTSUPP if hardware is missing. This way our modules behave like most other modules and which is also what systemd's systemd-modules-load.service expects. - Replace defconfig with performance_defconfig, so there is one config file less to maintain. - Remove the SCLP call home device driver, which was never useful. - Cleanups all over the place. -----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEE3QHqV+H2a8xAv27vjYWKoQLXFBgFAl0iEpcACgkQjYWKoQLX FBgtZwf8DOJ6COUG91jKP0RSDlc2YvIMBxopQ38ql1lIsTj5t6DvJ2z3X5uct1wy 6mMiF01VuyD4V4UXbTJQrihzNx7D4dUh47s2sS+diGHxJyXacVxlmjS5k+6pLIUO AyLvtCcoqDPPiThqnSTZFRm/TcfO/25fCG/IdjrFGj1MD09wHpUCh16tmRPTGFlC BWZeilDT77fVXnh7Ggn3JB0mQay5PAw2ODOxELHTUBaLmYF8RJPPVKBPmXGl9P1W 84ESm2p+iALGGWDiTOUad9eu8wyQci/V/R+hFgs0Bz/HRcjznNH5EVvfQNCD4VNF g/PET10nIQYZv2BNdi0cwRjR9jCFbw== =jp0i -----END PGP SIGNATURE----- Merge tag 's390-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux Pull s390 updates from Vasily Gorbik: - Improve stop_machine wait logic: replace cpu_relax_yield call in generic stop_machine function with a weak stop_machine_yield function. This is overridden on s390, which yields the current cpu to the neighbouring cpu after a couple of retries, instead of blindly giving up the cpu to the hipervisor. This significantly improves stop_machine performance on s390 in overcommitted scenarios. This includes common code changes which have been Acked by Peter Zijlstra and Thomas Gleixner. - Improve jump label transformation speed: transform jump labels without using stop_machine. - Refactoring of the vfio-ccw cp handling, simplifying the code and avoiding unneeded allocating/copying. - Various vfio-ccw fixes (ccw translation, state machine). - Add support for vfio-ap queue interrupt control in the guest. This includes s390 kvm changes which have been Acked by Christian Borntraeger. - Add protected virtualization support for virtio-ccw. - Enforce both CONFIG_SMP and CONFIG_HOTPLUG_CPU, which allows to remove some code which most likely isn't working at all, besides that s390 didn't even compile for !CONFIG_SMP. - Support for special flagged EP11 CPRBs for zcrypt. - Handle PCI devices with no support for new MIO instructions. - Avoid KASAN false positives in reworked stack unwinder. - Couple of fixes for the QDIO layer. - Convert s390 specific documentation to ReST format. - Let s390 crypto modules return -ENODEV instead of -EOPNOTSUPP if hardware is missing. This way our modules behave like most other modules and which is also what systemd's systemd-modules-load.service expects. - Replace defconfig with performance_defconfig, so there is one config file less to maintain. - Remove the SCLP call home device driver, which was never useful. - Cleanups all over the place. * tag 's390-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (83 commits) docs: s390: s390dbf: typos and formatting, update crash command docs: s390: unify and update s390dbf kdocs at debug.c docs: s390: restore important non-kdoc parts of s390dbf.rst vfio-ccw: Fix the conversion of Format-0 CCWs to Format-1 s390/pci: correctly handle MIO opt-out s390/pci: deal with devices that have no support for MIO instructions s390: ap: kvm: Enable PQAP/AQIC facility for the guest s390: ap: implement PAPQ AQIC interception in kernel vfio: ap: register IOMMU VFIO notifier s390: ap: kvm: add PQAP interception for AQIC s390/unwind: cleanup unused READ_ONCE_TASK_STACK s390/kasan: avoid false positives during stack unwind s390/qdio: don't touch the dsci in tiqdio_add_input_queues() s390/qdio: (re-)initialize tiqdio list entries s390/dasd: Fix a precision vs width bug in dasd_feature_list() s390/cio: introduce driver_override on the css bus vfio-ccw: make convert_ccw0_to_ccw1 static vfio-ccw: Remove copy_ccw_from_iova() vfio-ccw: Factor out the ccw0-to-ccw1 transition vfio-ccw: Copy CCW data outside length calculation ... |
||
Linus Torvalds
|
dfd437a257 |
arm64 updates for 5.3:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP} - Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to manage the permissions of executable vmalloc regions more strictly - Slight performance improvement by keeping softirqs enabled while touching the FPSIMD/SVE state (kernel_neon_begin/end) - Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG and AXFLAG instructions for floating point comparison flags manipulation) and FRINT (rounding floating point numbers to integers) - Re-instate ARM64_PSEUDO_NMI support which was previously marked as BROKEN due to some bugs (now fixed) - Improve parking of stopped CPUs and implement an arm64-specific panic_smp_self_stop() to avoid warning on not being able to stop secondary CPUs during panic - perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI platforms - perf: DDR performance monitor support for iMX8QXP - cache_line_size() can now be set from DT or ACPI/PPTT if provided to cope with a system cache info not exposed via the CPUID registers - Avoid warning on hardware cache line size greater than ARCH_DMA_MINALIGN if the system is fully coherent - arm64 do_page_fault() and hugetlb cleanups - Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep) - Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags' introduced in 5.1) - CONFIG_RANDOMIZE_BASE now enabled in defconfig - Allow the selection of ARM64_MODULE_PLTS, currently only done via RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill over into the vmalloc area - Make ZONE_DMA32 configurable -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl0eHqcACgkQa9axLQDI XvFyNA/+L+bnkz8m3ncydlqqfXomQn4eJJVQ8Uksb0knJz+1+3CUxxbO4ry4jXZN fMkbggYrDPRKpDbsUl0lsRipj7jW9bqan+N37c3SWqCkgb6HqDaHViwxdx6Ec/Uk gHudozDSPh/8c7hxGcSyt/CFyuW6b+8eYIQU5rtIgz8aVY2BypBvS/7YtYCbIkx0 w4CFleRTK1zXD5mJQhrc6jyDx659sVkrAvdhf6YIymOY8nBTv40vwdNo3beJMYp8 Po/+0Ixu+VkHUNtmYYZQgP/AGH96xiTcRnUqd172JdtRPpCLqnLqwFokXeVIlUKT KZFMDPzK+756Ayn4z4huEePPAOGlHbJje8JVNnFyreKhVVcCotW7YPY/oJR10bnc eo7yD+DxABTn+93G2yP436bNVa8qO1UqjOBfInWBtnNFJfANIkZweij/MQ6MjaTA o7KtviHnZFClefMPoiI7HDzwL8XSmsBDbeQ04s2Wxku1Y2xUHLx4iLmadwLQ1ZPb lZMTZP3N/T1554MoURVA1afCjAwiqU3bt1xDUGjbBVjLfSPBAn/25IacsG9Li9AF 7Rp1M9VhrfLftjFFkB2HwpbhRASOxaOSx+EI3kzEfCtM2O9I1WHgP3rvCdc3l0HU tbK0/IggQicNgz7GSZ8xDlWPwwSadXYGLys+xlMZEYd3pDIOiFc= =0TDT -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP} - Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to manage the permissions of executable vmalloc regions more strictly - Slight performance improvement by keeping softirqs enabled while touching the FPSIMD/SVE state (kernel_neon_begin/end) - Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG and AXFLAG instructions for floating point comparison flags manipulation) and FRINT (rounding floating point numbers to integers) - Re-instate ARM64_PSEUDO_NMI support which was previously marked as BROKEN due to some bugs (now fixed) - Improve parking of stopped CPUs and implement an arm64-specific panic_smp_self_stop() to avoid warning on not being able to stop secondary CPUs during panic - perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI platforms - perf: DDR performance monitor support for iMX8QXP - cache_line_size() can now be set from DT or ACPI/PPTT if provided to cope with a system cache info not exposed via the CPUID registers - Avoid warning on hardware cache line size greater than ARCH_DMA_MINALIGN if the system is fully coherent - arm64 do_page_fault() and hugetlb cleanups - Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep) - Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags' introduced in 5.1) - CONFIG_RANDOMIZE_BASE now enabled in defconfig - Allow the selection of ARM64_MODULE_PLTS, currently only done via RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill over into the vmalloc area - Make ZONE_DMA32 configurable * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits) perf: arm_spe: Enable ACPI/Platform automatic module loading arm_pmu: acpi: spe: Add initial MADT/SPE probing ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens ACPI/PPTT: Modify node flag detection to find last IDENTICAL x86/entry: Simplify _TIF_SYSCALL_EMU handling arm64: rename dump_instr as dump_kernel_instr arm64/mm: Drop [PTE|PMD]_TYPE_FAULT arm64: Implement panic_smp_self_stop() arm64: Improve parking of stopped CPUs arm64: Expose FRINT capabilities to userspace arm64: Expose ARMv8.5 CondM capability to userspace arm64: defconfig: enable CONFIG_RANDOMIZE_BASE arm64: ARM64_MODULES_PLTS must depend on MODULES arm64: bpf: do not allocate executable memory arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP arm64: module: create module allocations without exec permissions arm64: Allow user selection of ARM64_MODULE_PLTS acpi/arm64: ignore 5.1 FADTs that are reported as 5.0 arm64: Allow selecting Pseudo-NMI again ... |
||
zhengbin
|
9176ab1b84 |
time: Validate user input in compat_settimeofday()
The user value is validated after converting the timeval to a timespec, but for a wide range of negative tv_usec values the multiplication overflow turns them in positive numbers. So the 'validated later' is not catching the invalid input. Signed-off-by: zhengbin <zhengbin13@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1562460701-113301-1-git-send-email-zhengbin13@huawei.com |
||
Zenghui Yu
|
3a1d24ca95 |
irq/irqdomain: Fix comment typo
Fix typo in the comment on top of __irq_domain_add(). Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1562388072-23492-1-git-send-email-yuzenghui@huawei.com |
||
Shijith Thotton
|
c09cb12935 |
genirq: Update irq stats from NMI handlers
The NMI handlers handle_percpu_devid_fasteoi_nmi() and handle_fasteoi_nmi()
do not update the interrupt counts. Due to that the NMI interrupt count
does not show up correctly in /proc/interrupts.
Add the statistics and treat the NMI handlers in the same way as per cpu
interrupts and prevent them from updating irq_desc::tot_count as this might
be corrupted due to concurrency.
[ tglx: Massaged changelog ]
Fixes:
|
||
Jann Horn
|
6994eefb00 |
ptrace: Fix ->ptracer_cred handling for PTRACE_TRACEME
Fix two issues:
When called for PTRACE_TRACEME, ptrace_link() would obtain an RCU
reference to the parent's objective credentials, then give that pointer
to get_cred(). However, the object lifetime rules for things like
struct cred do not permit unconditionally turning an RCU reference into
a stable reference.
PTRACE_TRACEME records the parent's credentials as if the parent was
acting as the subject, but that's not the case. If a malicious
unprivileged child uses PTRACE_TRACEME and the parent is privileged, and
at a later point, the parent process becomes attacker-controlled
(because it drops privileges and calls execve()), the attacker ends up
with control over two processes with a privileged ptrace relationship,
which can be abused to ptrace a suid binary and obtain root privileges.
Fix both of these by always recording the credentials of the process
that is requesting the creation of the ptrace relationship:
current_cred() can't change under us, and current is the proper subject
for access control.
This change is theoretically userspace-visible, but I am not aware of
any code that it will actually break.
Fixes:
|
||
Linus Torvalds
|
550d1f5bda |
This includes three fixes:
- Fixes a deadlock from a previous fix to keep module loading and function tracing text modifications from stepping on each other. (this has a few patches to help document the issue in comments) - Fix a crash when the snapshot buffer gets out of sync with the main ring buffer. - Fix a memory leak when reading the memory logs -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXRzBCBQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qnDaAP9qTFBOFtgIGCT5wVP8xjQeESxh1b8R tbaT7/U2oPpeiwEAvp1mYo5UYcc8KauBqVaLSLJVN4pv07xiZF5Qgh9C1QE= =m2IT -----END PGP SIGNATURE----- Merge tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: "This includes three fixes: - Fix a deadlock from a previous fix to keep module loading and function tracing text modifications from stepping on each other (this has a few patches to help document the issue in comments) - Fix a crash when the snapshot buffer gets out of sync with the main ring buffer - Fix a memory leak when reading the memory logs" * tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: ftrace/x86: Anotate text_mutex split between ftrace_arch_code_modify_post_process() and ftrace_arch_code_modify_prepare() tracing/snapshot: Resize spare buffer if size changed tracing: Fix memory leak in tracing_err_log_open() ftrace/x86: Add a comment to why we take text_mutex in ftrace_arch_code_modify_prepare() ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code() |
||
Thomas Gleixner
|
3419240495 |
Merge branch 'timers/vdso' into timers/core
so the hyper-v clocksource update can be applied. |
||
Thomas Gleixner
|
62e0468650 |
genirq: Add optional hardware synchronization for shutdown
free_irq() ensures that no hardware interrupt handler is executing on a
different CPU before actually releasing resources and deactivating the
interrupt completely in a domain hierarchy.
But that does not catch the case where the interrupt is on flight at the
hardware level but not yet serviced by the target CPU. That creates an
interesing race condition:
CPU 0 CPU 1 IRQ CHIP
interrupt is raised
sent to CPU1
Unable to handle
immediately
(interrupts off,
deep idle delay)
mask()
...
free()
shutdown()
synchronize_irq()
release_resources()
do_IRQ()
-> resources are not available
That might be harmless and just trigger a spurious interrupt warning, but
some interrupt chips might get into a wedged state.
Utilize the existing irq_get_irqchip_state() callback for the
synchronization in free_irq().
synchronize_hardirq() is not using this mechanism as it might actually
deadlock unter certain conditions, e.g. when called with interrupts
disabled and the target CPU is the one on which the synchronization is
invoked. synchronize_irq() uses it because that function cannot be called
from non preemtible contexts as it might sleep.
No functional change intended and according to Marc the existing GIC
implementations where the driver supports the callback should be able
to cope with that core change. Famous last words.
Fixes:
|
||
Thomas Gleixner
|
1d21f2af85 |
genirq: Fix misleading synchronize_irq() documentation
The function might sleep, so it cannot be called from interrupt context. Not even with care. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/20190628111440.189241552@linutronix.de |
||
Thomas Gleixner
|
4001d8e876 |
genirq: Delay deactivation in free_irq()
When interrupts are shutdown, they are immediately deactivated in the
irqdomain hierarchy. While this looks obviously correct there is a subtle
issue:
There might be an interrupt in flight when free_irq() is invoking the
shutdown. This is properly handled at the irq descriptor / primary handler
level, but the deactivation might completely disable resources which are
required to acknowledge the interrupt.
Split the shutdown code and deactivate the interrupt after synchronization
in free_irq(). Fixup all other usage sites where this is not an issue to
invoke the combined shutdown_and_deactivate() function instead.
This still might be an issue if the interrupt in flight servicing is
delayed on a remote CPU beyond the invocation of synchronize_irq(), but
that cannot be handled at that level and needs to be handled in the
synchronize_irq() context.
Fixes:
|
||
Christian Brauner
|
28dd29c06d
|
fork: return proper negative error code
Make sure to return a proper negative error code from copy_process()
when anon_inode_getfile() fails with CLONE_PIDFD.
Otherwise _do_fork() will not detect an error and get_task_pid() will
operator on a nonsensical pointer:
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000006dbc2c
R13: 00007ffc15fbb0ff R14: 00007ff07e47e9c0 R15: 0000000000000000
kasan: CONFIG_KASAN_INLINE enabled
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 7990 Comm: syz-executor290 Not tainted 5.2.0-rc6+ #9
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline]
RIP: 0010:get_task_pid+0xe1/0x210 kernel/pid.c:372
Code: 89 ff e8 62 27 5f 00 49 8b 07 44 89 f1 4c 8d bc c8 90 01 00 00 eb 0c
e8 0d fe 25 00 49 81 c7 38 05 00 00 4c 89 f8 48 c1 e8 03 <80> 3c 18 00 74
08 4c 89 ff e8 31 27 5f 00 4d 8b 37 e8 f9 47 12 00
RSP: 0018:ffff88808a4a7d78 EFLAGS: 00010203
RAX: 00000000000000a7 RBX: dffffc0000000000 RCX: ffff888088180600
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88808a4a7d90 R08: ffffffff814fb3a8 R09: ffffed1015d66bf8
R10: ffffed1015d66bf8 R11: 1ffff11015d66bf7 R12: 0000000000041ffc
R13: 1ffff11011494fbc R14: 0000000000000000 R15: 000000000000053d
FS: 00007ff07e47e700(0000) GS:ffff8880aeb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004b5100 CR3: 0000000094df2000 CR4: 00000000001406e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
_do_fork+0x1b9/0x5f0 kernel/fork.c:2360
__do_sys_clone kernel/fork.c:2454 [inline]
__se_sys_clone kernel/fork.c:2448 [inline]
__x64_sys_clone+0xc1/0xd0 kernel/fork.c:2448
do_syscall_64+0xfe/0x140 arch/x86/entry/common.c:301
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Link: https://lore.kernel.org/lkml/000000000000e0dc0d058c9e7142@google.com
Reported-and-tested-by: syzbot+002e636502bc4b64eb5c@syzkaller.appspotmail.com
Fixes:
|
||
Linus Torvalds
|
7c15f41e87 |
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP fixes from Thomas Gleixner: "Two small changes for the cpu hotplug code: - Prevent out of bounds access which actually might crash the machine caused by a missing bounds check in the fail injection code - Warn about unsupported migitation mode command line arguments to make people aware that they typoed the paramater. Not necessarily a fix but quite some people tripped over that" * 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: cpu/hotplug: Fix out-of-bounds read when setting fail state cpu/speculation: Warn on unsupported mitigations= parameter |
||
Linus Torvalds
|
57103eb7c6 |
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar: "Various fixes, most of them related to bugs perf fuzzing found in the x86 code" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/regs: Use PERF_REG_EXTENDED_MASK perf/x86: Remove pmu->pebs_no_xmm_regs perf/x86: Clean up PEBS_XMM_REGS perf/x86/regs: Check reserved bits perf/x86: Disable extended registers for non-supported PMUs perf/ioctl: Add check for the sample_period value perf/core: Fix perf_sample_regs_user() mm check |
||
Linus Torvalds
|
2407e48606 |
Power management fix for 5.2-rc7
Avoid skipping bus-level PCI power management during system resume for PCIe ports left in D0 during the preceding suspend transition on platforms where the power states of those ports can change out of the PCI layer's control. -----BEGIN PGP SIGNATURE----- iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl0XJzcSHHJqd0Byand5 c29ja2kubmV0AAoJEILEb/54YlRxylwQAI8owd3eQV6UNDybkT5MiP0lWb9nbl83 2ouxla+FtAzRFJC0yW4RK86cW4i/Yl8767KV2yqX/69ftmz4XhZBJ63ijKAEoG6o tHFyY7twy7Sr0MvPRD9rtjUkmdOx9z0OFKHgLhSzC/V4PvgGZTt+eYBm1Bp3icZp ZY9CFx/bSt9tURY//VqXhvBWT6pEpn1B1D7hsiAp041EwhtTONNs7xAa7ucIP+aG Ufyb0waVYmiFCX+Lrt/gHzEO2YIpTHIUw3DaMcbR8plHc1gpYtbuZ2ZMScgt2TgL f0s7GeMOXtF3sODOd/1mhg127ShWbqUkf8EHDyU3JAWa9aesLr3BoFGtKyAT1rbg O9nyJGBGj5ByUNefua0S8+q0kWI2XHdLAQ8CHBlBQx5W1x1Yg2EeV2Kosxjuhfdp 5K9wFIiPG0F/rtGoAA61dMH9tt87NnY8PgeCyHLFUCoJbhySWr18kwrwrdkimqa5 9FR8OTa8CHGQ/0bPvw+w8S9FdxiEM6yw4wuMLIy3c+a22+lgIiPvkgqzdsWYULdX CrI62jvz5SvoTwK/UEp9PrCnnHbp4crbSp73Vgo1o1bi5eeaaSobRECq+IbN0T3P X1H/xn+18mUqmCg4WtDX++14Fe1rMHoe/5CqqE/mp8aCqE9q/3fbAs9INnWJcyrP a2O0Wk0jLE76 =eGQi -----END PGP SIGNATURE----- Merge tag 'pm-5.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management fix from Rafael Wysocki: "Avoid skipping bus-level PCI power management during system resume for PCIe ports left in D0 during the preceding suspend transition on platforms where the power states of those ports can change out of the PCI layer's control" * tag 'pm-5.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: PCI: PM: Avoid skipping bus-level PM on platforms without ACPI |
||
Andrea Arcangeli
|
1bf4580e00 |
fork,memcg: alloc_thread_stack_node needs to set tsk->stack
Commit |
||
Oleg Nesterov
|
97abc889ee |
signal: remove the wrong signal_pending() check in restore_user_sigmask()
This is the minimal fix for stable, I'll send cleanups later. Commit |
||
Eiichi Tsukata
|
46cc0b4442 |
tracing/snapshot: Resize spare buffer if size changed
Current snapshot implementation swaps two ring_buffers even though their
sizes are different from each other, that can cause an inconsistency
between the contents of buffer_size_kb file and the current buffer size.
For example:
# cat buffer_size_kb
7 (expanded: 1408)
# echo 1 > events/enable
# grep bytes per_cpu/cpu0/stats
bytes: 1441020
# echo 1 > snapshot // current:1408, spare:1408
# echo 123 > buffer_size_kb // current:123, spare:1408
# echo 1 > snapshot // current:1408, spare:123
# grep bytes per_cpu/cpu0/stats
bytes: 1443700
# cat buffer_size_kb
123 // != current:1408
And also, a similar per-cpu case hits the following WARNING:
Reproducer:
# echo 1 > per_cpu/cpu0/snapshot
# echo 123 > buffer_size_kb
# echo 1 > per_cpu/cpu0/snapshot
WARNING:
WARNING: CPU: 0 PID: 1946 at kernel/trace/trace.c:1607 update_max_tr_single.part.0+0x2b8/0x380
Modules linked in:
CPU: 0 PID: 1946 Comm: bash Not tainted 5.2.0-rc6 #20
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014
RIP: 0010:update_max_tr_single.part.0+0x2b8/0x380
Code: ff e8 dc da f9 ff 0f 0b e9 88 fe ff ff e8 d0 da f9 ff 44 89 ee bf f5 ff ff ff e8 33 dc f9 ff 41 83 fd f5 74 96 e8 b8 da f9 ff <0f> 0b eb 8d e8 af da f9 ff 0f 0b e9 bf fd ff ff e8 a3 da f9 ff 48
RSP: 0018:ffff888063e4fca0 EFLAGS: 00010093
RAX: ffff888066214380 RBX: ffffffff99850fe0 RCX: ffffffff964298a8
RDX: 0000000000000000 RSI: 00000000fffffff5 RDI: 0000000000000005
RBP: 1ffff1100c7c9f96 R08: ffff888066214380 R09: ffffed100c7c9f9b
R10: ffffed100c7c9f9a R11: 0000000000000003 R12: 0000000000000000
R13: 00000000ffffffea R14: ffff888066214380 R15: ffffffff99851060
FS: 00007f9f8173c700(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000714dc0 CR3: 0000000066fa6000 CR4: 00000000000006f0
Call Trace:
? trace_array_printk_buf+0x140/0x140
? __mutex_lock_slowpath+0x10/0x10
tracing_snapshot_write+0x4c8/0x7f0
? trace_printk_init_buffers+0x60/0x60
? selinux_file_permission+0x3b/0x540
? tracer_preempt_off+0x38/0x506
? trace_printk_init_buffers+0x60/0x60
__vfs_write+0x81/0x100
vfs_write+0x1e1/0x560
ksys_write+0x126/0x250
? __ia32_sys_read+0xb0/0xb0
? do_syscall_64+0x1f/0x390
do_syscall_64+0xc1/0x390
entry_SYSCALL_64_after_hwframe+0x49/0xbe
This patch adds resize_buffer_duplicate_size() to check if there is a
difference between current/spare buffer sizes and resize a spare buffer
if necessary.
Link: http://lkml.kernel.org/r/20190625012910.13109-1-devel@etsukata.com
Cc: stable@vger.kernel.org
Fixes:
|
||
Takeshi Misawa
|
d122ed6288 |
tracing: Fix memory leak in tracing_err_log_open()
When tracing_err_log_open() calls seq_open(), allocated memory is not freed.
kmemleak report:
unreferenced object 0xffff92c0781d1100 (size 128):
comm "tail", pid 15116, jiffies 4295163855 (age 22.704s)
hex dump (first 32 bytes):
00 f0 08 e5 c0 92 ff ff 00 10 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000000d0687d5>] kmem_cache_alloc+0x11f/0x1e0
[<000000003e3039a8>] seq_open+0x2f/0x90
[<000000008dd36b7d>] tracing_err_log_open+0x67/0x140
[<000000005a431ae2>] do_dentry_open+0x1df/0x3a0
[<00000000a2910603>] vfs_open+0x2f/0x40
[<0000000038b0a383>] path_openat+0x2e8/0x1690
[<00000000fe025bda>] do_filp_open+0x9b/0x110
[<00000000483a5091>] do_sys_open+0x1ba/0x260
[<00000000c558b5fd>] __x64_sys_openat+0x20/0x30
[<000000006881ec07>] do_syscall_64+0x5a/0x130
[<00000000571c2e94>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fix this by calling seq_release() in tracing_err_log_fops.release().
Link: http://lkml.kernel.org/r/20190628105640.GA1863@DESKTOP
Fixes:
|
||
Petr Mladek
|
d5b844a2cf |
ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()
The commit |
||
Ingo Molnar
|
83086d654d |
Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull rcu/next + tools/memory-model changes from Paul E. McKenney: - RCU flavor consolidation cleanups and optmizations - Documentation updates - Miscellaneous fixes - SRCU updates - RCU-sync flavor consolidation - Torture-test updates - Linux-kernel memory-consistency-model updates, most notably the addition of plain C-language accesses Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mauro Carvalho Chehab
|
516337048f |
hrtimer: Use a bullet for the returns bullet list
That gets rid of this warning: ./kernel/time/hrtimer.c:1119: WARNING: Block quote ends without a blank line; unexpected unindent. and displays nicely both at the source code and at the produced documentation. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linux Doc Mailing List <linux-doc@vger.kernel.org> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Jonathan Corbet <corbet@lwn.net> Link: https://lkml.kernel.org/r/74ddad7dac331b4e5ce4a90e15c8a49e3a16d2ac.1561372382.git.mchehab+samsung@kernel.org |
||
Al Viro
|
6fd2fe494b
|
copy_process(): don't use ksys_close() on cleanups
anon_inode_getfd() should be used *ONLY* in situations when we are
guaranteed to be past the last failure point (including copying the
descriptor number to userland, at that). And ksys_close() should
not be used for cleanups at all.
anon_inode_getfile() is there for all nontrivial cases like that.
Just use that...
Fixes:
|
||
Eiichi Tsukata
|
33d4a5a7a5 |
cpu/hotplug: Fix out-of-bounds read when setting fail state
Setting invalid value to /sys/devices/system/cpu/cpuX/hotplug/fail
can control `struct cpuhp_step *sp` address, results in the following
global-out-of-bounds read.
Reproducer:
# echo -2 > /sys/devices/system/cpu/cpu0/hotplug/fail
KASAN report:
BUG: KASAN: global-out-of-bounds in write_cpuhp_fail+0x2cd/0x2e0
Read of size 8 at addr ffffffff89734438 by task bash/1941
CPU: 0 PID: 1941 Comm: bash Not tainted 5.2.0-rc6+ #31
Call Trace:
write_cpuhp_fail+0x2cd/0x2e0
dev_attr_store+0x58/0x80
sysfs_kf_write+0x13d/0x1a0
kernfs_fop_write+0x2bc/0x460
vfs_write+0x1e1/0x560
ksys_write+0x126/0x250
do_syscall_64+0xc1/0x390
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f05e4f4c970
The buggy address belongs to the variable:
cpu_hotplug_lock+0x98/0xa0
Memory state around the buggy address:
ffffffff89734300: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734380: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
>ffffffff89734400: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa
^
ffffffff89734480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Add a sanity check for the value written from user space.
Fixes:
|
||
Rafael J. Wysocki
|
471a739a47 |
PCI: PM: Avoid skipping bus-level PM on platforms without ACPI
There are platforms that do not call pm_set_suspend_via_firmware(), so pm_suspend_via_firmware() returns 'false' on them, but the power states of PCI devices (PCIe ports in particular) are changed as a result of powering down core platform components during system-wide suspend. Thus the pm_suspend_via_firmware() checks in pci_pm_suspend_noirq() and pci_pm_resume_noirq() introduced by commit |
||
Geert Uytterhoeven
|
1bf7272028 |
cpu/speculation: Warn on unsupported mitigations= parameter
Currently, if the user specifies an unsupported mitigation strategy on the
kernel command line, it will be ignored silently. The code will fall back
to the default strategy, possibly leaving the system more vulnerable than
expected.
This may happen due to e.g. a simple typo, or, for a stable kernel release,
because not all mitigation strategies have been backported.
Inform the user by printing a message.
Fixes:
|
||
Kobe Wu
|
9156e54576 |
locking/lockdep: increase size of counters for lockdep statistics
When system has been running for a long time, signed integer counters are not enough for some lockdep statistics. Using unsigned long counters can satisfy the requirement. Besides, most of lockdep statistics are unsigned. It is better to use unsigned int instead of int. Remove unused variables. - max_recursion_depth - nr_cyclic_check_recursions - nr_find_usage_forwards_recursions - nr_find_usage_backwards_recursions Signed-off-by: Kobe Wu <kobe-cp.wu@mediatek.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <linux-mediatek@lists.infradead.org> Cc: <wsd_upstream@mediatek.com> Cc: Eason Lin <eason-yh.lin@mediatek.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/r/1561365348-16050-1-git-send-email-kobe-cp.wu@mediatek.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Arnd Bergmann
|
886532aee3 |
locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
The last cleanup patch triggered another issue, as now another function
should be moved into the same section:
kernel/locking/lockdep.c:3580:12: error: 'mark_lock' defined but not used [-Werror=unused-function]
static int mark_lock(struct task_struct *curr, struct held_lock *this,
Move mark_lock() into the same #ifdef section as its only caller, and
remove the now-unused mark_lock_irq() stub helper.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Bart Van Assche <bvanassche@acm.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yuyang Du <duyuyang@gmail.com>
Fixes:
|
||
Patrick Bellasi
|
af24bde8df |
sched/uclamp: Add uclamp support to energy_compute()
The Energy Aware Scheduler (EAS) estimates the energy impact of waking up a task on a given CPU. This estimation is based on: a) an (active) power consumption defined for each CPU frequency b) an estimation of which frequency will be used on each CPU c) an estimation of the busy time (utilization) of each CPU Utilization clamping can affect both b) and c). A CPU is expected to run: - on an higher than required frequency, but for a shorter time, in case its estimated utilization will be smaller than the minimum utilization enforced by uclamp - on a smaller than required frequency, but for a longer time, in case its estimated utilization is bigger than the maximum utilization enforced by uclamp While compute_energy() already accounts clamping effects on busy time, the clamping effects on frequency selection are currently ignored. Fix it by considering how CPU clamp values will be affected by a task waking up and being RUNNABLE on that CPU. Do that by refactoring schedutil_freq_util() to take an additional task_struct* which allows EAS to evaluate the impact on clamp values of a task being eventually queued in a CPU. Clamp values are applied to the RT+CFS utilization only when a FREQUENCY_UTIL is required by compute_energy(). Do note that switching from ENERGY_UTIL to FREQUENCY_UTIL in the computation of the cpu_util signal implies that we are more likely to estimate the highest OPP when a RT task is running in another CPU of the same performance domain. This can have an impact on energy estimation but: - it's not easy to say which approach is better, since it depends on the use case - the original approach could still be obtained by setting a smaller task-specific util_min whenever required Since we are at that: - rename schedutil_freq_util() into schedutil_cpu_util(), since it's not only used for frequency selection. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-12-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
9d20ad7dfc |
sched/uclamp: Add uclamp_util_with()
So far uclamp_util() allows to clamp a specified utilization considering the clamp values requested by RUNNABLE tasks in a CPU. For the Energy Aware Scheduler (EAS) it is interesting to test how clamp values will change when a task is becoming RUNNABLE on a given CPU. For example, EAS is interested in comparing the energy impact of different scheduling decisions and the clamp values can play a role on that. Add uclamp_util_with() which allows to clamp a given utilization by considering the possible impact on CPU clamp values of a specified task. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-11-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
982d9cdc22 |
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
Each time a frequency update is required via schedutil, a frequency is selected to (possibly) satisfy the utilization reported by each scheduling class and irqs. However, when utilization clamping is in use, the frequency selection should consider userspace utilization clamping hints. This will allow, for example, to: - boost tasks which are directly affecting the user experience by running them at least at a minimum "requested" frequency - cap low priority tasks not directly affecting the user experience by running them only up to a maximum "allowed" frequency These constraints are meant to support a per-task based tuning of the frequency selection thus supporting a fine grained definition of performance boosting vs energy saving strategies in kernel space. Add support to clamp the utilization of RUNNABLE FAIR and RT tasks within the boundaries defined by their aggregated utilization clamp constraints. Do that by considering the max(min_util, max_util) to give boosted tasks the performance they need even when they happen to be co-scheduled with other capped tasks. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-10-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
1a00d99997 |
sched/uclamp: Set default clamps for RT tasks
By default FAIR tasks start without clamps, i.e. neither boosted nor capped, and they run at the best frequency matching their utilization demand. This default behavior does not fit RT tasks which instead are expected to run at the maximum available frequency, if not otherwise required by explicitly capping them. Enforce the correct behavior for RT tasks by setting util_min to max whenever: 1. the task is switched to the RT class and it does not already have a user-defined clamp value assigned. 2. an RT task is forked from a parent with RESET_ON_FORK set. NOTE: utilization clamp values are cross scheduling class attributes and thus they are never changed/reset once a value has been explicitly defined from user-space. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-9-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
a87498ace5 |
sched/uclamp: Reset uclamp values on RESET_ON_FORK
A forked tasks gets the same clamp values of its parent however, when the RESET_ON_FORK flag is set on parent, e.g. via: sys_sched_setattr() sched_setattr() __sched_setscheduler(attr::SCHED_FLAG_RESET_ON_FORK) the new forked task is expected to start with all attributes reset to default values. Do that for utilization clamp values too by checking the reset request from the existing uclamp_fork() call which already provides the required initialization for other uclamp related bits. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-8-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
a509a7cd79 |
sched/uclamp: Extend sched_setattr() to support utilization clamping
The SCHED_DEADLINE scheduling class provides an advanced and formal model to define tasks requirements that can translate into proper decisions for both task placements and frequencies selections. Other classes have a more simplified model based on the POSIX concept of priorities. Such a simple priority based model however does not allow to exploit most advanced features of the Linux scheduler like, for example, driving frequencies selection via the schedutil cpufreq governor. However, also for non SCHED_DEADLINE tasks, it's still interesting to define tasks properties to support scheduler decisions. Utilization clamping exposes to user-space a new set of per-task attributes the scheduler can use as hints about the expected/required utilization for a task. This allows to implement a "proactive" per-task frequency control policy, a more advanced policy than the current one based just on "passive" measured task utilization. For example, it's possible to boost interactive tasks (e.g. to get better performance) or cap background tasks (e.g. to be more energy/thermal efficient). Introduce a new API to set utilization clamping values for a specified task by extending sched_setattr(), a syscall which already allows to define task specific properties for different scheduling classes. A new pair of attributes allows to specify a minimum and maximum utilization the scheduler can consider for a task. Do that by validating the required clamp values before and then applying the required changes using _the_ same pattern already in use for __setscheduler(). This ensures that the task is re-enqueued with the new clamp values. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
1d6362fa0c |
sched/core: Allow sched_setattr() to use the current policy
The sched_setattr() syscall mandates that a policy is always specified. This requires to always know which policy a task will have when attributes are configured and this makes it impossible to add more generic task attributes valid across different scheduling policies. Reading the policy before setting generic tasks attributes is racy since we cannot be sure it is not changed concurrently. Introduce the required support to change generic task attributes without affecting the current task policy. This is done by adding an attribute flag (SCHED_FLAG_KEEP_POLICY) to enforce the usage of the current policy. Add support for the SETPARAM_POLICY policy, which is already used by the sched_setparam() POSIX syscall, to the sched_setattr() non-POSIX syscall. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-6-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
e8f14172c6 |
sched/uclamp: Add system default clamps
Tasks without a user-defined clamp value are considered not clamped and by default their utilization can have any value in the [0..SCHED_CAPACITY_SCALE] range. Tasks with a user-defined clamp value are allowed to request any value in that range, and the required clamp is unconditionally enforced. However, a "System Management Software" could be interested in limiting the range of clamp values allowed for all tasks. Add a privileged interface to define a system default configuration via: /proc/sys/kernel/sched_uclamp_util_{min,max} which works as an unconditional clamp range restriction for all tasks. With the default configuration, the full SCHED_CAPACITY_SCALE range of values is allowed for each clamp index. Otherwise, the task-specific clamp is capped by the corresponding system default value. Do that by tracking, for each task, the "effective" clamp value and bucket the task has been refcounted in at enqueue time. This allows to lazy aggregate "requested" and "system default" values at enqueue time and simplifies refcounting updates at dequeue time. The cached bucket ids are used to avoid (relatively) more expensive integer divisions every time a task is enqueued. An active flag is used to report when the "effective" value is valid and thus the task is actually refcounted in the corresponding rq's bucket. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
e496187da7 |
sched/uclamp: Enforce last task's UCLAMP_MAX
When a task sleeps it removes its max utilization clamp from its CPU. However, the blocked utilization on that CPU can be higher than the max clamp value enforced while the task was running. This allows undesired CPU frequency increases while a CPU is idle, for example, when another CPU on the same frequency domain triggers a frequency update, since schedutil can now see the full not clamped blocked utilization of the idle CPU. Fix this by using: uclamp_rq_dec_id(p, rq, UCLAMP_MAX) uclamp_rq_max_value(rq, UCLAMP_MAX, clamp_value) to detect when a CPU has no more RUNNABLE clamped tasks and to flag this condition. Don't track any minimum utilization clamps since an idle CPU never requires a minimum frequency. The decay of the blocked utilization is good enough to reduce the CPU frequency. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-4-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
60daf9c194 |
sched/uclamp: Add bucket local max tracking
Because of bucketization, different task-specific clamp values are tracked in the same bucket. For example, with 20% bucket size and assuming to have: Task1: util_min=25% Task2: util_min=35% both tasks will be refcounted in the [20..39]% bucket and always boosted only up to 20% thus implementing a simple floor aggregation normally used in histograms. In systems with only few and well-defined clamp values, it would be useful to track the exact clamp value required by a task whenever possible. For example, if a system requires only 23% and 47% boost values then it's possible to track the exact boost required by each task using only 3 buckets of ~33% size each. Introduce a mechanism to max aggregate the requested clamp values of RUNNABLE tasks in the same bucket. Keep it simple by resetting the bucket value to its base value only when a bucket becomes inactive. Allow a limited and controlled overboosting margin for tasks recounted in the same bucket. In systems where the boost values are not known in advance, it is still possible to control the maximum acceptable overboosting margin by tuning the number of clamp groups. For example, 20 groups ensure a 5% maximum overboost. Remove the rq bucket initialization code since a correct bucket value is now computed when a task is refcounted into a CPU's rq. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-3-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
69842cba9a |
sched/uclamp: Add CPU's clamp buckets refcounting
Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dietmar Eggemann
|
a3df067974 |
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
The term 'weighted' is not needed since there is no 'unweighted' load. Instead use the term 'runnable' to distinguish 'runnable' load (avg.runnable_load_avg) used in load balance from load (avg.load_avg) which is the sum of 'runnable' and 'blocked' load. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/57f27a7f-2775-d832-e965-0f4d51bb1954@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Qais Yousef
|
a056a5bed7 |
sched/debug: Export the newly added tracepoints
So that external modules can hook into them and extract the info they need. Since these new tracepoints have no events associated with them exporting these tracepoints make them useful for external modules to perform testing and debugging. There's no other way otherwise to access them. BPF doesn't have infrastructure to access these bare tracepoints either. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-7-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Qais Yousef
|
f9f240f96e |
sched/debug: Add sched_overutilized tracepoint
The new tracepoint allows us to track the changes in overutilized status. Overutilized status is associated with EAS. It indicates that the system is in high performance state. EAS is disabled when the system is in this state since there's not much energy savings while high performance tasks are pushing the system to the limit and it's better to default to the spreading behavior of the scheduler. This tracepoint helps understanding and debugging the conditions under which this happens. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-6-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |