Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.
Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.
Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.
Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f342245 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
These NULL check are no long needed after commit 2ed5b09b3e ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:
/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */
When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':
/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */
'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:
/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */
When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:
/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */
That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
All creation paths except for O_TMPFILE handle umask in the vfs directly
if the filesystem doesn't support or enable POSIX ACLs. If the filesystem
does then umask handling is deferred until posix_acl_create().
Because, O_TMPFILE misses umask handling in the vfs it will not honor
umask settings. Fix this by adding the missing umask handling.
Link: https://lore.kernel.org/r/1657779088-2242-2-git-send-email-xuyang2018.jy@fujitsu.com
Fixes: 60545d0d46 ("[O_TMPFILE] it's still short a few helpers, but infrastructure should be OK now...")
Cc: <stable@vger.kernel.org> # 4.19+
Reported-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-and-Tested-by: Jeff Layton <jlayton@kernel.org>
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Add a dedicated helper to handle the setgid bit when creating a new file
in a setgid directory. This is a preparatory patch for moving setgid
stripping into the vfs. The patch contains no functional changes.
Currently the setgid stripping logic is open-coded directly in
inode_init_owner() and the individual filesystems are responsible for
handling setgid inheritance. Since this has proven to be brittle as
evidenced by old issues we uncovered over the last months (see [1] to
[3] below) we will try to move this logic into the vfs.
Link: e014f37db1 ("xfs: use setattr_copy to set vfs inode attributes") [1]
Link: 01ea173e10 ("xfs: fix up non-directory creation in SGID directories") [2]
Link: fd84bfdddd ("ceph: fix up non-directory creation in SGID directories") [3]
Link: https://lore.kernel.org/r/1657779088-2242-1-git-send-email-xuyang2018.jy@fujitsu.com
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-and-Tested-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
This reverts commit 912f655d78.
This commit introduced a regression that can cause mount hung. The
changes in __ocfs2_find_empty_slot causes that any node with none-zero
node number can grab the slot that was already taken by node 0, so node 1
will access the same journal with node 0, when it try to grab journal
cluster lock, it will hung because it was already acquired by node 0.
It's very easy to reproduce this, in one cluster, mount node 0 first, then
node 1, you will see the following call trace from node 1.
[13148.735424] INFO: task mount.ocfs2:53045 blocked for more than 122 seconds.
[13148.739691] Not tainted 5.15.0-2148.0.4.el8uek.mountracev2.x86_64 #2
[13148.742560] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[13148.745846] task:mount.ocfs2 state:D stack: 0 pid:53045 ppid: 53044 flags:0x00004000
[13148.749354] Call Trace:
[13148.750718] <TASK>
[13148.752019] ? usleep_range+0x90/0x89
[13148.753882] __schedule+0x210/0x567
[13148.755684] schedule+0x44/0xa8
[13148.757270] schedule_timeout+0x106/0x13c
[13148.759273] ? __prepare_to_swait+0x53/0x78
[13148.761218] __wait_for_common+0xae/0x163
[13148.763144] __ocfs2_cluster_lock.constprop.0+0x1d6/0x870 [ocfs2]
[13148.765780] ? ocfs2_inode_lock_full_nested+0x18d/0x398 [ocfs2]
[13148.768312] ocfs2_inode_lock_full_nested+0x18d/0x398 [ocfs2]
[13148.770968] ocfs2_journal_init+0x91/0x340 [ocfs2]
[13148.773202] ocfs2_check_volume+0x39/0x461 [ocfs2]
[13148.775401] ? iput+0x69/0xba
[13148.777047] ocfs2_mount_volume.isra.0.cold+0x40/0x1f5 [ocfs2]
[13148.779646] ocfs2_fill_super+0x54b/0x853 [ocfs2]
[13148.781756] mount_bdev+0x190/0x1b7
[13148.783443] ? ocfs2_remount+0x440/0x440 [ocfs2]
[13148.785634] legacy_get_tree+0x27/0x48
[13148.787466] vfs_get_tree+0x25/0xd0
[13148.789270] do_new_mount+0x18c/0x2d9
[13148.791046] __x64_sys_mount+0x10e/0x142
[13148.792911] do_syscall_64+0x3b/0x89
[13148.794667] entry_SYSCALL_64_after_hwframe+0x170/0x0
[13148.797051] RIP: 0033:0x7f2309f6e26e
[13148.798784] RSP: 002b:00007ffdcee7d408 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
[13148.801974] RAX: ffffffffffffffda RBX: 00007ffdcee7d4a0 RCX: 00007f2309f6e26e
[13148.804815] RDX: 0000559aa762a8ae RSI: 0000559aa939d340 RDI: 0000559aa93a22b0
[13148.807719] RBP: 00007ffdcee7d5b0 R08: 0000559aa93a2290 R09: 00007f230a0b4820
[13148.810659] R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcee7d420
[13148.813609] R13: 0000000000000000 R14: 0000559aa939f000 R15: 0000000000000000
[13148.816564] </TASK>
To fix it, we can just fix __ocfs2_find_empty_slot. But original commit
introduced the feature to mount ocfs2 locally even it is cluster based,
that is a very dangerous, it can easily cause serious data corruption,
there is no way to stop other nodes mounting the fs and corrupting it.
Setup ha or other cluster-aware stack is just the cost that we have to
take for avoiding corruption, otherwise we have to do it in kernel.
Link: https://lkml.kernel.org/r/20220603222801.42488-1-junxiao.bi@oracle.com
Fixes: 912f655d78c5("ocfs2: mount shared volume without ha stack")
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <heming.zhao@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The previous patch added flock_translate_cmd() in flock syscall.
The test and the other one for LOCK_MAND do not depend on struct
fd and are cheaper, so we can put them at the top and defer
fdget() after that.
Also, we can remove the unlock variable and use type instead.
While at it, we fix this checkpatch error.
CHECK: spaces preferred around that '|' (ctx:VxV)
#45: FILE: fs/locks.c:2099:
+ if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
^
Finally, we can move the can_sleep part just before we use it.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Two functions, flock syscall and locks_remove_flock(), call
flock_make_lock(). It allocates struct file_lock from slab
cache if its argument fl is NULL.
When we call flock syscall, we pass NULL to allocate memory
for struct file_lock. However, we always free it at the end
by locks_free_lock(). We need not allocate it and instead
should use a local variable as locks_remove_flock() does.
Also, the validation for flock_translate_cmd() is not necessary
for locks_remove_flock(). So we move the part to flock syscall
and make flock_make_lock() return nothing.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Commit 7bc3e6e55a ("proc: Use a list of inodes to flush from proc")
moved proc_flush_task() behind __exit_signal(). Then, process systemd can
take long period high cpu usage during releasing task in following
concurrent processes:
systemd ps
kernel_waitid stat(/proc/tgid)
do_wait filename_lookup
wait_consider_task lookup_fast
release_task
__exit_signal
__unhash_process
detach_pid
__change_pid // remove task->pid_links
d_revalidate -> pid_revalidate // 0
d_invalidate(/proc/tgid)
shrink_dcache_parent(/proc/tgid)
d_walk(/proc/tgid)
spin_lock_nested(/proc/tgid/fd)
// iterating opened fd
proc_flush_pid |
d_invalidate (/proc/tgid/fd) |
shrink_dcache_parent(/proc/tgid/fd) |
shrink_dentry_list(subdirs) ↓
shrink_lock_dentry(/proc/tgid/fd) --> race on dentry lock
Function d_invalidate() will remove dentry from hash firstly, but why does
proc_flush_pid() process dentry '/proc/tgid/fd' before dentry
'/proc/tgid'? That's because proc_pid_make_inode() adds proc inode in
reverse order by invoking hlist_add_head_rcu(). But proc should not add
any inodes under '/proc/tgid' except '/proc/tgid/task/pid', fix it by
adding inode into 'pid->inodes' only if the inode is /proc/tgid or
/proc/tgid/task/pid.
Performance regression:
Create 200 tasks, each task open one file for 50,000 times. Kill all
tasks when opened files exceed 10,000,000 (cat /proc/sys/fs/file-nr).
Before fix:
$ time killall -wq aa
real 4m40.946s # During this period, we can see 'ps' and 'systemd'
taking high cpu usage.
After fix:
$ time killall -wq aa
real 1m20.732s # During this period, we can see 'systemd' taking
high cpu usage.
Link: https://lkml.kernel.org/r/20220713130029.4133533-1-chengzhihao1@huawei.com
Fixes: 7bc3e6e55a ("proc: Use a list of inodes to flush from proc")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216054
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Suggested-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Yu Kuai <yukuai3@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If a process is killed or otherwise exits while having active network
connections and many threads waiting on epoll_wait, the threads will all
be woken immediately, but not removed from ep->wq. Then when network
traffic scans ep->wq in wake_up, every wakeup attempt will fail, and will
not remove the entries from the list.
This means that the cost of the wakeup attempt is far higher than usual,
does not decrease, and this also competes with the dying threads trying to
actually make progress and remove themselves from the wq.
Handle this by removing visited epoll wq entries unconditionally, rather
than only when the wakeup succeeds - the structure of ep_poll means that
the only potential loss is the timed_out->eavail heuristic, which now can
race and result in a redundant ep_send_events attempt. (But only when
incoming data and a timeout actually race, not on every timeout)
Shakeel added:
: We are seeing this issue in production with real workloads and it has
: caused hard lockups. Particularly network heavy workloads with a lot
: of threads in epoll_wait() can easily trigger this issue if they get
: killed (oom-killed in our case).
Link: https://lkml.kernel.org/r/xm26fsjotqda.fsf@google.com
Signed-off-by: Ben Segall <bsegall@google.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Roman Penyaev <rpenyaev@suse.de>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Khazhismel Kumykov <khazhy@google.com>
Cc: Heiher <r@hev.cc>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The page fault path checks THP eligibility with __transhuge_page_enabled()
which does the similar thing as hugepage_vma_check(), so use
hugepage_vma_check() instead.
However page fault allows DAX and !anon_vma cases, so added a new flag,
in_pf, to hugepage_vma_check() to make page fault work correctly.
The in_pf flag is also used to skip shmem and file THP for page fault
since shmem handles THP in its own shmem_fault() and file THP allocation
on fault is not supported yet.
Also remove hugepage_vma_enabled() since hugepage_vma_check() is the only
caller now, it is not necessary to have a helper function.
Link: https://lkml.kernel.org/r/20220616174840.1202070-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The transparent_hugepage_active() was introduced to show THP eligibility
bit in smaps in proc, smaps is the only user. But it actually does the
similar check as hugepage_vma_check() which is used by khugepaged. We
definitely don't have to maintain two similar checks, so kill
transparent_hugepage_active().
This patch also fixed the wrong behavior for VM_NO_KHUGEPAGED vmas.
Also move hugepage_vma_check() to huge_memory.c and huge_mm.h since it
is not only for khugepaged anymore.
[akpm@linux-foundation.org: check vma->vm_mm, per Zach]
[akpm@linux-foundation.org: add comment to vdso check]
Link: https://lkml.kernel.org/r/20220616174840.1202070-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "v14 fsdax-rmap + v11 fsdax-reflink", v2.
The patchset fsdax-rmap is aimed to support shared pages tracking for
fsdax.
It moves owner tracking from dax_assocaite_entry() to pmem device driver,
by introducing an interface ->memory_failure() for struct pagemap. This
interface is called by memory_failure() in mm, and implemented by pmem
device.
Then call holder operations to find the filesystem which the corrupted
data located in, and call filesystem handler to track files or metadata
associated with this page.
Finally we are able to try to fix the corrupted data in filesystem and do
other necessary processing, such as killing processes who are using the
files affected.
The call trace is like this:
memory_failure()
|* fsdax case
|------------
|pgmap->ops->memory_failure() => pmem_pgmap_memory_failure()
| dax_holder_notify_failure() =>
| dax_device->holder_ops->notify_failure() =>
| - xfs_dax_notify_failure()
| |* xfs_dax_notify_failure()
| |--------------------------
| | xfs_rmap_query_range()
| | xfs_dax_failure_fn()
| | * corrupted on metadata
| | try to recover data, call xfs_force_shutdown()
| | * corrupted on file data
| | try to recover data, call mf_dax_kill_procs()
|* normal case
|-------------
|mf_generic_kill_procs()
The patchset fsdax-reflink attempts to add CoW support for fsdax, and
takes XFS, which has both reflink and fsdax features, as an example.
One of the key mechanisms needed to be implemented in fsdax is CoW. Copy
the data from srcmap before we actually write data to the destination
iomap. And we just copy range in which data won't be changed.
Another mechanism is range comparison. In page cache case, readpage() is
used to load data on disk to page cache in order to be able to compare
data. In fsdax case, readpage() does not work. So, we need another
compare data with direct access support.
With the two mechanisms implemented in fsdax, we are able to make reflink
and fsdax work together in XFS.
This patch (of 14):
To easily track filesystem from a pmem device, we introduce a holder for
dax_device structure, and also its operation. This holder is used to
remember who is using this dax_device:
- When it is the backend of a filesystem, the holder will be the
instance of this filesystem.
- When this pmem device is one of the targets in a mapped device, the
holder will be this mapped device. In this case, the mapped device
has its own dax_device and it will follow the first rule. So that we
can finally track to the filesystem we needed.
The holder and holder_ops will be set when filesystem is being mounted,
or an target device is being activated.
Link: https://lkml.kernel.org/r/20220603053738.1218681-1-ruansy.fnst@fujitsu.com
Link: https://lkml.kernel.org/r/20220603053738.1218681-2-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.wiliams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull btrfs reverts from David Sterba:
"Due to a recent report [1] we need to revert the radix tree to xarray
conversion patches.
There's a problem with sleeping under spinlock, when xa_insert could
allocate memory under pressure. We use GFP_NOFS so this is a real
problem that we unfortunately did not discover during review.
I'm sorry to do such change at rc6 time but the revert is IMO the
safer option, there are patches to use mutex instead of the spin locks
but that would need more testing. The revert branch has been tested on
a few setups, all seem ok.
The conversion to xarray will be revisited in the future"
Link: https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/ [1]
* tag 'for-5.19-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: turn delayed_nodes_tree into an XArray"
Revert "btrfs: turn name_cache radix tree into XArray in send_ctx"
Revert "btrfs: turn fs_info member buffer_radix into XArray"
Revert "btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray"
Now that all callers of ->llseek are going through vfs_llseek(), we
don't gain anything by keeping no_llseek around. Nothing actually calls
it and setting ->llseek to no_lseek is completely equivalent to
leaving it NULL.
Longer term (== by the end of merge window) we want to remove all such
intializations. To simplify the merge window this commit does *not*
touch initializers - it only defines no_llseek as NULL (and simplifies
the tests on file opening).
At -rc1 we'll need do a mechanical removal of no_llseek -
git grep -l -w no_llseek | grep -v porting.rst | while read i; do
sed -i '/\<no_llseek\>/d' $i
done
would do it.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The original direct splicing mechanism from Jens required the input to
be a regular file because it was avoiding the special socket case. It
also recognized blkdevs as being close enough to a regular file. But it
forgot about chardevs, which behave the same way and work fine here.
This is an okayish heuristic, but it doesn't totally work. For example,
a few chardevs should be spliceable here. And a few regular files
shouldn't. This patch fixes this by instead checking whether FMODE_LSEEK
is set, which represents decently enough what we need rewinding for when
splicing to internal pipes.
Fixes: b92ce55893 ("[PATCH] splice: add direct fd <-> fd splicing support")
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now vfs_llseek() can simply check for FMODE_LSEEK; if it's set,
we know that ->llseek() won't be NULL and if it's not we should
just fail with -ESPIPE.
A couple of other places where we used to check for special
values of ->llseek() (somewhat inconsistently) switched to
checking FMODE_LSEEK.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pipe-like behaviour on llseek(2) (i.e. unconditionally failing with
-ESPIPE) can be expresses in 3 ways:
1) ->llseek set to NULL in file_operations
2) ->llseek set to no_llseek in file_operations
3) FMODE_LSEEK *not* set in ->f_mode.
Enforce (3) in cases (1) and (2); that will allow to simplify the
checks and eventually get rid of no_llseek boilerplate.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This reverts commit 4a47c6385b.
Now that we have a proper fix for POSIX ACLs with overlayfs on top of
idmapped layers revert the temporary fix.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
During permission checking overlayfs will call
ovl_permission()
-> generic_permission()
-> acl_permission_check()
-> check_acl()
-> get_acl()
-> inode->i_op->get_acl() == ovl_get_acl()
-> get_acl() /* on the underlying filesystem */
-> inode->i_op->get_acl() == /*lower filesystem callback */
-> posix_acl_permission()
passing through the get_acl() request to the underlying filesystem.
Before returning these values to the VFS we need to take the idmapping of the
relevant layer into account and translate any ACL_{GROUP,USER} values according
to the idmapped mount.
We cannot alter the ACLs returned from the relevant layer directly as that
would alter the cached values filesystem wide for the lower filesystem. Instead
we can clone the ACLs and then apply the relevant idmapping of the layer.
This is obviously only relevant when idmapped layers are used.
Link: https://lore.kernel.org/r/20220708090134.385160-4-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: linux-unionfs@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
This cycle we added support for mounting overlayfs on top of idmapped mounts.
Recently I've started looking into potential corner cases when trying to add
additional tests and I noticed that reporting for POSIX ACLs is currently wrong
when using idmapped layers with overlayfs mounted on top of it.
I'm going to give a rather detailed explanation to both the origin of the
problem and the solution.
Let's assume the user creates the following directory layout and they have a
rootfs /var/lib/lxc/c1/rootfs. The files in this rootfs are owned as you would
expect files on your host system to be owned. For example, ~/.bashrc for your
regular user would be owned by 1000:1000 and /root/.bashrc would be owned by
0:0. IOW, this is just regular boring filesystem tree on an ext4 or xfs
filesystem.
The user chooses to set POSIX ACLs using the setfacl binary granting the user
with uid 4 read, write, and execute permissions for their .bashrc file:
setfacl -m u:4:rwx /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc
Now they to expose the whole rootfs to a container using an idmapped mount. So
they first create:
mkdir -pv /vol/contpool/{ctrover,merge,lowermap,overmap}
mkdir -pv /vol/contpool/ctrover/{over,work}
chown 10000000:10000000 /vol/contpool/ctrover/{over,work}
The user now creates an idmapped mount for the rootfs:
mount-idmapped/mount-idmapped --map-mount=b:0:10000000:65536 \
/var/lib/lxc/c2/rootfs \
/vol/contpool/lowermap
This for example makes it so that /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc
which is owned by uid and gid 1000 as being owned by uid and gid 10001000 at
/vol/contpool/lowermap/home/ubuntu/.bashrc.
Assume the user wants to expose these idmapped mounts through an overlayfs
mount to a container.
mount -t overlay overlay \
-o lowerdir=/vol/contpool/lowermap, \
upperdir=/vol/contpool/overmap/over, \
workdir=/vol/contpool/overmap/work \
/vol/contpool/merge
The user can do this in two ways:
(1) Mount overlayfs in the initial user namespace and expose it to the
container.
(2) Mount overlayfs on top of the idmapped mounts inside of the container's
user namespace.
Let's assume the user chooses the (1) option and mounts overlayfs on the host
and then changes into a container which uses the idmapping 0:10000000:65536
which is the same used for the two idmapped mounts.
Now the user tries to retrieve the POSIX ACLs using the getfacl command
getfacl -n /vol/contpool/lowermap/home/ubuntu/.bashrc
and to their surprise they see:
# file: vol/contpool/merge/home/ubuntu/.bashrc
# owner: 1000
# group: 1000
user::rw-
user:4294967295:rwx
group::r--
mask::rwx
other::r--
indicating the the uid wasn't correctly translated according to the idmapped
mount. The problem is how we currently translate POSIX ACLs. Let's inspect the
callchain in this example:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
|> vfs_getxattr()
| -> __vfs_getxattr()
| -> handler->get == ovl_posix_acl_xattr_get()
| -> ovl_xattr_get()
| -> vfs_getxattr()
| -> __vfs_getxattr()
| -> handler->get() /* lower filesystem callback */
|> posix_acl_fix_xattr_to_user()
{
4 = make_kuid(&init_user_ns, 4);
4 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 4);
/* FAILURE */
-1 = from_kuid(0:10000000:65536 /* caller's idmapping */, 4);
}
If the user chooses to use option (2) and mounts overlayfs on top of idmapped
mounts inside the container things don't look that much better:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:10000000:65536
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
|> vfs_getxattr()
| -> __vfs_getxattr()
| -> handler->get == ovl_posix_acl_xattr_get()
| -> ovl_xattr_get()
| -> vfs_getxattr()
| -> __vfs_getxattr()
| -> handler->get() /* lower filesystem callback */
|> posix_acl_fix_xattr_to_user()
{
4 = make_kuid(&init_user_ns, 4);
4 = mapped_kuid_fs(&init_user_ns, 4);
/* FAILURE */
-1 = from_kuid(0:10000000:65536 /* caller's idmapping */, 4);
}
As is easily seen the problem arises because the idmapping of the lower mount
isn't taken into account as all of this happens in do_gexattr(). But
do_getxattr() is always called on an overlayfs mount and inode and thus cannot
possible take the idmapping of the lower layers into account.
This problem is similar for fscaps but there the translation happens as part of
vfs_getxattr() already. Let's walk through an fscaps overlayfs callchain:
setcap 'cap_net_raw+ep' /var/lib/lxc/c2/rootfs/home/ubuntu/.bashrc
The expected outcome here is that we'll receive the cap_net_raw capability as
we are able to map the uid associated with the fscap to 0 within our container.
IOW, we want to see 0 as the result of the idmapping translations.
If the user chooses option (1) we get the following callchain for fscaps:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
-> vfs_getxattr()
-> xattr_getsecurity()
-> security_inode_getsecurity() ________________________________
-> cap_inode_getsecurity() | |
{ V |
10000000 = make_kuid(0:0:4k /* overlayfs idmapping */, 10000000); |
10000000 = mapped_kuid_fs(0:0:4k /* no idmapped mount */, 10000000); |
/* Expected result is 0 and thus that we own the fscap. */ |
0 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000000); |
} |
-> vfs_getxattr_alloc() |
-> handler->get == ovl_other_xattr_get() |
-> vfs_getxattr() |
-> xattr_getsecurity() |
-> security_inode_getsecurity() |
-> cap_inode_getsecurity() |
{ |
0 = make_kuid(0:0:4k /* lower s_user_ns */, 0); |
10000000 = mapped_kuid_fs(0:10000000:65536 /* idmapped mount */, 0); |
10000000 = from_kuid(0:0:4k /* overlayfs idmapping */, 10000000); |
|____________________________________________________________________|
}
-> vfs_getxattr_alloc()
-> handler->get == /* lower filesystem callback */
And if the user chooses option (2) we get:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:10000000:65536
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
-> vfs_getxattr()
-> xattr_getsecurity()
-> security_inode_getsecurity() _______________________________
-> cap_inode_getsecurity() | |
{ V |
10000000 = make_kuid(0:10000000:65536 /* overlayfs idmapping */, 0); |
10000000 = mapped_kuid_fs(0:0:4k /* no idmapped mount */, 10000000); |
/* Expected result is 0 and thus that we own the fscap. */ |
0 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000000); |
} |
-> vfs_getxattr_alloc() |
-> handler->get == ovl_other_xattr_get() |
|-> vfs_getxattr() |
-> xattr_getsecurity() |
-> security_inode_getsecurity() |
-> cap_inode_getsecurity() |
{ |
0 = make_kuid(0:0:4k /* lower s_user_ns */, 0); |
10000000 = mapped_kuid_fs(0:10000000:65536 /* idmapped mount */, 0); |
0 = from_kuid(0:10000000:65536 /* overlayfs idmapping */, 10000000); |
|____________________________________________________________________|
}
-> vfs_getxattr_alloc()
-> handler->get == /* lower filesystem callback */
We can see how the translation happens correctly in those cases as the
conversion happens within the vfs_getxattr() helper.
For POSIX ACLs we need to do something similar. However, in contrast to fscaps
we cannot apply the fix directly to the kernel internal posix acl data
structure as this would alter the cached values and would also require a rework
of how we currently deal with POSIX ACLs in general which almost never take the
filesystem idmapping into account (the noteable exception being FUSE but even
there the implementation is special) and instead retrieve the raw values based
on the initial idmapping.
The correct values are then generated right before returning to userspace. The
fix for this is to move taking the mount's idmapping into account directly in
vfs_getxattr() instead of having it be part of posix_acl_fix_xattr_to_user().
To this end we split out two small and unexported helpers
posix_acl_getxattr_idmapped_mnt() and posix_acl_setxattr_idmapped_mnt(). The
former to be called in vfs_getxattr() and the latter to be called in
vfs_setxattr().
Let's go back to the original example. Assume the user chose option (1) and
mounted overlayfs on top of idmapped mounts on the host:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:0:4k /* initial idmapping */
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
|> vfs_getxattr()
| |> __vfs_getxattr()
| | -> handler->get == ovl_posix_acl_xattr_get()
| | -> ovl_xattr_get()
| | -> vfs_getxattr()
| | |> __vfs_getxattr()
| | | -> handler->get() /* lower filesystem callback */
| | |> posix_acl_getxattr_idmapped_mnt()
| | {
| | 4 = make_kuid(&init_user_ns, 4);
| | 10000004 = mapped_kuid_fs(0:10000000:65536 /* lower idmapped mount */, 4);
| | 10000004 = from_kuid(&init_user_ns, 10000004);
| | |_______________________
| | } |
| | |
| |> posix_acl_getxattr_idmapped_mnt() |
| { |
| V
| 10000004 = make_kuid(&init_user_ns, 10000004);
| 10000004 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 10000004);
| 10000004 = from_kuid(&init_user_ns, 10000004);
| } |_________________________________________________
| |
| |
|> posix_acl_fix_xattr_to_user() |
{ V
10000004 = make_kuid(0:0:4k /* init_user_ns */, 10000004);
/* SUCCESS */
4 = from_kuid(0:10000000:65536 /* caller's idmapping */, 10000004);
}
And similarly if the user chooses option (1) and mounted overayfs on top of
idmapped mounts inside the container:
idmapped mount /vol/contpool/merge: 0:10000000:65536
caller's idmapping: 0:10000000:65536
overlayfs idmapping (ofs->creator_cred): 0:10000000:65536
sys_getxattr()
-> path_getxattr()
-> getxattr()
-> do_getxattr()
|> vfs_getxattr()
| |> __vfs_getxattr()
| | -> handler->get == ovl_posix_acl_xattr_get()
| | -> ovl_xattr_get()
| | -> vfs_getxattr()
| | |> __vfs_getxattr()
| | | -> handler->get() /* lower filesystem callback */
| | |> posix_acl_getxattr_idmapped_mnt()
| | {
| | 4 = make_kuid(&init_user_ns, 4);
| | 10000004 = mapped_kuid_fs(0:10000000:65536 /* lower idmapped mount */, 4);
| | 10000004 = from_kuid(&init_user_ns, 10000004);
| | |_______________________
| | } |
| | |
| |> posix_acl_getxattr_idmapped_mnt() |
| { V
| 10000004 = make_kuid(&init_user_ns, 10000004);
| 10000004 = mapped_kuid_fs(&init_user_ns /* no idmapped mount */, 10000004);
| 10000004 = from_kuid(0(&init_user_ns, 10000004);
| |_________________________________________________
| } |
| |
|> posix_acl_fix_xattr_to_user() |
{ V
10000004 = make_kuid(0:0:4k /* init_user_ns */, 10000004);
/* SUCCESS */
4 = from_kuid(0:10000000:65536 /* caller's idmappings */, 10000004);
}
The last remaining problem we need to fix here is ovl_get_acl(). During
ovl_permission() overlayfs will call:
ovl_permission()
-> generic_permission()
-> acl_permission_check()
-> check_acl()
-> get_acl()
-> inode->i_op->get_acl() == ovl_get_acl()
> get_acl() /* on the underlying filesystem)
->inode->i_op->get_acl() == /*lower filesystem callback */
-> posix_acl_permission()
passing through the get_acl request to the underlying filesystem. This will
retrieve the acls stored in the lower filesystem without taking the idmapping
of the underlying mount into account as this would mean altering the cached
values for the lower filesystem. So we block using ACLs for now until we
decided on a nice way to fix this. Note this limitation both in the
documentation and in the code.
The most straightforward solution would be to have ovl_get_acl() simply
duplicate the ACLs, update the values according to the idmapped mount and
return it to acl_permission_check() so it can be used in posix_acl_permission()
forgetting them afterwards. This is a bit heavy handed but fairly
straightforward otherwise.
Link: https://github.com/brauner/mount-idmapped/issues/9
Link: https://lore.kernel.org/r/20220708090134.385160-2-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: linux-unionfs@vger.kernel.org
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Bring in Miklos' tree which contains the temporary fix for POSIX ACLs
with overlayfs on top of idmapped layers. We will add a proper fix on
top of it and then revert the temporary fix.
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Pull ceph fix from Ilya Dryomov:
"A folio locking fixup that Xiubo and David cooperated on, marked for
stable. Most of it is in netfs but I picked it up into ceph tree on
agreement with David"
* tag 'ceph-for-5.19-rc7' of https://github.com/ceph/ceph-client:
netfs: do not unlock and put the folio twice
This reverts commit 253bf57555.
Revert the xarray conversion, there's a problem with potential
sleep-inside-spinlock [1] when calling xa_insert that triggers GFP_NOFS
allocation. The radix tree used the preloading mechanism to avoid
sleeping but this is not available in xarray.
Conversion from spin lock to mutex is possible but at time of rc6 is
riskier than a clean revert.
[1] https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 4076942021.
Revert the xarray conversion, there's a problem with potential
sleep-inside-spinlock [1] when calling xa_insert that triggers GFP_NOFS
allocation. The radix tree used the preloading mechanism to avoid
sleeping but this is not available in xarray.
Conversion from spin lock to mutex is possible but at time of rc6 is
riskier than a clean revert.
[1] https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 8ee922689d.
Revert the xarray conversion, there's a problem with potential
sleep-inside-spinlock [1] when calling xa_insert that triggers GFP_NOFS
allocation. The radix tree used the preloading mechanism to avoid
sleeping but this is not available in xarray.
Conversion from spin lock to mutex is possible but at time of rc6 is
riskier than a clean revert.
[1] https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>