On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.
And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.
[ bp: Massage. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
When RDRAND was introduced, there was much discussion on whether it
should be trusted and how the kernel should handle that. Initially, two
mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and
"nordrand", a boot-time switch.
Later the thinking evolved. With a properly designed RNG, using RDRAND
values alone won't harm anything, even if the outputs are malicious.
Rather, the issue is whether those values are being *trusted* to be good
or not. And so a new set of options were introduced as the real
ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu".
With these options, RDRAND is used, but it's not always credited. So in
the worst case, it does nothing, and in the best case, maybe it helps.
Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the
center and became something certain platforms force-select.
The old options don't really help with much, and it's a bit odd to have
special handling for these instructions when the kernel can deal fine
with the existence or untrusted existence or broken existence or
non-existence of that CPU capability.
Simplify the situation by removing CONFIG_ARCH_RANDOM and using the
ordinary asm-generic fallback pattern instead, keeping the two options
that are actually used. For now it leaves "nordrand" for now, as the
removal of that will take a different route.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
As requested
(http://lkml.kernel.org/r/87ee0q7b92.fsf@email.froward.int.ebiederm.org),
this series converts weak functions in kexec to use the #ifdef approach.
Quoting the 3e35142ef9 ("kexec_file: drop weak attribute from
arch_kexec_apply_relocations[_add]") changelog:
: Since commit d1bcae833b32f1 ("ELF: Don't generate unused section symbols")
: [1], binutils (v2.36+) started dropping section symbols that it thought
: were unused. This isn't an issue in general, but with kexec_file.c, gcc
: is placing kexec_arch_apply_relocations[_add] into a separate
: .text.unlikely section and the section symbol ".text.unlikely" is being
: dropped. Due to this, recordmcount is unable to find a non-weak symbol in
: .text.unlikely to generate a relocation record against.
This patch (of 2);
Drop __weak attribute from functions in kexec_file.c:
- arch_kexec_kernel_image_probe()
- arch_kimage_file_post_load_cleanup()
- arch_kexec_kernel_image_load()
- arch_kexec_locate_mem_hole()
- arch_kexec_kernel_verify_sig()
arch_kexec_kernel_image_load() calls into kexec_image_load_default(), so
drop the static attribute for the latter.
arch_kexec_kernel_verify_sig() is not overridden by any architecture, so
drop the __weak attribute.
Link: https://lkml.kernel.org/r/cover.1656659357.git.naveen.n.rao@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/2cd7ca1fe4d6bb6ca38e3283c717878388ed6788.1656659357.git.naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Suggested-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Restrict get_mt_mask() to a u8 and reintroduce using a RET0 static_call
for the SVM implementation. EPT stores the memtype information in the
lower 8 bits (bits 6:3 to be precise), and even returns a shifted u8
without an explicit cast to a larger type; there's no need to return a
full u64.
Note, RET0 doesn't play nice with a u64 return on 32-bit kernels, see
commit bf07be36cd ("KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for
get_mt_mask").
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220714153707.3239119-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a "UD" clause to KVM_X86_QUIRK_MWAIT_NEVER_FAULTS to make it clear
that the quirk only controls the #UD behavior of MONITOR/MWAIT. KVM
doesn't currently enforce fault checks when MONITOR/MWAIT are supported,
but that could change in the future. SVM also has a virtualization hole
in that it checks all faults before intercepts, and so "never faults" is
already a lie when running on SVM.
Fixes: bfbcc81bb8 ("KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220711225753.1073989-4-seanjc@google.com
Pull x86 retbleed fixes from Borislav Petkov:
"Just when you thought that all the speculation bugs were addressed and
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the
now pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide"
* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
x86/speculation: Disable RRSBA behavior
x86/kexec: Disable RET on kexec
x86/bugs: Do not enable IBPB-on-entry when IBPB is not supported
x86/entry: Move PUSH_AND_CLEAR_REGS() back into error_entry
x86/bugs: Add Cannon lake to RETBleed affected CPU list
x86/retbleed: Add fine grained Kconfig knobs
x86/cpu/amd: Enumerate BTC_NO
x86/common: Stamp out the stepping madness
KVM: VMX: Prevent RSB underflow before vmenter
x86/speculation: Fill RSB on vmexit for IBRS
KVM: VMX: Fix IBRS handling after vmexit
KVM: VMX: Prevent guest RSB poisoning attacks with eIBRS
KVM: VMX: Convert launched argument to flags
KVM: VMX: Flatten __vmx_vcpu_run()
objtool: Re-add UNWIND_HINT_{SAVE_RESTORE}
x86/speculation: Remove x86_spec_ctrl_mask
x86/speculation: Use cached host SPEC_CTRL value for guest entry/exit
x86/speculation: Fix SPEC_CTRL write on SMT state change
x86/speculation: Fix firmware entry SPEC_CTRL handling
x86/speculation: Fix RSB filling with CONFIG_RETPOLINE=n
...
Currently, the only way x86 can get an early boot RNG seed is via EFI,
which is generally always used now for physical machines, but is very
rarely used in VMs, especially VMs that are optimized for starting
"instantaneously", such as Firecracker's MicroVM. For tiny fast booting
VMs, EFI is not something you generally need or want.
Rather, the image loader or firmware should be able to pass a single
random seed, exactly as device tree platforms do with the "rng-seed"
property. Additionally, this is something that bootloaders can append,
with their own seed file management, which is something every other
major OS ecosystem has that Linux does not (yet).
Add SETUP_RNG_SEED, similar to the other eight setup_data entries that
are parsed at boot. It also takes care to zero out the seed immediately
after using, in order to retain forward secrecy. This all takes about 7
trivial lines of code.
Then, on kexec_file_load(), a new fresh seed is generated and passed to
the next kernel, just as is done on device tree architectures when
using kexec. And, importantly, I've tested that QEMU is able to properly
pass SETUP_RNG_SEED as well, making this work for every step of the way.
This code too is pretty straight forward.
Together these measures ensure that VMs and nested kexec()'d kernels
always receive a proper boot time RNG seed at the earliest possible
stage from their parents:
- Host [already has strongly initialized RNG]
- QEMU [passes fresh seed in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- ...
I've verified in several scenarios that this works quite well from a
host kernel to QEMU and down inwards, mixing and matching loaders, with
every layer providing a seed to the next.
[ bp: Massage commit message. ]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Link: https://lore.kernel.org/r/20220630113300.1892799-1-Jason@zx2c4.com
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The SGX2 page removal flow was introduced in previous patch and is
as follows:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES introduced in
previous patch.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES introduced here.
Support the final step of the SGX2 page removal flow with ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES. With this ioctl() the user specifies
a page range that should be removed. All pages in the provided
range should have the SGX_PAGE_TYPE_TRIM page type and the request
will fail with EPERM (Operation not permitted) if a page that does
not have the correct type is encountered. Page removal can fail
on any page within the provided range. Support partial success by
returning the number of pages that were successfully removed.
Since actual page removal will succeed even if ENCLU[EACCEPT] was not
run from within the enclave the ENCLU[EMODPR] instruction with RWX
permissions is used as a no-op mechanism to ensure ENCLU[EACCEPT] was
successfully run from within the enclave before the enclave page is
removed.
If the user omits running SGX_IOC_ENCLAVE_REMOVE_PAGES the pages will
still be removed when the enclave is unloaded.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b75ee93e96774e38bb44a24b8e9bbfb67b08b51b.1652137848.git.reinette.chatre@intel.com
Every enclave contains one or more Thread Control Structures (TCS). The
TCS contains meta-data used by the hardware to save and restore thread
specific information when entering/exiting the enclave. With SGX1 an
enclave needs to be created with enough TCSs to support the largest
number of threads expecting to use the enclave and enough enclave pages
to meet all its anticipated memory demands. In SGX1 all pages remain in
the enclave until the enclave is unloaded.
SGX2 introduces a new function, ENCLS[EMODT], that is used to change
the type of an enclave page from a regular (SGX_PAGE_TYPE_REG) enclave
page to a TCS (SGX_PAGE_TYPE_TCS) page or change the type from a
regular (SGX_PAGE_TYPE_REG) or TCS (SGX_PAGE_TYPE_TCS)
page to a trimmed (SGX_PAGE_TYPE_TRIM) page (setting it up for later
removal).
With the existing support of dynamically adding regular enclave pages
to an initialized enclave and changing the page type to TCS it is
possible to dynamically increase the number of threads supported by an
enclave.
Changing the enclave page type to SGX_PAGE_TYPE_TRIM is the first step
of dynamically removing pages from an initialized enclave. The complete
page removal flow is:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the SGX_IOC_ENCLAVE_MODIFY_TYPES ioctl() introduced here.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl() introduced in the
following patch.
Add ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES to support changing SGX
enclave page types within an initialized enclave. With
SGX_IOC_ENCLAVE_MODIFY_TYPES the user specifies a page range and the
enclave page type to be applied to all pages in the provided range.
The ioctl() itself can return an error code based on failures
encountered by the kernel. It is also possible for SGX specific
failures to be encountered. Add a result output parameter to
communicate the SGX return code. It is possible for the enclave page
type change request to fail on any page within the provided range.
Support partial success by returning the number of pages that were
successfully changed.
After the page type is changed the page continues to be accessible
from the kernel perspective with page table entries and internal
state. The page may be moved to swap. Any access until ENCLU[EACCEPT]
will encounter a page fault with SGX flag set in error code.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/babe39318c5bf16fc65fbfb38896cdee72161575.1652137848.git.reinette.chatre@intel.com
In the initial (SGX1) version of SGX, pages in an enclave need to be
created with permissions that support all usages of the pages, from the
time the enclave is initialized until it is unloaded. For example,
pages used by a JIT compiler or when code needs to otherwise be
relocated need to always have RWX permissions.
SGX2 includes a new function ENCLS[EMODPR] that is run from the kernel
and can be used to restrict the EPCM permissions of regular enclave
pages within an initialized enclave.
Introduce ioctl() SGX_IOC_ENCLAVE_RESTRICT_PERMISSIONS to support
restricting EPCM permissions. With this ioctl() the user specifies
a page range and the EPCM permissions to be applied to all pages in
the provided range. ENCLS[EMODPR] is run to restrict the EPCM
permissions followed by the ENCLS[ETRACK] flow that will ensure
no cached linear-to-physical address mappings to the changed
pages remain.
It is possible for the permission change request to fail on any
page within the provided range, either with an error encountered
by the kernel or by the SGX hardware while running
ENCLS[EMODPR]. To support partial success the ioctl() returns an
error code based on failures encountered by the kernel as well
as two result output parameters: one for the number of pages
that were successfully changed and one for the SGX return code.
The page table entry permissions are not impacted by the EPCM
permission changes. VMAs and PTEs will continue to allow the
maximum vetted permissions determined at the time the pages
are added to the enclave. The SGX error code in a page fault
will indicate if it was an EPCM permission check that prevented
an access attempt.
No checking is done to ensure that the permissions are actually
being restricted. This is because the enclave may have relaxed
the EPCM permissions from within the enclave without the kernel
knowing. An attempt to relax permissions using this call will
be ignored by the hardware.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/082cee986f3c1a2f4fdbf49501d7a8c5a98446f8.1652137848.git.reinette.chatre@intel.com
SGX2 functions are not allowed on all page types. For example,
ENCLS[EMODPR] is only allowed on regular SGX enclave pages and
ENCLS[EMODPT] is only allowed on TCS and regular pages. If these
functions are attempted on another type of page the hardware would
trigger a fault.
Keep a record of the SGX page type so that there is more
certainty whether an SGX2 instruction can succeed and faults
can be treated as real failures.
The page type is a property of struct sgx_encl_page
and thus does not cover the VA page type. VA pages are maintained
in separate structures and their type can be determined in
a different way. The SGX2 instructions needing the page type do not
operate on VA pages and this is thus not a scenario needing to
be covered at this time.
struct sgx_encl_page hosting this information is maintained for each
enclave page so the space consumed by the struct is important.
The existing sgx_encl_page->vm_max_prot_bits is already unsigned long
while only using three bits. Transition to a bitfield for the two
members to support the additional information without increasing
the space consumed by the struct.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0a6939eefe7ba26514f6c49723521cde372de64.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EMODPR ENCLS leaf function used to
restrict enclave page permissions as maintained in the
SGX hardware's Enclave Page Cache Map (EPCM).
EMODPR:
1) Updates the EPCM permissions of an enclave page by treating
the new permissions as a mask. Supplying a value that attempts
to relax EPCM permissions has no effect on EPCM permissions
(PR bit, see below, is changed).
2) Sets the PR bit in the EPCM entry of the enclave page to
indicate that permission restriction is in progress. The bit
is reset by the enclave by invoking ENCLU leaf function
EACCEPT or EACCEPTCOPY.
The enclave may access the page throughout the entire process
if conforming to the EPCM permissions for the enclave page.
After performing the permission restriction by issuing EMODPR
the kernel needs to collaborate with the hardware to ensure that
all logical processors sees the new restricted permissions. This
is required for the enclave's EACCEPT/EACCEPTCOPY to succeed and
is accomplished with the ETRACK flow.
Expand enum sgx_return_code with the possible EMODPR return
values.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d15e7a769e13e4ca671fa2d0a0d3e3aec5aedbd4.1652137848.git.reinette.chatre@intel.com
On kexec file load, the Integrity Measurement Architecture (IMA)
subsystem may verify the IMA signature of the kernel and initramfs, and
measure it. The command line parameters passed to the kernel in the
kexec call may also be measured by IMA.
A remote attestation service can verify a TPM quote based on the TPM
event log, the IMA measurement list and the TPM PCR data. This can
be achieved only if the IMA measurement log is carried over from the
current kernel to the next kernel across the kexec call.
PowerPC and ARM64 both achieve this using device tree with a
"linux,ima-kexec-buffer" node. x86 platforms generally don't make use of
device tree, so use the setup_data mechanism to pass the IMA buffer to
the new kernel.
Signed-off-by: Jonathan McDowell <noodles@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> # IMA function definitions
Link: https://lore.kernel.org/r/YmKyvlF3my1yWTvK@noodles-fedora-PC23Y6EG
Currently, there is a mess with the prototypes of the non-atomic
bitops across the different architectures:
ret bool, int, unsigned long
nr int, long, unsigned int, unsigned long
addr volatile unsigned long *, volatile void *
Thankfully, it doesn't provoke any bugs, but can sometimes make
the compiler angry when it's not handy at all.
Adjust all the prototypes to the following standard:
ret bool retval can be only 0 or 1
nr unsigned long native; signed makes no sense
addr volatile unsigned long * bitmaps are arrays of ulongs
Next, some architectures don't define 'arch_' versions as they don't
support instrumentation, others do. To make sure there is always the
same set of callables present and to ease any potential future
changes, make them all follow the rule:
* architecture-specific files define only 'arch_' versions;
* non-prefixed versions can be defined only in asm-generic files;
and place the non-prefixed definitions into a new file in
asm-generic to be included by non-instrumented architectures.
Finally, add some static assertions in order to prevent people from
making a mess in this room again.
I also used the %__always_inline attribute consistently, so that
they always get resolved to the actual operations.
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Do fine-grained Kconfig for all the various retbleed parts.
NOTE: if your compiler doesn't support return thunks this will
silently 'upgrade' your mitigation to IBPB, you might not like this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
There is a regular need in the kernel to provide a way to declare
having a dynamically sized set of trailing elements in a structure.
Kernel code should always use “flexible array members”[1] for these
cases. The older style of one-element or zero-length arrays should
no longer be used[2].
This code was transformed with the help of Coccinelle:
(linux-5.19-rc2$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch)
@@
identifier S, member, array;
type T1, T2;
@@
struct S {
...
T1 member;
T2 array[
- 0
];
};
-fstrict-flex-arrays=3 is coming and we need to land these changes
to prevent issues like these in the short future:
../fs/minix/dir.c:337:3: warning: 'strcpy' will always overflow; destination buffer has size 0,
but the source string has length 2 (including NUL byte) [-Wfortify-source]
strcpy(de3->name, ".");
^
Since these are all [0] to [] changes, the risk to UAPI is nearly zero. If
this breaks anything, we can use a union with a new member name.
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays
Link: https://github.com/KSPP/linux/issues/78
Build-tested-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/lkml/62b675ec.wKX6AOZ6cbE71vtF%25lkp@intel.com/
Acked-by: Dan Williams <dan.j.williams@intel.com> # For ndctl.h
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Currently, the arch_efi_call_virt() assumes all users of it will have
defined a type 'efi_##f##_t' to make use of it.
Simplify the arch_efi_call_virt() macro by eliminating the explicit
need for efi_##f##_t type for every user of this macro.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
[ardb: apply Sudeep's ARM fix to i686, Loongarch and RISC-V too]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
All architecture-independent users of virt_to_bus() and bus_to_virt()
have been fixed to use the dma mapping interfaces or have been
removed now. This means the definitions on most architectures, and the
CONFIG_VIRT_TO_BUS symbol are now obsolete and can be removed.
The only exceptions to this are a few network and scsi drivers for m68k
Amiga and VME machines and ppc32 Macintosh. These drivers work correctly
with the old interfaces and are probably not worth changing.
On alpha and parisc, virt_to_bus() were still used in asm/floppy.h.
alpha can use isa_virt_to_bus() like x86 does, and parisc can just
open-code the virt_to_phys() here, as this is architecture specific
code.
I tried updating the bus-virt-phys-mapping.rst documentation, which
started as an email from Linus to explain some details of the Linux-2.0
driver interfaces. The bits about virt_to_bus() were declared obsolete
backin 2000, and the rest is not all that relevant any more, so in the
end I just decided to remove the file completely.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
BTC_NO indicates that hardware is not susceptible to Branch Type Confusion.
Zen3 CPUs don't suffer BTC.
Hypervisors are expected to synthesise BTC_NO when it is appropriate
given the migration pool, to prevent kernels using heuristics.
[ bp: Massage. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
On eIBRS systems, the returns in the vmexit return path from
__vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks.
Fix that by moving the post-vmexit spec_ctrl handling to immediately
after the vmexit.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Commit
c536ed2fff ("objtool: Remove SAVE/RESTORE hints")
removed the save/restore unwind hints because they were no longer
needed. Now they're going to be needed again so re-add them.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
If a kernel is built with CONFIG_RETPOLINE=n, but the user still wants
to mitigate Spectre v2 using IBRS or eIBRS, the RSB filling will be
silently disabled.
There's nothing retpoline-specific about RSB buffer filling. Remove the
CONFIG_RETPOLINE guards around it.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken
bit for some speculation behaviour. It needs setting.
Note: very belatedly AMD released naming; it's now officially called
MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT
but shall remain the SPECTRAL CHICKEN.
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Since entry asm is tricky, add a validation pass that ensures the
retbleed mitigation has been done before the first actual RET
instruction.
Entry points are those that either have UNWIND_HINT_ENTRY, which acts
as UNWIND_HINT_EMPTY but marks the instruction as an entry point, or
those that have UWIND_HINT_IRET_REGS at +0.
This is basically a variant of validate_branch() that is
intra-function and it will simply follow all branches from marked
entry points and ensures that all paths lead to ANNOTATE_UNRET_END.
If a path hits RET or an indirection the path is a fail and will be
reported.
There are 3 ANNOTATE_UNRET_END instances:
- UNTRAIN_RET itself
- exception from-kernel; this path doesn't need UNTRAIN_RET
- all early exceptions; these also don't need UNTRAIN_RET
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
jmp2ret mitigates the easy-to-attack case at relatively low overhead.
It mitigates the long speculation windows after a mispredicted RET, but
it does not mitigate the short speculation window from arbitrary
instruction boundaries.
On Zen2, there is a chicken bit which needs setting, which mitigates
"arbitrary instruction boundaries" down to just "basic block boundaries".
But there is no fix for the short speculation window on basic block
boundaries, other than to flush the entire BTB to evict all attacker
predictions.
On the spectrum of "fast & blurry" -> "safe", there is (on top of STIBP
or no-SMT):
1) Nothing System wide open
2) jmp2ret May stop a script kiddy
3) jmp2ret+chickenbit Raises the bar rather further
4) IBPB Only thing which can count as "safe".
Tentative numbers put IBPB-on-entry at a 2.5x hit on Zen2, and a 10x hit
on Zen1 according to lmbench.
[ bp: Fixup feature bit comments, document option, 32-bit build fix. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Update retpoline validation with the new CONFIG_RETPOLINE requirement of
not having bare naked RET instructions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Having IBRS enabled while the SMT sibling is idle unnecessarily slows
down the running sibling. OTOH, disabling IBRS around idle takes two
MSR writes, which will increase the idle latency.
Therefore, only disable IBRS around deeper idle states. Shallow idle
states are bounded by the tick in duration, since NOHZ is not allowed
for them by virtue of their short target residency.
Only do this for mwait-driven idle, since that keeps interrupts disabled
across idle, which makes disabling IBRS vs IRQ-entry a non-issue.
Note: C6 is a random threshold, most importantly C1 probably shouldn't
disable IBRS, benchmarking needed.
Suggested-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
When changing SPEC_CTRL for user control, the WRMSR can be delayed
until return-to-user when KERNEL_IBRS has been enabled.
This avoids an MSR write during context switch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Implement Kernel IBRS - currently the only known option to mitigate RSB
underflow speculation issues on Skylake hardware.
Note: since IBRS_ENTER requires fuller context established than
UNTRAIN_RET, it must be placed after it. However, since UNTRAIN_RET
itself implies a RET, it must come after IBRS_ENTER. This means
IBRS_ENTER needs to also move UNTRAIN_RET.
Note 2: KERNEL_IBRS is sub-optimal for XenPV.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Due to TIF_SSBD and TIF_SPEC_IB the actual IA32_SPEC_CTRL value can
differ from x86_spec_ctrl_base. As such, keep a per-CPU value
reflecting the current task's MSR content.
[jpoimboe: rename]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Note: needs to be in a section distinct from Retpolines such that the
Retpoline RET substitution cannot possibly use immediate jumps.
ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a
little tricky but works due to the fact that zen_untrain_ret() doesn't
have any stack ops and as such will emit a single ORC entry at the
start (+0x3f).
Meanwhile, unwinding an IP, including the __x86_return_thunk() one
(+0x40) will search for the largest ORC entry smaller or equal to the
IP, these will find the one ORC entry (+0x3f) and all works.
[ Alexandre: SVM part. ]
[ bp: Build fix, massages. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Use the return thunk in asm code. If the thunk isn't needed, it will
get patched into a RET instruction during boot by apply_returns().
Since alternatives can't handle relocations outside of the first
instruction, putting a 'jmp __x86_return_thunk' in one is not valid,
therefore carve out the memmove ERMS path into a separate label and jump
to it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
In addition to teaching static_call about the new way to spell 'RET',
there is an added complication in that static_call() is allowed to
rewrite text before it is known which particular spelling is required.
In order to deal with this; have a static_call specific fixup in the
apply_return() 'alternative' patching routine that will rewrite the
static_call trampoline to match the definite sequence.
This in turn creates the problem of uniquely identifying static call
trampolines. Currently trampolines are 8 bytes, the first 5 being the
jmp.d32/ret sequence and the final 3 a byte sequence that spells out
'SCT'.
This sequence is used in __static_call_validate() to ensure it is
patching a trampoline and not a random other jmp.d32. That is,
false-positives shouldn't be plenty, but aren't a big concern.
OTOH the new __static_call_fixup() must not have false-positives, and
'SCT' decodes to the somewhat weird but semi plausible sequence:
push %rbx
rex.XB push %r12
Additionally, there are SLS concerns with immediate jumps. Combined it
seems like a good moment to change the signature to a single 3 byte
trap instruction that is unique to this usage and will not ever get
generated by accident.
As such, change the signature to: '0x0f, 0xb9, 0xcc', which decodes
to:
ud1 %esp, %ecx
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Utilize -mfunction-return=thunk-extern when available to have the
compiler replace RET instructions with direct JMPs to the symbol
__x86_return_thunk. This does not affect assembler (.S) sources, only C
sources.
-mfunction-return=thunk-extern has been available since gcc 7.3 and
clang 15.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
On it's own not much of a cleanup but it prepares for more/similar
code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
In order to extend the RETPOLINE features to 4, move them to word 11
where there is still room. This mostly keeps DISABLE_RETPOLINE
simple.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>