In Christoph's patch to refactor xfs_bmse_merge, the updated rmap code
does more work than it needs to (because map-extent auto-merges
records). Remove the unnecessary unmap and save ourselves a deferred
op.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When calling into _xfs_log_force{,_lsn}() with a pointer
to log_flushed variable, log_flushed will be set to 1 if:
1. xlog_sync() is called to flush the active log buffer
AND/OR
2. xlog_wait() is called to wait on a syncing log buffers
xfs_file_fsync() checks the value of log_flushed after
_xfs_log_force_lsn() call to optimize away an explicit
PREFLUSH request to the data block device after writing
out all the file's pages to disk.
This optimization is incorrect in the following sequence of events:
Task A Task B
-------------------------------------------------------
xfs_file_fsync()
_xfs_log_force_lsn()
xlog_sync()
[submit PREFLUSH]
xfs_file_fsync()
file_write_and_wait_range()
[submit WRITE X]
[endio WRITE X]
_xfs_log_force_lsn()
xlog_wait()
[endio PREFLUSH]
The write X is not guarantied to be on persistent storage
when PREFLUSH request in completed, because write A was submitted
after the PREFLUSH request, but xfs_file_fsync() of task A will
be notified of log_flushed=1 and will skip explicit flush.
If the system crashes after fsync of task A, write X may not be
present on disk after reboot.
This bug was discovered and demonstrated using Josef Bacik's
dm-log-writes target, which can be used to record block io operations
and then replay a subset of these operations onto the target device.
The test goes something like this:
- Use fsx to execute ops of a file and record ops on log device
- Every now and then fsync the file, store md5 of file and mark
the location in the log
- Then replay log onto device for each mark, mount fs and compare
md5 of file to stored value
Cc: Christoph Hellwig <hch@lst.de>
Cc: Josef Bacik <jbacik@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently flag switching can be used to easily crash the kernel. Disable
the per-inode DAX flag until that is sorted out.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the existing functionality instead of directly poking into the extent
list.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This avoids poking into the internals of the extent list. Also return
the number of extents as the return value instead of an additional
by reference argument, and make it available to callers outside of
xfs_bmap_util.c
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This abstracts the function away from details of the low-level extent
list implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This abstracts the function away from details of the low-level extent
list implementation.
Note that it seems like the previous implementation of rmap for
the merge case was completely broken, but it no seems appear to
trigger that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For the first right move we need to look up next_fsb. That means
our last fsb that contains next_fsb must also be the current extent,
so take advantage of that by moving the code around a bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the bmap abstraction instead of open-coding bmbt details here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the helper instead of open coding it, to provide a better abstraction
for the scalable extent list work. This also gets an additional assert
and trace point for free.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This helper is used to update an extent record based on the extent index,
and can be used to provide a level of abstractions between callers that
want to modify in-core extent records and the details of the extent list
implementation.
Also switch all users of the xfs_bmbt_set_all(xfs_iext_get_ext(...))
pattern to this new helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new __xfs_filemap_fault helper that implements all four page fault
callouts, and make these methods themselves small stubs that set the
correct write_fault flag, and exit early for the non-DAX case for the
hugepage related ones.
Also remove the extra size checking in the pfn_fault path, which is now
handled in the core DAX code.
Life would be so much simpler if we only had one method for all this.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All callers will need the VM_FAULT_* flags, so convert in the helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The owner change bmbt scan that occurs during extent swap operations
does not handle ordered buffer failures. Buffers that cannot be
marked ordered must be physically logged so previously dirty ranges
of the buffer can be relogged in the transaction.
Since the bmbt scan may need to process and potentially log a large
number of blocks, we can't expect to complete this operation in a
single transaction. Update extent swap to use a permanent
transaction with enough log reservation to physically log a buffer.
Update the bmbt scan to physically log any buffers that cannot be
ordered and to terminate the scan with -EAGAIN. On -EAGAIN, the
caller rolls the transaction and restarts the scan. Finally, update
the bmbt scan helper function to skip bmbt blocks that already match
the expected owner so they are not reprocessed after scan restarts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix the xfs_trans_roll call]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Ordered buffers are used in situations where the buffer is not
physically logged but must pass through the transaction/logging
pipeline for a particular transaction. As a result, ordered buffers
are not unpinned and written back until the transaction commits to
the log. Ordered buffers have a strict requirement that the target
buffer must not be currently dirty and resident in the log pipeline
at the time it is marked ordered. If a dirty+ordered buffer is
committed, the buffer is reinserted to the AIL but not physically
relogged at the LSN of the associated checkpoint. The buffer log
item is assigned the LSN of the latest checkpoint and the AIL
effectively releases the previously logged buffer content from the
active log before the buffer has been written back. If the tail
pushes forward and a filesystem crash occurs while in this state, an
inconsistent filesystem could result.
It is currently the caller responsibility to ensure an ordered
buffer is not already dirty from a previous modification. This is
unclear and error prone when not used in situations where it is
guaranteed a buffer has not been previously modified (such as new
metadata allocations).
To facilitate general purpose use of ordered buffers, update
xfs_trans_ordered_buf() to conditionally order the buffer based on
state of the log item and return the status of the result. If the
bli is dirty, do not order the buffer and return false. The caller
must either physically log the buffer (having acquired the
appropriate log reservation) or push it from the AIL to clean it
before it can be marked ordered in the current transaction.
Note that ordered buffers are currently only used in two situations:
1.) inode chunk allocation where previously logged buffers are not
possible and 2.) extent swap which will be updated to handle ordered
buffer failures in a separate patch.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The extent swap operation currently resets bmbt block owners before
the inode forks are swapped. The bmbt buffers are marked as ordered
so they do not have to be physically logged in the transaction.
This use of ordered buffers is not safe as bmbt buffers may have
been previously physically logged. The bmbt owner change algorithm
needs to be updated to physically log buffers that are already dirty
when/if they are encountered. This means that an extent swap will
eventually require multiple rolling transactions to handle large
btrees. In addition, all inode related changes must be logged before
the bmbt owner change scan begins and can roll the transaction for
the first time to preserve fs consistency via log recovery.
In preparation for such fixes to the bmbt owner change algorithm,
refactor the bmbt scan out of the extent fork swap code to the last
operation before the transaction is committed. Update
xfs_swap_extent_forks() to only set the inode log flags when an
owner change scan is necessary. Update xfs_swap_extents() to trigger
the owner change based on the inode log flags. Note that since the
owner change now occurs after the extent fork swap, the inode btrees
must be fixed up with the inode number of the current inode (similar
to log recovery).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Extent swap uses xfs_btree_visit_blocks() to fix up bmbt block
owners on v5 (!rmapbt) filesystems. The bmbt scan uses
xfs_btree_lookup_get_block() to read bmbt blocks which verifies the
current owner of the block against the parent inode of the bmbt.
This works during extent swap because the bmbt owners are updated to
the opposite inode number before the inode extent forks are swapped.
The modified bmbt blocks are marked as ordered buffers which allows
everything to commit in a single transaction. If the transaction
commits to the log and the system crashes such that recovery of the
extent swap is required, log recovery restarts the bmbt scan to fix
up any bmbt blocks that may have not been written back before the
crash. The log recovery bmbt scan occurs after the inode forks have
been swapped, however. This causes the bmbt block owner verification
to fail, leads to log recovery failure and requires xfs_repair to
zap the log to recover.
Define a new invalid inode owner flag to inform the btree block
lookup mechanism that the current inode may be invalid with respect
to the current owner of the bmbt block. Set this flag on the cursor
used for change owner scans to allow this operation to work at
runtime and during log recovery.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: bb3be7e7c ("xfs: check for bogus values in btree block headers")
Cc: stable@vger.kernel.org
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Ordered buffers are attached to transactions and pushed through the
logging infrastructure just like normal buffers with the exception
that they are not actually written to the log. Therefore, we don't
need to log dirty ranges of ordered buffers. xfs_trans_log_buf() is
called on ordered buffers to set up all of the dirty state on the
transaction, buffer and log item and prepare the buffer for I/O.
Now that xfs_trans_dirty_buf() is available, call it from
xfs_trans_ordered_buf() so the latter is now mutually exclusive with
xfs_trans_log_buf(). This reflects the implementation of ordered
buffers and helps eliminate confusion over the need to log ranges of
ordered buffers just to set up internal log state.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_trans_log_buf() is responsible for logging the dirty segments of
a buffer along with setting all of the necessary state on the
transaction, buffer, bli, etc., to ensure that the associated items
are marked as dirty and prepared for I/O. We have a couple use cases
that need to to dirty a buffer in a transaction without actually
logging dirty ranges of the buffer. One existing use case is
ordered buffers, which are currently logged with arbitrary ranges to
accomplish this even though the content of ordered buffers is never
written to the log. Another pending use case is to relog an already
dirty buffer across rolled transactions within the deferred
operations infrastructure. This is required to prevent a held
(XFS_BLI_HOLD) buffer from pinning the tail of the log.
Refactor xfs_trans_log_buf() into a new function that contains all
of the logic responsible to dirty the transaction, lidp, buffer and
bli. This new function can be used in the future for the use cases
outlined above. This patch does not introduce functional changes.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Ordered buffers pass through the logging infrastructure without ever
being written to the log. The way this works is that the ordered
buffer status is transferred to the log vector at commit time via
the ->iop_size() callback. In xlog_cil_insert_format_items(),
ordered log vectors bypass ->iop_format() processing altogether.
Therefore it is unnecessary for xfs_buf_item_format() to handle
ordered buffers. Remove the unnecessary logic and assert that an
ordered buffer never reaches this point.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_buf_item_unlock() historically checked the dirty state of the
buffer by manually checking the buffer log formats for dirty
segments. The introduction of ordered buffers invalidated this check
because ordered buffers have dirty bli's but no dirty (logged)
segments. The check was updated to accommodate ordered buffers by
looking at the bli state first and considering the blf only if the
bli is clean.
This logic is safe but unnecessary. There is no valid case where the
bli is clean yet the blf has dirty segments. The bli is set dirty
whenever the blf is logged (via xfs_trans_log_buf()) and the blf is
cleared in the only place BLI_DIRTY is cleared (xfs_trans_binval()).
Remove the conditional blf dirty checks and replace with an assert
that should catch any discrepencies between bli and blf dirty
states. Refactor the old blf dirty check into a helper function to
be used by the assert.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It checks a single flag and has one caller. It probably isn't worth
its own function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
And instead require callers to explicitly join the inode using
xfs_defer_ijoin. Also consolidate the defer error handling in
a few places using a goto label.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Split xfs_trans_roll into a low-level helper that just rolls the
actual transaction and a new higher level xfs_trans_roll_inode
that takes care of logging and rejoining the inode. This gets
rid of the NULL inode case, and allows to simplify the special
cases in the deferred operation code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
After xfs_ifree_cluster() finds an inode in the radix tree and verifies
that the inode number is what it expected, xfs_reclaim_inode() can swoop
in and free it. xfs_ifree_cluster() will then happily continue working
on the freed inode. Most importantly, it will mark the inode stale,
which will probably be overwritten when the inode slab object is
reallocated, but if it has already been reallocated then we can end up
with an inode spuriously marked stale.
In 8a17d7dded ("xfs: mark reclaimed inodes invalid earlier") we added
a second check to xfs_iflush_cluster() to detect this race, but the
similar RCU lookup in xfs_ifree_cluster() needs the same treatment.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we introduced the bmap redo log items, we set MS_ACTIVE on the
mountpoint and XFS_IRECOVERY on the inode to prevent unlinked inodes
from being truncated prematurely during log recovery. This also had the
effect of putting linked inodes on the lru instead of evicting them.
Unfortunately, we neglected to find all those unreferenced lru inodes
and evict them after finishing log recovery, which means that we leak
them if anything goes wrong in the rest of xfs_mountfs, because the lru
is only cleaned out on unmount.
Therefore, evict unreferenced inodes in the lru list immediately
after clearing MS_ACTIVE.
Fixes: 17c12bcd30 ("xfs: when replaying bmap operations, don't let unlinked inodes get reaped")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: viro@ZenIV.linux.org.uk
Reviewed-by: Brian Foster <bfoster@redhat.com>
In a filesystem without finobt, the Space manager selects an AG to alloc a new
inode, where xfs_dialloc_ag_inobt() will search the AG for the free slot chunk.
When the new inode is in the same AG as its parent, the btree will be searched
starting on the parent's record, and then retried from the top if no slot is
available beyond the parent's record.
To exit this loop though, xfs_dialloc_ag_inobt() relies on the fact that the
btree must have a free slot available, once its callers relied on the
agi->freecount when deciding how/where to allocate this new inode.
In the case when the agi->freecount is corrupted, showing available inodes in an
AG, when in fact there is none, this becomes an infinite loop.
Add a way to stop the loop when a free slot is not found in the btree, making
the function to fall into the whole AG scan which will then, be able to detect
the corruption and shut the filesystem down.
As pointed by Brian, this might impact performance, giving the fact we
don't reset the search distance anymore when we reach the end of the
tree, giving it fewer tries before falling back to the whole AG search, but
it will only affect searches that start within 10 records to the end of the tree.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Torn write detection and tail overwrite detection can shift the log
head and tail respectively in the event of CRC mismatch or
corruption errors. Add a high-level log recovery tracepoint to dump
the final log head/tail and make those values easily attainable in
debug/diagnostic situations.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Torn write and tail overwrite detection both trigger only on
-EFSBADCRC errors. While this is the most likely failure scenario
for each condition, -EFSCORRUPTED is still possible in certain cases
depending on what ends up on disk when a torn write or partial tail
overwrite occurs. For example, an invalid log record h_len can lead
to an -EFSCORRUPTED error when running the log recovery CRC pass.
Therefore, update log head and tail verification to trigger the
associated head/tail fixups in the event of -EFSCORRUPTED errors
along with -EFSBADCRC. Also, -EFSCORRUPTED can currently be returned
from xlog_do_recovery_pass() before rhead_blk is initialized if the
first record encountered happens to be corrupted. This leads to an
incorrect 'first_bad' return value. Initialize rhead_blk earlier in
the function to address that problem as well.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add an error injection tag to force log items in the AIL to the
pinned state. This option can be used by test infrastructure to
induce head behind tail conditions. Specifically, this is intended
to be used by xfstests to reproduce log recovery problems after
failed/corrupted log writes overwrite the last good tail LSN in the
log.
When enabled, AIL push attempts see log items in the AIL in the
pinned state. This stalls metadata writeback and thus prevents the
current tail of the log from moving forward. When disabled,
subsequent AIL pushes observe the log items in their appropriate
state and filesystem operation continues as normal.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If we consider the case where the tail (T) of the log is pinned long
enough for the head (H) to push and block behind the tail, we can
end up blocked in the following state without enough free space (f)
in the log to satisfy a transaction reservation:
0 phys. log N
[-------HffT---H'--T'---]
The last good record in the log (before H) refers to T. The tail
eventually pushes forward (T') leaving more free space in the log
for writes to H. At this point, suppose space frees up in the log
for the maximum of 8 in-core log buffers to start flushing out to
the log. If this pushes the head from H to H', these next writes
overwrite the previous tail T. This is safe because the items logged
from T to T' have been written back and removed from the AIL.
If the next log writes (H -> H') happen to fail and result in
partial records in the log, the filesystem shuts down having
overwritten T with invalid data. Log recovery correctly locates H on
the subsequent mount, but H still refers to the now corrupted tail
T. This results in log corruption errors and recovery failure.
Since the tail overwrite results from otherwise correct runtime
behavior, it is up to log recovery to try and deal with this
situation. Update log recovery tail verification to run a CRC pass
from the first record past the tail to the head. This facilitates
error detection at T and moves the recovery tail to the first good
record past H' (similar to truncating the head on torn write
detection). If corruption is detected beyond the range possibly
affected by the max number of iclogs, the log is legitimately
corrupted and log recovery failure is expected.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Log tail verification currently only occurs when torn writes are
detected at the head of the log. This was introduced because a
change in the head block due to torn writes can lead to a change in
the tail block (each log record header references the current tail)
and the tail block should be verified before log recovery proceeds.
Tail corruption is possible outside of torn write scenarios,
however. For example, partial log writes can be detected and cleared
during the initial head/tail block discovery process. If the partial
write coincides with a tail overwrite, the log tail is corrupted and
recovery fails.
To facilitate correct handling of log tail overwites, update log
recovery to always perform tail verification. This is necessary to
detect potential tail overwrite conditions when torn writes may not
have occurred. This changes normal (i.e., no torn writes) recovery
behavior slightly to detect and return CRC related errors near the
tail before actual recovery starts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The high-level log recovery algorithm consists of two loops that
walk the physical log and process log records from the tail to the
head. The first loop handles the case where the tail is beyond the
head and processes records up to the end of the physical log. The
subsequent loop processes records from the beginning of the physical
log to the head.
Because log records can wrap around the end of the physical log, the
first loop mentioned above must handle this case appropriately.
Records are processed from in-core buffers, which means that this
algorithm must split the reads of such records into two partial
I/Os: 1.) from the beginning of the record to the end of the log and
2.) from the beginning of the log to the end of the record. This is
further complicated by the fact that the log record header and log
record data are read into independent buffers.
The current handling of each buffer correctly splits the reads when
either the header or data starts before the end of the log and wraps
around the end. The data read does not correctly handle the case
where the prior header read wrapped or ends on the physical log end
boundary. blk_no is incremented to or beyond the log end after the
header read to point to the record data, but the split data read
logic triggers, attempts to read from an invalid log block and
ultimately causes log recovery to fail. This can be reproduced
fairly reliably via xfstests tests generic/047 and generic/388 with
large iclog sizes (256k) and small (10M) logs.
If the record header read has pushed beyond the end of the physical
log, the subsequent data read is actually contiguous. Update the
data read logic to detect the case where blk_no has wrapped, mod it
against the log size to read from the correct address and issue one
contiguous read for the log data buffer. The log record is processed
as normal from the buffer(s), the loop exits after the current
iteration and the subsequent loop picks up with the first new record
after the start of the log.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a buffer has been failed during writeback, the inode items into it
are kept flush locked, and are never resubmitted due the flush lock, so,
if any buffer fails to be written, the items in AIL are never written to
disk and never unlocked.
This causes unmount operation to hang due these items flush locked in AIL,
but this also causes the items in AIL to never be written back, even when
the IO device comes back to normal.
I've been testing this patch with a DM-thin device, creating a
filesystem larger than the real device.
When writing enough data to fill the DM-thin device, XFS receives ENOSPC
errors from the device, and keep spinning on xfsaild (when 'retry
forever' configuration is set).
At this point, the filesystem can not be unmounted because of the flush locked
items in AIL, but worse, the items in AIL are never retried at all
(once xfs_inode_item_push() will skip the items that are flush locked),
even if the underlying DM-thin device is expanded to the proper size.
This patch fixes both cases, retrying any item that has been failed
previously, using the infra-structure provided by the previous patch.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
With the current code, XFS never re-submit a failed buffer for IO,
because the failed item in the buffer is kept in the flush locked state
forever.
To be able to resubmit an log item for IO, we need a way to mark an item
as failed, if, for any reason the buffer which the item belonged to
failed during writeback.
Add a new log item callback to be used after an IO completion failure
and make the needed clean ups.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we do log recovery on a readonly mount, unlinked inode
processing does not happen due to the readonly checks in
xfs_inactive(), which are trying to prevent any I/O on a
readonly mount.
This is misguided - we do I/O on readonly mounts all the time,
for consistency; for example, log recovery. So do the same
RDONLY flag twiddling around xfs_log_mount_finish() as we
do around xfs_log_mount(), for the same reason.
This all cries out for a big rework but for now this is a
simple fix to an obvious problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are dueling comments in the xfs code about intent
for log writes when unmounting a readonly filesystem.
In xfs_mountfs, we see the intent:
/*
* Now the log is fully replayed, we can transition to full read-only
* mode for read-only mounts. This will sync all the metadata and clean
* the log so that the recovery we just performed does not have to be
* replayed again on the next mount.
*/
and it calls xfs_quiesce_attr(), but by the time we get to
xfs_log_unmount_write(), it returns early for a RDONLY mount:
* Don't write out unmount record on read-only mounts.
Because of this, sequential ro mounts of a filesystem with
a dirty log will replay the log each time, which seems odd.
Fix this by writing an unmount record even for RO mounts, as long
as norecovery wasn't specified (don't write a clean log record
if a dirty log may still be there!) and the log device is
writable.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Pull x86 fixes from Thomas Gleixner:
"Another pile of small fixes and updates for x86:
- Plug a hole in the SMAP implementation which misses to clear AC on
NMI entry
- Fix the norandmaps/ADDR_NO_RANDOMIZE logic so the command line
parameter works correctly again
- Use the proper accessor in the startup64 code for next_early_pgt to
prevent accessing of invalid addresses and faulting in the early
boot code.
- Prevent CPU hotplug lock recursion in the MTRR code
- Unbreak CPU0 hotplugging
- Rename overly long CPUID bits which got introduced in this cycle
- Two commits which mark data 'const' and restrict the scope of data
and functions to file scope by making them 'static'"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Constify attribute_group structures
x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'
x86/elf: Remove the unnecessary ADDR_NO_RANDOMIZE checks
x86: Fix norandmaps/ADDR_NO_RANDOMIZE
x86/mtrr: Prevent CPU hotplug lock recursion
x86: Mark various structures and functions as 'static'
x86/cpufeature, kvm/svm: Rename (shorten) the new "virtualized VMSAVE/VMLOAD" CPUID flag
x86/smpboot: Unbreak CPU0 hotplug
x86/asm/64: Clear AC on NMI entries
- Don't leak resources when mount fails
- Don't accidentally clobber variables when looking for free inodes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZlfFsAAoJEPh/dxk0SrTrTmQP/1Yga+FXQ1vjsyi0SyPRupwd
6beHGDEyLSmYaZKqye8v/nJlNVT8nmJofM20Hyu04f41K4oShQrzrI7jOOscOaYY
jGEpgbx9fpLPD7AupgDvEDcrZyzZD/j3XxoSsOEGe5D6m3t2X0B4RtHz3jtj2s3e
wkaBTE7GpzwrhC+9L+3AAtlpNlwkbjcCz0Wfrqlo8DjvRHTlutbYF51fthLJACtz
U5XgNlxrjQlxGxn4IRHEqxmxWKz2iF4aQHGIX8OEGyt8J3YEO2t3K+nSalWduiBc
mynExqVFIdGddNWoW4au6IKkPEahytsPVAiyt1TQMNvgkOMCO6DfUz+WmyQbd483
2r/xUbMdP78RQsUDXdrIEcTiHs/GEfQmIxUongf/0au3r2wmpQfbqzQuBxhuVbzW
1tQQsDKrO3r+GeEEoBPehtWVF/QPlQvlpT6pfft69kcgp5ukPDvOyOoM0ZEbKy72
zBWEs5O/kHUOBBXXdV2cqazplq3LyLuBMok1y+gUXXOyXfEd2w9LPqmoK3RmqSQ2
FnZc2A6tjko1NDLrSkq/uYRXIGi7ZAfxzqhP0L6XLUnu+kjN/A2Xb6pdfB9Wngl2
8nLVbBL/d28lMVPLJ5M3yxoVcQbIfcNqNA5QmWVCmPUqEwgMQFCsbBdYMKILI0ok
B76xb0VyZBP5l9QJ514S
=vJe/
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.13-fixes-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs fixes from Darrick Wong:
"A handful more bug fixes for you today.
Changes since last time:
- Don't leak resources when mount fails
- Don't accidentally clobber variables when looking for free inodes"
* tag 'xfs-4.13-fixes-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: don't leak quotacheck dquots when cow recovery
xfs: clear MS_ACTIVE after finishing log recovery
iomap: fix integer truncation issues in the zeroing and dirtying helpers
xfs: fix inobt inode allocation search optimization
If we fail a mount on account of cow recovery errors, it's possible that
a previous quotacheck left some dquots in memory. The bailout clause of
xfs_mountfs forgets to purge these, and so we leak them. Fix that.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Way back when we established inode block-map redo log items, it was
discovered that we needed to prevent the VFS from evicting inodes during
log recovery because any given inode might be have bmap redo items to
replay even if the inode has no link count and is ultimately deleted,
and any eviction of an unlinked inode causes the inode to be truncated
and freed too early.
To make this possible, we set MS_ACTIVE so that inodes would not be torn
down immediately upon release. Unfortunately, this also results in the
quota inodes not being released at all if a later part of the mount
process should fail, because we never reclaim the inodes. So, set
MS_ACTIVE right before we do the last part of log recovery and clear it
immediately after we finish the log recovery so that everything
will be torn down properly if we abort the mount.
Fixes: 17c12bcd30 ("xfs: when replaying bmap operations, don't let unlinked inodes get reaped")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Pull quota fix from Jan Kara:
"A fix of a check for quota limit"
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
quota: correct space limit check
Christian Brauner reported that if you use the TIOCGPTPEER ioctl() to
get a slave pty file descriptor, the resulting file descriptor doesn't
look right in /proc/<pid>/fd/<fd>. In particular, he wanted to use
readlink() on /proc/self/fd/<fd> to get the pathname of the slave pty
(basically implementing "ptsname{_r}()").
The reason for that was that we had generated the wrong 'struct path'
when we create the pty in ptmx_open().
In particular, the dentry was correct, but the vfsmount pointed to the
mount of the ptmx node. That _can_ be correct - in case you use
"/dev/pts/ptmx" to open the master - but usually is not. The normal
case is to use /dev/ptmx, which then looks up the pts/ directory, and
then the vfsmount of the ptmx node is obviously the /dev directory, not
the /dev/pts/ directory.
We actually did have the right vfsmount available, but in the wrong
place (it gets looked up in 'devpts_acquire()' when we get a reference
to the pts filesystem), and so ptmx_open() used the wrong mnt pointer.
The end result of this confusion was that the pty worked fine, but when
if you did TIOCGPTPEER to get the slave side of the pty, end end result
would also work, but have that dodgy 'struct path'.
And then when doing "d_path()" on to get the pathname, the vfsmount
would not match the root of the pts directory, and d_path() would return
an empty pathname thinking that the entry had escaped a bind mount into
another mount.
This fixes the problem by making devpts_acquire() return the vfsmount
for the pts filesystem, allowing ptmx_open() to trivially just use the
right mount for the pts dentry, and create the proper 'struct path'.
Reported-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ADDR_NO_RANDOMIZE checks in stack_maxrandom_size() and
randomize_stack_top() are not required.
PF_RANDOMIZE is set by load_elf_binary() only if ADDR_NO_RANDOMIZE is not
set, no need to re-check after that.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20170815154011.GB1076@redhat.com
Fix the min_t calls in the zeroing and dirtying helpers to perform the
comparisms on 64-bit types, which prevents them from incorrectly
being truncated, and larger zeroing operations being stuck in a never
ending loop.
Special thanks to Markus Stockhausen for spotting the bug.
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Tested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we try to allocate a free inode by searching the inobt, we try to
find the inode nearest the parent inode by searching chunks both left
and right of the chunk containing the parent. As an optimization, we
cache the leftmost and rightmost records that we previously searched; if
we do another allocation with the same parent inode, we'll pick up the
search where it last left off.
There's a bug in the case where we found a free inode to the left of the
parent's chunk: we need to update the cached left and right records, but
because we already reassigned the right record to point to the left, we
end up assigning the left record to both the cached left and right
records.
This isn't a correctness problem strictly, but it can result in the next
allocation rechecking chunks unnecessarily or allocating inodes further
away from the parent than it needs to. Fix it by swapping the record
pointer after we update the cached left and right records.
Fixes: bd16956599 ("xfs: speed up free inode search")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Stable fix:
- Fix leaking nfs4_ff_ds_version array
Other fixes:
- Improve TEST_STATEID OLD_STATEID handling to prevent recovery loop
- Require 64-bit sector_t for pNFS blocklayout to prevent 32-bit compile
errors
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEnZ5MQTpR7cLU7KEp18tUv7ClQOsFAlmOFIIACgkQ18tUv7Cl
QOsaUQ/9E7lAP6yYp8HfjIBayN1gcme0ZeGzmWVdP8R9isvqTE0MjrwoNxk7h61H
La/qUcymE32bMX8qYlDs0mw+yhiTcR/UoP5lS/4FCSUZoQsE6BWXoh+O9QlqEcuE
mFbA9SV52Pf5Mdc/bTNKyh7jgCjeqzlu2sRo5LUM+N7G/M2a5RPfJVGVNYpOmVs/
ay30B5tHG/K3eeXECLjFTw3HeMorsS2coTaxtX6RghqPoVF6OFZarMUt69IX3zgg
jBjokz7YfaPSeOEIOapGGRRARHRBAaPE8TvAtRd45R2pMk+Lr12cFWLjT72wRCCM
nXrTpJc+q8feje9YpT5yoKtgRnW6etxKM8dtyYrXG1NO+dfZHNIe2Z1ARplhzhV3
Rt8lBV0N0b7kHZfyMJjYINhAbUxvS8UghRpljuHm4+f1lkoV6cVhKoaat/7MQDwZ
I55M2Edl+A6wPQA7hpFuIT++PVN6GDK7D1rZTKaDBfZ3OCTOQLx0g1kZwHYs/lmk
gvvtkj82RmbIPoG1rbxHTJFoQdVrpVCYAWr4rbgqNvUrZCjxTRmwRmyMpC/M1cXI
noyZ/F+VdVLa0mADKMUmiQJ6QkoHjRIAIqlJbLRRl2VFlWHfu7hUiXk7hqt5ocQW
cpxwird0Fur8cbEKVriRcwNpqGBrDDO7bv1lyQkwEOeHWZ6Fv9o=
=1/Ms
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.13-5' of git://git.linux-nfs.org/projects/anna/linux-nfs
Pull NFS client fixes from Anna Schumaker:
"A few more NFS client bugfixes from me for rc5.
Dros has a stable fix for flexfiles to prevent leaking the
nfs4_ff_ds_version arrays when freeing a layout, Trond fixed a
potential recovery loop situation with the TEST_STATEID operation, and
Christoph fixed up the pNFS blocklayout Kconfig options to prevent
unsafe use with kernels that don't have large block device support.
Summary:
Stable fix:
- fix leaking nfs4_ff_ds_version array
Other fixes:
- improve TEST_STATEID OLD_STATEID handling to prevent recovery loop
- require 64-bit sector_t for pNFS blocklayout to prevent 32-bit
compile errors"
* tag 'nfs-for-4.13-5' of git://git.linux-nfs.org/projects/anna/linux-nfs:
pnfs/blocklayout: require 64-bit sector_t
NFSv4: Ignore NFS4ERR_OLD_STATEID in nfs41_check_open_stateid()
nfs/flexfiles: fix leak of nfs4_ff_ds_version arrays
Pull fuse fixes from Miklos Szeredi:
"Fix a few bugs in fuse"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
fuse: set mapping error in writepage_locked when it fails
fuse: Dont call set_page_dirty_lock() for ITER_BVEC pages for async_dio
fuse: initialize the flock flag in fuse_file on allocation