Commit Graph

604 Commits

Author SHA1 Message Date
Alexander Potapenko
4ebb31a42f mm, kasan: don't call kasan_krealloc() from ksize().
Instead of calling kasan_krealloc(), which replaces the memory
allocation stack ID (if stack depot is used), just unpoison the whole
memory chunk.

Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko
55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Andrew Morton
0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Yang Shi
a3187e438b mm: slab: remove ZONE_DMA_FLAG
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or
not, so ZONE_DMA_FLAG sounds no longer useful.

And, the use of ZONE_DMA_FLAG in slab looks pointless according to the
comment [1] from Johannes Weiner, so remove them and ORing passed in
flags with the cache gfp flags has been done in kmem_getpages().

[1] https://lkml.org/lkml/2014/9/25/553

Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Thomas Garnier
c7ce4f60ac mm: SLAB freelist randomization
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize
the SLAB freelist.  The list is randomized during initialization of a
new set of pages.  The order on different freelist sizes is pre-computed
at boot for performance.  Each kmem_cache has its own randomized
freelist.  Before pre-computed lists are available freelists are
generated dynamically.  This security feature reduces the predictability
of the kernel SLAB allocator against heap overflows rendering attacks
much less stable.

For example this attack against SLUB (also applicable against SLAB)
would be affected:

  https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Also, since v4.6 the freelist was moved at the end of the SLAB.  It
means a controllable heap is opened to new attacks not yet publicly
discussed.  A kernel heap overflow can be transformed to multiple
use-after-free.  This feature makes this type of attack harder too.

To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage.  In the worse case this function
will fallback to the get_random_bytes sub API.  We also generate a shift
random number to shift pre-computed freelist for each new set of pages.

The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.

Performance results highlighted no major changes:

Hackbench (running 90 10 times):

  Before average: 0.0698
  After average: 0.0663 (-5.01%)

slab_test 1 run on boot.  Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization.  New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.

Before:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
  10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
  10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
  10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
  10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
  10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
  10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
  10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
  10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
  10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
  10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
  10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
  2. Kmalloc: alloc/free test
  10000 times kmalloc(8)/kfree -> 121 cycles
  10000 times kmalloc(16)/kfree -> 121 cycles
  10000 times kmalloc(32)/kfree -> 121 cycles
  10000 times kmalloc(64)/kfree -> 121 cycles
  10000 times kmalloc(128)/kfree -> 121 cycles
  10000 times kmalloc(256)/kfree -> 119 cycles
  10000 times kmalloc(512)/kfree -> 119 cycles
  10000 times kmalloc(1024)/kfree -> 119 cycles
  10000 times kmalloc(2048)/kfree -> 119 cycles
  10000 times kmalloc(4096)/kfree -> 121 cycles
  10000 times kmalloc(8192)/kfree -> 119 cycles
  10000 times kmalloc(16384)/kfree -> 119 cycles

After:

  Single thread testing
  =====================
  1. Kmalloc: Repeatedly allocate then free test
  10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
  10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
  10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
  10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
  10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
  10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
  10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
  10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
  10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
  10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
  10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
  10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
  2. Kmalloc: alloc/free test
  10000 times kmalloc(8)/kfree -> 121 cycles
  10000 times kmalloc(16)/kfree -> 121 cycles
  10000 times kmalloc(32)/kfree -> 123 cycles
  10000 times kmalloc(64)/kfree -> 142 cycles
  10000 times kmalloc(128)/kfree -> 121 cycles
  10000 times kmalloc(256)/kfree -> 119 cycles
  10000 times kmalloc(512)/kfree -> 119 cycles
  10000 times kmalloc(1024)/kfree -> 119 cycles
  10000 times kmalloc(2048)/kfree -> 119 cycles
  10000 times kmalloc(4096)/kfree -> 119 cycles
  10000 times kmalloc(8192)/kfree -> 119 cycles
  10000 times kmalloc(16384)/kfree -> 119 cycles

[akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()]
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
801faf0db8 mm/slab: lockless decision to grow cache
To check whether free objects exist or not precisely, we need to grab a
lock.  But, accuracy isn't that important because race window would be
even small and if there is too much free object, cache reaper would reap
it.  So, this patch makes the check for free object exisistence not to
hold a lock.  This will reduce lock contention in heavily allocation
case.

Note that until now, n->shared can be freed during the processing by
writing slabinfo, but, with some trick in this patch, we can access it
freely within interrupt disabled period.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=248/966
  Kmalloc N*alloc N*free(64): Average=261/949
  Kmalloc N*alloc N*free(128): Average=314/1016
  Kmalloc N*alloc N*free(256): Average=741/1061
  Kmalloc N*alloc N*free(512): Average=1246/1152
  Kmalloc N*alloc N*free(1024): Average=2437/1259
  Kmalloc N*alloc N*free(2048): Average=4980/1800
  Kmalloc N*alloc N*free(4096): Average=9000/2078

  * After
  Kmalloc N*alloc N*free(32): Average=344/792
  Kmalloc N*alloc N*free(64): Average=347/882
  Kmalloc N*alloc N*free(128): Average=390/959
  Kmalloc N*alloc N*free(256): Average=393/1067
  Kmalloc N*alloc N*free(512): Average=683/1229
  Kmalloc N*alloc N*free(1024): Average=1295/1325
  Kmalloc N*alloc N*free(2048): Average=2513/1664
  Kmalloc N*alloc N*free(4096): Average=4742/2172

It shows that allocation performance decreases for the object size up to
128 and it may be due to extra checks in cache_alloc_refill().  But,
with considering improvement of free performance, net result looks the
same.  Result for other size class looks very promising, roughly, 50%
performance improvement.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
213b46958c mm/slab: refill cpu cache through a new slab without holding a node lock
Until now, cache growing makes a free slab on node's slab list and then
we can allocate free objects from it.  This necessarily requires to hold
a node lock which is very contended.  If we refill cpu cache before
attaching it to node's slab list, we can avoid holding a node lock as
much as possible because this newly allocated slab is only visible to
the current task.  This will reduce lock contention.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=355/750
  Kmalloc N*alloc N*free(64): Average=452/812
  Kmalloc N*alloc N*free(128): Average=559/1070
  Kmalloc N*alloc N*free(256): Average=1176/980
  Kmalloc N*alloc N*free(512): Average=1939/1189
  Kmalloc N*alloc N*free(1024): Average=3521/1278
  Kmalloc N*alloc N*free(2048): Average=7152/1838
  Kmalloc N*alloc N*free(4096): Average=13438/2013

  * After
  Kmalloc N*alloc N*free(32): Average=248/966
  Kmalloc N*alloc N*free(64): Average=261/949
  Kmalloc N*alloc N*free(128): Average=314/1016
  Kmalloc N*alloc N*free(256): Average=741/1061
  Kmalloc N*alloc N*free(512): Average=1246/1152
  Kmalloc N*alloc N*free(1024): Average=2437/1259
  Kmalloc N*alloc N*free(2048): Average=4980/1800
  Kmalloc N*alloc N*free(4096): Average=9000/2078

It shows that contention is reduced for all the object sizes and
performance increases by 30 ~ 40%.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
76b342bdc7 mm/slab: separate cache_grow() to two parts
This is a preparation step to implement lockless allocation path when
there is no free objects in kmem_cache.

What we'd like to do here is to refill cpu cache without holding a node
lock.  To accomplish this purpose, refill should be done after new slab
allocation but before attaching the slab to the management list.  So,
this patch separates cache_grow() to two parts, allocation and attaching
to the list in order to add some code inbetween them in the following
patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
511e3a0588 mm/slab: make cache_grow() handle the page allocated on arbitrary node
Currently, cache_grow() assumes that allocated page's nodeid would be
same with parameter nodeid which is used for allocation request.  If we
discard this assumption, we can handle fallback_alloc() case gracefully.
So, this patch makes cache_grow() handle the page allocated on arbitrary
node and clean-up relevant code.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
03d1d43a12 mm/slab: racy access/modify the slab color
Slab color isn't needed to be changed strictly.  Because locking for
changing slab color could cause more lock contention so this patch
implements racy access/modify the slab color.  This is a preparation
step to implement lockless allocation path when there is no free objects
in the kmem_cache.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=365/806
  Kmalloc N*alloc N*free(64): Average=452/690
  Kmalloc N*alloc N*free(128): Average=736/886
  Kmalloc N*alloc N*free(256): Average=1167/985
  Kmalloc N*alloc N*free(512): Average=2088/1125
  Kmalloc N*alloc N*free(1024): Average=4115/1184
  Kmalloc N*alloc N*free(2048): Average=8451/1748
  Kmalloc N*alloc N*free(4096): Average=16024/2048

  * After
  Kmalloc N*alloc N*free(32): Average=355/750
  Kmalloc N*alloc N*free(64): Average=452/812
  Kmalloc N*alloc N*free(128): Average=559/1070
  Kmalloc N*alloc N*free(256): Average=1176/980
  Kmalloc N*alloc N*free(512): Average=1939/1189
  Kmalloc N*alloc N*free(1024): Average=3521/1278
  Kmalloc N*alloc N*free(2048): Average=7152/1838
  Kmalloc N*alloc N*free(4096): Average=13438/2013

It shows that contention is reduced for object size >= 1024 and
performance increases by roughly 15%.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
6052b7880a mm/slab: don't keep free slabs if free_objects exceeds free_limit
Currently, determination to free a slab is done whenever each freed
object is put into the slab.  This has a following problem.

Assume free_limit = 10 and nr_free = 9.

Free happens as following sequence and nr_free changes as following.

free(become a free slab) free(not become a free slab) nr_free: 9 -> 10
(at first free) -> 11 (at second free)

If we try to check if we can free current slab or not on each object
free, we can't free any slab in this situation because current slab
isn't a free slab when nr_free exceed free_limit (at second free) even
if there is a free slab.

However, if we check it lastly, we can free 1 free slab.

This problem would cause to keep too much memory in the slab subsystem.
This patch try to fix it by checking number of free object after all
free work is done.  If there is free slab at that time, we can free slab
as much as possible so we keep free slab as minimal.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
c3d332b6b2 mm/slab: clean-up kmem_cache_node setup
There are mostly same code for setting up kmem_cache_node either in
cpuup_prepare() or alloc_kmem_cache_node().  Factor out and clean-up
them.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Nishanth Menon <nm@ti.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
ded0ecf611 mm/slab: factor out kmem_cache_node initialization code
It can be reused on other place, so factor out it.  Following patch will
use it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
a5aa63a5f7 mm/slab: drain the free slab as much as possible
slabs_tofree() implies freeing all free slab.  We can do it with just
providing INT_MAX.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
8888177ea1 mm/slab: remove BAD_ALIEN_MAGIC again
Initial attemp to remove BAD_ALIEN_MAGIC is once reverted by 'commit
edcad25095 ("Revert "slab: remove BAD_ALIEN_MAGIC"")' because it
causes a problem on m68k which has many node but !CONFIG_NUMA.  In this
case, although alien cache isn't used at all but to cope with some
initialization path, garbage value is used and that is BAD_ALIEN_MAGIC.
Now, this patch set use_alien_caches to 0 when !CONFIG_NUMA, there is no
initialization path problem so we don't need BAD_ALIEN_MAGIC at all.  So
remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joonsoo Kim
18726ca8b3 mm/slab: fix the theoretical race by holding proper lock
While processing concurrent allocation, SLAB could be contended a lot
because it did a lots of work with holding a lock.  This patchset try to
reduce the number of critical section to reduce lock contention.  Major
changes are lockless decision to allocate more slab and lockless cpu
cache refill from the newly allocated slab.

Below is the result of concurrent allocation/free in slab allocation
benchmark made by Christoph a long time ago.  I make the output simpler.
The number shows cycle count during alloc/free respectively so less is
better.

  * Before
  Kmalloc N*alloc N*free(32): Average=365/806
  Kmalloc N*alloc N*free(64): Average=452/690
  Kmalloc N*alloc N*free(128): Average=736/886
  Kmalloc N*alloc N*free(256): Average=1167/985
  Kmalloc N*alloc N*free(512): Average=2088/1125
  Kmalloc N*alloc N*free(1024): Average=4115/1184
  Kmalloc N*alloc N*free(2048): Average=8451/1748
  Kmalloc N*alloc N*free(4096): Average=16024/2048

  * After
  Kmalloc N*alloc N*free(32): Average=344/792
  Kmalloc N*alloc N*free(64): Average=347/882
  Kmalloc N*alloc N*free(128): Average=390/959
  Kmalloc N*alloc N*free(256): Average=393/1067
  Kmalloc N*alloc N*free(512): Average=683/1229
  Kmalloc N*alloc N*free(1024): Average=1295/1325
  Kmalloc N*alloc N*free(2048): Average=2513/1664
  Kmalloc N*alloc N*free(4096): Average=4742/2172

It shows that performance improves greatly (roughly more than 50%) for
the object class whose size is more than 128 bytes.

This patch (of 11):

If we don't hold neither the slab_mutex nor the node lock, node's shared
array cache could be freed and re-populated.  If __kmem_cache_shrink()
is called at the same time, it will call drain_array() with n->shared
without holding node lock so problem can happen.  This patch fix the
situation by holding the node lock before trying to drain the shared
array.

In addition, add a debug check to confirm that n->shared access race
doesn't exist.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Alexander Potapenko
505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
7ed2f9e663 mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Joe Perches
1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Mel Gorman
444eb2a449 mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure.  The problem is that
THP allocation requests potentially enter reclaim/compaction.  This
potentially incurs a severe stall that is not guaranteed to be offset by
reduced TLB misses.  While there has been considerable effort to reduce
the impact of reclaim/compaction, it is still a high cost and workloads
that should fit in memory fail to do so.  Specifically, a simple
anon/file streaming workload will enter direct reclaim on NUMA at least
even though the working set size is 80% of RAM.  It's been years and
it's time to throw in the towel.

First, this patch defines THP defrag as follows;

 madvise: A failed allocation will direct reclaim/compact if the application requests it
 never:   Neither reclaim/compact nor wake kswapd
 defer:   A failed allocation will wake kswapd/kcompactd
 always:  A failed allocation will direct reclaim/compact (historical behaviour)
          khugepaged defrag will enter direct/reclaim but not wake kswapd.

Next it sets the default defrag option to be "madvise" to only enter
direct reclaim/compaction for applications that specifically requested
it.

Lastly, it removes a check from the page allocator slowpath that is
related to __GFP_THISNODE to allow "defer" to work.  The callers that
really cares are slub/slab and they are updated accordingly.  The slab
one may be surprising because it also corrects a comment as kswapd was
never woken up by that path.

This means that a THP fault will no longer stall for most applications
by default and the ideal for most users that get THP if they are
immediately available.  There are still options for users that prefer a
stall at startup of a new application by either restoring historical
behaviour with "always" or pick a half-way point with "defer" where
kswapd does some of the work in the background and wakes kcompactd if
necessary.  THP defrag for khugepaged remains enabled and will enter
direct/reclaim but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future.  In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction
is definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times.  The
total size of the mappings is 80% of RAM and the benchmark simply
measures how long it takes to complete.  It uses multiple threads to see
if that is a factor.  On UMA, the performance is almost identical so is
not reported but on NUMA, we see this

usemem
                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Amean    System-1       102.86 (  0.00%)       46.81 ( 54.50%)
Amean    System-4        37.85 (  0.00%)       34.02 ( 10.12%)
Amean    System-7        48.12 (  0.00%)       46.89 (  2.56%)
Amean    System-12       51.98 (  0.00%)       56.96 ( -9.57%)
Amean    System-21       80.16 (  0.00%)       79.05 (  1.39%)
Amean    System-30      110.71 (  0.00%)      107.17 (  3.20%)
Amean    System-48      127.98 (  0.00%)      124.83 (  2.46%)
Amean    Elapsd-1       185.84 (  0.00%)      105.51 ( 43.23%)
Amean    Elapsd-4        26.19 (  0.00%)       25.58 (  2.33%)
Amean    Elapsd-7        21.65 (  0.00%)       21.62 (  0.16%)
Amean    Elapsd-12       18.58 (  0.00%)       17.94 (  3.43%)
Amean    Elapsd-21       17.53 (  0.00%)       16.60 (  5.33%)
Amean    Elapsd-30       17.45 (  0.00%)       17.13 (  1.84%)
Amean    Elapsd-48       15.40 (  0.00%)       15.27 (  0.82%)

For a single thread, the benchmark completes 43.23% faster with this
patch applied with smaller benefits as the thread increases.  Similar,
notice the large reduction in most cases in system CPU usage.  The
overall CPU time is

               4.4.0       4.4.0
        kcompactd-v1r1 nodefrag-v1r3
User        10357.65    10438.33
System       3988.88     3543.94
Elapsed      2203.01     1634.41

Which is substantial. Now, the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 128458477   278352931
Major Faults                   2174976         225
Swap Ins                      16904701           0
Swap Outs                     17359627           0
Allocation stalls                43611           0
DMA allocs                           0           0
DMA32 allocs                  19832646    19448017
Normal allocs                614488453   580941839
Movable allocs                       0           0
Direct pages scanned          24163800           0
Kswapd pages scanned                 0           0
Kswapd pages reclaimed               0           0
Direct pages reclaimed        20691346           0
Compaction stalls                42263           0
Compaction success                 938           0
Compaction failures              41325           0

This patch eliminates almost all swapping and direct reclaim activity.
There is still overhead but it's from NUMA balancing which does not
identify that it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where
compaction can be used heavily and measures the latency of whether base
or huge pages were used

thpscale Fault Latencies
                                       4.4.0                 4.4.0
                              kcompactd-v1r1         nodefrag-v1r3
Amean    fault-base-1      5288.84 (  0.00%)     2817.12 ( 46.73%)
Amean    fault-base-3      6365.53 (  0.00%)     3499.11 ( 45.03%)
Amean    fault-base-5      6526.19 (  0.00%)     4363.06 ( 33.15%)
Amean    fault-base-7      7142.25 (  0.00%)     4858.08 ( 31.98%)
Amean    fault-base-12    13827.64 (  0.00%)    10292.11 ( 25.57%)
Amean    fault-base-18    18235.07 (  0.00%)    13788.84 ( 24.38%)
Amean    fault-base-24    21597.80 (  0.00%)    24388.03 (-12.92%)
Amean    fault-base-30    26754.15 (  0.00%)    19700.55 ( 26.36%)
Amean    fault-base-32    26784.94 (  0.00%)    19513.57 ( 27.15%)
Amean    fault-huge-1      4223.96 (  0.00%)     2178.57 ( 48.42%)
Amean    fault-huge-3      2194.77 (  0.00%)     2149.74 (  2.05%)
Amean    fault-huge-5      2569.60 (  0.00%)     2346.95 (  8.66%)
Amean    fault-huge-7      3612.69 (  0.00%)     2997.70 ( 17.02%)
Amean    fault-huge-12     3301.75 (  0.00%)     6727.02 (-103.74%)
Amean    fault-huge-18     6696.47 (  0.00%)     6685.72 (  0.16%)
Amean    fault-huge-24     8000.72 (  0.00%)     9311.43 (-16.38%)
Amean    fault-huge-30    13305.55 (  0.00%)     9750.45 ( 26.72%)
Amean    fault-huge-32     9981.71 (  0.00%)    10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the majority
of caseds but with the obvious caveat that fewer THPs are actually used
in this adverse workload

                                   4.4.0                 4.4.0
                          kcompactd-v1r1         nodefrag-v1r3
Percentage huge-1         0.71 (  0.00%)       14.04 (1865.22%)
Percentage huge-3        10.77 (  0.00%)       33.05 (206.85%)
Percentage huge-5        60.39 (  0.00%)       38.51 (-36.23%)
Percentage huge-7        45.97 (  0.00%)       34.57 (-24.79%)
Percentage huge-12       68.12 (  0.00%)       40.07 (-41.17%)
Percentage huge-18       64.93 (  0.00%)       47.82 (-26.35%)
Percentage huge-24       62.69 (  0.00%)       44.23 (-29.44%)
Percentage huge-30       43.49 (  0.00%)       55.38 ( 27.34%)
Percentage huge-32       50.72 (  0.00%)       51.90 (  2.35%)

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                  37429143    47564000
Major Faults                      1916        1558
Swap Ins                          1466        1079
Swap Outs                      2936863      149626
Allocation stalls                62510           3
DMA allocs                           0           0
DMA32 allocs                   6566458     6401314
Normal allocs                216361697   216538171
Movable allocs                       0           0
Direct pages scanned          25977580       17998
Kswapd pages scanned                 0     3638931
Kswapd pages reclaimed               0      207236
Direct pages reclaimed         8833714          88
Compaction stalls               103349           5
Compaction success                 270           4
Compaction failures             103079           1

Note again that while this does swap as it's an aggressive workload, the
direct relcim activity and allocation stalls is substantially reduced.
There is some kswapd activity but ftrace showed that the kswapd activity
was due to normal wakeups from 4K pages being allocated.
Compaction-related stalls and activity are almost eliminated.

I also tried the stutter benchmark.  For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is
available

stutter
                                 4.4.0                 4.4.0
                        kcompactd-v1r1         nodefrag-v1r3
Min         mmap      7.3571 (  0.00%)      7.3438 (  0.18%)
1st-qrtle   mmap      7.5278 (  0.00%)     17.9200 (-138.05%)
2nd-qrtle   mmap      7.6818 (  0.00%)     21.6055 (-181.25%)
3rd-qrtle   mmap     11.0889 (  0.00%)     21.8881 (-97.39%)
Max-90%     mmap     27.8978 (  0.00%)     22.1632 ( 20.56%)
Max-93%     mmap     28.3202 (  0.00%)     22.3044 ( 21.24%)
Max-95%     mmap     28.5600 (  0.00%)     22.4580 ( 21.37%)
Max-99%     mmap     29.6032 (  0.00%)     25.5216 ( 13.79%)
Max         mmap   4109.7289 (  0.00%)   4813.9832 (-17.14%)
Mean        mmap     12.4474 (  0.00%)     19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is a
heavy IO load -- a scenario that desktop users used to complain about
frequently.  This shows a mix because the ideal case of mapping with THP
is not hit as often.  However, note that 99% of the mappings complete
13.79% faster.  The CPU usage here is particularly interesting

               4.4.0       4.4.0
        kcompactd-v1r1nodefrag-v1r3
User           67.50        0.99
System       1327.88       91.30
Elapsed      2079.00     2128.98

And once again we look at the reclaim figures

                                 4.4.0       4.4.0
                          kcompactd-v1r1nodefrag-v1r3
Minor Faults                 335241922  1314582827
Major Faults                       715         819
Swap Ins                             0           0
Swap Outs                            0           0
Allocation stalls               532723           0
DMA allocs                           0           0
DMA32 allocs                1822364341  1177950222
Normal allocs               1815640808  1517844854
Movable allocs                       0           0
Direct pages scanned          21892772           0
Kswapd pages scanned          20015890    41879484
Kswapd pages reclaimed        19961986    41822072
Direct pages reclaimed        21892741           0
Compaction stalls              1065755           0
Compaction success                 514           0
Compaction failures            1065241           0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available.  We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
27ee57c93f mm: memcontrol: report slab usage in cgroup2 memory.stat
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
5b3810e5c6 mm, sl[au]b: print gfp_flags as strings in slab_out_of_memory()
We can now print gfp_flags more human-readable.  Make use of this in
slab_out_of_memory() for SLUB and SLAB.  Also convert the SLAB variant
it to pr_warn() along the way.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
f68f8dddb5 mm/slab: re-implement pfmemalloc support
Current implementation of pfmemalloc handling in SLAB has some problems.

1) pfmemalloc_active is set to true when there is just one or more
   pfmemalloc slabs in the system, but it is cleared when there is no
   pfmemalloc slab in one arbitrary kmem_cache.  So, pfmemalloc_active
   could be wrongly cleared.

2) Search to partial and free list doesn't happen when non-pfmemalloc
   object are not found in cpu cache.  Instead, allocating new slab
   happens and it is not optimal.

3) Even after sk_memalloc_socks() is disabled, cpu cache would keep
   pfmemalloc objects tagged with SLAB_OBJ_PFMEMALLOC.  It isn't cleared
   if sk_memalloc_socks() is disabled so it could cause problem.

4) If cpu cache is filled with pfmemalloc objects, it would cause slow
   down non-pfmemalloc allocation.

To me, current pointer tagging approach looks complex and fragile so this
patch re-implement whole thing instead of fixing problems one by one.

Design principle for new implementation is that

1) Don't disrupt non-pfmemalloc allocation in fast path even if
   sk_memalloc_socks() is enabled.  It's more likely case than pfmemalloc
   allocation.

2) Ensure that pfmemalloc slab is used only for pfmemalloc allocation.

3) Don't consider performance of pfmemalloc allocation in memory
   deficiency state.

As a result, all pfmemalloc alloc/free in memory tight state will be
handled in slow-path.  If there is non-pfmemalloc free object, it will be
returned first even for pfmemalloc user in fast-path so that performance
of pfmemalloc user isn't affected in normal case and pfmemalloc objects
will be kept as long as possible.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
70f75067b1 mm/slab: avoid returning values by reference
Returing values by reference is bad practice.  Instead, just use
function return value.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Suggested-by: Christoph Lameter <cl@linux.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
b03a017beb mm/slab: introduce new slab management type, OBJFREELIST_SLAB
SLAB needs an array to manage freed objects in a slab.  It is only used
if some objects are freed so we can use free object itself as this
array.  This requires additional branch in somewhat critical lock path
to check if it is first freed object or not but that's all we need.
Benefits is that we can save extra memory usage and reduce some
computational overhead by allocating a management array when new slab is
created.

Code change is rather complex than what we can expect from the idea, in
order to handle debugging feature efficiently.  If you want to see core
idea only, please remove '#if DEBUG' block in the patch.

Although this idea can apply to all caches whose size is larger than
management array size, it isn't applied to caches which have a
constructor.  If such cache's object is used for management array,
constructor should be called for it before that object is returned to
user.  I guess that overhead overwhelm benefit in that case so this idea
doesn't applied to them at least now.

For summary, from now on, slab management type is determined by
following logic.

1) if management array size is smaller than object size and no ctor, it
   becomes OBJFREELIST_SLAB.

2) if management array size is smaller than leftover, it becomes
   NORMAL_SLAB which uses leftover as a array.

3) if OFF_SLAB help to save memory than way 4), it becomes OFF_SLAB.
   It allocate a management array from the other cache so memory waste
   happens.

4) others become NORMAL_SLAB.  It uses dedicated internal memory in a
   slab as a management array so it causes memory waste.

In my system, without enabling CONFIG_DEBUG_SLAB, Almost caches become
OBJFREELIST_SLAB and NORMAL_SLAB (using leftover) which doesn't waste
memory.  Following is the result of number of caches with specific slab
management type.

TOTAL = OBJFREELIST + NORMAL(leftover) + NORMAL + OFF

/Before/
126 = 0 + 60 + 25 + 41

/After/
126 = 97 + 12 + 15 + 2

Result shows that number of caches that doesn't waste memory increase
from 60 to 109.

I did some benchmarking and it looks that benefit are more than loss.

Kmalloc: Repeatedly allocate then free test

/Before/
[    0.286809] 1. Kmalloc: Repeatedly allocate then free test
[    1.143674] 100000 times kmalloc(32) -> 116 cycles kfree -> 78 cycles
[    1.441726] 100000 times kmalloc(64) -> 121 cycles kfree -> 80 cycles
[    1.815734] 100000 times kmalloc(128) -> 168 cycles kfree -> 85 cycles
[    2.380709] 100000 times kmalloc(256) -> 287 cycles kfree -> 95 cycles
[    3.101153] 100000 times kmalloc(512) -> 370 cycles kfree -> 117 cycles
[    3.942432] 100000 times kmalloc(1024) -> 413 cycles kfree -> 156 cycles
[    5.227396] 100000 times kmalloc(2048) -> 622 cycles kfree -> 248 cycles
[    7.519793] 100000 times kmalloc(4096) -> 1102 cycles kfree -> 452 cycles

/After/
[    1.205313] 100000 times kmalloc(32) -> 117 cycles kfree -> 78 cycles
[    1.510526] 100000 times kmalloc(64) -> 124 cycles kfree -> 81 cycles
[    1.827382] 100000 times kmalloc(128) -> 130 cycles kfree -> 84 cycles
[    2.226073] 100000 times kmalloc(256) -> 177 cycles kfree -> 92 cycles
[    2.814747] 100000 times kmalloc(512) -> 286 cycles kfree -> 112 cycles
[    3.532952] 100000 times kmalloc(1024) -> 344 cycles kfree -> 141 cycles
[    4.608777] 100000 times kmalloc(2048) -> 519 cycles kfree -> 210 cycles
[    6.350105] 100000 times kmalloc(4096) -> 789 cycles kfree -> 391 cycles

In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object.  It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit.  So, this
patch doesn't include it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
10b2e9e8e8 mm/slab: factor out debugging initialization in cache_init_objs()
cache_init_objs() will be changed in following patch and current form
doesn't fit well for that change.  So, before doing it, this patch
separates debugging initialization.  This would cause two loop iteration
when debugging is enabled, but, this overhead seems too light than debug
feature itself so effect may not be visible.  This patch will greatly
simplify changes in cache_init_objs() in following patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
d8410234db mm/slab: factor out slab list fixup code
Slab list should be fixed up after object is detached from the slab and
this happens at two places.  They do exactly same thing.  They will be
changed in the following patch, so, to reduce code duplication, this
patch factor out them and make it common function.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
3217fd9bdf mm/slab: make criteria for off slab determination robust and simple
To become an off slab, there are some constraints to avoid bootstrapping
problem and recursive call.  This can be avoided differently by simply
checking that corresponding kmalloc cache is ready and it's not a off
slab.  It would be more robust because static size checking can be
affected by cache size change or architecture type but dynamic checking
isn't.

One check 'freelist_cache->size > cachep->size / 2' is added to check
benefit of choosing off slab, because, now, there is no size constraint
which ensures enough advantage when selecting off slab.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
f3a3c320d5 mm/slab: do not change cache size if debug pagealloc isn't possible
We can fail to setup off slab in some conditions.  Even in this case,
debug pagealloc increases cache size to PAGE_SIZE in advance and it is
waste because debug pagealloc cannot work for it when it isn't the off
slab.  To improve this situation, this patch checks first that this
cache with increased size is suitable for off slab.  It actually
increases cache size when it is suitable for off-slab, so possible waste
is removed.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
158e319bba mm/slab: clean up cache type determination
Current cache type determination code is open-code and looks not
understandable.  Following patch will introduce one more cache type and
it would make code more complex.  So, before it happens, this patch
abstracts these codes.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
832a15d209 mm/slab: align cache size first before determination of OFF_SLAB candidate
Finding suitable OFF_SLAB candidate is more related to aligned cache
size rather than original size.  Same reasoning can be applied to the
debug pagealloc candidate.  So, this patch moves up alignment fixup to
proper position.  From that point, size is aligned so we can remove some
alignment fixups.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
2e6b360216 mm/slab: put the freelist at the end of slab page
Currently, the freelist is at the front of slab page.  This requires
extra space to meet object alignment requirement.  If we put the
freelist at the end of a slab page, objects could start at page boundary
and will be at correct alignment.  This is possible because freelist has
no alignment constraint itself.

This gives us two benefits: It removes extra memory space for the
freelist alignment and remove complex calculation at cache
initialization step.  I can't think notable drawback here.

I mentioned that this would reduce extra memory space, but, this benefit
is rather theoretical because it can be applied to very few cases.
Following is the example cache type that can get benefit from this
change.

  size align num before after
    32    8  124  4100  4092
    64    8   63  4103  4095
    88    8   46  4102  4094
   272    8   15  4103  4095
   408    8   10  4098  4090
    32   16  124  4108  4092
    64   16   63  4111  4095
    32   32  124  4124  4092
    64   32   63  4127  4095
    96   32   42  4106  4074

before means whole size for objects and aligned freelist before applying
patch and after shows the result of this patch.

Since before is more than 4096, number of object should decrease and
memory waste happens.

Anyway, this patch removes complex calculation so looks beneficial to
me.

[akpm@linux-foundation.org: fix kerneldoc]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
249247b6f8 mm/slab: remove object status buffer for DEBUG_SLAB_LEAK
Now, we don't use object status buffer in any setup. Remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
d31676dfde mm/slab: alternative implementation for DEBUG_SLAB_LEAK
DEBUG_SLAB_LEAK is a debug option.  It's current implementation requires
status buffer so we need more memory to use it.  And, it cause
kmem_cache initialization step more complex.

To remove this extra memory usage and to simplify initialization step,
this patch implement this feature with another way.

When user requests to get slab object owner information, it marks that
getting information is started.  And then, all free objects in caches
are flushed to corresponding slab page.  Now, we can distinguish all
freed object so we can know all allocated objects, too.  After
collecting slab object owner information on allocated objects, mark is
checked that there is no free during the processing.  If true, we can be
sure that our information is correct so information is returned to user.

Although this way is rather complex, it has two important benefits
mentioned above.  So, I think it is worth changing.

There is one drawback that it takes more time to get slab object owner
information but it is just a debug option so it doesn't matter at all.

To help review, this patch implements new way only.  Following patch
will remove useless code.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
40b4413797 mm/slab: clean up DEBUG_PAGEALLOC processing code
Currently, open code for checking DEBUG_PAGEALLOC cache is spread to
some sites.  It makes code unreadable and hard to change.

This patch cleans up this code.  The following patch will change the
criteria for DEBUG_PAGEALLOC cache so this clean-up will help it, too.

[akpm@linux-foundation.org: fix build with CONFIG_DEBUG_PAGEALLOC=n]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
40323278b5 mm/slab: use more appropriate condition check for debug_pagealloc
debug_pagealloc debugging is related to SLAB_POISON flag rather than
FORCED_DEBUG option, although FORCED_DEBUG option will enable
SLAB_POISON.  Fix it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
a307ebd468 mm/slab: activate debug_pagealloc in SLAB when it is actually enabled
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
260b61dd46 mm/slab: remove the checks for slab implementation bug
Some of "#if DEBUG" are for reporting slab implementation bug rather
than user usecase bug.  It's not really needed because slab is stable
for a quite long time and it makes code too dirty.  This patch remove
it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
6fb924304a mm/slab: remove useless structure define
It is obsolete so remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
12c61fe9b7 mm/slab: fix stale code comment
This patchset implements a new freed object management way, that is,
OBJFREELIST_SLAB.  Purpose of it is to reduce memory overhead in SLAB.

SLAB needs a array to manage freed objects in a slab.  If there is
leftover after objects are packed into a slab, we can use it as a
management array, and, in this case, there is no memory waste.  But, in
the other cases, we need to allocate extra memory for a management array
or utilize dedicated internal memory in a slab for it.  Both cases
causes memory waste so it's not good.

With this patchset, freed object itself can be used for a management
array.  So, memory waste could be reduced.  Detailed idea and numbers
are described in last patch's commit description.  Please refer it.

In fact, I tested another idea implementing OBJFREELIST_SLAB with
extendable linked array through another freed object.  It can remove
memory waste completely but it causes more computational overhead in
critical lock path and it seems that overhead outweigh benefit.  So,
this patchset doesn't include it.  I will attach prototype just for a
reference.

This patch (of 16):

We use freelist_idx_t type for free object management whose size would be
smaller than size of unsigned int.  Fix it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
ca25719551 mm: new API kfree_bulk() for SLAB+SLUB allocators
This patch introduce a new API call kfree_bulk() for bulk freeing memory
objects not bound to a single kmem_cache.

Christoph pointed out that it is possible to implement freeing of
objects, without knowing the kmem_cache pointer as that information is
available from the object's page->slab_cache.  Proposing to remove the
kmem_cache argument from the bulk free API.

Jesper demonstrated that these extra steps per object comes at a
performance cost.  It is only in the case CONFIG_MEMCG_KMEM is compiled
in and activated runtime that these steps are done anyhow.  The extra
cost is most visible for SLAB allocator, because the SLUB allocator does
the page lookup (virt_to_head_page()) anyhow.

Thus, the conclusion was to keep the kmem_cache free bulk API with a
kmem_cache pointer, but we can still implement a kfree_bulk() API fairly
easily.  Simply by handling if kmem_cache_free_bulk() gets called with a
kmem_cache NULL pointer.

This does increase the code size a bit, but implementing a separate
kfree_bulk() call would likely increase code size even more.

Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K
@ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y.

Code size increase for SLAB:

 add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74)
 function                                     old     new   delta
 kmem_cache_free_bulk                         660     734     +74

SLAB fastpath: 87 cycles(tsc) 21.814
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 - 103 cycles 25.878 ns -  41 cycles 10.498 ns - 81 cycles 20.312 ns
   2 -  94 cycles 23.673 ns -  26 cycles  6.682 ns - 42 cycles 10.649 ns
   3 -  92 cycles 23.181 ns -  21 cycles  5.325 ns - 39 cycles 9.950 ns
   4 -  90 cycles 22.727 ns -  18 cycles  4.673 ns - 26 cycles 6.693 ns
   8 -  89 cycles 22.270 ns -  14 cycles  3.664 ns - 23 cycles 5.835 ns
  16 -  88 cycles 22.038 ns -  14 cycles  3.503 ns - 22 cycles 5.543 ns
  30 -  89 cycles 22.284 ns -  13 cycles  3.310 ns - 20 cycles 5.197 ns
  32 -  88 cycles 22.249 ns -  13 cycles  3.420 ns - 20 cycles 5.166 ns
  34 -  88 cycles 22.224 ns -  14 cycles  3.643 ns - 20 cycles 5.170 ns
  48 -  88 cycles 22.088 ns -  14 cycles  3.507 ns - 20 cycles 5.203 ns
  64 -  88 cycles 22.063 ns -  13 cycles  3.428 ns - 20 cycles 5.152 ns
 128 -  89 cycles 22.483 ns -  15 cycles  3.891 ns - 23 cycles 5.885 ns
 158 -  89 cycles 22.381 ns -  15 cycles  3.779 ns - 22 cycles 5.548 ns
 250 -  91 cycles 22.798 ns -  16 cycles  4.152 ns - 23 cycles 5.967 ns

SLAB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0)
 1 - 148 cycles 37.220 ns -  66 cycles 16.622 ns - 66 cycles 16.583 ns
 2 - 141 cycles 35.510 ns -  51 cycles 12.820 ns - 58 cycles 14.625 ns
 3 - 140 cycles 35.017 ns -  37 cycles 9.326 ns - 33 cycles 8.474 ns
 4 - 137 cycles 34.507 ns -  31 cycles 7.888 ns - 33 cycles 8.300 ns
 8 - 140 cycles 35.069 ns -  25 cycles 6.461 ns - 25 cycles 6.436 ns
 16 - 138 cycles 34.542 ns -  23 cycles 5.945 ns - 22 cycles 5.670 ns
 30 - 136 cycles 34.227 ns -  22 cycles 5.502 ns - 22 cycles 5.587 ns
 32 - 136 cycles 34.253 ns -  21 cycles 5.475 ns - 21 cycles 5.324 ns
 34 - 136 cycles 34.254 ns -  21 cycles 5.448 ns - 20 cycles 5.194 ns
 48 - 136 cycles 34.075 ns -  21 cycles 5.458 ns - 21 cycles 5.367 ns
 64 - 135 cycles 33.994 ns -  21 cycles 5.350 ns - 21 cycles 5.259 ns
 128 - 137 cycles 34.446 ns -  23 cycles 5.816 ns - 22 cycles 5.688 ns
 158 - 137 cycles 34.379 ns -  22 cycles 5.727 ns - 22 cycles 5.602 ns
 250 - 138 cycles 34.755 ns -  24 cycles 6.093 ns - 23 cycles 5.986 ns

Code size increase for SLUB:
 function                                     old     new   delta
 kmem_cache_free_bulk                         717     799     +82

SLUB benchmark:
 SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0)
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 -  61 cycles 15.486 ns -  53 cycles 13.364 ns - 57 cycles 14.464 ns
   2 -  54 cycles 13.703 ns -  32 cycles  8.110 ns - 33 cycles 8.482 ns
   3 -  53 cycles 13.272 ns -  25 cycles  6.362 ns - 27 cycles 6.947 ns
   4 -  51 cycles 12.994 ns -  24 cycles  6.087 ns - 24 cycles 6.078 ns
   8 -  50 cycles 12.576 ns -  21 cycles  5.354 ns - 22 cycles 5.513 ns
  16 -  49 cycles 12.368 ns -  20 cycles  5.054 ns - 20 cycles 5.042 ns
  30 -  49 cycles 12.273 ns -  18 cycles  4.748 ns - 19 cycles 4.758 ns
  32 -  49 cycles 12.401 ns -  19 cycles  4.821 ns - 19 cycles 4.810 ns
  34 -  98 cycles 24.519 ns -  24 cycles  6.154 ns - 24 cycles 6.157 ns
  48 -  83 cycles 20.833 ns -  21 cycles  5.446 ns - 21 cycles 5.429 ns
  64 -  75 cycles 18.891 ns -  20 cycles  5.247 ns - 20 cycles 5.238 ns
 128 -  93 cycles 23.271 ns -  27 cycles  6.856 ns - 27 cycles 6.823 ns
 158 - 102 cycles 25.581 ns -  30 cycles  7.714 ns - 30 cycles 7.695 ns
 250 - 107 cycles 26.917 ns -  38 cycles  9.514 ns - 38 cycles 9.506 ns

SLUB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0)
 1 - 85 cycles 21.484 ns -  78 cycles 19.569 ns - 75 cycles 18.938 ns
 2 - 81 cycles 20.363 ns -  45 cycles 11.258 ns - 44 cycles 11.076 ns
 3 - 78 cycles 19.709 ns -  33 cycles 8.354 ns - 32 cycles 8.044 ns
 4 - 77 cycles 19.430 ns -  28 cycles 7.216 ns - 28 cycles 7.003 ns
 8 - 101 cycles 25.288 ns -  23 cycles 5.849 ns - 23 cycles 5.787 ns
 16 - 76 cycles 19.148 ns -  20 cycles 5.162 ns - 20 cycles 5.081 ns
 30 - 76 cycles 19.067 ns -  19 cycles 4.868 ns - 19 cycles 4.821 ns
 32 - 76 cycles 19.052 ns -  19 cycles 4.857 ns - 19 cycles 4.815 ns
 34 - 121 cycles 30.291 ns -  25 cycles 6.333 ns - 25 cycles 6.268 ns
 48 - 108 cycles 27.111 ns -  21 cycles 5.498 ns - 21 cycles 5.458 ns
 64 - 100 cycles 25.164 ns -  20 cycles 5.242 ns - 20 cycles 5.229 ns
 128 - 155 cycles 38.976 ns -  27 cycles 6.886 ns - 27 cycles 6.892 ns
 158 - 132 cycles 33.034 ns -  30 cycles 7.711 ns - 30 cycles 7.728 ns
 250 - 130 cycles 32.612 ns -  38 cycles 9.560 ns - 38 cycles 9.549 ns

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
e6cdb58d1c slab: implement bulk free in SLAB allocator
This patch implements the free side of bulk API for the SLAB allocator
kmem_cache_free_bulk(), and concludes the implementation of optimized
bulk API for SLAB allocator.

Benchmarked[1] cost of alloc+free (obj size 256 bytes) on CPU i7-4790K @
4.00GHz, with no debug options, no PREEMPT and CONFIG_MEMCG_KMEM=y but
no active user of kmemcg.

SLAB single alloc+free cost: 87 cycles(tsc) 21.814 ns with this
optimized config.

bulk- Current fallback          - optimized SLAB bulk
  1 - 102 cycles(tsc) 25.747 ns - 41 cycles(tsc) 10.490 ns - improved 59.8%
  2 -  94 cycles(tsc) 23.546 ns - 26 cycles(tsc)  6.567 ns - improved 72.3%
  3 -  92 cycles(tsc) 23.127 ns - 20 cycles(tsc)  5.244 ns - improved 78.3%
  4 -  90 cycles(tsc) 22.663 ns - 18 cycles(tsc)  4.588 ns - improved 80.0%
  8 -  88 cycles(tsc) 22.242 ns - 14 cycles(tsc)  3.656 ns - improved 84.1%
 16 -  88 cycles(tsc) 22.010 ns - 13 cycles(tsc)  3.480 ns - improved 85.2%
 30 -  89 cycles(tsc) 22.305 ns - 13 cycles(tsc)  3.303 ns - improved 85.4%
 32 -  89 cycles(tsc) 22.277 ns - 13 cycles(tsc)  3.309 ns - improved 85.4%
 34 -  88 cycles(tsc) 22.246 ns - 13 cycles(tsc)  3.294 ns - improved 85.2%
 48 -  88 cycles(tsc) 22.121 ns - 13 cycles(tsc)  3.492 ns - improved 85.2%
 64 -  88 cycles(tsc) 22.052 ns - 13 cycles(tsc)  3.411 ns - improved 85.2%
128 -  89 cycles(tsc) 22.452 ns - 15 cycles(tsc)  3.841 ns - improved 83.1%
158 -  89 cycles(tsc) 22.403 ns - 14 cycles(tsc)  3.746 ns - improved 84.3%
250 -  91 cycles(tsc) 22.775 ns - 16 cycles(tsc)  4.111 ns - improved 82.4%

Notice it is not recommended to do very large bulk operation with
this bulk API, because local IRQs are disabled in this period.

[1] https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/mm/slab_bulk_test01.c

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
7b0501dd6b slab: avoid running debug SLAB code with IRQs disabled for alloc_bulk
Move the call to cache_alloc_debugcheck_after() outside the IRQ disabled
section in kmem_cache_alloc_bulk().

When CONFIG_DEBUG_SLAB is disabled the compiler should remove this code.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
2a777eac17 slab: implement bulk alloc in SLAB allocator
This patch implements the alloc side of bulk API for the SLAB allocator.

Further optimization are still possible by changing the call to
__do_cache_alloc() into something that can return multiple objects.
This optimization is left for later, given end results already show in
the area of 80% speedup.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
d5e3ed66d6 slab: use slab_post_alloc_hook in SLAB allocator shared with SLUB
Reviewers notice that the order in slab_post_alloc_hook() of
kmemcheck_slab_alloc() and kmemleak_alloc_recursive() gets swapped
compared to slab.c / SLAB allocator.

Also notice memset now occurs before calling kmemcheck_slab_alloc() and
kmemleak_alloc_recursive().

I assume this reordering of kmemcheck, kmemleak and memset is okay
because this is the order they are used by the SLUB allocator.

This patch completes the sharing of alloc_hook's between SLUB and SLAB.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
011eceaf0a slab: use slab_pre_alloc_hook in SLAB allocator shared with SLUB
Deduplicate code in SLAB allocator functions slab_alloc() and
slab_alloc_node() by using the slab_pre_alloc_hook() call, which is now
shared between SLUB and SLAB.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
fab9963a69 mm: fault-inject take over bootstrap kmem_cache check
Remove the SLAB specific function slab_should_failslab(), by moving the
check against fault-injection for the bootstrap slab, into the shared
function should_failslab() (used by both SLAB and SLUB).

This is a step towards sharing alloc_hook's between SLUB and SLAB.

This bootstrap slab "kmem_cache" is used for allocating struct
kmem_cache objects to the allocator itself.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Dmitry Safonov
52b4b950b5 mm: slab: free kmem_cache_node after destroy sysfs file
When slub_debug alloc_calls_show is enabled we will try to track
location and user of slab object on each online node, kmem_cache_node
structure and cpu_cache/cpu_slub shouldn't be freed till there is the
last reference to sysfs file.

This fixes the following panic:

   BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
   IP:  list_locations+0x169/0x4e0
   PGD 257304067 PUD 438456067 PMD 0
   Oops: 0000 [#1] SMP
   CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30
   Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011
   task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000
   RIP: list_locations+0x169/0x4e0
   Call Trace:
     alloc_calls_show+0x1d/0x30
     slab_attr_show+0x1b/0x30
     sysfs_read_file+0x9a/0x1a0
     vfs_read+0x9c/0x170
     SyS_read+0x58/0xb0
     system_call_fastpath+0x16/0x1b
   Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10
   CR2: 0000000000000020

Separated __kmem_cache_release from __kmem_cache_shutdown which now
called on slab_kmem_cache_release (after the last reference to sysfs
file object has dropped).

Reintroduced locking in free_partial as sysfs file might access cache's
partial list after shutdowning - partial revert of the commit
69cb8e6b7c ("slub: free slabs without holding locks").  Zap
__remove_partial and use remove_partial (w/o underscores) as
free_partial now takes list_lock which s partial revert for commit
1e4dd9461f ("slub: do not assert not having lock in removing freed
partial")

Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Geliang Tang
7aa0d22785 mm/slab.c: add a helper function get_first_slab
Add a new helper function get_first_slab() that get the first slab from
a kmem_cache_node.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00