Pull the clockevents/clocksource tree from Daniel Lezcano:
- Convert the clocksource-probe init functions to return a value in order to
prepare the consolidation of the drivers using the DT. It is a big patchset
but went through 01.org (kbuild bot), linux next and kernel-ci (continuous
integration) (Daniel Lezcano)
- Fix a bad error handling by returning the right value for cadence_ttc
(Christophe Jaillet)
- Fix typo in the Kconfig for the Samsung pwm (Alexandre Belloni)
- Change functions to static for armada-370-xp and digicolor (Ben Dooks)
- Add support for the rk3399 SoC timer by adding bindings and a slight
change in the base address. Take the opportunity to add the DYNIRQ flag
(Huang Tao)
- Fix endian accessors for the Samsung pwm timer (Matthew Leach)
- Add Oxford Semiconductor RPS Dual Timer driver (Neil Armstrong)
- Add a kernel parameter to swich on/off the event stream feature of the arch
arm timer (Will Deacon)
All the clocksource drivers's init function are now converted to return
an error code. CLOCKSOURCE_OF_DECLARE is no longer used as well as the
clksrc-of table.
Let's convert back the names:
- CLOCKSOURCE_OF_DECLARE_RET => CLOCKSOURCE_OF_DECLARE
- clksrc-of-ret => clksrc-of
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
For exynos_mct and samsung_pwm_timer:
Acked-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
For arch/arc:
Acked-by: Vineet Gupta <vgupta@synopsys.com>
For mediatek driver:
Acked-by: Matthias Brugger <matthias.bgg@gmail.com>
For the Rockchip-part
Acked-by: Heiko Stuebner <heiko@sntech.de>
For STi :
Acked-by: Patrice Chotard <patrice.chotard@st.com>
For the mps2-timer.c and versatile.c changes:
Acked-by: Liviu Dudau <Liviu.Dudau@arm.com>
For the OXNAS part :
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
For LPC32xx driver:
Acked-by: Sylvain Lemieux <slemieux.tyco@gmail.com>
For Broadcom Kona timer change:
Acked-by: Ray Jui <ray.jui@broadcom.com>
For Sun4i and Sun5i:
Acked-by: Chen-Yu Tsai <wens@csie.org>
For Meson6:
Acked-by: Carlo Caione <carlo@caione.org>
For Keystone:
Acked-by: Santosh Shilimkar <ssantosh@kernel.org>
For NPS:
Acked-by: Noam Camus <noamca@mellanox.com>
For bcm2835:
Acked-by: Eric Anholt <eric@anholt.net>
The init functions do not return any error. They behave as the following:
- panic, thus leading to a kernel crash while another timer may work and
make the system boot up correctly
or
- print an error and let the caller unaware if the state of the system
Change that by converting the init functions to return an error conforming
to the CLOCKSOURCE_OF_RET prototype.
Proper error handling (rollback, errno value) will be changed later case
by case, thus this change just return back an error or success in the init
function.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
- Fix dra7 for hardware issues limiting L4Per and L3init power domains
to on state. Without this the devices may not work correctly after
some time of use because of asymmetric aging. And related to this,
let's also remove the unusable states.
- Always select omap interconnect for am43x as otherwise the am43x
only configurations will not boot properly. This can happen easily
for any product kernels that leave out other SoCs to save memory.
- Fix DSS PLL2 addresses that have gone unused for now
- Select erratum 430973 for omap3, this is now safe to do and can
save quite a bit of debugging time for people who may have left
it out.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXXm6cAAoJEBvUPslcq6VzgiAP/3j+Zvaks93gLf0Hc1sQ5ow+
UxQ3Gb3/gVGEh1OSb/c4MI800UBK1B0f6CqLK7zDFAuDHyUwmqJ27nrARfazoMPD
DxRYZoEs897peB0/SWwDtHR+yje5UmIB0P31kRJ+t5nYwXBKvmvkWPFrOISxgI1Z
yLc62tFoVy37IYfeH6pRNwMyJz9scl4qXjiBCHTmBQvgo4I3IPpvhFAWN5YMBZlz
VwXDtmR9B/WlcRYel+RplYQrQrXVvaaT01wTPfejKHI9dyNQmbJQDWFMuuvdQKjE
O7yjcgR6DdWjdDwCmIHLuc2FyrwW+wt1AY/5UXKGroxfW6Ct3JKuhUPPxsHfRMKX
2NnQtgUcUxiIAGrsEZFadUAIEedd+DBVK+aztn1reaaHR1R/pBnMcEnch9WRuAOQ
srOaaL2Had/NG+QRE0psgck9ayzpDHw+LMd18BckCN+1mIiFBnXYZrCVUPrutgPP
5RbDWIeSVeAwbdaxPRqkXOcMGZ1MDRGoS+UBlTms+gWuSLjFj6sye0+Dao+68Ehz
im/xhh0YCHgN0TvuvTla5BgLgOunlCNtXMNWyg801lDIvzOj/ngEQlasng9uzuri
mfGf5w8ctub0Ileq4eU+rYb+bRDiDagjmiVBjbRmLWtgOUcsrNr+FX9sp5NDELmS
oEa/VB8jNmI3aSv6OrNi
=mQyc
-----END PGP SIGNATURE-----
Merge tag 'omap-for-v4.7/fixes-powedomain' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap into fixes
Fixes for omaps for v4.7-rc cycle:
- Fix dra7 for hardware issues limiting L4Per and L3init power domains
to on state. Without this the devices may not work correctly after
some time of use because of asymmetric aging. And related to this,
let's also remove the unusable states.
- Always select omap interconnect for am43x as otherwise the am43x
only configurations will not boot properly. This can happen easily
for any product kernels that leave out other SoCs to save memory.
- Fix DSS PLL2 addresses that have gone unused for now
- Select erratum 430973 for omap3, this is now safe to do and can
save quite a bit of debugging time for people who may have left
it out.
* tag 'omap-for-v4.7/fixes-powedomain' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap:
ARM: OMAP: DRA7: powerdomain data: Remove unused pwrsts_mem_ret
ARM: OMAP: DRA7: powerdomain data: Remove unused pwrsts_logic_ret
ARM: OMAP: DRA7: powerdomain data: Set L3init and L4per to ON
ARM: OMAP2+: Select OMAP_INTERCONNECT for SOC_AM43XX
ARM: dts: DRA74x: fix DSS PLL2 addresses
ARM: OMAP2: Enable Errata 430973 for OMAP3
+ Linux 4.7-rc2
Signed-off-by: Olof Johansson <olof@lixom.net>
- Two boot warning fixes from the RCU tree that should have gotten
merged several weeks ago already but did not because of issues
with who merges them. Paul has now split the RCU warning fixes into
sets for various maintainers.
- Fix ams-delta FIQ regression caused by omap1 sparse IRQ changes
- Fix PM for omap3 boards using timer12 and gptimer, like the
original beagleboard
- Fix hangs on am437x-sk-evm by lowering the I2C bus speed
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXY8wuAAoJEBvUPslcq6VzGBQQAJ6OIH0Gws19Wyi8IqnjMLJN
npu+JXU0xP5bBZ+HbCVjyN8k32drhXdwDMQ+u1DvBYwUuyLIIRZPZF4aHb8fDfOC
v1VqUzQRzj1FCh9MlkdqTedA180WCo5PCGlFOon0BmaZlv9WevEaTOYrEgyZPrmk
quBnaE+baZfGxWBbDSN+OrGYobQRs7Eu8bel0gh628CDiajrbwlIyAcNdEn5C/Uu
GHiEuIQcxb4b62mwAwh/t7el9ureirsS1b6mFB41puPmF/lYawI6YaCWIL48lbMd
XsgKGnFDU6dgSO5QRx5PhP/7YP9FetS0U+g7iFhgjmArNCraNQYBY0ltMweOG0qe
M8BPxDuCnhm1Q+PcjBORteN/PF47kcnBMpiJVVTmq5JRlXUqXecKpoScCt9HfPgy
EJq+esLQNIuRw9cEwVPQBj80GyxFUVqL/Rzo7xjEwTDPYRQERGCB7V68iV25on3w
07dOVl/lSwe902ik580wnlGUq+J09wk+9hIKV2XwQAV/8mKaWMc3pA8rE/efLJoC
buAsccxVcEsR3+uLSsU/P+fFm8nfBRmiOO9yIR4gez0BhbiDMc1zpwwhLkI+vTT4
D3PnuUdVeBvoGTNnpwqSURxajhaK0DSKTwhWnWGubYfXd3B48sW76rvKLO1FThgL
qyaed06QFeWj8gV+VZLb
=P0Vi
-----END PGP SIGNATURE-----
Merge tag 'fixes-rcu-fiq-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap into fixes
Fixes for omaps for v4.7-rc cycle:
- Two boot warning fixes from the RCU tree that should have gotten
merged several weeks ago already but did not because of issues
with who merges them. Paul has now split the RCU warning fixes into
sets for various maintainers.
- Fix ams-delta FIQ regression caused by omap1 sparse IRQ changes
- Fix PM for omap3 boards using timer12 and gptimer, like the
original beagleboard
- Fix hangs on am437x-sk-evm by lowering the I2C bus speed
* tag 'fixes-rcu-fiq-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap:
ARM: dts: am437x-sk-evm: Reduce i2c0 bus speed for tps65218
ARM: OMAP2+: timer: add probe for clocksources
ARM: OMAP1: fix ams-delta FIQ handler to work with sparse IRQ
arm: Use _rcuidle for smp_cross_call() tracepoints
arm: Use _rcuidle tracepoint to allow use from idle
Signed-off-by: Olof Johansson <olof@lixom.net>
Further testing with false negatives suppressed by commit 293e2421fe
("rcu: Remove superfluous versions of rcu_read_lock_sched_held()")
identified another unprotected use of RCU from the idle loop. Because RCU
actively ignores idle-loop code (for energy-efficiency reasons, among
other things), using RCU from the idle loop can result in too-short
grace periods, in turn resulting in arbitrary misbehavior.
The resulting lockdep-RCU splat is as follows:
------------------------------------------------------------------------
===============================
[ INFO: suspicious RCU usage. ]
4.6.0-rc5-next-20160426+ #1112 Not tainted
-------------------------------
include/trace/events/ipi.h:35 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
RCU used illegally from idle CPU!
rcu_scheduler_active = 1, debug_locks = 0
RCU used illegally from extended quiescent state!
no locks held by swapper/0/0.
stack backtrace:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.6.0-rc5-next-20160426+ #1112
Hardware name: Generic OMAP4 (Flattened Device Tree)
[<c0110308>] (unwind_backtrace) from [<c010c3a8>] (show_stack+0x10/0x14)
[<c010c3a8>] (show_stack) from [<c047fec8>] (dump_stack+0xb0/0xe4)
[<c047fec8>] (dump_stack) from [<c010dcfc>] (smp_cross_call+0xbc/0x188)
[<c010dcfc>] (smp_cross_call) from [<c01c9e28>] (generic_exec_single+0x9c/0x15c)
[<c01c9e28>] (generic_exec_single) from [<c01ca0a0>] (smp_call_function_single_async+0 x38/0x9c)
[<c01ca0a0>] (smp_call_function_single_async) from [<c0603728>] (cpuidle_coupled_poke_others+0x8c/0xa8)
[<c0603728>] (cpuidle_coupled_poke_others) from [<c0603c10>] (cpuidle_enter_state_coupled+0x26c/0x390)
[<c0603c10>] (cpuidle_enter_state_coupled) from [<c0183c74>] (cpu_startup_entry+0x198/0x3a0)
[<c0183c74>] (cpu_startup_entry) from [<c0b00c0c>] (start_kernel+0x354/0x3c8)
[<c0b00c0c>] (start_kernel) from [<8000807c>] (0x8000807c)
------------------------------------------------------------------------
Reported-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <linux-omap@vger.kernel.org>
Cc: <linux-arm-kernel@lists.infradead.org>
Pull ARM fix from Russell King:
"Just one fix to the ptrace code, spotted by Simon Marchi, where if a
thread migrates to a different CPU and the VFP registers are changed
through ptrace, the application doesn't see the updated VFP registers"
* 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: fix PTRACE_SETVFPREGS on SMP systems
PTRACE_SETVFPREGS fails to properly mark the VFP register set to be
reloaded, because it undoes one of the effects of vfp_flush_hwstate().
Specifically vfp_flush_hwstate() sets thread->vfpstate.hard.cpu to
an invalid CPU number, but vfp_set() overwrites this with the original
CPU number, thereby rendering the hardware state as apparently "valid",
even though the software state is more recent.
Fix this by reverting the previous change.
Cc: <stable@vger.kernel.org>
Fixes: 8130b9d7b9 ("ARM: 7308/1: vfp: flush thread hwstate before copying ptrace registers")
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Simon Marchi <simon.marchi@ericsson.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Pull perf updates from Ingo Molnar:
"Mostly tooling and PMU driver fixes, but also a number of late updates
such as the reworking of the call-chain size limiting logic to make
call-graph recording more robust, plus tooling side changes for the
new 'backwards ring-buffer' extension to the perf ring-buffer"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
perf record: Read from backward ring buffer
perf record: Rename variable to make code clear
perf record: Prevent reading invalid data in record__mmap_read
perf evlist: Add API to pause/resume
perf trace: Use the ptr->name beautifier as default for "filename" args
perf trace: Use the fd->name beautifier as default for "fd" args
perf report: Add srcline_from/to branch sort keys
perf evsel: Record fd into perf_mmap
perf evsel: Add overwrite attribute and check write_backward
perf tools: Set buildid dir under symfs when --symfs is provided
perf trace: Only auto set call-graph to "dwarf" when syscalls are being traced
perf annotate: Sort list of recognised instructions
perf annotate: Fix identification of ARM blt and bls instructions
perf tools: Fix usage of max_stack sysctl
perf callchain: Stop validating callchains by the max_stack sysctl
perf trace: Fix exit_group() formatting
perf top: Use machine->kptr_restrict_warned
perf trace: Warn when trying to resolve kernel addresses with kptr_restrict=1
perf machine: Do not bail out if not managing to read ref reloc symbol
perf/x86/intel/p4: Trival indentation fix, remove space
...
most architectures are relying on mmap_sem for write in their
arch_setup_additional_pages. If the waiting task gets killed by the oom
killer it would block oom_reaper from asynchronous address space reclaim
and reduce the chances of timely OOM resolving. Wait for the lock in
the killable mode and return with EINTR if the task got killed while
waiting.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Andy Lutomirski <luto@amacapital.net> [x86 vdso]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk() takes some locks and could not be used a safe way in NMI
context.
The chance of a deadlock is real especially when printing stacks from
all CPUs. This particular problem has been addressed on x86 by the
commit a9edc88093 ("x86/nmi: Perform a safe NMI stack trace on all
CPUs").
The patchset brings two big advantages. First, it makes the NMI
backtraces safe on all architectures for free. Second, it makes all NMI
messages almost safe on all architectures (the temporary buffer is
limited. We still should keep the number of messages in NMI context at
minimum).
Note that there already are several messages printed in NMI context:
WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE
handlers. These are not easy to avoid.
This patch reuses most of the code and makes it generic. It is useful
for all messages and architectures that support NMI.
The alternative printk_func is set when entering and is reseted when
leaving NMI context. It queues IRQ work to copy the messages into the
main ring buffer in a safe context.
__printk_nmi_flush() copies all available messages and reset the buffer.
Then we could use a simple cmpxchg operations to get synchronized with
writers. There is also used a spinlock to get synchronized with other
flushers.
We do not longer use seq_buf because it depends on external lock. It
would be hard to make all supported operations safe for a lockless use.
It would be confusing and error prone to make only some operations safe.
The code is put into separate printk/nmi.c as suggested by Steven
Rostedt. It needs a per-CPU buffer and is compiled only on
architectures that call nmi_enter(). This is achieved by the new
HAVE_NMI Kconfig flag.
The are MN10300 and Xtensa architectures. We need to clean up NMI
handling there first. Let's do it separately.
The patch is heavily based on the draft from Peter Zijlstra, see
https://lkml.org/lkml/2015/6/10/327
[arnd@arndb.de: printk-nmi: use %zu format string for size_t]
[akpm@linux-foundation.org: min_t->min - all types are size_t here]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> [arm part]
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Jiri Kosina <jkosina@suse.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to call exit_thread from copy_process in a fail path. So make it
accept task_struct as a parameter.
[v2]
* s390: exit_thread_runtime_instr doesn't make sense to be called for
non-current tasks.
* arm: fix the comment in vfp_thread_copy
* change 'me' to 'tsk' for task_struct
* now we can change only archs that actually have exit_thread
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull ARM updates from Russell King:
"Changes included in this pull request:
- revert pxa2xx-flash back to using ioremap_cached() and switch
memremap() to use arch_memremap_wb()
- remove pci=firmware command line argument handling
- remove unnecessary arm_dma_set_mask() implementation, the generic
implementation will do for ARM
- removal of the ARM kallsyms "hack" to work around mode switching
veneers and vectors located below PAGE_OFFSET
- tidy up build system output a little
- add L2 cache power management DT bindings
- remove duplicated local_irq_disable() in reboot paths
- handle AMBA primecell devices better at registration time with PM
domains (needed for Samsung SoCs)
- ARM specific preparation to support Keystone II kexec"
* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8567/1: cache-uniphier: activate ways for secondary CPUs
ARM: 8570/2: Documentation: devicetree: Add PL310 PM bindings
ARM: 8569/1: pl2x0: Add OF control of cache power management
ARM: 8568/1: reboot: remove duplicated local_irq_disable()
ARM: 8566/1: drivers: amba: properly handle devices with power domains
ARM: provide arm_has_idmap_alias() helper
ARM: kexec: remove 512MB restriction on kexec crashdump
ARM: provide improved virt_to_idmap() functionality
ARM: kexec: fix crashkernel= handling
ARM: 8557/1: specify install, zinstall, and uinstall as PHONY targets
ARM: 8562/1: suppress "include/generated/mach-types.h is up to date."
ARM: 8553/1: kallsyms: remove --page-offset command line option
ARM: 8552/1: kallsyms: remove special lower address limit for CONFIG_ARM
ARM: 8555/1: kallsyms: ignore ARM mode switching veneers
ARM: 8548/1: dma-mapping: remove arm_dma_set_mask()
ARM: 8554/1: kernel: pci: remove pci=firmware command line parameter handling
ARM: memremap: implement arch_memremap_wb()
memremap: add arch specific hook for MEMREMAP_WB mappings
mtd: pxa2xx-flash: switch back from memremap to ioremap_cached
ARM: reintroduce ioremap_cached() for creating cached I/O mappings
User visible:
- Honour the kernel.perf_event_max_stack knob more precisely by not counting
PERF_CONTEXT_{KERNEL,USER} when deciding when to stop adding entries to
the perf_sample->ip_callchain[] array (Arnaldo Carvalho de Melo)
- Fix identation of 'stalled-backend-cycles' in 'perf stat' (Namhyung Kim)
- Update runtime using 'cpu-clock' event in 'perf stat' (Namhyung Kim)
- Use 'cpu-clock' for cpu targets in 'perf stat' (Namhyung Kim)
- Avoid fractional digits for integer scales in 'perf stat' (Andi Kleen)
- Store vdso buildid unconditionally, as it appears in callchains and
we're not checking those when creating the build-id table, so we
end up not being able to resolve VDSO symbols when doing analysis
on a different machine than the one where recording was done, possibly
of a different arch even (arm -> x86_64) (He Kuang)
Infrastructure:
- Generalize max_stack sysctl handler, will be used for configuring
multiple kernel knobs related to callchains (Arnaldo Carvalho de Melo)
Cleanups:
- Introduce DSO__NAME_KALLSYMS and DSO__NAME_KCORE, to stop using
open coded strings (Masami Hiramatsu)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJXOn7eAAoJENZQFvNTUqpAsOAP/3f/XJekPQAnMcKRBp2noCuj
nRu1kBltVJyP8iOU5PKSJwel4F9ykNNMl+/rzzxHDo13IM8uc+HnZOJZ6e9mJIJ1
xqjdqM4EDlYYoFApJzCjTK6CMlevCazosdQT1bbmMDYVPc2uQR/GnutFrzqf/Plg
hEougIGtfrdy85g95CRdxpy2yMwDK4EwsiDRm9ib1hnuamQZl97buWemBVqSJmLY
p82E2aMU5Fv5+B8AO4I7V88ZmgpmryjxpM+LjffgNUDSKsSHrlG4NiQ3znV1bgst
Rc++w78+qxoIozOu6/IX8eSI2L/1eyM/yQ6Qre0KuvYXCl+NopTAYSSJlaA4tyHF
c55z7HucuyATN3PrFRHlbWUT/RMIVC0j0lnZOc7SJLl90hJQ+nv0iZcbYwMbeHu1
3LGlcd9jDwQYiClbaT9ATxZJ8B9An0/k/HJdatbAHN0wRomP2Ozz/qD2nmEbUwpV
sCyLOo/LJkvVkuUjSg6ZiOArNIk4iTSPSAUV+SAL6YOEOZMAX5ISUJQ174+zFC9a
gqtVsCXvwLIsndXb8ys1r9/fit/MUci0OzKX3SG1K765+E4Bk23KcAgMNbM/a7lp
ZmHDXMC+yBYcnYNnaxkp7c55CWUlKGOeR4e+KmB99KoeIleYgPhD2UM5beo61TmN
yUEPtiiFiZmTRkiAu83R
=7OdF
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-20160516' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
User visible changes:
- Honour the kernel.perf_event_max_stack knob more precisely by not counting
PERF_CONTEXT_{KERNEL,USER} when deciding when to stop adding entries to
the perf_sample->ip_callchain[] array (Arnaldo Carvalho de Melo)
- Fix identation of 'stalled-backend-cycles' in 'perf stat' (Namhyung Kim)
- Update runtime using 'cpu-clock' event in 'perf stat' (Namhyung Kim)
- Use 'cpu-clock' for cpu targets in 'perf stat' (Namhyung Kim)
- Avoid fractional digits for integer scales in 'perf stat' (Andi Kleen)
- Store vdso buildid unconditionally, as it appears in callchains and
we're not checking those when creating the build-id table, so we
end up not being able to resolve VDSO symbols when doing analysis
on a different machine than the one where recording was done, possibly
of a different arch even (arm -> x86_64) (He Kuang)
Infrastructure changes:
- Generalize max_stack sysctl handler, will be used for configuring
multiple kernel knobs related to callchains (Arnaldo Carvalho de Melo)
Cleanups:
- Introduce DSO__NAME_KALLSYMS and DSO__NAME_KCORE, to stop using
open coded strings (Masami Hiramatsu)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- New cpufreq "schedutil" governor (making decisions based on CPU
utilization information provided by the scheduler and capable of
switching CPU frequencies right away if the underlying driver
supports that) and support for fast frequency switching in the
acpi-cpufreq driver (Rafael Wysocki).
- Consolidation of CPU frequency management on ARM platforms allowing
them to get rid of some platform-specific boilerplate code if they
are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
Marc Gonzalez).
- Support for ACPI _PPC and CPU frequency limits in the intel_pstate
driver (Srinivas Pandruvada).
- Fixes and cleanups in the cpufreq core and generic governor code
(Rafael Wysocki, Sai Gurrappadi).
- intel_pstate driver optimizations and cleanups (Rafael Wysocki,
Philippe Longepe, Chen Yu, Joe Perches).
- cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
Bhat).
- cpufreq qoriq driver fixes and cleanups (Jia Hongtao).
- ACPI cpufreq driver cleanups (Viresh Kumar).
- Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla).
- Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann).
- Fixes and cleanups in the OPP (Operating Performance Points)
framework, mostly related to OPP sharing, and reorganization of
OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla).
- New "passive" governor for devfreq (for SoC subsystems that will
rely on someone else for the management of their power resources)
and consolidation of devfreq support for Exynos platforms, coding
style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham).
- PM core fixes and cleanups, mostly to make it work better with the
generic power domains (genpd) framework, and updates for that
framework (Ulf Hansson, Thierry Reding, Colin Ian King).
- Intel Broxton support for the intel_idle driver (Len Brown).
- cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach).
- ARM cpuidle cleanups (Jisheng Zhang).
- Intel Kabylake support for the RAPL power capping driver (Jacob Pan).
- AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
Stuebner).
- Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
Mattia Dongili, Thomas Renninger).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXOjLgAAoJEILEb/54YlRxfn0P/RbSPpNlUNBIE8DFrdD9jRdJ
TIpZ7uiHi9tU1ZF17UBbb/SwuWfYVnVmiorZGRfFOtGaoqh0HFZ/nplDz99rK0ku
vW2OnbojMQEUMU3IcUT1y4BsSl0H23f7ZOKrdprALeWxDQmbgnYjrE6vkX6hRtld
A8eeZvIEJ5CzV8S+9aOOOpojW2yXk5dYGdZ7gpQdoM0n7zVLyPnNucJoha3BYmOG
FwKEIe05RpIhfLfGT0CXIRcOzwAZ6ZWKgOrXUrx/AadPbvu/TP9zkI0djYI8ukyv
z2oiO/GExoeGVuUzvy8vY5SiH4NQvViftFzMZepcsmjxmVglohMPRL8VLjZIBckk
DDcqH9e0OQI20jjYT1vIf5+JWBvLxuQfGtyzI0S+sE/elB1zI/3O8p+8N2CuF5n+
my2dawIewnHI/0AdSpJ+K7DVrfwPHAX19axtPX3dJSLh2OuHCPNlAtbxRGAriBfH
Zv9NETxlrch69o2AD4K54DErWV1FsYLznzK5Zms6MC2Ispbb+oiYpacTlZblznvb
H5U2SSNlA5Niir3vVJ01nKRtzxlWoi67CQxbYrGhlaR0nTTxf9HqWgcSiTZrn7Pv
hs+LA2aUfMf3JGjStdORS7S8biQSid5vypfkglpWLZBKHNC9BqqZd9gSM+jF3FVh
ps4mMM4UXY4hnoFDkMBI
=WM89
-----END PGP SIGNATURE-----
Merge tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The majority of changes go into the cpufreq subsystem this time.
To me, quite obviously, the biggest ticket item is the new "schedutil"
governor. Interestingly enough, it's the first new cpufreq governor
since the beginning of the git era (except for some out-of-the-tree
ones).
There are two main differences between it and the existing governors.
First, it uses the information provided by the scheduler directly for
making its decisions, so it doesn't have to track anything by itself.
Second, it can invoke drivers (supporting that feature) to adjust CPU
performance right away without having to spawn work items to be
executed in process context or similar. Currently, the acpi-cpufreq
driver is the only one supporting that mode of operation, but then it
is used on a large number of systems.
The "schedutil" governor as included here is very simple and mostly
regarded as a foundation for future work on the integration of the
scheduler with CPU power management (in fact, there is work in
progress on top of it already). Nevertheless it works and the
preliminary results obtained with it are encouraging.
There also is some consolidation of CPU frequency management for ARM
platforms that can add their machine IDs the the new stub dt-platdev
driver now and that will take care of creating the requisite platform
device for cpufreq-dt, so it is not necessary to do that in platform
code any more. Several ARM platforms are switched over to using this
generic mechanism.
In addition to that, the intel_pstate driver is now going to respect
CPU frequency limits set by the platform firmware (or a BMC) and
provided via the ACPI _PPC object.
The devfreq subsystem is getting a new "passive" governor for SoCs
subsystems that will depend on somebody else to manage their voltage
rails and its support for Samsung Exynos SoCs is consolidated.
The rest is support for new hardware (Intel Broxton support in
intel_idle for one example), bug fixes, optimizations and cleanups in
a number of places.
Specifics:
- New cpufreq "schedutil" governor (making decisions based on CPU
utilization information provided by the scheduler and capable of
switching CPU frequencies right away if the underlying driver
supports that) and support for fast frequency switching in the
acpi-cpufreq driver (Rafael Wysocki)
- Consolidation of CPU frequency management on ARM platforms allowing
them to get rid of some platform-specific boilerplate code if they
are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
Marc Gonzalez)
- Support for ACPI _PPC and CPU frequency limits in the intel_pstate
driver (Srinivas Pandruvada)
- Fixes and cleanups in the cpufreq core and generic governor code
(Rafael Wysocki, Sai Gurrappadi)
- intel_pstate driver optimizations and cleanups (Rafael Wysocki,
Philippe Longepe, Chen Yu, Joe Perches)
- cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
Bhat)
- cpufreq qoriq driver fixes and cleanups (Jia Hongtao)
- ACPI cpufreq driver cleanups (Viresh Kumar)
- Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla)
- Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann)
- Fixes and cleanups in the OPP (Operating Performance Points)
framework, mostly related to OPP sharing, and reorganization of
OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla)
- New "passive" governor for devfreq (for SoC subsystems that will
rely on someone else for the management of their power resources)
and consolidation of devfreq support for Exynos platforms, coding
style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham)
- PM core fixes and cleanups, mostly to make it work better with the
generic power domains (genpd) framework, and updates for that
framework (Ulf Hansson, Thierry Reding, Colin Ian King)
- Intel Broxton support for the intel_idle driver (Len Brown)
- cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach)
- ARM cpuidle cleanups (Jisheng Zhang)
- Intel Kabylake support for the RAPL power capping driver (Jacob
Pan)
- AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
Stuebner)
- Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
Mattia Dongili, Thomas Renninger)"
* tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (112 commits)
intel_pstate: Clean up get_target_pstate_use_performance()
intel_pstate: Use sample.core_avg_perf in get_avg_pstate()
intel_pstate: Clarify average performance computation
intel_pstate: Avoid unnecessary synchronize_sched() during initialization
cpufreq: schedutil: Make default depend on CONFIG_SMP
cpufreq: powernv: del_timer_sync when global and local pstate are equal
cpufreq: powernv: Move smp_call_function_any() out of irq safe block
intel_pstate: Clean up intel_pstate_get()
cpufreq: schedutil: Make it depend on CONFIG_SMP
cpufreq: governor: Fix handling of special cases in dbs_update()
PM / OPP: Move CONFIG_OF dependent code in a separate file
cpufreq: intel_pstate: Ignore _PPC processing under HWP
cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table
PM / OPP: add non-OF versions of dev_pm_opp_{cpumask_, }remove_table
cpufreq: tango: Use generic platdev driver
PM / OPP: pass cpumask by reference
cpufreq: Fix GOV_LIMITS handling for the userspace governor
cpupower: fix potential memory leak
PM / devfreq: style/typo fixes
PM / devfreq: exynos: Add the detailed correlation for Exynos5422 bus
..
We will use it to count how many addresses are in the entry->ip[] array,
excluding PERF_CONTEXT_{KERNEL,USER,etc} entries, so that we can really
return the number of entries specified by the user via the relevant
sysctl, kernel.perf_event_max_contexts, or via the per event
perf_event_attr.sample_max_stack knob.
This way we keep the perf_sample->ip_callchain->nr meaning, that is the
number of entries, be it real addresses or PERF_CONTEXT_ entries, while
honouring the max_stack knobs, i.e. the end result will be max_stack
entries if we have at least that many entries in a given stack trace.
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-s8teto51tdqvlfhefndtat9r@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This makes perf_callchain_{user,kernel}() receive the max stack
as context for the perf_callchain_entry, instead of accessing
the global sysctl_perf_event_max_stack.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull perf updates from Ingo Molnar:
"Bigger kernel side changes:
- Add backwards writing capability to the perf ring-buffer code,
which is preparation for future advanced features like robust
'overwrite support' and snapshot mode. (Wang Nan)
- Add pause and resume ioctls for the perf ringbuffer (Wang Nan)
- x86 Intel cstate code cleanups and reorgnization (Thomas Gleixner)
- x86 Intel uncore and CPU PMU driver updates (Kan Liang, Peter
Zijlstra)
- x86 AUX (Intel PT) related enhancements and updates (Alexander
Shishkin)
- x86 MSR PMU driver enhancements and updates (Huang Rui)
- ... and lots of other changes spread out over 40+ commits.
Biggest tooling side changes:
- 'perf trace' features and enhancements. (Arnaldo Carvalho de Melo)
- BPF tooling updates (Wang Nan)
- 'perf sched' updates (Jiri Olsa)
- 'perf probe' updates (Masami Hiramatsu)
- ... plus 200+ other enhancements, fixes and cleanups to tools/
The merge commits, the shortlog and the changelogs contain a lot more
details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (249 commits)
perf/core: Disable the event on a truncated AUX record
perf/x86/intel/pt: Generate PMI in the STOP region as well
perf buildid-cache: Use lsdir() for looking up buildid caches
perf symbols: Use lsdir() for the search in kcore cache directory
perf tools: Use SBUILD_ID_SIZE where applicable
perf tools: Fix lsdir to set errno correctly
perf trace: Move seccomp args beautifiers to tools/perf/trace/beauty/
perf trace: Move flock op beautifier to tools/perf/trace/beauty/
perf build: Add build-test for debug-frame on arm/arm64
perf build: Add build-test for libunwind cross-platforms support
perf script: Fix export of callchains with recursion in db-export
perf script: Fix callchain addresses in db-export
perf script: Fix symbol insertion behavior in db-export
perf symbols: Add dso__insert_symbol function
perf scripting python: Use Py_FatalError instead of die()
perf tools: Remove xrealloc and ALLOC_GROW
perf help: Do not use ALLOC_GROW in add_cmd_list
perf pmu: Make pmu_formats_string to check return value of strbuf
perf header: Make topology checkers to check return value of strbuf
perf tools: Make alias handler to check return value of strbuf
...
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Drop the unused EFI_SYSTEM_TABLES efi.flags bit and ensure the
ARM/arm64 EFI System Table mapping is read-only (Ard Biesheuvel)
- Add a comment to explain that one of the code paths in the x86/pat
code is only executed for EFI boot (Matt Fleming)
- Improve Secure Boot status checks on arm64 and handle unexpected
errors (Linn Crosetto)
- Remove the global EFI memory map variable 'memmap' as the same
information is already available in efi::memmap (Matt Fleming)
- Add EFI Memory Attribute table support for ARM/arm64 (Ard
Biesheuvel)
- Add EFI GOP framebuffer support for ARM/arm64 (Ard Biesheuvel)
- Add EFI Bootloader Control driver for storing reboot(2) data in EFI
variables for consumption by bootloaders (Jeremy Compostella)
- Add Core EFI capsule support (Matt Fleming)
- Add EFI capsule char driver (Kweh, Hock Leong)
- Unify EFI memory map code for ARM and arm64 (Ard Biesheuvel)
- Add generic EFI support for detecting when firmware corrupts CPU
status register bits (like IRQ flags) when performing EFI runtime
service calls (Mark Rutland)
... and other misc cleanups"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
efivarfs: Make efivarfs_file_ioctl() static
efi: Merge boolean flag arguments
efi/capsule: Move 'capsule' to the stack in efi_capsule_supported()
efibc: Fix excessive stack footprint warning
efi/capsule: Make efi_capsule_pending() lockless
efi: Remove unnecessary (and buggy) .memmap initialization from the Xen EFI driver
efi/runtime-wrappers: Remove ARCH_EFI_IRQ_FLAGS_MASK #ifdef
x86/efi: Enable runtime call flag checking
arm/efi: Enable runtime call flag checking
arm64/efi: Enable runtime call flag checking
efi/runtime-wrappers: Detect firmware IRQ flag corruption
efi/runtime-wrappers: Remove redundant #ifdefs
x86/efi: Move to generic {__,}efi_call_virt()
arm/efi: Move to generic {__,}efi_call_virt()
arm64/efi: Move to generic {__,}efi_call_virt()
efi/runtime-wrappers: Add {__,}efi_call_virt() templates
efi/arm-init: Reserve rather than unmap the memory map for ARM as well
efi: Add misc char driver interface to update EFI firmware
x86/efi: Force EFI reboot to process pending capsules
efi: Add 'capsule' update support
...
* pm-cpuidle:
cpuidle: Replace ktime_get() with local_clock()
drivers: firmware: psci: use const and __initconst for psci_cpuidle_ops
soc: qcom: spm: Use const and __initconst for qcom_cpuidle_ops
ARM: cpuidle: constify return value of arm_cpuidle_get_ops()
ARM: cpuidle: add const qualifier to cpuidle_ops member in structures
intel_idle: add BXT support
cpuidle: Indicate when a device has been unregistered
Commit 19accfd3 (ARM: move vector stubs) moved the vector stubs in an
additional page above the base vector one. This change wasn't taken into
account by the nommu memreserve.
This patch ensures that the kernel won't overwrite any vector stub on
nommu.
[changed the MPU side too]
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Once entering machine_halt() and machine_restart(), local_irq_disable()
is called, and local irq is kept disabled, so the local_irq_disable()
at the end of these two functions are not necessary, remove it.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The real limit is the top of the visible physical address space with
the MMU turned off. Hence, we need to limit the crash kernel allocation
running-view physical address of the top of the boot-view physical
address space.
Reviewed-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When the kernel crashkernel parameter is specified with just a size, we
are supposed to allocate a region from RAM to store the crashkernel.
However, ARM merely reserves physical address zero with no checking that
there is even RAM there.
Fix this by lifting similar code from x86, importing it to ARM with the
ARM specific parameters added. In the absence of any platform specific
information, we allocate the crashkernel region from the first 512MB of
physical memory.
Update the kdump documentation to reflect this change.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Reviewed-by: Pratyush Anand <panand@redhat.com>
In order to hand over the framebuffer described by the GOP protocol and
discovered by the UEFI stub, make struct screen_info accessible by the
stub. This involves allocating a loader data buffer and passing it to the
kernel proper via a UEFI Configuration Table, since the UEFI stub executes
in the context of the decompressor, and cannot access the kernel's copy of
struct screen_info directly.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-22-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recent UEFI versions expose permission attributes for runtime services
memory regions, either in the UEFI memory map or in the separate memory
attributes table. This allows the kernel to map these regions with
stricter permissions, rather than the RWX permissions that are used by
default. So wire this up in our mapping routine.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-11-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The default remains 127, which is good for most cases, and not even hit
most of the time, but then for some cases, as reported by Brendan, 1024+
deep frames are appearing on the radar for things like groovy, ruby.
And in some workloads putting a _lower_ cap on this may make sense. One
that is per event still needs to be put in place tho.
The new file is:
# cat /proc/sys/kernel/perf_event_max_stack
127
Chaging it:
# echo 256 > /proc/sys/kernel/perf_event_max_stack
# cat /proc/sys/kernel/perf_event_max_stack
256
But as soon as there is some event using callchains we get:
# echo 512 > /proc/sys/kernel/perf_event_max_stack
-bash: echo: write error: Device or resource busy
#
Because we only allocate the callchain percpu data structures when there
is a user, which allows for changing the max easily, its just a matter
of having no callchain users at that point.
Reported-and-Tested-by: Brendan Gregg <brendan.d.gregg@gmail.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Ahern <dsahern@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/20160426002928.GB16708@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull ARM cpuidle changes for v4.7 from Daniel Lezcano.
* 'cpuidle/4.7' of http://git.linaro.org/people/daniel.lezcano/linux:
drivers: firmware: psci: use const and __initconst for psci_cpuidle_ops
soc: qcom: spm: Use const and __initconst for qcom_cpuidle_ops
ARM: cpuidle: constify return value of arm_cpuidle_get_ops()
ARM: cpuidle: add const qualifier to cpuidle_ops member in structures
arm_cpuidle_read_ops() just copies '*ops' to cpuidle_ops[cpu], so the
structure '*ops' is not modified at all.
The comment is also updated accordingly.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Commit b8c9592 "ARM: 8318/1: treat CPU feature register fields as signed
quantities" accidentally altered cpuid register used to demote
HWCAP_SWP.
ARM ARM says that SyncPrim_instrs bits in ID_ISAR3 should be used with
SynchPrim_instrs_frac from ID_ISAR4. So, follow this rule.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
It was reported that a kernel with CONFIG_ARM_PATCH_IDIV=y stopped
booting when compiled with the upcoming gcc 6. Turns out that turning
a function address into a writable array is undefined and gcc 6 decided
it was OK to omit the store to the first word of the function while
still preserving the store to the second word.
Even though gcc 6 is now fixed to behave more coherently, it is a
mystery that gcc 4 and gcc 5 actually produce wanted code in the kernel.
And in fact the reduced test case to illustrate the issue does indeed
break with gcc < 6 as well.
In any case, let's guard the kernel against undefined compiler behavior
by hiding the nature of the array location as suggested by gcc
developers.
Reference: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70128
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reported-by: Marcin Juszkiewicz <mjuszkiewicz@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org # v4.5
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
According to kernel documentation, the pci=firmware command line
parameter is only meant to be used on IXP2000 ARM platforms to prevent
the kernel from assigning PCI resources configured by the bootloader.
Since the IXP2000 ARM platforms support has been removed from the
kernel in commit:
commit c65f2abf54 ("ARM: remove ixp23xx and ixp2000 platforms")
its platforms specific kernel parameters should be removed
too from the kernel documentation along with the kernel code
currently handling them in that they have just become obsolete.
This patch removes the pci=firmware command line parameter handling
from ARM code and the related kernel parameters documentation
section.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Lennert Buytenhek <kernel@wantstofly.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Lennert Buytenhek <kernel@wantstofly.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Rob Herring <robh@kernel.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Set a default event->overflow_handler in perf_event_alloc() so don't
need to check event->overflow_handler in __perf_event_overflow().
Following commits can give a different default overflow_handler.
Initial idea comes from Peter:
http://lkml.kernel.org/r/20130708121557.GA17211@twins.programming.kicks-ass.net
Since the default value of event->overflow_handler is not NULL, existing
'if (!overflow_handler)' checks need to be changed.
is_default_overflow_handler() is introduced for this.
No extra performance overhead is introduced into the hot path because in the
original code we still need to read this handler from memory. A conditional
branch is avoided so actually we remove some instructions.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-3-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJW794rAAoJELescNyEwWM0O5IH/0ejoUjip3n4dFZnSzAbQQZe
VxCy3DXW5gS8YaswwX2dFw9K772/BpHlazq8AIJIhaR+b+Zzl5t0iOc12HluDilV
pMvi0JTCxwJhsEiKZnP0cVAU9HM6MAgtMOEegkd/YNESKQey30NeDtIcz/pQfTUV
28AF71+w5VPj/1EpHEEhHQsASRIx7eDbKzThzdlb8PnDS0o23QJhL9HjVTNIAlB8
BGxrUBKtBu0eH2Hx33vNjc7UYx1WZQlCk5cAaXevA8mbFXzYaMQI2Cel2nbNMO9i
eu5zPkDUCG7dq16PxK6IgM4AsDCtmmDuckLdN6UEQWYxkLbb2qHNRKtj0bKB8Sk=
=E4PE
-----END PGP SIGNATURE-----
Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm[64] perf updates from Will Deacon:
"I have another mixed bag of ARM-related perf patches here.
It's about 25% CPU and 75% interconnect, but with drivers/bus/
languishing without an obvious maintainer or tree, Olof and I agreed
to keep all of these PMU patches together. I suspect a whole load of
code from drivers/bus/arm-* can be moved under drivers/perf/, so
that's on the radar for the future.
Summary:
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)"
* tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (26 commits)
drivers/perf: arm_pmu: avoid NULL dereference when not using devicetree
arm64: perf: Extend ARMV8_EVTYPE_MASK to include PMCR.LC
arm-cci: remove unused variable
arm-cci: don't return value from void function
arm-cci: make private functions static
arm-cci: CoreLink CCI-550 PMU driver
arm-cci500: Rearrange PMU driver for code sharing with CCI-550 PMU
arm-cci: CCI-500: Work around PMU counter writes
arm-cci: Provide hook for writing to PMU counters
arm-cci: Add helper to enable PMU without synchornising counters
arm-cci: Add routines to save/restore all counters
arm-cci: Get the status of a counter
arm-cci: write_counter: Remove redundant check
arm-cci: Delay PMU counter writes to pmu::pmu_enable
arm-cci: Refactor CCI PMU enable/disable methods
arm-cci: Group writes to counter
arm-cci: fix handling cpumask_any_but return value
arm-cci: simplify sysfs attr handling
drivers/perf: arm_pmu: implement CPU_PM notifier
arm64: dts: Add Cavium ThunderX specific PMU
...
Pull ARM updates from Russell King:
"Another mixture of changes this time around:
- Split XIP linker file from main linker file to make it more
maintainable, and various XIP fixes, and clean up a resulting
macro.
- Decompressor cleanups from Masahiro Yamada
- Avoid printing an error for a missing L2 cache
- Remove some duplicated symbols in System.map, and move
vectors/stubs back into kernel VMA
- Various low priority fixes from Arnd
- Updates to allow bus match functions to return negative errno
values, touching some drivers and the driver core. Greg has acked
these changes.
- Virtualisation platform udpates form Jean-Philippe Brucker.
- Security enhancements from Kees Cook
- Rework some Kconfig dependencies and move PSCI idle management code
out of arch/arm into drivers/firmware/psci.c
- ARM DMA mapping updates, touching media, acked by Mauro.
- Fix places in ARM code which should be using virt_to_idmap() so
that Keystone2 can work.
- Fix Marvell Tauros2 to work again with non-DT boots.
- Provide a delay timer for ARM Orion platforms"
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (45 commits)
ARM: 8546/1: dma-mapping: refactor to fix coherent+cma+gfp=0
ARM: 8547/1: dma-mapping: store buffer information
ARM: 8543/1: decompressor: rename suffix_y to compress-y
ARM: 8542/1: decompressor: merge piggy.*.S and simplify Makefile
ARM: 8541/1: decompressor: drop redundant FORCE in Makefile
ARM: 8540/1: decompressor: use clean-files instead of extra-y to clean files
ARM: 8539/1: decompressor: drop more unneeded assignments to "targets"
ARM: 8538/1: decompressor: drop unneeded assignments to "targets"
ARM: 8532/1: uncompress: mark putc as inline
ARM: 8531/1: turn init_new_context into an inline function
ARM: 8530/1: remove VIRT_TO_BUS
ARM: 8537/1: drop unused DEBUG_RODATA from XIP_KERNEL
ARM: 8536/1: mm: hide __start_rodata_section_aligned for non-debug builds
ARM: 8535/1: mm: DEBUG_RODATA makes no sense with XIP_KERNEL
ARM: 8534/1: virt: fix hyp-stub build for pre-ARMv7 CPUs
ARM: make the physical-relative calculation more obvious
ARM: 8512/1: proc-v7.S: Adjust stack address when XIP_KERNEL
ARM: 8411/1: Add default SPARSEMEM settings
ARM: 8503/1: clk_register_clkdev: remove format string interface
ARM: 8529/1: remove 'i' and 'zi' targets
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull ram resource handling changes from Ingo Molnar:
"Core kernel resource handling changes to support NVDIMM error
injection.
This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
for System RAM while keeping the current IORESOURCE_MEM type bit set
for all memory-mapped ranges (including System RAM) for backward
compatibility.
With this resource flag it no longer takes a strcmp() loop through the
resource tree to find "System RAM" resources.
The new resource type is then used to extend ACPI/APEI error injection
facility to also support NVDIMM"
* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ACPI/EINJ: Allow memory error injection to NVDIMM
resource: Kill walk_iomem_res()
x86/kexec: Remove walk_iomem_res() call with GART type
x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
resource: Add walk_iomem_res_desc()
memremap: Change region_intersects() to take @flags and @desc
arm/samsung: Change s3c_pm_run_res() to use System RAM type
resource: Change walk_system_ram() to use System RAM type
drivers: Initialize resource entry to zero
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
ia64: Set System RAM type and descriptor
x86/e820: Set System RAM type and descriptor
resource: Add I/O resource descriptor
resource: Handle resource flags properly
resource: Add System RAM resource type
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This field was never populated, and the panic code already
does something similar. Delete the related code.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since we don't have much assembler left, most of the KVM stuff
in asm-offsets.c is now superfluous. Let's get rid of it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Continuing our rework of the CPU context, we now move the GP
registers into the CPU context structure.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Continuing our rework of the CPU context, we now move the CP15
array into the CPU context structure. As this causes quite a bit
of churn, we introduce the vcpu_cp15() macro that abstract the
location of the actual array. This will probably help next time
we have to revisit that code.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>