Older compilers think val may be used uninitialized:
arch/powerpc/lib/sstep.c: In function 'emulate_loadstore':
arch/powerpc/lib/sstep.c:2758:23: error: 'val' may be used uninitialized in this function
We know better, but initialise val to 0 to avoid breaking the build.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
memset() is patched after initialisation to activate the
optimised part which uses cache instructions.
Today we have a 'b 2f' to skip the optimised patch, which then gets
replaced by a NOP, implying a useless cycle consumption.
As we have a 'bne 2f' just before, we could use that instruction
for the live patching, hence removing the need to have a
dedicated 'b 2f' to be replaced by a NOP.
This patch changes the 'bne 2f' by a 'b 2f'. During init, that
'b 2f' is then replaced by 'bne 2f'
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is no need to extend the set value to an int when the length
is lower than 4 as in that case we only do byte stores.
We can therefore immediately branch to the part handling it.
By separating it from the normal case, we are able to eliminate
a few actions on the destination pointer.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 9445aa1a30 ("ppc: move exports to definitions")
added EXPORT_SYMBOL() for memset() and flush_hash_pages() in
the middle of the functions.
This patch moves them at the end of the two functions.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 694fc88ce2 ("powerpc/string: Implement optimized
memset variants") added memset16(), memset32() and memset64()
for the 64 bits PPC.
On 32 bits, memset64() is not relevant, and as shown below,
the generic version of memset32() gives a good code, so only
memset16() is candidate for an optimised version.
000009c0 <memset32>:
9c0: 2c 05 00 00 cmpwi r5,0
9c4: 39 23 ff fc addi r9,r3,-4
9c8: 4d 82 00 20 beqlr
9cc: 7c a9 03 a6 mtctr r5
9d0: 94 89 00 04 stwu r4,4(r9)
9d4: 42 00 ff fc bdnz 9d0 <memset32+0x10>
9d8: 4e 80 00 20 blr
The last part of memset() handling the not 4-bytes multiples
operates on bytes, making it unsuitable for handling word without
modification. As it would increase memset() complexity, it is
better to implement memset16() from scratch. In addition it
has the advantage of allowing a more optimised memset16() than what
we would have by using the memset() function.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Michael Ellerman reported that emulate_loadstore() was trying to
access element 32 of regs->gpr[], which doesn't exist, when
emulating a string store instruction. This is because the string
load and store instructions (lswi, lswx, stswi and stswx) are
defined to wrap around from register 31 to register 0 if the number
of bytes being loaded or stored is sufficiently large. This wrapping
was not implemented in the emulation code. To fix it, we mask the
register number after incrementing it.
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Fixes: c9f6f4ed95 ("powerpc: Implement emulation of string loads and stores")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds emulation for the lfiwax, lfiwzx and stfiwx instructions.
This necessitated adding a new flag to indicate whether a floating
point or an integer conversion was needed for LOAD_FP and STORE_FP,
so this moves the size field in op->type up 4 bits.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This replaces almost all of the instruction emulation code in
fix_alignment() with calls to analyse_instr(), emulate_loadstore()
and emulate_dcbz(). The only emulation code left is the SPE
emulation code; analyse_instr() etc. do not handle SPE instructions
at present.
One result of this is that we can now handle alignment faults on
all the new VSX load and store instructions that were added in POWER9.
VSX loads/stores will take alignment faults for unaligned accesses
to cache-inhibited memory.
Another effect is that we no longer rely on the DAR and DSISR values
set by the processor.
With this, we now need to include the instruction emulation code
unconditionally.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves the parts of emulate_step() that deal with emulating
load and store instructions into a new function called
emulate_loadstore(). This is to make it possible to reuse this
code in the alignment handler.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to the load and store emulation code to byte-swap
the data appropriately when the process being emulated is set to
the opposite endianness to that of the kernel.
This also enables the emulation for the multiple-register loads
and stores (lmw, stmw, lswi, stswi, lswx, stswx) to work for
little-endian. In little-endian mode, the partial word at the
end of a transfer for lsw*/stsw* (when the byte count is not a
multiple of 4) is loaded/stored at the least-significant end of
the register. Additionally, this fixes a bug in the previous
code in that it could call read_mem/write_mem with a byte count
that was not 1, 2, 4 or 8.
Note that this only works correctly on processors with "true"
little-endian mode, such as IBM POWER processors from POWER6 on, not
the so-called "PowerPC" little-endian mode that uses address swizzling
as implemented on the old 32-bit 603, 604, 740/750, 74xx CPUs.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to the instruction emulation code to set regs->dar
to the address of any memory access that fails. This address is
not necessarily the same as the effective address of the instruction,
because if the memory access is unaligned, it might cross a page
boundary and fault on the second page.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to analyse_instr() and emulate_step() to understand the
dcbz (data cache block zero) instruction. The emulate_dcbz() function
is made public so it can be used by the alignment handler in future.
(The apparently unnecessary cropping of the address to 32 bits is
there because it will be needed in that situation.)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds lfdp[x] and stfdp[x] to the set of instructions that
analyse_instr() and emulate_step() understand.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds code to analyse_instr() and emulate_step() to handle the
vector element loads and stores:
lvebx, lvehx, lvewx, stvebx, stvehx, stvewx.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At present, the analyse_instr/emulate_step code checks for the
relevant MSR_FP/VEC/VSX bit being set when a FP/VMX/VSX load
or store is decoded, but doesn't recheck the bit before reading or
writing the relevant FP/VMX/VSX register in emulate_step().
Since we don't have preemption disabled, it is possible that we get
preempted between checking the MSR bit and doing the register access.
If that happened, then the registers would have been saved to the
thread_struct for the current process. Accesses to the CPU registers
would then potentially read stale values, or write values that would
never be seen by the user process.
Another way that the registers can become non-live is if a page
fault occurs when accessing user memory, and the page fault code
calls a copy routine that wants to use the VMX or VSX registers.
To fix this, the code for all the FP/VMX/VSX loads gets restructured
so that it forms an image in a local variable of the desired register
contents, then disables preemption, checks the MSR bit and either
sets the CPU register or writes the value to the thread struct.
Similarly, the code for stores checks the MSR bit, copies either the
CPU register or the thread struct to a local variable, then reenables
preemption and then copies the register image to memory.
If the instruction being emulated is in the kernel, then we must not
use the register values in the thread_struct. In this case, if the
relevant MSR enable bit is not set, then emulate_step refuses to
emulate the instruction.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
At the moment, emulation of loads and stores of up to 8 bytes to
unaligned addresses on a little-endian system uses a sequence of
single-byte loads or stores to memory. This is rather inefficient,
and the code is hard to follow because it has many ifdefs.
In addition, the Power ISA has requirements on how unaligned accesses
are performed, which are not met by doing all accesses as
sequences of single-byte accesses.
Emulation of VSX loads and stores uses __copy_{to,from}_user,
which means the emulation code has no control on the size of
accesses.
To simplify this, we add new copy_mem_in() and copy_mem_out()
functions for accessing memory. These use a sequence of the largest
possible aligned accesses, up to 8 bytes (or 4 on 32-bit systems),
to copy memory between a local buffer and user memory. We then
rewrite {read,write}_mem_unaligned and the VSX load/store
emulation using these new functions.
These new functions also simplify the code in do_fp_load() and
do_fp_store() for the unaligned cases.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The addpcis instruction puts the sum of the next instruction address
plus a constant into a register. Since the result depends on the
address of the instruction, it will give an incorrect result if it
is single-stepped out of line, which is what the *probes subsystem
will currently do if a probe is placed on an addpcis instruction.
This fixes the problem by adding emulation of it to analyse_instr().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The architecture shows the least-significant bit of the instruction
word as reserved for the popcnt[bwd], prty[wd] and bpermd
instructions, that is, these instructions never update CR0.
Therefore this changes the emulation of these instructions to
skip the CR0 update.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The case added for the isel instruction was added inside a switch
statement which uses the 10-bit minor opcode field in the 0x7fe
bits of the instruction word. However, for the isel instruction,
the minor opcode field is only the 0x3e bits, and the 0x7c0 bits
are used for the "BC" field, which indicates which CR bit to use
to select the result.
Therefore, for the isel emulation to work correctly when BC != 0,
we need to match on ((instr >> 1) & 0x1f) == 15). To do this, we
pull the isel case out of the switch statement and put it in an
if statement of its own.
Fixes: e27f71e5ff ("powerpc/lib/sstep: Add isel instruction emulation")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a 64-bit processor is executing in 32-bit mode, the update forms
of load and store instructions are required by the architecture to
write the full 64-bit effective address into the RA register, though
only the bottom 32 bits are used to address memory. Currently,
the instruction emulation code writes the truncated address to the
RA register. This fixes it by keeping the full 64-bit EA in the
instruction_op structure, truncating the address in emulate_step()
where it is used to address memory, rather than in the address
computations in analyse_instr().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This extends the instruction emulation infrastructure in sstep.c to
handle all the load and store instructions defined in the Power ISA
v3.0, except for the atomic memory operations, ldmx (which was never
implemented), lfdp/stfdp, and the vector element load/stores.
The instructions added are:
Integer loads and stores: lbarx, lharx, lqarx, stbcx., sthcx., stqcx.,
lq, stq.
VSX loads and stores: lxsiwzx, lxsiwax, stxsiwx, lxvx, lxvl, lxvll,
lxvdsx, lxvwsx, stxvx, stxvl, stxvll, lxsspx, lxsdx, stxsspx, stxsdx,
lxvw4x, lxsibzx, lxvh8x, lxsihzx, lxvb16x, stxvw4x, stxsibx, stxvh8x,
stxsihx, stxvb16x, lxsd, lxssp, lxv, stxsd, stxssp, stxv.
These instructions are handled both in the analyse_instr phase and in
the emulate_step phase.
The code for lxvd2ux and stxvd2ux has been taken out, as those
instructions were never implemented in any processor and have been
taken out of the architecture, and their opcodes have been reused for
other instructions in POWER9 (lxvb16x and stxvb16x).
The emulation for the VSX loads and stores uses helper functions
which don't access registers or memory directly, which can hopefully
be reused by KVM later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This removes the checks for the FP/VMX/VSX enable bits in the MSR
from analyse_instr() and adds them to emulate_step() instead.
The reason for this is that we may want to use analyse_instr() in
a situation where the FP/VMX/VSX register values are stored in the
current thread_struct and the FP/VMX/VSX enable bits in the MSR
image in the pt_regs are zero. Since analyse_instr() doesn't make
any changes to register state, it is reasonable for it to indicate
what the effect of an instruction would be even though the relevant
enable bit is off.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The analyse_instr function currently doesn't just work out what an
instruction does, it also executes those instructions whose effect
is only to update CPU registers that are stored in struct pt_regs.
This is undesirable because optprobes uses analyse_instr to work out
if an instruction could be successfully emulated in future.
This changes analyse_instr so it doesn't modify *regs; instead it
stores information in the instruction_op structure to indicate what
registers (GPRs, CR, XER, LR) would be set and what value they would
be set to. A companion function called emulate_update_regs() can
then use that information to update a pt_regs struct appropriately.
As a minor cleanup, this replaces inline asm using the cntlzw and
cntlzd instructions with calls to __builtin_clz() and __builtin_clzl().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Based on Matthew Wilcox's patches for other architectures.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds emulation for the isel instruction.
Tested for correctness against the isel instruction and its extended
mnemonics (lt, gt, eq) on ppc64le.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds emulation for the prtyw and prtyd instructions.
Tested for logical correctness against the prtyw and prtyd instructions
on ppc64le.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds emulation for the bpermd instruction.
Tested for correctness against the bpermd instruction on ppc64le.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds emulations for the popcntb, popcntw, and popcntd instructions.
Tested for correctness against the popcnt{b,w,d} instructions on ppc64le.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch adds emulation of the cmpb instruction, enabling xmon to
emulate this instruction.
Tested for correctness against the cmpb asm instruction on ppc64le.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
binutils >= 2.26 now warns about misuse of register expressions in
assembler operands that are actually literals, for example:
arch/powerpc/kernel/entry_64.S:535: Warning: invalid register expression
In practice these are almost all uses of r0 that should just be a
literal 0.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
[mpe: Mention r0 is almost always the culprit, fold in purgatory change]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Nothing that really stands out, just a bunch of fixes that have come in in the
last couple of weeks.
None of these are actually fixes for code that is new in 4.13. It's roughly half
older bugs, with fixes going to stable, and half fixes/updates for Power9.
Thanks to:
Aneesh Kumar K.V, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Madhavan Srinivasan, Michael Neuling, Nicholas Piggin, Oliver O'Halloran.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZaJKuAAoJEFHr6jzI4aWAojsQAI/Mnu3T9XCPbcuWJVHiNZu2
CubNKFb9H+HdjRZlgdT7dpx0XITCNWziQmBpQZO+w1kwa3s5uv5qNwj8I30HyTFH
qAArMq2Yb7GIW4PR8IpbSdCEWZii4YcIiLYk3kiEMyC2UIWeznBq+j79jFyITd9T
beevhLLq7dMoLO8T2VRSdp4YhdLKNYmgjQG1YFh3YIh8s/tyPQ0OsDaxNk5z8wgt
/htWiVQ2X/xWRHBnVKT4olc97pXqTvtaCdBWjD/fKNZK50YIwAjr2cJVoXpJidAW
POwwMto7rjSJDYpE6IgqQnhz0VqRTNB/4QkyaeHJkt6BPhAaafkrHZYtDgc2GaUJ
G96J6xT9bwHn8Jz1tpsxSgSA9A2GfBhdOUKMpIUVn1l9Q1ELPA0dJzzagLhgRDRG
w97UQ+CJqvRNfJkRHcuJbNqP5i++6yOHcHGB8QLkmkSYVcCm9Hj/fMXj/DJ5tHt/
c9t6uw25eqI7raFcxfh09+QTX8VDV96fa+GTo1HnCH71nGG2GqCoJFXyb3HEW64s
gD7uOPOlFlqfpuGDmV1kmdwH0R15EIJb2b6QsDssrcHEg5fA6z/xcAcV839c9y47
U8tcBiqFF0vWgB1QljTDrKuNsjg8dIeZfkSekBGD0WuBVLSADBl7f3b2k3BZB5H3
WxosyR4ufSVfw53HaDsb
=6eIT
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Nothing that really stands out, just a bunch of fixes that have come
in in the last couple of weeks.
None of these are actually fixes for code that is new in 4.13. It's
roughly half older bugs, with fixes going to stable, and half
fixes/updates for Power9.
Thanks to: Aneesh Kumar K.V, Anton Blanchard, Balbir Singh, Benjamin
Herrenschmidt, Madhavan Srinivasan, Michael Neuling, Nicholas Piggin,
Oliver O'Halloran"
* tag 'powerpc-4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64: Fix atomic64_inc_not_zero() to return an int
powerpc: Fix emulation of mfocrf in emulate_step()
powerpc: Fix emulation of mcrf in emulate_step()
powerpc/perf: Add POWER9 alternate PM_RUN_CYC and PM_RUN_INST_CMPL events
powerpc/perf: Fix SDAR_MODE value for continous sampling on Power9
powerpc/asm: Mark cr0 as clobbered in mftb()
powerpc/powernv: Fix local TLB flush for boot and MCE on POWER9
powerpc/mm/radix: Synchronize updates to the process table
powerpc/mm/radix: Properly clear process table entry
powerpc/powernv: Tell OPAL about our MMU mode on POWER9
powerpc/kexec: Fix radix to hash kexec due to IAMR/AMOR
Testing the fortified string functions[1] would cause a kernel panic on
boot in test_feature_fixups() due to a buffer overflow in memcmp.
This boils down to things like this:
extern unsigned int ftr_fixup_test1;
extern unsigned int ftr_fixup_test1_orig;
check(memcmp(&ftr_fixup_test1, &ftr_fixup_test1_orig, size) == 0);
We know that these are asm labels so it is safe to read up to 'size'
bytes at those addresses.
However, because we have passed the address of a single unsigned int to
memcmp, the compiler believes the underlying object is in fact a single
unsigned int. So if size > sizeof(unsigned int), there will be a panic
at runtime.
We can fix this by changing the types: instead of calling the asm labels
unsigned ints, call them unsigned int[]s. Therefore the size isn't
incorrectly determined at compile time and we get a regular unsafe
memcmp and no panic.
[1] http://openwall.com/lists/kernel-hardening/2017/05/09/2
Link: http://lkml.kernel.org/r/1497903987-21002-7-git-send-email-keescook@chromium.org
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From POWER4 onwards, mfocrf() only places the specified CR field into
the destination GPR, and the rest of it is set to 0. The PowerPC AS
from version 3.0 now requires this behaviour.
The emulation code currently puts the entire CR into the destination GPR.
Fix it.
Fixes: 6888199f7f ("[POWERPC] Emulate more instructions in software")
Cc: stable@vger.kernel.org # v2.6.22+
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The mcrf emulation code was using the CR field number directly as the shift
value, without taking into account that CR fields are numbered from 0-7 starting
at the high bits. That meant it was looking at the CR fields in the reverse
order.
Fixes: cf87c3f6b6 ("powerpc: Emulate icbi, mcrf and conditional-trap instructions")
Cc: stable@vger.kernel.org # v3.18+
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch creates the window using text_poke_area, allocated via
get_vm_area(). text_poke_area is per CPU to avoid locking.
text_poke_area for each cpu is setup using late_initcall, prior to
setup of these alternate mapping areas, we continue to use direct
write to change/modify kernel text. With the ability to use alternate
mappings to write to kernel text, it provides us the freedom to then
turn text read-only and implement CONFIG_STRICT_KERNEL_RWX.
This code is CPU hotplug aware to ensure that the we have mappings for
any new cpus as they come online and tear down mappings for any CPUs
that go offline.
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The xor_vmx.c file is used for the RAID5 xor operations. In these functions
altivec is enabled to run the operation and then disabled.
The code uses enable_kernel_altivec() around the core of the algorithm, however
the whole file is built with -maltivec, so the compiler is within its rights to
generate altivec code anywhere. This has been seen at least once in the wild:
0:mon> di $xor_altivec_2
c0000000000b97d0 3c4c01d9 addis r2,r12,473
c0000000000b97d4 3842db30 addi r2,r2,-9424
c0000000000b97d8 7c0802a6 mflr r0
c0000000000b97dc f8010010 std r0,16(r1)
c0000000000b97e0 60000000 nop
c0000000000b97e4 7c0802a6 mflr r0
c0000000000b97e8 faa1ffa8 std r21,-88(r1)
...
c0000000000b981c f821ff41 stdu r1,-192(r1)
c0000000000b9820 7f8101ce stvx v28,r1,r0 <-- POP
c0000000000b9824 38000030 li r0,48
c0000000000b9828 7fa101ce stvx v29,r1,r0
...
c0000000000b984c 4bf6a06d bl c0000000000238b8 # enable_kernel_altivec
This patch splits the non-altivec code into xor_vmx_glue.c which calls the
altivec functions in xor_vmx.c. By compiling xor_vmx_glue.c without
-maltivec we can guarantee that altivec instruction will not be executed
outside of the enable/disable block.
Signed-off-by: Matt Brown <matthew.brown.dev@gmail.com>
[mpe: Rework change log and include disassembly]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
For final link, the powerpc64 linker generates fpr save/restore
functions on-demand, placing them in the .sfpr section. Starting with
binutils 2.25, these can be provided for non-final links with
--save-restore-funcs. Use that where possible for module links.
This saves about 200 bytes per module (~60kB) on powernv defconfig
build.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is no need to create a new section for these. Consolidate with
32-bit and just use .text.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The 64-bit linker creates save/restore functions on demand with final
links, so vmlinux does not require crtsavres.o.
Make crtsavres.o extra-y on 64-bit (it is still required by modules).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Experiments with the netperf benchmark indicated that the size selecting
VMX-based copies in __copy_tofrom_user_power7() was suboptimal on POWER8.
Measurements showed that parity was in the neighbourhood of 3328 bytes,
rather than greater than 4096. The change gives a 1.5-2.0% improvement in
performance for 4096-byte buffers, reducing the relative time spent in
__copy_tofrom_user_power7() from approximately 7% to approximately 5% in
the TCP_RR benchmark.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we use a 128TB
virtual address space, but a process can request access to the full 512TB by
passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator Interface
Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and runtime.
- Several small fixes and cleanups to the kprobes code, as well as support for
KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts, correctly treating
them as NMIs, giving them a dedicated stack and using a new hypervisor call
to trigger them, all of which should aid debugging and robustness.
Many fixes and other minor enhancements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anshuman Khandual, Anton Blanchard, Balbir Singh, Ben
Hutchings, Benjamin Herrenschmidt, Bhupesh Sharma, Chris Packham, Christian
Zigotzky, Christophe Leroy, Christophe Lombard, Daniel Axtens, David Gibson,
Gautham R. Shenoy, Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli,
Hamish Martin, Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan,
Mahesh J Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell Currey, Sukadev
Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C. Harding, Tyrel Datwyler,
Uma Krishnan, Vaibhav Jain, Vipin K Parashar, Yang Shi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDHUMAAoJEFHr6jzI4aWAT7oQALkE2Nj3gjcn1z0SkFhq/1iO
Py9Elmqm4E+L6NKYtBY5dS8xVAJ088ffzERyqJ1FY1LHkB8tn8bWRcMQmbjAFzTI
V4TAzDNI890BN/F4ptrYRwNFxRBHAvZ4NDunTzagwYnwmTzW9PYHmOi4pvWTo3Tw
KFUQ0joLSEgHzyfXxYB3fyj41u8N0FZvhfazdNSqia2Y5Vwwv/ION5jKplDM+09Y
EtVEXFvaKAS1sjbM/d/Jo5rblHfR0D9/lYV10+jjyIokjzslIpyTbnj3izeYoM5V
I4h99372zfsEjBGPPXyM3khL3zizGMSDYRmJHQSaKxjtecS9SPywPTZ8ufO/aSzV
Ngq6nlND+f1zep29VQ0cxd3Jh40skWOXzxJaFjfDT25xa6FbfsWP2NCtk8PGylZ7
EyqTuCWkMgIP02KlX3oHvEB2LRRPCDmRU2zECecRGNJrIQwYC2xjoiVi7Q8Qe8rY
gr7Ib5Jj/a+uiTcCIy37+5nXq2s14/JBOKqxuYZIxeuZFvKYuRUipbKWO05WDOAz
m/pSzeC3J8AAoYiqR0gcSOuJTOnJpGhs7zrQFqnEISbXIwLW+ICumzOmTAiBqOEY
Rt8uW2gYkPwKLrE05445RfVUoERaAjaE06eRMOWS6slnngHmmnRJbf3PcoALiJkT
ediqGEj0/N1HMB31V5tS
=vSF3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we
use a 128TB virtual address space, but a process can request access
to the full 512TB by passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator
Interface Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and
runtime.
- Several small fixes and cleanups to the kprobes code, as well as
support for KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts,
correctly treating them as NMIs, giving them a dedicated stack and
using a new hypervisor call to trigger them, all of which should
aid debugging and robustness.
- Many fixes and other minor enhancements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple,
Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Ben Hutchings, Benjamin Herrenschmidt,
Bhupesh Sharma, Chris Packham, Christian Zigotzky, Christophe Leroy,
Christophe Lombard, Daniel Axtens, David Gibson, Gautham R. Shenoy,
Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli, Hamish Martin,
Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan, Mahesh J
Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell
Currey, Sukadev Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C.
Harding, Tyrel Datwyler, Uma Krishnan, Vaibhav Jain, Vipin K Parashar,
Yang Shi"
* tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
powerpc/64s: Power9 has no LPCR[VRMASD] field so don't set it
powerpc/powernv: Fix TCE kill on NVLink2
powerpc/mm/radix: Drop support for CPUs without lockless tlbie
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/sysfs: Move #ifdef CONFIG_HOTPLUG_CPU out of the function body
powerpc/smp: Document irq enable/disable after migrating IRQs
powerpc/mpc52xx: Don't select user-visible RTAS_PROC
powerpc/powernv: Document cxl dependency on special case in pnv_eeh_reset()
powerpc/eeh: Clean up and document event handling functions
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
cxl: Mask slice error interrupts after first occurrence
cxl: Route eeh events to all drivers in cxl_pci_error_detected()
cxl: Force context lock during EEH flow
powerpc/64: Allow CONFIG_RELOCATABLE if COMPILE_TEST
powerpc/xmon: Teach xmon oops about radix vectors
powerpc/mm/hash: Fix off-by-one in comment about kernel contexts ids
powerpc/pseries: Enable VFIO
powerpc/powernv: Fix iommu table size calculation hook for small tables
powerpc/powernv: Check kzalloc() return value in pnv_pci_table_alloc
powerpc: Add arch/powerpc/tools directory
...
Along similar lines as commit 9326638cbe ("kprobes, x86: Use NOKPROBE_SYMBOL()
instead of __kprobes annotation"), convert __kprobes annotation to either
NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case
the caller needs to be added to NOKPROBE_SYMBOL().
Also:
- blacklist arch_deref_entry_point(), and
- convert a few regular inlines to nokprobe_inline in lib/sstep.c
A key benefit is the ability to detect such symbols as being
blacklisted. Before this patch:
$ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem
$ perf probe read_mem
Failed to write event: Invalid argument
Error: Failed to add events.
$ dmesg | tail -1
[ 3736.112815] Could not insert probe at _text+10014968: -22
After patch:
$ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem
0xc000000000072b50-0xc000000000072d20 read_mem
$ perf probe read_mem
read_mem is blacklisted function, skip it.
Added new events:
(null):(null) (on read_mem)
probe:read_mem (on read_mem)
You can now use it in all perf tools, such as:
perf record -e probe:read_mem -aR sleep 1
$ grep " read_mem" /proc/kallsyms
c000000000072b50 t read_mem
c0000000005f3b40 t read_mem
$ cat /sys/kernel/debug/kprobes/list
c0000000005f3b48 k read_mem+0x8 [DISABLED]
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
[mpe: Minor change log formatting, fix up some conflicts]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Five fairly small fixes for things that went in this cycle.
A fairly large patch to rework the CAS logic on Power9, necessitated by a late
change to the firmware API, and we can't boot without it.
Three fixes going to stable, allowing more instructions to be emulated on LE,
fixing a boot crash on 32-bit Freescale BookE machines, and the OPAL XICS
workaround.
And a patch from me to sort the selects under CONFIG PPC. Annoying churn, but
worth it in the long run, and best for it to go in now to avoid conflicts.
Thanks to:
Alexey Kardashevskiy, Anton Blanchard, Balbir Singh, Gautham R. Shenoy,
Laurentiu Tudor, Nicholas Piggin, Paul Mackerras, Ravi Bangoria, Sachin Sant,
Shile Zhang, Suraj Jitindar Singh.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJYvqSxAAoJEFHr6jzI4aWAjMQP/06OFGz3VQvO5Q8jPsqRF22y
Wr+04OKFmKnYVObdQk15HGOagp1fSkWWHfP/eu50kx1WNCzq7tQdLjNSi7H4F3s1
4NwlaOfSQoxctsVtfnITJkfVScjcxK7XVagswtb3wvBpBx4lwD8fGwxkSxj6NhRw
PNxLi44wobb8mDyR6L/6tJKBI2Jt12qXZY+kBQIleun5+lF8fNXIu4qPiglMOia6
oPhXlp4RASt8wz74H8JuMTwGv17MxG+zvbkDPwQC7PI/fohJLybgWEfByN4H5UMy
7Xi/lWHlShAyc7ulAIN+A1mHKY9LSv45U6qrrHFUJgRftZihoZHe6ekcI+h5oFVX
chP9oUrQNeeZ5QqUC4rYdWwsMfiXBI0y5+BCupItixXc1LANBH9Ym9IECbgPRP93
LQVqiS4958KijHlYBOA2zPicl/FnVO16orqakyRS0B3lQ54XBvhcgG8gIXjQr8PM
Mt2W4r6RtGJ4ddhUPpF/W4lEuR4+dmXfEqs7DkgBKRbvi8XYkiLx2byBNh/OMRUG
T4ILXsYf50AKRAq/jFTs9A0zkjtmtBeDdn96Mcan8i3WZuTQ7b8mQlC46zEg23A8
XmTG2xt7N1dMjjwS78CfnvQ8sIVtA9AUfK37aTc0ICMsBCqEcWLAhHKZyCw0h25C
wq9BMn4e5Gdg2xLTHKlL
=SxON
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Five fairly small fixes for things that went in this cycle.
A fairly large patch to rework the CAS logic on Power9, necessitated
by a late change to the firmware API, and we can't boot without it.
Three fixes going to stable, allowing more instructions to be emulated
on LE, fixing a boot crash on 32-bit Freescale BookE machines, and the
OPAL XICS workaround.
And a patch from me to sort the selects under CONFIG PPC. Annoying
churn, but worth it in the long run, and best for it to go in now to
avoid conflicts.
Thanks to:
Alexey Kardashevskiy, Anton Blanchard, Balbir Singh, Gautham R.
Shenoy, Laurentiu Tudor, Nicholas Piggin, Paul Mackerras, Ravi
Bangoria, Sachin Sant, Shile Zhang, Suraj Jitindar Singh"
* tag 'powerpc-4.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc: Sort the selects under CONFIG_PPC
powerpc/64: Fix L1D cache shape vector reporting L1I values
powerpc/64: Avoid panic during boot due to divide by zero in init_cache_info()
powerpc: Update to new option-vector-5 format for CAS
powerpc: Parse the command line before calling CAS
powerpc/xics: Work around limitations of OPAL XICS priority handling
powerpc/64: Fix checksum folding in csum_add()
powerpc/powernv: Fix opal tracepoints with JUMP_LABEL=n
powerpc/booke: Fix boot crash due to null hugepd
powerpc: Fix compiling a BE kernel with a powerpc64le toolchain
selftest/powerpc: Fix false failures for skipped tests
powerpc/powernv: Fix bug due to labeling ambiguity in power_enter_stop
powerpc/64: Invalidate process table caching after setting process table
powerpc: emulate_step() tests for load/store instructions
powerpc: Emulation support for load/store instructions on LE
emulate_step() uses a number of underlying kernel functions that were
initially not enabled for LE. This has been rectified since. So, fix
emulate_step() for LE for the corresponding instructions.
Cc: stable@vger.kernel.org # v3.18+
Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Often all is needed is these small helpers, instead of compiler.h or a
full kprobes.h. This is important for asm helpers, in fact even some
asm/kprobes.h make use of these helpers... instead just keep a generic
asm file with helpers useful for asm code with the least amount of
clutter as possible.
Likewise we need now to also address what to do about this file for both
when architectures have CONFIG_HAVE_KPROBES, and when they do not. Then
for when architectures have CONFIG_HAVE_KPROBES but have disabled
CONFIG_KPROBES.
Right now most asm/kprobes.h do not have guards against CONFIG_KPROBES,
this means most architecture code cannot include asm/kprobes.h safely.
Correct this and add guards for architectures missing them.
Additionally provide architectures that not have kprobes support with
the default asm-generic solution. This lets us force asm/kprobes.h on
the header include/linux/kprobes.h always, but most importantly we can
now safely include just asm/kprobes.h on architecture code without
bringing the full kitchen sink of header files.
Two architectures already provided a guard against CONFIG_KPROBES on its
kprobes.h: sh, arch. The rest of the architectures needed gaurds added.
We avoid including any not-needed headers on asm/kprobes.h unless
kprobes have been enabled.
In a subsequent atomic change we can try now to remove compiler.h from
include/linux/kprobes.h.
During this sweep I've also identified a few architectures defining a
common macro needed for both kprobes and ftrace, that of the definition
of the breakput instruction up. Some refer to this as
BREAKPOINT_INSTRUCTION. This must be kept outside of the #ifdef
CONFIG_KPROBES guard.
[mcgrof@kernel.org: fix arm64 build]
Link: http://lkml.kernel.org/r/CAB=NE6X1WMByuARS4mZ1g9+W=LuVBnMDnh_5zyN0CLADaVh=Jw@mail.gmail.com
[sfr@canb.auug.org.au: fixup for kprobes declarations moving]
Link: http://lkml.kernel.org/r/20170214165933.13ebd4f4@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170203233139.32682-1-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current infrastructure of kprobe uses the unconditional trap instruction
to probe a running kernel. Optprobe allows kprobe to replace the trap
with a branch instruction to a detour buffer. Detour buffer contains
instructions to create an in memory pt_regs. Detour buffer also has a
call to optimized_callback() which in turn call the pre_handler(). After
the execution of the pre-handler, a call is made for instruction
emulation. The NIP is determined in advanced through dummy instruction
emulation and a branch instruction is created to the NIP at the end of
the trampoline.
To address the limitation of branch instruction in POWER architecture,
detour buffer slot is allocated from a reserved area. For the time
being, 64KB is reserved in memory for this purpose.
Instructions which can be emulated using analyse_instr() are the
candidates for optimization. Before optimization ensure that the address
range between the detour buffer allocated and the instruction being
probed is within +/- 32MB.
Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>