Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.
The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.
Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.
1. FREQUENCY INVARIANCE: MOTIVATION
* Without it, a task looks larger if the CPU runs slower
2. PECULIARITIES OF X86
* freq invariance accounting requires knowing the ratio freq_curr/freq_max
2.1 CURRENT FREQUENCY
* Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
2.2 MAX FREQUENCY
* It varies with time (turbo). As an approximation, we set it to a
constant, i.e. 4-cores turbo frequency.
3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
* The invariant schedutil's formula has no feedback loop and reacts faster
to utilization changes
4. KNOWN LIMITATIONS
* In some cases tasks can't reach max util despite how hard they try
5. PERFORMANCE TESTING
5.1 MACHINES
* Skylake, Broadwell, Haswell
5.2 SETUP
* baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
active cores turbo w/ invariant schedutil, and intel_pstate/powersave
5.3 BENCHMARK RESULTS
5.3.1 NEUTRAL BENCHMARKS
* NAS Parallel Benchmark (HPC), hackbench
5.3.2 NON-NEUTRAL BENCHMARKS
* tbench (10-30% better), kernbench (10-15% better),
shell-intensive-scripts (30-50% better)
* no regressions
5.3.3 SELECTION OF DETAILED RESULTS
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
* dbench (5% worse on one machine), kernbench (3% worse),
tbench (5-10% better), shell-intensive-scripts (10-40% better)
6. MICROARCH'ES ADDRESSED HERE
* Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
etc have different MSRs semantic for querying turbo levels)
7. REFERENCES
* MMTests performance testing framework, github.com/gormanm/mmtests
+-------------------------------------------------------------------------+
| 1. FREQUENCY INVARIANCE: MOTIVATION
+-------------------------------------------------------------------------+
For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.
[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)
+-------------------------------------------------------------------------+
| 2. PECULIARITIES OF X86
+-------------------------------------------------------------------------+
Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.
2.1 CURRENT FREQUENCY
====================
Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.
Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.
2.2 MAX FREQUENCY
=================
Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.
The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:
* 1-core (1C) turbo frequency (the fastest turbo state available)
* around base frequency (a.k.a. max P-state)
* something in between, such as 4C turbo
To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:
freq_max set to | effect on DVFS
--------------------+------------------
1C turbo | power efficiency (lower freq choices)
base freq | performance (higher util_avg, higher freq requests)
4C turbo | a bit of both
4C turbo proves to be a good compromise in a number of benchmarks (see below).
+-------------------------------------------------------------------------+
| 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
+-------------------------------------------------------------------------+
Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from
freq_next = 1.25 * freq_curr * util [non-invariant util signal]
to
freq_next = 1.25 * freq_max * util [invariant util signal]
where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.
Compare it to the update formula of intel_pstate/powersave:
freq_next = 1.25 * freq_max * Busy%
where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.
Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.
+-------------------------------------------------------------------------+
| 4. KNOWN LIMITATIONS
+-------------------------------------------------------------------------+
It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).
If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.
While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.
[Lelli-2018]
https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/
+-------------------------------------------------------------------------+
| 5. PERFORMANCE TESTING
+-------------------------------------------------------------------------+
5.1 MACHINES
============
We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.
* 8x-SKYLAKE-UMA:
Single socket E3-1240 v5, Skylake 4 cores/8 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 800 |********
BASE 3500 |***********************************
4C 3700 |*************************************
3C 3800 |**************************************
2C 3900 |***************************************
1C 3900 |***************************************
* 80x-BROADWELL-NUMA:
Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2200 |**********************
8C 2900 |*****************************
7C 3000 |******************************
6C 3100 |*******************************
5C 3200 |********************************
4C 3300 |*********************************
3C 3400 |**********************************
2C 3600 |************************************
1C 3600 |************************************
* 48x-HASWELL-NUMA
Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2300 |***********************
12C 2600 |**************************
11C 2600 |**************************
10C 2600 |**************************
9C 2600 |**************************
8C 2600 |**************************
7C 2600 |**************************
6C 2600 |**************************
5C 2700 |***************************
4C 2800 |****************************
3C 2900 |*****************************
2C 3100 |*******************************
1C 3100 |*******************************
5.2 SETUP
=========
* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
on all machines), plus one more value closer to base_freq but still in the
turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
with active intel_pstate on this machine use that.
This gives, in terms of combinations tested on each machine:
* 8x-SKYLAKE-UMA
* Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
* intel_pstate active + powersave + HWP
* invariant schedutil, freq_max = 1C turbo
* invariant schedutil, freq_max = 3C turbo
* invariant schedutil, freq_max = 4C turbo
* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
* [same as 8x-SKYLAKE-UMA, but no HWP capable]
* invariant schedutil, freq_max = 8C turbo
(which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")
5.3 BENCHMARK RESULTS
=====================
5.3.1 NEUTRAL BENCHMARKS
------------------------
Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:
* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)
5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------
What follow are summary tables where each benchmark result is given a score.
* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
means a score of 1.00.
* The results in the score ratio are the geometric means of results running
the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
... number of processes; for pgbench: varying the number of clients, and so
on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
operations/second), the subsequent three show lower-is-better kind of tests
(i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
entire unit tests suite of the Git SCM and measuring how long it takes. We
take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
columns show invariant schedutil for different values of freq_max. 4C turbo
is circled as it's the value we've chosen for the final implementation.
80x-BROADWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.14 ~ ~ | 1.11 | 1.14
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07
netperf-tcp ~ 1.03 ~ | 1.01 | 1.02
tbench4 1.57 1.18 1.22 | 1.30 | 1.56
+------+
8x-SKYLAKE-UMA (comparison ratio; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.30 1.14 1.14 | 1.16 |
+------+
48x-HASWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.15 ~ ~ | 1.06 | 1.16
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02
netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01
tbench4 1.50 1.05 1.13 | 1.13 | 1.25
+------+
In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.
If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.
80x-BROADWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 1.23 0.95 0.95 | 0.95 | 0.95
kernbench 0.93 0.83 0.83 | 0.83 | 0.82
gitsource 0.98 0.49 0.49 | 0.49 | 0.48
+------+
8x-SKYLAKE-UMA (comparison ratio; lower is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
dbench4 ~ ~ ~ | ~ |
kernbench ~ ~ ~ | ~ |
gitsource 0.92 0.55 0.55 | 0.55 |
+------+
48x-HASWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 ~ ~ ~ | ~ | ~
kernbench 0.94 0.90 0.89 | 0.90 | 0.90
gitsource 0.97 0.69 0.69 | 0.69 | 0.69
+------+
dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.
On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).
The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.
5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------
Machine : 48x-HASWELL-NUMA
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%)
Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%)
Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%)
Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%)
Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%)
Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%)
Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%)
Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%)
Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%)
Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%)
Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%)
Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%)
Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%)
Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%)
Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%)
Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%)
Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%)
This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.
The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.
Machine : 80x-BROADWELL-NUMA
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%)
Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%)
Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%)
Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%)
Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%)
Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%)
Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%)
Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%)
Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%)
Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%)
Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%)
Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%)
Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%)
Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%)
Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%)
The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.
Machine : 8x-SKYLAKE-UMA
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%)
5.2.0 3C-turbo 5.2.0 4C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%)
In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------
The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.
turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).
80x-BROADWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84
pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54
dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94
netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95
netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20
tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07
kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10
gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70
+--------+
8x-SKYLAKE-UMA (power consumption, watts)
+--------+
BASELINE I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 |
pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 |
dbench4 27.28 27.37 27.49 27.41 | 27.38 |
netperf-udp 22.33 22.41 22.36 22.35 | 22.36 |
netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 |
tbench4 41.13 45.61 43.10 43.33 | 43.56 |
kernbench 42.56 42.63 43.01 43.01 | 43.01 |
gitsource 13.32 13.69 17.33 17.30 | 17.35 |
+--------+
48x-HASWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86
pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31
dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79
netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52
netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95
tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22
kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04
gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23
+--------+
A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).
80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08
pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97
dbench4 1.24 0.94 0.95 | 0.94 | 0.92
netperf-udp ~ 1.02 1.02 | ~ | 1.02
netperf-tcp ~ 1.02 ~ | ~ | 1.02
tbench4 1.26 1.10 1.06 | 1.12 | 1.26
kernbench 0.98 0.97 0.97 | 0.97 | 0.98
gitsource ~ 1.11 1.11 | 1.11 | 1.13
+------+
8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw 0.95 0.97 0.96 | 0.96 |
dbench4 ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.17 1.09 1.08 | 1.10 |
kernbench ~ ~ ~ | ~ |
gitsource 1.06 1.40 1.40 | 1.40 |
+------+
48x-HASWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11
pgbench-rw ~ 0.86 ~ | ~ | 0.86
dbench4 ~ 1.02 1.02 | 1.02 | ~
netperf-udp ~ 0.97 1.03 | 1.02 | ~
netperf-tcp 0.96 ~ ~ | ~ | ~
tbench4 1.24 ~ 1.06 | 1.05 | 1.11
kernbench 0.97 0.97 0.98 | 0.97 | 0.96
gitsource 1.03 1.33 1.32 | 1.32 | 1.33
+------+
These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.
+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+
The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.
Subsequent patches will address:
* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont
+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+
Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:
db-pgbench-timed-ro-small-xfs
db-pgbench-timed-rw-small-xfs
io-dbench4-async-xfs
network-netperf-unbound
network-tbench
scheduler-unbound
workload-kerndevel-xfs
workload-shellscripts-xfs
hpc-nas-c-class-mpi-full-xfs
hpc-nas-c-class-omp-full
All those benchmarks are generally available on the web:
pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
Pull misc x86 updates from Ingo Molnar:
"Misc changes:
- Enhance #GP fault printouts by distinguishing between canonical and
non-canonical address faults, and also add KASAN fault decoding.
- Fix/enhance the x86 NMI handler by putting the duration check into
a direct function call instead of an irq_work which we know to be
broken in some cases.
- Clean up do_general_protection() a bit"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Remove irq_work from the long duration NMI handler
x86/traps: Cleanup do_general_protection()
x86/kasan: Print original address on #GP
x86/dumpstack: Introduce die_addr() for die() with #GP fault address
x86/traps: Print address on #GP
x86/insn-eval: Add support for 64-bit kernel mode
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the map"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Remove amd_get_topology_early()
x86/tsc: Remove redundant assignment
x86/crash: Use resource_size()
x86/cpu: Add a missing prototype for arch_smt_update()
x86/nospec: Remove unused RSB_FILL_LOOPS
x86/vdso: Provide missing include file
x86/Kconfig: Correct spelling and punctuation
Documentation/x86/boot: Fix typo
x86/boot: Fix a comment's incorrect file reference
x86/process: Remove set but not used variables prev and next
x86/Kconfig: Fix Kconfig indentation
Pull x86 resource control updates from Ingo Molnar:
"The main change in this tree is the extension of the resctrl procfs
ABI with a new file that helps tooling to navigate from tasks back to
resctrl groups: /proc/{pid}/cpu_resctrl_groups.
Also fix static key usage for certain feature combinations and
simplify the task exit resctrl case"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Add task resctrl information display
x86/resctrl: Check monitoring static key in the MBM overflow handler
x86/resctrl: Do not reconfigure exiting tasks
Pull x86 boot update from Ingo Molnar:
"Two minor changes: fix an atypical binutils combination build bug, and
also fix a VRAM size check for simplefb"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sysfb: Fix check for bad VRAM size
x86/boot: Discard .eh_frame sections
Pull x86 asm updates from Ingo Molnar:
"Misc updates:
- Remove last remaining calls to exception_enter/exception_exit() and
simplify the entry code some more.
- Remove force_iret()
- Add support for "Fast Short Rep Mov", which is available starting
with Ice Lake Intel CPUs - and make the x86 assembly version of
memmove() use REP MOV for all sizes when FSRM is available.
- Micro-optimize/simplify the 32-bit boot code a bit.
- Use a more future-proof SYSRET instruction mnemonic"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Simplify calculation of output address
x86/entry/64: Add instruction suffix to SYSRET
x86: Remove force_iret()
x86/cpufeatures: Add support for fast short REP; MOVSB
x86/context-tracking: Remove exception_enter/exit() from KVM_PV_REASON_PAGE_NOT_PRESENT async page fault
x86/context-tracking: Remove exception_enter/exit() from do_page_fault()
Pull x86 apic fix from Ingo Molnar:
"A single commit that simplifies the code and gets rid of a compiler
warning"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/uv: Avoid unused variable warning
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Ftrace is one of the last W^X violators (after this only KLP is
left). These patches move it over to the generic text_poke()
interface and thereby get rid of this oddity. This requires a
surprising amount of surgery, by Peter Zijlstra.
- x86/AMD PMUs: add support for 'Large Increment per Cycle Events' to
count certain types of events that have a special, quirky hw ABI
(by Kim Phillips)
- kprobes fixes by Masami Hiramatsu
Lots of tooling updates as well, the following subcommands were
updated: annotate/report/top, c2c, clang, record, report/top TUI,
sched timehist, tests; plus updates were done to the gtk ui, libperf,
headers and the parser"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
perf/x86/amd: Add support for Large Increment per Cycle Events
perf/x86/amd: Constrain Large Increment per Cycle events
perf/x86/intel/rapl: Add Comet Lake support
tracing: Initialize ret in syscall_enter_define_fields()
perf header: Use last modification time for timestamp
perf c2c: Fix return type for histogram sorting comparision functions
perf beauty sockaddr: Fix augmented syscall format warning
perf/ui/gtk: Fix gtk2 build
perf ui gtk: Add missing zalloc object
perf tools: Use %define api.pure full instead of %pure-parser
libperf: Setup initial evlist::all_cpus value
perf report: Fix no libunwind compiled warning break s390 issue
perf tools: Support --prefix/--prefix-strip
perf report: Clarify in help that --children is default
tools build: Fix test-clang.cpp with Clang 8+
perf clang: Fix build with Clang 9
kprobes: Fix optimize_kprobe()/unoptimize_kprobe() cancellation logic
tools lib: Fix builds when glibc contains strlcpy()
perf report/top: Make 'e' visible in the help and make it toggle showing callchains
perf report/top: Do not offer annotation for symbols without samples
...
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Cleanup of the GOP [graphics output] handling code in the EFI stub
- Complete refactoring of the mixed mode handling in the x86 EFI stub
- Overhaul of the x86 EFI boot/runtime code
- Increase robustness for mixed mode code
- Add the ability to disable DMA at the root port level in the EFI
stub
- Get rid of RWX mappings in the EFI memory map and page tables,
where possible
- Move the support code for the old EFI memory mapping style into its
only user, the SGI UV1+ support code.
- plus misc fixes, updates, smaller cleanups.
... and due to interactions with the RWX changes, another round of PAT
cleanups make a guest appearance via the EFI tree - with no side
effects intended"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
efi/x86: Disable instrumentation in the EFI runtime handling code
efi/libstub/x86: Fix EFI server boot failure
efi/x86: Disallow efi=old_map in mixed mode
x86/boot/compressed: Relax sed symbol type regex for LLVM ld.lld
efi/x86: avoid KASAN false positives when accessing the 1: 1 mapping
efi: Fix handling of multiple efi_fake_mem= entries
efi: Fix efi_memmap_alloc() leaks
efi: Add tracking for dynamically allocated memmaps
efi: Add a flags parameter to efi_memory_map
efi: Fix comment for efi_mem_type() wrt absent physical addresses
efi/arm: Defer probe of PCIe backed efifb on DT systems
efi/x86: Limit EFI old memory map to SGI UV machines
efi/x86: Avoid RWX mappings for all of DRAM
efi/x86: Don't map the entire kernel text RW for mixed mode
x86/mm: Fix NX bit clearing issue in kernel_map_pages_in_pgd
efi/libstub/x86: Fix unused-variable warning
efi/libstub/x86: Use mandatory 16-byte stack alignment in mixed mode
efi/libstub/x86: Use const attribute for efi_is_64bit()
efi: Allow disabling PCI busmastering on bridges during boot
efi/x86: Allow translating 64-bit arguments for mixed mode calls
...
Pull objtool updates from Ingo Molnar:
"The main changes are to move the ORC unwind table sorting from early
init to build-time - this speeds up booting.
No change in functionality intended"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fix !CONFIG_MODULES build warning
x86/unwind/orc: Remove boot-time ORC unwind tables sorting
scripts/sorttable: Implement build-time ORC unwind table sorting
scripts/sorttable: Rename 'sortextable' to 'sorttable'
scripts/sortextable: Refactor the do_func() function
scripts/sortextable: Remove dead code
scripts/sortextable: Clean up the code to meet the kernel coding style better
scripts/sortextable: Rewrite error/success handling
Pull header cleanup from Ingo Molnar:
"This is a treewide cleanup, mostly (but not exclusively) with x86
impact, which breaks implicit dependencies on the asm/realtime.h
header and finally removes it from asm/acpi.h"
* 'core-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ACPI/sleep: Move acpi_get_wakeup_address() into sleep.c, remove <asm/realmode.h> from <asm/acpi.h>
ACPI/sleep: Convert acpi_wakeup_address into a function
x86/ACPI/sleep: Remove an unnecessary include of asm/realmode.h
ASoC: Intel: Skylake: Explicitly include linux/io.h for virt_to_phys()
vmw_balloon: Explicitly include linux/io.h for virt_to_phys()
virt: vbox: Explicitly include linux/io.h to pick up various defs
efi/capsule-loader: Explicitly include linux/io.h for page_to_phys()
perf/x86/intel: Explicitly include asm/io.h to use virt_to_phys()
x86/kprobes: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/ftrace: Explicitly include vmalloc.h for set_vm_flush_reset_perms()
x86/boot: Explicitly include realmode.h to handle RM reservations
x86/efi: Explicitly include realmode.h to handle RM trampoline quirk
x86/platform/intel/quark: Explicitly include linux/io.h for virt_to_phys()
x86/setup: Enhance the comments
x86/setup: Clean up the header portion of setup.c
and improvements:
- Update the cached HLE state when the TSX state is changed via the new
control register. This ensures feature bit consistency.
- Exclude the new Zhaoxin CPUs from Spectre V2 and SWAPGS vulnerabilities.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl4vc5ITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoRujEACeWTy4k+eCprV2tu4O/e15VaGaIdRp
Kdv02kZ1U/3upSubRYW8XsBqesCdbSzfO78fE7yQYZmTbOxczSE1t2XH5Cj7c3ig
3D4gzXaH2XKf+j9cXceba/3cpRsMU8fAhQYr+Immi/dG2ORs8i2C4G0cxKthqvbP
R6qdS+Pg9Mo1a2c2nLRGMDyNbNdaYXiJEiWSGNlc6Den/vog+jR4T2WV5a5IjeKL
yjjukoLoeScJ/3gYK0BQkaGNY3BeU1H5ECtbVM3SBFkp2a9OVGhr1bSxwO1U+T8C
fdzwJZU/p+JTb69kx91Tz8+wd2zLtV1wxbdZY7nyUUfGd80q0eU4sQZQyY13mONw
0LRvXrfHjIsRPSiRY3iyHYq9I0UZmjG7oInqRLimLrJmjrPtALhu/mO5TjZbxjzM
FSVx5fWbZYUgnrQpB+hjqiBcrc3sjjrDwU6DufbSq/AhTBKQ/o0mC+S63OhJ0H7C
Bzp1m0OniDuNRtYD0LZm0ktAkLpCTy5lgGBQ6ffNqs87ivFi0GTErqml5GrUEKQ5
mq7h56mf00jKPBYOVoYs9MuWJ18JVJuVNipdlM+P7027XDRpl46l9g87YuMhIol/
tQsDHB4Dv/1QTZY3K3MuNLFZaQJ4/DI9LA2B1br1PdHbZSDd81NflT6FKE11rqWC
T+DCpmj+smRqVw==
=dOgd
-----END PGP SIGNATURE-----
Merge tag 'x86-pti-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
"The performance deterioration departement provides a few non-scary
fixes and improvements:
- Update the cached HLE state when the TSX state is changed via the
new control register. This ensures feature bit consistency.
- Exclude the new Zhaoxin CPUs from Spectre V2 and SWAPGS
vulnerabilities"
* tag 'x86-pti-2020-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/swapgs: Exclude Zhaoxin CPUs from SWAPGS vulnerability
x86/speculation/spectre_v2: Exclude Zhaoxin CPUs from SPECTRE_V2
x86/cpu: Update cached HLE state on write to TSX_CTRL_CPUID_CLEAR
- Time namespace support:
If a container migrates from one host to another then it expects that
clocks based on MONOTONIC and BOOTTIME are not subject to
disruption. Due to different boot time and non-suspended runtime these
clocks can differ significantly on two hosts, in the worst case time
goes backwards which is a violation of the POSIX requirements.
The time namespace addresses this problem. It allows to set offsets for
clock MONOTONIC and BOOTTIME once after creation and before tasks are
associated with the namespace. These offsets are taken into account by
timers and timekeeping including the VDSO.
Offsets for wall clock based clocks (REALTIME/TAI) are not provided by
this mechanism. While in theory possible, the overhead and code
complexity would be immense and not justified by the esoteric potential
use cases which were discussed at Plumbers '18.
The overhead for tasks in the root namespace (host time offsets = 0) is
in the noise and great effort was made to ensure that especially in the
VDSO. If time namespace is disabled in the kernel configuration the
code is compiled out.
Kudos to Andrei Vagin and Dmitry Sofanov who implemented this feature
and kept on for more than a year addressing review comments, finding
better solutions. A pleasant experience.
- Overhaul of the alarmtimer device dependency handling to ensure that
the init/suspend/resume ordering is correct.
- A new clocksource/event driver for Microchip PIT64
- Suspend/resume support for the Hyper-V clocksource
- The usual pile of fixes, updates and improvements mostly in the
driver code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl4vbTcTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoXT2D/96iJ3G9Snn2khEQP3XS2rYmtDGw7NO
m1n96falwWeGe6zreU80R2Jge5nLxQtNhRoMPLLee1GpHwRC6lvqEqgdZ4LMBrD2
JqV7Gzg8Urmdh+hpDsyTCpeEWEzoMKxiFOX8PxwctqUhM4szEe5iQg2YQsg85Jw2
vG6M93N2xwDILh4rhEMbKjo+5ZmYn7c1RQvpGOSmpKOj940W/N7H2HBsFhdaJ1Kw
FW5pFv1211PaU5RV2YNb2dMeeMTT1N3e2VN4Dkadoxp47pb+725gNHEBEjmV9poG
Lp4IhzGAPnj8zVD88icQZSTaK3gUHMClxprJ0Pf84WEtiH7SeGu8BPYyu77+oNDe
yzcctDJNyCWXkzmaP/fe/HLc0TStbvNAJ5Tagp4BC75gzebeb4/n8RtRT0fKeDYL
pxpDPKDAPU7p1JSjxiWAtshqjBycWNY3Z49bA7/VhKBhnv8BDyBPGlYd7/4xrbGr
RK7DQNXJwaJaiNJ7p5PiaFxGzNyB0B9sThD/slSlEInIKb4h9YzWr0TV+NB62VnB
sDcN+tpLbRPz5/5cHGGfxR0+zKWpfyai8pzbmmaXEaKssjRYwyvcac5EZdgbWpbK
k7CqAjoWLA2P+tGeePNJOf5JYK6Vmdyh4clmuwM0zOiRJ9NlWUyMf3z7QYILs4RO
UAI+6opYlZEPAw==
=x3qT
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"The timekeeping and timers departement provides:
- Time namespace support:
If a container migrates from one host to another then it expects
that clocks based on MONOTONIC and BOOTTIME are not subject to
disruption. Due to different boot time and non-suspended runtime
these clocks can differ significantly on two hosts, in the worst
case time goes backwards which is a violation of the POSIX
requirements.
The time namespace addresses this problem. It allows to set offsets
for clock MONOTONIC and BOOTTIME once after creation and before
tasks are associated with the namespace. These offsets are taken
into account by timers and timekeeping including the VDSO.
Offsets for wall clock based clocks (REALTIME/TAI) are not provided
by this mechanism. While in theory possible, the overhead and code
complexity would be immense and not justified by the esoteric
potential use cases which were discussed at Plumbers '18.
The overhead for tasks in the root namespace (ie where host time
offsets = 0) is in the noise and great effort was made to ensure
that especially in the VDSO. If time namespace is disabled in the
kernel configuration the code is compiled out.
Kudos to Andrei Vagin and Dmitry Sofanov who implemented this
feature and kept on for more than a year addressing review
comments, finding better solutions. A pleasant experience.
- Overhaul of the alarmtimer device dependency handling to ensure
that the init/suspend/resume ordering is correct.
- A new clocksource/event driver for Microchip PIT64
- Suspend/resume support for the Hyper-V clocksource
- The usual pile of fixes, updates and improvements mostly in the
driver code"
* tag 'timers-core-2020-01-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
alarmtimer: Make alarmtimer_get_rtcdev() a stub when CONFIG_RTC_CLASS=n
alarmtimer: Use wakeup source from alarmtimer platform device
alarmtimer: Make alarmtimer platform device child of RTC device
alarmtimer: Update alarmtimer_get_rtcdev() docs to reflect reality
hrtimer: Add missing sparse annotation for __run_timer()
lib/vdso: Only read hrtimer_res when needed in __cvdso_clock_getres()
MIPS: vdso: Define BUILD_VDSO32 when building a 32bit kernel
clocksource/drivers/hyper-v: Set TSC clocksource as default w/ InvariantTSC
clocksource/drivers/hyper-v: Untangle stimers and timesync from clocksources
clocksource/drivers/timer-microchip-pit64b: Fix sparse warning
clocksource/drivers/exynos_mct: Rename Exynos to lowercase
clocksource/drivers/timer-ti-dm: Fix uninitialized pointer access
clocksource/drivers/timer-ti-dm: Switch to platform_get_irq
clocksource/drivers/timer-ti-dm: Convert to devm_platform_ioremap_resource
clocksource/drivers/em_sti: Fix variable declaration in em_sti_probe
clocksource/drivers/em_sti: Convert to devm_platform_ioremap_resource
clocksource/drivers/bcm2835_timer: Fix memory leak of timer
clocksource/drivers/cadence-ttc: Use ttc driver as platform driver
clocksource/drivers/timer-microchip-pit64b: Add Microchip PIT64B support
clocksource/drivers/hyper-v: Reserve PAGE_SIZE space for tsc page
...
- remove ioremap_nocache given that is is equivalent to
ioremap everywhere
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl4vKHwLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMPGBAAuVNUZaZfWYHpiVP2oRcUQUguFiD3NTbknsyzV2oH
J9P0GfeENSKwE9OOhZ7XIjnCZAJwQgTK/ppQY5yiQ/KAtYyyXjXEJ6jqqjiTDInr
+3+I3t/LhkgrK7tMrb7ylTGa/d7KhaciljnOXC8+b75iddvM9I1z2pbHDbppZMS9
wT4RXL/cFtRb85AfOyPLybcka3f5P2gGvQz38qyimhJYEzHDXZu9VO1Bd20f8+Xf
eLBKX0o6yWMhcaPLma8tm0M0zaXHEfLHUKLSOkiOk+eHTWBZ3b/w5nsOQZYZ7uQp
25yaClbameAn7k5dHajduLGEJv//ZjLRWcN3HJWJ5vzO111aHhswpE7JgTZJSVWI
ggCVkytD3ESXapvswmACSeCIDMmiJMzvn6JvwuSMVB7a6e5mcqTuGo/FN+DrBF/R
IP+/gY/T7zIIOaljhQVkiEIIwiD/akYo0V9fheHTBnqcKEDTHV4WjKbeF6aCwcO+
b8inHyXZSKSMG//UlDuN84/KH/o1l62oKaB1uDIYrrL8JVyjAxctWt3GOt5KgSFq
wVz1lMw4kIvWtC/Sy2H4oB+RtODLp6yJDqmvmPkeJwKDUcd/1JKf0KsZ8j3FpGei
/rEkBEss0KBKyFAgBSRO2jIpdj2epgcBcsdB/r5mlhcn8L77AS6mHbA173kY4pQ/
Kdg=
=TUCJ
-----END PGP SIGNATURE-----
Merge tag 'ioremap-5.6' of git://git.infradead.org/users/hch/ioremap
Pull ioremap updates from Christoph Hellwig:
"Remove the ioremap_nocache API (plus wrappers) that are always
identical to ioremap"
* tag 'ioremap-5.6' of git://git.infradead.org/users/hch/ioremap:
remove ioremap_nocache and devm_ioremap_nocache
MIPS: define ioremap_nocache to ioremap
Pull RAS updates from Borislav Petkov:
- Misc fixes to the MCE code all over the place, by Jan H. Schönherr.
- Initial support for AMD F19h and other cleanups to amd64_edac, by
Yazen Ghannam.
- Other small cleanups.
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/mce_amd: Make fam_ops static global
EDAC/amd64: Drop some family checks for newer systems
EDAC/amd64: Add family ops for Family 19h Models 00h-0Fh
x86/amd_nb: Add Family 19h PCI IDs
EDAC/mce_amd: Always load on SMCA systems
x86/MCE/AMD, EDAC/mce_amd: Add new Load Store unit McaType
x86/mce: Fix use of uninitialized MCE message string
x86/mce: Fix mce=nobootlog
x86/mce: Take action on UCNA/Deferred errors again
x86/mce: Remove mce_inject_log() in favor of mce_log()
x86/mce: Pass MCE message to mce_panic() on failed kernel recovery
x86/mce/therm_throt: Mark throttle_active_work() as __maybe_unused
... and fold its function body into its single call site.
No functional changes:
# arch/x86/kernel/cpu/amd.o:
text data bss dec hex filename
5994 385 1 6380 18ec amd.o.before
5994 385 1 6380 18ec amd.o.after
md5:
99ec6daa095b502297884e949c520f90 amd.o.before.asm
99ec6daa095b502297884e949c520f90 amd.o.after.asm
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200123165811.5288-1-bp@alien8.de
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
This removes all the remaining (dead at this point) MPX handling
code remaining in the tree. The only remaining code is the XSAVE
support for MPX state which is currently needd for KVM to handle
VMs which might use MPX.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
Remove the other user-visible ABI: signal handling. This code
should basically have been inactive after the prctl()s were
removed, but there may be some small ABI remnants from this code.
Remove it.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
From: Dave Hansen <dave.hansen@linux.intel.com>
While testing my MPX removal series, Borislav noted compilation
failure with an allnoconfig build.
Turned out to be a missing include of insn.h in alternative.c.
With MPX, it got it implicitly from:
asm/mmu_context.h -> asm/mpx.h -> asm/insn.h
Fixes: c3d6324f84 ("x86/alternatives: Teach text_poke_bp() to emulate instructions")
Reported-by: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Previously, the assignment to the local variable 'now' took place
before the for loop. The loop is unconditional so it will be entered
at least once. The variable 'now' is reassigned in the loop and is not
used before reassigning. Therefore, the assignment before the loop is
unnecessary and can be removed.
No code changed:
# arch/x86/kernel/tsc_sync.o:
text data bss dec hex filename
3569 198 44 3811 ee3 tsc_sync.o.before
3569 198 44 3811 ee3 tsc_sync.o.after
md5:
36216de29b208edbcd34fed9fe7f7b69 tsc_sync.o.before.asm
36216de29b208edbcd34fed9fe7f7b69 tsc_sync.o.after.asm
[ bp: Massage commit message. ]
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200118171143.25178-1-mateusznosek0@gmail.com
Commit
334b0f4e9b ("x86/resctrl: Fix a deadlock due to inaccurate reference")
changed the argument to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock()
within mkdir_rdt_prepare(). That change resulted in an unused function
parameter to mkdir_rdt_prepare().
Clean up the unused function parameter in mkdir_rdt_prepare() and its
callers rdtgroup_mkdir_mon() and rdtgroup_mkdir_ctrl_mon().
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1578500886-21771-5-git-send-email-xiaochen.shen@intel.com
There is a race condition which results in a deadlock when rmdir and
mkdir execute concurrently:
$ ls /sys/fs/resctrl/c1/mon_groups/m1/
cpus cpus_list mon_data tasks
Thread 1: rmdir /sys/fs/resctrl/c1
Thread 2: mkdir /sys/fs/resctrl/c1/mon_groups/m1
3 locks held by mkdir/48649:
#0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
#1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c13b>] filename_create+0x7b/0x170
#2: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70
4 locks held by rmdir/48652:
#0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
#1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c3cf>] do_rmdir+0x13f/0x1e0
#2: (&type->i_mutex_dir_key#8){++++}, at: [<ffffffffb4c86d5d>] vfs_rmdir+0x4d/0x120
#3: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70
Thread 1 is deleting control group "c1". Holding rdtgroup_mutex,
kernfs_remove() removes all kernfs nodes under directory "c1"
recursively, then waits for sub kernfs node "mon_groups" to drop active
reference.
Thread 2 is trying to create a subdirectory "m1" in the "mon_groups"
directory. The wrapper kernfs_iop_mkdir() takes an active reference to
the "mon_groups" directory but the code drops the active reference to
the parent directory "c1" instead.
As a result, Thread 1 is blocked on waiting for active reference to drop
and never release rdtgroup_mutex, while Thread 2 is also blocked on
trying to get rdtgroup_mutex.
Thread 1 (rdtgroup_rmdir) Thread 2 (rdtgroup_mkdir)
(rmdir /sys/fs/resctrl/c1) (mkdir /sys/fs/resctrl/c1/mon_groups/m1)
------------------------- -------------------------
kernfs_iop_mkdir
/*
* kn: "m1", parent_kn: "mon_groups",
* prgrp_kn: parent_kn->parent: "c1",
*
* "mon_groups", parent_kn->active++: 1
*/
kernfs_get_active(parent_kn)
kernfs_iop_rmdir
/* "c1", kn->active++ */
kernfs_get_active(kn)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
/* "c1", kn->active-- */
kernfs_break_active_protection(kn)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
sentry->flags = RDT_DELETED
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
kernfs_get(kn)
kernfs_remove(rdtgrp->kn)
__kernfs_remove
/* "mon_groups", sub_kn */
atomic_add(KN_DEACTIVATED_BIAS, &sub_kn->active)
kernfs_drain(sub_kn)
/*
* sub_kn->active == KN_DEACTIVATED_BIAS + 1,
* waiting on sub_kn->active to drop, but it
* never drops in Thread 2 which is blocked
* on getting rdtgroup_mutex.
*/
Thread 1 hangs here ---->
wait_event(sub_kn->active == KN_DEACTIVATED_BIAS)
...
rdtgroup_mkdir
rdtgroup_mkdir_mon(parent_kn, prgrp_kn)
mkdir_rdt_prepare(parent_kn, prgrp_kn)
rdtgroup_kn_lock_live(prgrp_kn)
atomic_inc(&rdtgrp->waitcount)
/*
* "c1", prgrp_kn->active--
*
* The active reference on "c1" is
* dropped, but not matching the
* actual active reference taken
* on "mon_groups", thus causing
* Thread 1 to wait forever while
* holding rdtgroup_mutex.
*/
kernfs_break_active_protection(
prgrp_kn)
/*
* Trying to get rdtgroup_mutex
* which is held by Thread 1.
*/
Thread 2 hangs here ----> mutex_lock
...
The problem is that the creation of a subdirectory in the "mon_groups"
directory incorrectly releases the active protection of its parent
directory instead of itself before it starts waiting for rdtgroup_mutex.
This is triggered by the rdtgroup_mkdir() flow calling
rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() with kernfs node of the
parent control group ("c1") as argument. It should be called with kernfs
node "mon_groups" instead. What is currently missing is that the
kn->priv of "mon_groups" is NULL instead of pointing to the rdtgrp.
Fix it by pointing kn->priv to rdtgrp when "mon_groups" is created. Then
it could be passed to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock()
instead. And then it operates on the same rdtgroup structure but handles
the active reference of kernfs node "mon_groups" to prevent deadlock.
The same changes are also made to the "mon_data" directories.
This results in some unused function parameters that will be cleaned up
in follow-up patch as the focus here is on the fix only in support of
backporting efforts.
Fixes: c7d9aac613 ("x86/intel_rdt/cqm: Add mkdir support for RDT monitoring")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-4-git-send-email-xiaochen.shen@intel.com
There is a race condition in the following scenario which results in an
use-after-free issue when reading a monitoring file and deleting the
parent ctrl_mon group concurrently:
Thread 1 calls atomic_inc() to take refcount of rdtgrp and then calls
kernfs_break_active_protection() to drop the active reference of kernfs
node in rdtgroup_kn_lock_live().
In Thread 2, kernfs_remove() is a blocking routine. It waits on all sub
kernfs nodes to drop the active reference when removing all subtree
kernfs nodes recursively. Thread 2 could block on kernfs_remove() until
Thread 1 calls kernfs_break_active_protection(). Only after
kernfs_remove() completes the refcount of rdtgrp could be trusted.
Before Thread 1 calls atomic_inc() and kernfs_break_active_protection(),
Thread 2 could call kfree() when the refcount of rdtgrp (sentry) is 0
instead of 1 due to the race.
In Thread 1, in rdtgroup_kn_unlock(), referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_mondata_show) Thread 2 (rdtgroup_rmdir)
-------------------------------- -------------------------
rdtgroup_kn_lock_live
/*
* kn active protection until
* kernfs_break_active_protection(kn)
*/
rdtgrp = kernfs_to_rdtgroup(kn)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
/*
* sentry->waitcount should be 1
* but is 0 now due to the race.
*/
kfree(sentry)*[1]
/*
* Only after kernfs_remove()
* completes, the refcount of
* rdtgrp could be trusted.
*/
atomic_inc(&rdtgrp->waitcount)
/* kn->active-- */
kernfs_break_active_protection(kn)
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
/*
* Blocking routine, wait for
* all sub kernfs nodes to drop
* active reference in
* kernfs_break_active_protection.
*/
kernfs_remove(rdtgrp->kn)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(
&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kernfs_unbreak_active_protection(kn)
kfree(rdtgrp)
mutex_lock
mon_event_read
rdtgroup_kn_unlock
mutex_unlock
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [1].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
/* kn->active++ */
kernfs_unbreak_active_protection(kn)
kfree(rdtgrp)
Fix it by moving free_all_child_rdtgrp() to after kernfs_remove() in
rdtgroup_rmdir_ctrl() to ensure it has the accurate refcount of rdtgrp.
Fixes: f3cbeacaa0 ("x86/intel_rdt/cqm: Add rmdir support")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-3-git-send-email-xiaochen.shen@intel.com
A resource group (rdtgrp) contains a reference count (rdtgrp->waitcount)
that indicates how many waiters expect this rdtgrp to exist. Waiters
could be waiting on rdtgroup_mutex or some work sitting on a task's
workqueue for when the task returns from kernel mode or exits.
The deletion of a rdtgrp is intended to have two phases:
(1) while holding rdtgroup_mutex the necessary cleanup is done and
rdtgrp->flags is set to RDT_DELETED,
(2) after releasing the rdtgroup_mutex, the rdtgrp structure is freed
only if there are no waiters and its flag is set to RDT_DELETED. Upon
gaining access to rdtgroup_mutex or rdtgrp, a waiter is required to check
for the RDT_DELETED flag.
When unmounting the resctrl file system or deleting ctrl_mon groups,
all of the subdirectories are removed and the data structure of rdtgrp
is forcibly freed without checking rdtgrp->waitcount. If at this point
there was a waiter on rdtgrp then a use-after-free issue occurs when the
waiter starts running and accesses the rdtgrp structure it was waiting
on.
See kfree() calls in [1], [2] and [3] in these two call paths in
following scenarios:
(1) rdt_kill_sb() -> rmdir_all_sub() -> free_all_child_rdtgrp()
(2) rdtgroup_rmdir() -> rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()
There are several scenarios that result in use-after-free issue in
following:
Scenario 1:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdt_kill_sb() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_tasks_write) Thread 2 (rdt_kill_sb)
------------------------------- ----------------------
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_move_task
__rdtgroup_move_task
/*
* Take an extra refcount, so rdtgrp cannot be freed
* before the call back move_myself has been invoked
*/
atomic_inc(&rdtgrp->waitcount)
/* Callback move_myself will be scheduled for later */
task_work_add(move_myself)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
mutex_lock
rmdir_all_sub
/*
* sentry and rdtgrp are freed
* without checking refcount
*/
free_all_child_rdtgrp
kfree(sentry)*[1]
kfree(rdtgrp)*[2]
mutex_unlock
/*
* Callback is scheduled to execute
* after rdt_kill_sb is finished
*/
move_myself
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [1] or [2].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
Scenario 2:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdtgroup_rmdir() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.
Thread 1 (rdtgroup_tasks_write) Thread 2 (rdtgroup_rmdir)
------------------------------- -------------------------
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_move_task
__rdtgroup_move_task
/*
* Take an extra refcount, so rdtgrp cannot be freed
* before the call back move_myself has been invoked
*/
atomic_inc(&rdtgrp->waitcount)
/* Callback move_myself will be scheduled for later */
task_work_add(move_myself)
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
rdtgroup_kn_lock_live
atomic_inc(&rdtgrp->waitcount)
mutex_lock
rdtgroup_rmdir_ctrl
free_all_child_rdtgrp
/*
* sentry is freed without
* checking refcount
*/
kfree(sentry)*[3]
rdtgroup_ctrl_remove
rdtgrp->flags = RDT_DELETED
rdtgroup_kn_unlock
mutex_unlock
atomic_dec_and_test(
&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
/*
* Callback is scheduled to execute
* after rdt_kill_sb is finished
*/
move_myself
/*
* Use-after-free: refer to earlier rdtgrp
* memory which was freed in [3].
*/
atomic_dec_and_test(&rdtgrp->waitcount)
&& (flags & RDT_DELETED)
kfree(rdtgrp)
If CONFIG_DEBUG_SLAB=y, Slab corruption on kmalloc-2k can be observed
like following. Note that "0x6b" is POISON_FREE after kfree(). The
corrupted bits "0x6a", "0x64" at offset 0x424 correspond to
waitcount member of struct rdtgroup which was freed:
Slab corruption (Not tainted): kmalloc-2k start=ffff9504c5b0d000, len=2048
420: 6b 6b 6b 6b 6a 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkjkkkkkkkkkkk
Single bit error detected. Probably bad RAM.
Run memtest86+ or a similar memory test tool.
Next obj: start=ffff9504c5b0d800, len=2048
000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Slab corruption (Not tainted): kmalloc-2k start=ffff9504c58ab800, len=2048
420: 6b 6b 6b 6b 64 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkdkkkkkkkkkkk
Prev obj: start=ffff9504c58ab000, len=2048
000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Fix this by taking reference count (waitcount) of rdtgrp into account in
the two call paths that currently do not do so. Instead of always
freeing the resource group it will only be freed if there are no waiters
on it. If there are waiters, the resource group will have its flags set
to RDT_DELETED.
It will be left to the waiter to free the resource group when it starts
running and finding that it was the last waiter and the resource group
has been removed (rdtgrp->flags & RDT_DELETED) since. (1) rdt_kill_sb()
-> rmdir_all_sub() -> free_all_child_rdtgrp() (2) rdtgroup_rmdir() ->
rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()
Fixes: f3cbeacaa0 ("x86/intel_rdt/cqm: Add rmdir support")
Fixes: 60cf5e101f ("x86/intel_rdt: Add mkdir to resctrl file system")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-2-git-send-email-xiaochen.shen@intel.com
Both functions call init_intel_cacheinfo() which computes L2 and L3 cache
sizes from CPUID(4). But then they also call cpu_detect_cache_sizes() a
bit later which computes ->x86_tlbsize and L2 size from CPUID(80000006).
However, the latter call is not needed because
- on these CPUs, CPUID(80000006).EBX for ->x86_tlbsize is reserved
- CPUID(80000006).ECX for the L2 size has the same result as CPUID(4)
Therefore, remove the latter call to simplify the code.
[ bp: Rewrite commit message. ]
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1579075257-6985-1-git-send-email-TonyWWang-oc@zhaoxin.com
Monitoring tools that want to find out which resctrl control and monitor
groups a task belongs to must currently read the "tasks" file in every
group until they locate the process ID.
Add an additional file /proc/{pid}/cpu_resctrl_groups to provide this
information:
1) res:
mon:
resctrl is not available.
2) res:/
mon:
Task is part of the root resctrl control group, and it is not associated
to any monitor group.
3) res:/
mon:mon0
Task is part of the root resctrl control group and monitor group mon0.
4) res:group0
mon:
Task is part of resctrl control group group0, and it is not associated
to any monitor group.
5) res:group0
mon:mon1
Task is part of resctrl control group group0 and monitor group mon1.
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jinshi Chen <jinshi.chen@intel.com>
Link: https://lkml.kernel.org/r/20200115092851.14761-1-yu.c.chen@intel.com
When checking whether the reported lfb_size makes sense, the height
* stride result is page-aligned before seeing whether it exceeds the
reported size.
This doesn't work if height * stride is not an exact number of pages.
For example, as reported in the kernel bugzilla below, an 800x600x32 EFI
framebuffer gets skipped because of this.
Move the PAGE_ALIGN to after the check vs size.
Reported-by: Christopher Head <chead@chead.ca>
Tested-by: Christopher Head <chead@chead.ca>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206051
Link: https://lkml.kernel.org/r/20200107230410.2291947-1-nivedita@alum.mit.edu
We carry a quirk in the x86 EFI code to switch back to an older
method of mapping the EFI runtime services memory regions, because
it was deemed risky at the time to implement a new method without
providing a fallback to the old method in case problems arose.
Such problems did arise, but they appear to be limited to SGI UV1
machines, and so these are the only ones for which the fallback gets
enabled automatically (via a DMI quirk). The fallback can be enabled
manually as well, by passing efi=old_map, but there is very little
evidence that suggests that this is something that is being relied
upon in the field.
Given that UV1 support is not enabled by default by the distros
(Ubuntu, Fedora), there is no point in carrying this fallback code
all the time if there are no other users. So let's move it into the
UV support code, and document that efi=old_map now requires this
support code to be enabled.
Note that efi=old_map has been used in the past on other SGI UV
machines to work around kernel regressions in production, so we
keep the option to enable it by hand, but only if the kernel was
built with UV support.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-8-ardb@kernel.org
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- a resctrl fix for uninitialized objects found by debugobjects
- a resctrl memory leak fix
- fix the unintended re-enabling of the of SME and SEV CPU flags if
memory encryption was disabled at bootup via the MSR space"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Ensure clearing of SME/SEV features is maintained
x86/resctrl: Fix potential memory leak
x86/resctrl: Fix an imbalance in domain_remove_cpu()
Currently, there are three static keys in the resctrl file system:
rdt_mon_enable_key and rdt_alloc_enable_key indicate if the monitoring
feature and the allocation feature are enabled, respectively. The
rdt_enable_key is enabled when either the monitoring feature or the
allocation feature is enabled.
If no monitoring feature is present (either hardware doesn't support a
monitoring feature or the feature is disabled by the kernel command line
option "rdt="), rdt_enable_key is still enabled but rdt_mon_enable_key
is disabled.
MBM is a monitoring feature. The MBM overflow handler intends to
check if the monitoring feature is not enabled for fast return.
So check the rdt_mon_enable_key in it instead of the rdt_enable_key as
former is the more accurate check.
[ bp: Massage commit message. ]
Fixes: e33026831b ("x86/intel_rdt/mbm: Handle counter overflow")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1576094705-13660-1-git-send-email-xiaochen.shen@intel.com
New Zhaoxin family 7 CPUs are not affected by the SWAPGS vulnerability. So
mark these CPUs in the cpu vulnerability whitelist accordingly.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1579227872-26972-3-git-send-email-TonyWWang-oc@zhaoxin.com
New Zhaoxin family 7 CPUs are not affected by SPECTRE_V2. So define a
separate cpu_vuln_whitelist bit NO_SPECTRE_V2 and add these CPUs to the cpu
vulnerability whitelist.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1579227872-26972-2-git-send-email-TonyWWang-oc@zhaoxin.com
/proc/cpuinfo currently reports Hardware Lock Elision (HLE) feature to
be present on boot cpu even if it was disabled during the bootup. This
is because cpuinfo_x86->x86_capability HLE bit is not updated after TSX
state is changed via the new MSR IA32_TSX_CTRL.
Update the cached HLE bit also since it is expected to change after an
update to CPUID_CLEAR bit in MSR IA32_TSX_CTRL.
Fixes: 95c5824f75 ("x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default")
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2529b99546294c893dfa1c89e2b3e46da3369a59.1578685425.git.pawan.kumar.gupta@linux.intel.com
When CONFIG_PROC_FS is disabled, the compiler warns about an unused
variable:
arch/x86/kernel/apic/x2apic_uv_x.c: In function 'uv_setup_proc_files':
arch/x86/kernel/apic/x2apic_uv_x.c:1546:8: error: unused variable 'name' [-Werror=unused-variable]
char *name = hubless ? "hubless" : "hubbed";
Simplify the code so this variable is no longer needed.
Fixes: 8785968bce ("x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191212140419.315264-1-arnd@arndb.de
If the SME and SEV features are present via CPUID, but memory encryption
support is not enabled (MSR 0xC001_0010[23]), the feature flags are cleared
using clear_cpu_cap(). However, if get_cpu_cap() is later called, these
feature flags will be reset back to present, which is not desired.
Change from using clear_cpu_cap() to setup_clear_cpu_cap() so that the
clearing of the flags is maintained.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.16.x-
Link: https://lkml.kernel.org/r/226de90a703c3c0be5a49565047905ac4e94e8f3.1579125915.git.thomas.lendacky@amd.com
Add the new PCI Device 18h IDs for AMD Family 19h systems. Note that
Family 19h systems will not have a new PCI root device ID.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200110015651.14887-4-Yazen.Ghannam@amd.com
Add support for a new version of the Load Store unit bank type as
indicated by its McaType value, which will be present in future SMCA
systems.
Add the new (HWID, MCATYPE) tuple. Reuse the same name, since this is
logically the same to the user.
Also, add the new error descriptions to edac_mce_amd.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200110015651.14887-2-Yazen.Ghannam@amd.com
Don't print an error message about VMX being disabled by BIOS if KVM,
the sole user of VMX, is disabled. E.g. if KVM is disabled and the MSR
is unlocked, the kernel will intentionally disable VMX when locking
feature control and then complain that "BIOS" disabled VMX.
Fixes: ef4d3bf198 ("x86/cpu: Clear VMX feature flag if VMX is not fully enabled")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200114202545.20296-1-sean.j.christopherson@intel.com
It is relatively easy to trigger the following boot splat on an Ice Lake
client platform. The call stack is like:
kernel BUG at kernel/timer/timer.c:1152!
Call Trace:
__queue_delayed_work
queue_delayed_work_on
therm_throt_process
intel_thermal_interrupt
...
The reason is that a CPU's thermal interrupt is enabled prior to
executing its hotplug onlining callback which will initialize the
throttling workqueues.
Such a race can lead to therm_throt_process() accessing an uninitialized
therm_work, leading to the above BUG at a very early bootup stage.
Therefore, unmask the thermal interrupt vector only after having setup
the workqueues completely.
[ bp: Heavily massage commit message and correct comment formatting. ]
Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200107004116.59353-1-chuansheng.liu@intel.com
con_init in tty/vt.c will now set conswitchp to dummy_con if it's unset.
Drop it from arch setup code.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20191218214506.49252-24-nivedita@alum.mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
VDSO support for time namespaces needs to set up a page with the same
layout as VVAR. That timens page will be placed on position of VVAR page
inside namespace. That page has vdso_data->seq set to 1 to enforce
the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce
the time namespace handling path.
To prepare the time namespace page the kernel needs to know the vdso_data
offset. Provide arch_get_vdso_data() helper for locating vdso_data on VVAR
page.
Co-developed-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191112012724.250792-22-dima@arista.com
Add a new feature flag, X86_FEATURE_MSR_IA32_FEAT_CTL, to track whether
IA32_FEAT_CTL has been initialized. This will allow KVM, and any future
subsystems that depend on IA32_FEAT_CTL, to rely purely on cpufeatures
to query platform support, e.g. allows a future patch to remove KVM's
manual IA32_FEAT_CTL MSR checks.
Various features (on platforms that support IA32_FEAT_CTL) are dependent
on IA32_FEAT_CTL being configured and locked, e.g. VMX and LMCE. The
MSR is always configured during boot, but only if the CPU vendor is
recognized by the kernel. Because CPUID doesn't incorporate the current
IA32_FEAT_CTL value in its reporting of relevant features, it's possible
for a feature to be reported as supported in cpufeatures but not truly
enabled, e.g. if the CPU supports VMX but the kernel doesn't recognize
the CPU.
As a result, without the flag, KVM would see VMX as supported even if
IA32_FEAT_CTL hasn't been initialized, and so would need to manually
read the MSR and check the various enabling bits to avoid taking an
unexpected #GP on VMXON.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-14-sean.j.christopherson@intel.com
Set the synthetic VMX cpufeatures, which need to be kept to preserve
/proc/cpuinfo's ABI, in the common IA32_FEAT_CTL initialization code.
Remove the vendor code that manually sets the synthetic flags.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-13-sean.j.christopherson@intel.com
Add support for generating VMX feature names in capflags.c and use the
resulting x86_vmx_flags to print the VMX flags in /proc/cpuinfo. Don't
print VMX flags if no bits are set in word 0, which holds Pin Controls.
Pin Control's INTR and NMI exiting are fundamental pillars of VMX, if
they are not supported then the CPU is broken, it does not actually
support VMX, or the kernel wasn't built with support for the target CPU.
Print the features in a dedicated "vmx flags" line to avoid polluting
the common "flags" and to avoid having to prefix all flags with "vmx_",
which results in horrendously long names.
Keep synthetic VMX flags in cpufeatures to preserve /proc/cpuinfo's ABI
for those flags. This means that "flags" and "vmx flags" will have
duplicate entries for tpr_shadow (virtual_tpr), vnmi, ept, flexpriority,
vpid and ept_ad, but caps the pollution of "flags" at those six VMX
features. The vendor-specific code that populates the synthetic flags
will be consolidated in a future patch to further minimize the lasting
damage.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-12-sean.j.christopherson@intel.com
Add an entry in struct cpuinfo_x86 to track VMX capabilities and fill
the capabilities during IA32_FEAT_CTL MSR initialization.
Make the VMX capabilities dependent on IA32_FEAT_CTL and
X86_FEATURE_NAMES so as to avoid unnecessary overhead on CPUs that can't
possibly support VMX, or when /proc/cpuinfo is not available.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-11-sean.j.christopherson@intel.com
Now that IA32_FEAT_CTL is always configured and locked for CPUs that are
known to support VMX[*], clear the VMX capability flag if the MSR is
unsupported or BIOS disabled VMX, i.e. locked IA32_FEAT_CTL and didn't
set the appropriate VMX enable bit.
[*] Because init_ia32_feat_ctl() is called from vendors ->c_init(), it's
still possible for IA32_FEAT_CTL to be left unlocked when VMX is
supported by the CPU. This is not fatal, and will be addressed in a
future patch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-9-sean.j.christopherson@intel.com
Use the recently added IA32_FEAT_CTL MSR initialization sequence to
opportunistically enable VMX support when running on a Zhaoxin CPU.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-8-sean.j.christopherson@intel.com
Use the recently added IA32_FEAT_CTL MSR initialization sequence to
opportunistically enable VMX support when running on a Centaur CPU.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-7-sean.j.christopherson@intel.com
Opportunistically initialize IA32_FEAT_CTL to enable VMX when the MSR is
left unlocked by BIOS. Configuring feature control at boot time paves
the way for similar enabling of other features, e.g. Software Guard
Extensions (SGX).
Temporarily leave equivalent KVM code in place in order to avoid
introducing a regression on Centaur and Zhaoxin CPUs, e.g. removing
KVM's code would leave the MSR unlocked on those CPUs and would break
existing functionality if people are loading kvm_intel on Centaur and/or
Zhaoxin. Defer enablement of the boot-time configuration on Centaur and
Zhaoxin to future patches to aid bisection.
Note, Local Machine Check Exceptions (LMCE) are also supported by the
kernel and enabled via feature control, but the kernel currently uses
LMCE if and only if the feature is explicitly enabled by BIOS. Keep
the current behavior to avoid introducing bugs, future patches can opt
in to opportunistic enabling if it's deemed desirable to do so.
Always lock IA32_FEAT_CTL if it exists, even if the CPU doesn't support
VMX, so that other existing and future kernel code that queries the MSR
can assume it's locked.
Start from a clean slate when constructing the value to write to
IA32_FEAT_CTL, i.e. ignore whatever value BIOS left in the MSR so as not
to enable random features or fault on the WRMSR.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-5-sean.j.christopherson@intel.com
As pointed out by Boris, the defines for bits in IA32_FEATURE_CONTROL
are quite a mouthful, especially the VMX bits which must differentiate
between enabling VMX inside and outside SMX (TXT) operation. Rename the
MSR and its bit defines to abbreviate FEATURE_CONTROL as FEAT_CTL to
make them a little friendlier on the eyes.
Arguably, the MSR itself should keep the full IA32_FEATURE_CONTROL name
to match Intel's SDM, but a future patch will add a dedicated Kconfig,
file and functions for the MSR. Using the full name for those assets is
rather unwieldy, so bite the bullet and use IA32_FEAT_CTL so that its
nomenclature is consistent throughout the kernel.
Opportunistically, fix a few other annoyances with the defines:
- Relocate the bit defines so that they immediately follow the MSR
define, e.g. aren't mistaken as belonging to MISC_FEATURE_CONTROL.
- Add whitespace around the block of feature control defines to make
it clear they're all related.
- Use BIT() instead of manually encoding the bit shift.
- Use "VMX" instead of "VMXON" to match the SDM.
- Append "_ENABLED" to the LMCE (Local Machine Check Exception) bit to
be consistent with the kernel's verbiage used for all other feature
control bits. Note, the SDM refers to the LMCE bit as LMCE_ON,
likely to differentiate it from IA32_MCG_EXT_CTL.LMCE_EN. Ignore
the (literal) one-off usage of _ON, the SDM is simply "wrong".
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-2-sean.j.christopherson@intel.com
When writing a pid to file "tasks", a callback function move_myself() is
queued to this task to be called when the task returns from kernel mode
or exits. The purpose of move_myself() is to activate the newly assigned
closid and/or rmid associated with this task. This activation is done by
calling resctrl_sched_in() from move_myself(), the same function that is
called when switching to this task.
If this work is successfully queued but then the task enters PF_EXITING
status (e.g., receiving signal SIGKILL, SIGTERM) prior to the
execution of the callback move_myself(), move_myself() still calls
resctrl_sched_in() since the task status is not currently considered.
When a task is exiting, the data structure of the task itself will
be freed soon. Calling resctrl_sched_in() to write the register that
controls the task's resources is unnecessary and it implies extra
performance overhead.
Add check on task status in move_myself() and return immediately if the
task is PF_EXITING.
[ bp: Massage. ]
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1578500026-21152-1-git-send-email-xiaochen.shen@intel.com
The function mce_severity() is not required to update its msg argument.
In fact, mce_severity_amd() does not, which makes mce_no_way_out()
return uninitialized data, which may be used later for printing.
Assuming that implementations of mce_severity() either always or never
update the msg argument (which is currently the case), it is sufficient
to initialize the temporary variable in mce_no_way_out().
While at it, avoid printing a useless "Unknown".
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200103150722.20313-4-jschoenh@amazon.de
Since commit
8b38937b7a ("x86/mce: Do not enter deferred errors into the generic
pool twice")
the mce=nobootlog option has become mostly ineffective (after being only
slightly ineffective before), as the code is taking actions on MCEs left
over from boot when they have a usable address.
Move the check for MCP_DONTLOG a bit outward to make it effective again.
Also, since commit
011d826111 ("RAS: Add a Corrected Errors Collector")
the two branches of the remaining "if" at the bottom of machine_check_poll()
do same. Unify them.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200103150722.20313-3-jschoenh@amazon.de
Commit
fa92c58694 ("x86, mce: Support memory error recovery for both UCNA
and Deferred error in machine_check_poll")
added handling of UCNA and Deferred errors by adding them to the ring
for SRAO errors.
Later, commit
fd4cf79fcc ("x86/mce: Remove the MCE ring for Action Optional errors")
switched storage from the SRAO ring to the unified pool that is still
in use today. In order to only act on the intended errors, a filter
for MCE_AO_SEVERITY is used -- effectively removing handling of
UCNA/Deferred errors again.
Extend the severity filter to include UCNA/Deferred errors again.
Also, generalize the naming of the notifier from SRAO to UC to capture
the extended scope.
Note, that this change may cause a message like the following to appear,
as the same address may be reported as SRAO and as UCNA:
Memory failure: 0x5fe3284: already hardware poisoned
Technically, this is a return to previous behavior.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200103150722.20313-2-jschoenh@amazon.de
First, printk() is NMI-context safe now since the safe printk() has been
implemented and it already has an irq_work to make NMI-context safe.
Second, this NMI irq_work actually does not work if a NMI handler causes
panic by watchdog timeout. It has no chance to run in such case, while
the safe printk() will flush its per-cpu buffers before panicking.
While at it, repurpose the irq_work callback into a function which
concentrates the NMI duration checking and makes the code easier to
follow.
[ bp: Massage. ]
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200111125427.15662-1-changbin.du@gmail.com
Use resource_size() rather than a verbose computation on
the end and start fields.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
<smpl>
@@ struct resource ptr; @@
- (ptr.end - ptr.start + 1)
+ resource_size(&ptr)
</smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1577900990-8588-10-git-send-email-Julia.Lawall@inria.fr
force_iret() was originally intended to prevent the return to user mode with
the SYSRET or SYSEXIT instructions, in cases where the register state could
have been changed to be incompatible with those instructions. The entry code
has been significantly reworked since then, and register state is validated
before SYSRET or SYSEXIT are used. force_iret() no longer serves its original
purpose and can be eliminated.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20191219115812.102620-1-brgerst@gmail.com
In __fpu__restore_sig(), fpu_fpregs_owner_ctx needs to be reset if the
FPU state was not fully restored. Otherwise the following may happen (on
the same CPU):
Task A Task B fpu_fpregs_owner_ctx
*active* A.fpu
__fpu__restore_sig()
ctx switch load B.fpu
*active* B.fpu
fpregs_lock()
copy_user_to_fpregs_zeroing()
copy_kernel_to_xregs() *modify*
copy_user_to_xregs() *fails*
fpregs_unlock()
ctx switch skip loading B.fpu,
*active* B.fpu
In the success case, fpu_fpregs_owner_ctx is set to the current task.
In the failure case, the FPU state might have been modified by loading
the init state.
In this case, fpu_fpregs_owner_ctx needs to be reset in order to ensure
that the FPU state of the following task is loaded from saved state (and
not skipped because it was the previous state).
Reset fpu_fpregs_owner_ctx after a failure during restore occurred, to
ensure that the FPU state for the next task is always loaded.
The problem was debugged-by Yu-cheng Yu <yu-cheng.yu@intel.com>.
[ bp: Massage commit message. ]
Fixes: 5f409e20b7 ("x86/fpu: Defer FPU state load until return to userspace")
Reported-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191220195906.plk6kpmsrikvbcfn@linutronix.de
To fix follwowing warning due to ORC sort moved to build time:
arch/x86/kernel/unwind_orc.c:210:12: warning: ‘orc_sort_cmp’ defined but not used [-Wunused-function]
arch/x86/kernel/unwind_orc.c:190:13: warning: ‘orc_sort_swap’ defined but not used [-Wunused-function]
Signed-off-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/c9c81536-2afc-c8aa-c5f8-c7618ecd4f54@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a leftover. Page faults, just like most other exceptions,
are protected inside user_exit() / user_enter() calls in x86 entry code
when we fault from userspace. So this pair of calls is now superfluous.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Link: https://lkml.kernel.org/r/20191227163612.10039-3-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Have both xfeature_is_supervisor()/xfeature_is_user() return bool
because they are used only in boolean context.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191212210855.19260-3-yu-cheng.yu@intel.com
ioremap has provided non-cached semantics by default since the Linux 2.6
days, so remove the additional ioremap_nocache interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
set_cache_qos_cfg() is leaking memory when the given level is not
RDT_RESOURCE_L3 or RDT_RESOURCE_L2. At the moment, this function is
called with only valid levels but move the allocation after the valid
level checks in order to make it more robust and future proof.
[ bp: Massage commit message. ]
Fixes: 99adde9b37 ("x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20200102165844.133133-1-shakeelb@google.com
Hoist the user_mode() case up because it is less code and can be dealt
with up-front like the other special cases UMIP and vm86.
This saves an indentation level for the kernel-mode #GP case and allows
to "unfold" the code more so that it is more readable.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jann Horn <jannh@google.com>
Cc: x86@kernel.org
Make #GP exceptions caused by out-of-bounds KASAN shadow accesses easier
to understand by computing the address of the original access and
printing that. More details are in the comments in the patch.
This turns an error like this:
kasan: CONFIG_KASAN_INLINE enabled
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault, probably for non-canonical address
0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI
into this:
general protection fault, probably for non-canonical address
0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: maybe wild-memory-access in range
[0x00badbeefbadbee8-0x00badbeefbadbeef]
The hook is placed in architecture-independent code, but is currently
only wired up to the X86 exception handler because I'm not sufficiently
familiar with the address space layout and exception handling mechanisms
on other architectures.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm <linux-mm@kvack.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191218231150.12139-4-jannh@google.com
Split __die() into __die_header() and __die_body(). This allows inserting
extra information below the header line that initiates the bug report.
Introduce a new function die_addr() that behaves like die(), but is for
faults only and uses __die_header() and __die_body() so that a future
commit can print extra information after the header line.
[ bp: Comment the KASAN-specific usage of gp_addr. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191218231150.12139-3-jannh@google.com
A frequent cause of #GP exceptions are memory accesses to non-canonical
addresses. Unlike #PF, #GP doesn't report a fault address in CR2, so the
kernel doesn't currently print the fault address for a #GP.
Luckily, the necessary infrastructure for decoding x86 instructions and
computing the memory address being accessed is already present. Hook
it up to the #GP handler so that the address operand of the faulting
instruction can be figured out and printed.
Distinguish two cases:
a) (Part of) the memory range being accessed lies in the non-canonical
address range; in this case, it is likely that the decoded address
is actually the one that caused the #GP.
b) The entire memory range of the decoded operand lies in canonical
address space; the #GP may or may not be related in some way to the
computed address. Print it, but with hedging language in the message.
While it is already possible to compute the faulting address manually by
disassembling the opcode dump and evaluating the instruction against the
register dump, this should make it slightly easier to identify crashes
at a glance.
Note that the operand length which comes from the instruction decoder
and is used to determine whether the access straddles into non-canonical
address space, is currently somewhat unreliable; but it should be good
enough, considering that Linux on x86-64 never maps the page directly
before the start of the non-canonical range anyway, and therefore the
case where a memory range begins in that page and potentially straddles
into the non-canonical range should be fairly uncommon.
In the case the address is still computed wrongly, it only influences
whether the error message claims that the access is canonical.
[ bp: Remove ambiguous "we", massage, reflow comments and spacing. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191218231150.12139-2-jannh@google.com
A system that supports resource monitoring may have multiple resources
while not all of these resources are capable of monitoring. Monitoring
related state is initialized only for resources that are capable of
monitoring and correspondingly this state should subsequently only be
removed from these resources that are capable of monitoring.
domain_add_cpu() calls domain_setup_mon_state() only when r->mon_capable
is true where it will initialize d->mbm_over. However,
domain_remove_cpu() calls cancel_delayed_work(&d->mbm_over) without
checking r->mon_capable resulting in an attempt to cancel d->mbm_over on
all resources, even those that never initialized d->mbm_over because
they are not capable of monitoring. Hence, it triggers a debugobjects
warning when offlining CPUs because those timer debugobjects are never
initialized:
ODEBUG: assert_init not available (active state 0) object type:
timer_list hint: 0x0
WARNING: CPU: 143 PID: 789 at lib/debugobjects.c:484
debug_print_object
Hardware name: HP Synergy 680 Gen9/Synergy 680 Gen9 Compute Module, BIOS I40 05/23/2018
RIP: 0010:debug_print_object
Call Trace:
debug_object_assert_init
del_timer
try_to_grab_pending
cancel_delayed_work
resctrl_offline_cpu
cpuhp_invoke_callback
cpuhp_thread_fun
smpboot_thread_fn
kthread
ret_from_fork
Fixes: e33026831b ("x86/intel_rdt/mbm: Handle counter overflow")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: john.stultz@linaro.org
Cc: sboyd@kernel.org
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: tj@kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191211033042.2188-1-cai@lca.pw
Commit:
285a54efe3 ("x86/alternatives: Sync bp_patching update for avoiding NULL pointer exception")
added an additional text_poke_sync() IPI to text_poke_bp_batch() to
handle the rare case where another CPU is still inside an INT3 handler
while we clear the global state.
Instead of spraying IPIs around, count the active INT3 handlers and
wait for them to go away before proceeding to clear/reuse the data.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86 kernels configured with CONFIG_PROC_KCORE=y and
CONFIG_KEXEC_CORE=n, the vmcoreinfo note in /proc/kcore is incomplete.
Specifically, it is missing arch-specific information like the KASLR
offset and whether 5-level page tables are enabled. This breaks
applications like drgn [1] and crash [2], which need this information
for live debugging via /proc/kcore.
This happens because:
1. CONFIG_PROC_KCORE selects CONFIG_CRASH_CORE.
2. kernel/crash_core.c (compiled if CONFIG_CRASH_CORE=y) calls
arch_crash_save_vmcoreinfo() to get the arch-specific parts of
vmcoreinfo. If it is not defined, then it uses a no-op fallback.
3. x86 defines arch_crash_save_vmcoreinfo() in
arch/x86/kernel/machine_kexec_*.c, which is only compiled if
CONFIG_KEXEC_CORE=y.
Therefore, an x86 kernel with CONFIG_CRASH_CORE=y and
CONFIG_KEXEC_CORE=n uses the no-op fallback and gets incomplete
vmcoreinfo data. This isn't relevant to kdump, which requires
CONFIG_KEXEC_CORE. It only affects applications which read vmcoreinfo at
runtime, like the ones mentioned above.
Fix it by moving arch_crash_save_vmcoreinfo() into two new
arch/x86/kernel/crash_core_*.c files, which are gated behind
CONFIG_CRASH_CORE.
1: 73dd7def12/libdrgn/program.c (L385)
2: 60a42d7092
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/0589961254102cca23e3618b96541b89f2b249e2.1576858905.git.osandov@fb.com
Pull x86 RAS fixes from Borislav Petkov:
"Three urgent RAS fixes for the AMD side of things:
- initialize struct mce.bank so that calculated error severity on AMD
SMCA machines is correct
- do not send IPIs early during bank initialization, when interrupts
are disabled
- a fix for when only a subset of MCA banks are enabled, which led to
boot hangs on some new AMD CPUs"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Fix possibly incorrect severity calculation on AMD
x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[]
x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure()
Pull timer fixes from Ingo Molnar:
"Add HPET quirks for the Intel 'Coffee Lake H' and 'Ice Lake' platforms"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel: Disable HPET on Intel Ice Lake platforms
x86/intel: Disable HPET on Intel Coffee Lake H platforms
The mutex in mce_inject_log() became unnecessary with commit
5de97c9f6d ("x86/mce: Factor out and deprecate the /dev/mcelog driver"),
though the original reason for its presence only vanished with commit
7298f08ea8 ("x86/mcelog: Get rid of RCU remnants").
Drop the mutex. And as that makes mce_inject_log() identical to mce_log(),
get rid of the former in favor of the latter.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210000733.17979-7-jschoenh@amazon.de
In commit
b2f9d678e2 ("x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries")
another call to mce_panic() was introduced. Pass the message of the
handled MCE to that instance of mce_panic() as well, as there doesn't
seem to be a reason not to.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210000733.17979-6-jschoenh@amazon.de
throttle_active_work() is only called if CONFIG_SYSFS is set, otherwise
we get a harmless warning:
arch/x86/kernel/cpu/mce/therm_throt.c:238:13: error: 'throttle_active_work' \
defined but not used [-Werror=unused-function]
Mark the function as __maybe_unused to avoid the warning.
Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bberg@redhat.com
Cc: ckellner@redhat.com
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: hdegoede@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191210203925.3119091-1-arnd@arndb.de
The function mce_severity_amd_smca() requires m->bank to be initialized
for correct operation. Fix the one case, where mce_severity() is called
without doing so.
Fixes: 6bda529ec4 ("x86/mce: Grade uncorrected errors for SMCA-enabled systems")
Fixes: d28af26faa ("x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20191210000733.17979-4-jschoenh@amazon.de
Each logical CPU in Scalable MCA systems controls a unique set of MCA
banks in the system. These banks are not shared between CPUs. The bank
types and ordering will be the same across CPUs on currently available
systems.
However, some CPUs may see a bank as Reserved/Read-as-Zero (RAZ) while
other CPUs do not. In this case, the bank seen as Reserved on one CPU is
assumed to be the same type as the bank seen as a known type on another
CPU.
In general, this occurs when the hardware represented by the MCA bank
is disabled, e.g. disabled memory controllers on certain models, etc.
The MCA bank is disabled in the hardware, so there is no possibility of
getting an MCA/MCE from it even if it is assumed to have a known type.
For example:
Full system:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | UMC | UMC
2 | CS | CS
System with hardware disabled:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | UMC | RAZ
2 | CS | CS
For this reason, there is a single, global struct smca_banks[] that is
initialized at boot time. This array is initialized on each CPU as it
comes online. However, the array will not be updated if an entry already
exists.
This works as expected when the first CPU (usually CPU0) has all
possible MCA banks enabled. But if the first CPU has a subset, then it
will save a "Reserved" type in smca_banks[]. Successive CPUs will then
not be able to update smca_banks[] even if they encounter a known bank
type.
This may result in unexpected behavior. Depending on the system
configuration, a user may observe issues enumerating the MCA
thresholding sysfs interface. The issues may be as trivial as sysfs
entries not being available, or as severe as system hangs.
For example:
Bank | Type seen on CPU0 | Type seen on CPU1
------------------------------------------------
0 | LS | LS
1 | RAZ | UMC
2 | CS | CS
Extend the smca_banks[] entry check to return if the entry is a
non-reserved type. Otherwise, continue so that CPUs that encounter a
known bank type can update smca_banks[].
Fixes: 68627a697c ("x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191121141508.141273-1-Yazen.Ghannam@amd.com
... because interrupts are disabled that early and sending IPIs can
deadlock:
BUG: sleeping function called from invalid context at kernel/sched/completion.c:99
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1
no locks held by swapper/1/0.
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
softirqs last enabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
softirqs last disabled at (0): [<0000000000000000>] 0x0
Preemption disabled at:
[<ffffffff8104703b>] start_secondary+0x3b/0x190
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.5.0-rc2+ #1
Hardware name: GIGABYTE MZ01-CE1-00/MZ01-CE1-00, BIOS F02 08/29/2018
Call Trace:
dump_stack
___might_sleep.cold.92
wait_for_completion
? generic_exec_single
rdmsr_safe_on_cpu
? wrmsr_on_cpus
mce_amd_feature_init
mcheck_cpu_init
identify_cpu
identify_secondary_cpu
smp_store_cpu_info
start_secondary
secondary_startup_64
The function smca_configure() is called only on the current CPU anyway,
therefore replace rdmsr_safe_on_cpu() with atomic rdmsr_safe() and avoid
the IPI.
[ bp: Update commit message. ]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/157252708836.3876.4604398213417262402.stgit@buzz
Remove two unused variables:
arch/x86/kernel/process.c: In function ‘__switch_to_xtra’:
arch/x86/kernel/process.c:618:31: warning: variable ‘next’ set but not used [-Wunused-but-set-variable]
618 | struct thread_struct *prev, *next;
| ^~~~
arch/x86/kernel/process.c:618:24: warning: variable ‘prev’ set but not used [-Wunused-but-set-variable]
618 | struct thread_struct *prev, *next;
|
They are never used and so can be removed.
Signed-off-by: yu kuai <yukuai3@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: yi.zhang@huawei.com
Cc: zhengbin13@huawei.com
Link: https://lkml.kernel.org/r/20191213121253.10072-1-yukuai3@huawei.com
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl3umDgWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJlvsD/49R12HK7UzTxNTrcpvbadJ4t7j
j/qJvjMerW7iVNAPOoNAOePUa21+y3rI1AZPvoPyzIqp1Bf2eOICf5SdisG2cG+O
X0A8EKWvS0SSQWSKaT6udUKJ3nBJItwvOvQ5B58KQzcOj3S4X7B9iVBWgieMHrzz
urkZm7pqowrZB3wuF8keRtli5IZaoiCwzApy48Qrn70G3OeXymknFbpHTDwIAiGw
RiE5Xh0R4EzQdsYyCgjR8U56gBchadAmj8BUJU0ppMnOFMyIAG670hNLrs0L3roP
8TOIeyb993ZC5GZaMlnR8mz0jfibfkPa3Z85VAsVyQSPaOQldwc9j8TGBqD5Gfat
1PjOU5RVwma0pH5xTPOeevWPQpIK9KovQpQYqMMN9GMxOEx96IOUjwTrnNK2xWoN
UGyOVlESFGoniClhCiKYzPSrYOjlIBk5ovf15PdTe+bwyUDMfyfy5CZV88OS2DHz
ZBZvpLrH/EMW9zJ+FqMTp0C4s4wa2Ioid3bSh6XuNUTtltKSjp71eUja8ZEz+2sd
5AGstCC+hYqxaEk+6/851pfkQ9sbBjwuGtNrtX+pqreiLUvWLhQ0yUj6cLXlEQNH
aucjCukCjI+4lMzofeaQ2LbNhtff4YsfO4b1Ye8maoDdHjzUVL57n3bTOxKhdzbt
y6FM3lApOjk3OyaTJQ==
=YU4A
-----END PGP SIGNATURE-----
Merge tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull FIELD_SIZEOF conversion from Kees Cook:
"A mostly mechanical treewide conversion from FIELD_SIZEOF() to
sizeof_field(). This avoids the redundancy of having 2 macros
(actually 3) doing the same thing, and consolidates on sizeof_field().
While "field" is not an accurate name, it is the common name used in
the kernel, and doesn't result in any unintended innuendo.
As there are still users of FIELD_SIZEOF() in -next, I will clean up
those during this coming development cycle and send the final old
macro removal patch at that time"
* tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
treewide: Use sizeof_field() macro
MIPS: OCTEON: Replace SIZEOF_FIELD() macro
Now that the orc_unwind and orc_unwind_ip tables are sorted at build time,
remove the boot time sorting pass.
No change in functionality.
[ mingo: Rewrote the changelog and code comments. ]
Signed-off-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20191204004633.88660-8-shile.zhang@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Removal of code I accidentally applied when doing a minor fix up
to a patch, and then using "git commit -a --amend", which pulled
in some other changes I was playing with.
- Remove an used variable in trace_events_inject code
- Fix to function graph tracer when it traces a ftrace direct function.
It will now ignore tracing a function that has a ftrace direct
tramploine attached. This is needed for eBPF to use the ftrace direct
code.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXfD/thQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qoo2AP4j7ONw7BTmMyo+GdYqPPntBeDnClHK
vfMKrgK1j5BxYgEA7LgkwuUT9bcyLjfJVcyfeW67rB2PtmovKTWnKihFOwI=
=DZ6N
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
- Remove code I accidentally applied when doing a minor fix up to a
patch, and then using "git commit -a --amend", which pulled in some
other changes I was playing with.
- Remove an used variable in trace_events_inject code
- Fix function graph tracer when it traces a ftrace direct function.
It will now ignore tracing a function that has a ftrace direct
tramploine attached. This is needed for eBPF to use the ftrace direct
code.
* tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix function_graph tracer interaction with BPF trampoline
tracing: remove set but not used variable 'buffer'
module: Remove accidental change of module_enable_x()
Depending on type of BPF programs served by BPF trampoline it can call original
function. In such case the trampoline will skip one stack frame while
returning. That will confuse function_graph tracer and will cause crashes with
bad RIP. Teach graph tracer to skip functions that have BPF trampoline attached.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Move the definition of acpi_get_wakeup_address() into sleep.c to break
linux/acpi.h's dependency (by way of asm/acpi.h) on asm/realmode.h.
Everyone and their mother includes linux/acpi.h, i.e. modifying
realmode.h results in a full kernel rebuild, which makes the already
inscrutable real mode boot code even more difficult to understand and is
positively rage inducing when trying to make changes to x86's boot flow.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Link: https://lkml.kernel.org/r/20191126165417.22423-13-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
None of the declarations in x86's acpi/sleep.h are in any way dependent
on the real mode boot code. Remove sleep.h's include of asm/realmode.h
to limit the dependencies on realmode.h to code that actually interacts
with the boot code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20191126165417.22423-11-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The inclusion of linux/vmalloc.h, which is required for its definition
of set_vm_flush_reset_perms(), is somehow dependent on asm/realmode.h
being included by asm/acpi.h. Explicitly include linux/vmalloc.h so
that a future patch can drop the realmode.h include from asm/acpi.h
without breaking the build.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20191126165417.22423-5-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The inclusion of linux/vmalloc.h, which is required for its definition
of set_vm_flush_reset_perms(), is somehow dependent on asm/realmode.h
being included by asm/acpi.h. Explicitly include linux/vmalloc.h so
that a future patch can drop the realmode.h include from asm/acpi.h
without breaking the build.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20191126165417.22423-4-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explicitly include asm/realmode.h, which provides reserve_real_mode(),
instead of picking it up by an indirect include of asm/acpi.h. acpi.h
will soon stop including realmode.h so that changing realmode.h doesn't
require a full kernel rebuild.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Link: https://lkml.kernel.org/r/20191126165417.22423-3-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Untangle the somewhat incestous way of how VMALLOC_START is used all across the
kernel, but is, on x86, defined deep inside one of the lowest level page table headers.
It doesn't help that vmalloc.h only includes a single asm header:
#include <asm/page.h> /* pgprot_t */
So there was no existing cross-arch way to decouple address layout
definitions from page.h details. I used this:
#ifndef VMALLOC_START
# include <asm/vmalloc.h>
#endif
This way every architecture that wants to simplify page.h can do so.
- Also on x86 we had a couple of LDT related inline functions that used
the late-stage address space layout positions - but these could be
uninlined without real trouble - the end result is cleaner this way as
well.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
pat.h is a file whose main purpose is to provide the memtype_*() APIs.
PAT is the low level hardware mechanism - but the high level abstraction
is memtype.
So name the header <memtype.h> as well - this goes hand in hand with memtype.c
and memtype_interval.c.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update various comments, fix outright mistakes and meaningless descriptions.
Also harmonize the style across the file, both in form and in language.
Cc: linux-kernel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In 20 years we accumulated 89 #include lines in setup.c,
but we only need 30 of them (!) ...
Get rid of the excessive ones, and while at it, sort the
remaining ones alphabetically.
Also get rid of the incomplete changelogs at the header of the file,
and explain better what this file does.
Cc: linux-kernel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except
at places where these are defined. Later patches will remove the unused
definition of FIELD_SIZEOF().
This patch is generated using following script:
EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h"
git grep -l -e "\bFIELD_SIZEOF\b" | while read file;
do
if [[ "$file" =~ $EXCLUDE_FILES ]]; then
continue
fi
sed -i -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file;
done
Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com>
Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David Miller <davem@davemloft.net> # for net
Zhang Xiaoxu noted that physical address locations for MTRR were visible
to non-root users, which could be considered an information leak.
In discussing[1] the options for solving this, it sounded like just
moving the capable check into open() was the first step.
If this breaks userspace, then we will have a test case for the more
conservative approaches discussed in the thread. In summary:
- MTRR should check capabilities at open time (or retain the
checks on the opener's permissions for later checks).
- changing the DAC permissions might break something that expects to
open mtrr when not uid 0.
- if we leave the DAC permissions alone and just move the capable check
to the opener, we should get the desired protection. (i.e. check
against CAP_SYS_ADMIN not just the wider uid 0.)
- if that still breaks things, as in userspace expects to be able to
read other parts of the file as non-uid-0 and non-CAP_SYS_ADMIN, then
we need to censor the contents using the opener's permissions. For
example, as done in other /proc cases, like commit
51d7b12041 ("/proc/iomem: only expose physical resource addresses to privileged users").
[1] https://lore.kernel.org/lkml/201911110934.AC5BA313@keescook/
Reported-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-security-module@vger.kernel.org
Cc: Matthew Garrett <mjg59@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/201911181308.63F06502A1@keescook
Pull x86 fixes from Ingo Molnar:
"Various fixes:
- Fix the PAT performance regression that downgraded write-combining
device memory regions to uncached.
- There's been a number of bugs in 32-bit double fault handling -
hopefully all fixed now.
- Fix an LDT crash
- Fix an FPU over-optimization that broke with GCC9 code
optimizations.
- Misc cleanups"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/pat: Fix off-by-one bugs in interval tree search
x86/ioperm: Save an indentation level in tss_update_io_bitmap()
x86/fpu: Don't cache access to fpu_fpregs_owner_ctx
x86/entry/32: Remove unused 'restore_all_notrace' local label
x86/ptrace: Document FSBASE and GSBASE ABI oddities
x86/ptrace: Remove set_segment_reg() implementations for current
x86/traps: die() instead of panicking on a double fault
x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit
x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
x86/doublefault/32: Rename doublefault.c to doublefault_32.c
x86/traps: Disentangle the 32-bit and 64-bit doublefault code
lkdtm: Add a DOUBLE_FAULT crash type on x86
selftests/x86/single_step_syscall: Check SYSENTER directly
x86/mm/32: Sync only to VMALLOC_END in vmalloc_sync_all()
Pull RAS fix from Borislav Petkov:
"One urgent fix for the thermal throttling machinery: the recent change
reworking the thermal notifications forgot to mask out read-only and
reserved bits in the thermal status MSRs, leading to exceptions while
writing those MSRs.
The fix takes care of masking out those bits first"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/therm_throt: Mask out read-only and reserved MSR bits
- improve dma-debug scalability (Eric Dumazet)
- tiny dma-debug cleanup (Dan Carpenter)
- check for vmap memory in dma_map_single (Kees Cook)
- check for dma_addr_t overflows in dma-direct when using
DMA offsets (Nicolas Saenz Julienne)
- switch the x86 sta2x11 SOC to use more generic DMA code
(Nicolas Saenz Julienne)
- fix arm-nommu dma-ranges handling (Vladimir Murzin)
- use __initdata in CMA (Shyam Saini)
- replace the bus dma mask with a limit (Nicolas Saenz Julienne)
- merge the remapping helpers into the main dma-direct flow (me)
- switch xtensa to the generic dma remap handling (me)
- various cleanups around dma_capable (me)
- remove unused dev arguments to various dma-noncoherent helpers (me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl3f+eULHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPyPg/+PVHCrhmepudQQFHu6wfurE5U77iNnoUifvG+b5z5
5mHmTMkQwyox6rKDe8NuFApAhz1VJDSUgSelPmvTSOIEIGXCvX1p+GqRSVS5YQON
aLzGvbWKE8hCpaPdDHKYDauD1FZGMM8L2P5oOMF9X9fQ94xxRqfqJM6c8iD16Sgg
+aOgPNzTnxQHJFF/Dbt/mjJrKXWI+XF+bgUbH+l9yKa7Dd7ibmJR8yl9hs1jmp0H
1CZ+CizwnAs57rCd1a6Ybc6gj59tySc03NMnnbTko+KDxrcbD3Ee2tpqHVkkCjYz
Yl0m4FIpbotrpokL/FIS727bVvkjbWgoeM+kiVPoYzmZea3pq/tFDr6tp/BxDhFj
TZXSFfgQljlYMD3ppSoklFlfjGriVWV0tPO3arPXwuuMF5EX/IMQmvxei05jpc8n
iELNXOP9iZZkY4tLHy2hn2uWrxBRrS1WQwlLg9hahlNRzyfFSyHeP0zWlVDt+RgF
5CCbEI+HQcUqg1FApB30lQNWTn1+dJftrpKVBlgNBIyIa/z2rFbt8GdSnItxjfQX
/XX8EZbFvF6AcXkgURkYFIoKM/EbYShOSLcYA3PTUtcuTnF6Kk5eimySiGWZTVCS
prruSFDZJOvL3SnOIMIiYVmBdB7lEbDyLI/VYuhoECXEDCJpVmRktNkJNg4q6/E+
fjQ=
=e5wO
-----END PGP SIGNATURE-----
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux; tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- improve dma-debug scalability (Eric Dumazet)
- tiny dma-debug cleanup (Dan Carpenter)
- check for vmap memory in dma_map_single (Kees Cook)
- check for dma_addr_t overflows in dma-direct when using DMA offsets
(Nicolas Saenz Julienne)
- switch the x86 sta2x11 SOC to use more generic DMA code (Nicolas
Saenz Julienne)
- fix arm-nommu dma-ranges handling (Vladimir Murzin)
- use __initdata in CMA (Shyam Saini)
- replace the bus dma mask with a limit (Nicolas Saenz Julienne)
- merge the remapping helpers into the main dma-direct flow (me)
- switch xtensa to the generic dma remap handling (me)
- various cleanups around dma_capable (me)
- remove unused dev arguments to various dma-noncoherent helpers (me)
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux:
* tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping: (22 commits)
dma-mapping: treat dev->bus_dma_mask as a DMA limit
dma-direct: exclude dma_direct_map_resource from the min_low_pfn check
dma-direct: don't check swiotlb=force in dma_direct_map_resource
dma-debug: clean up put_hash_bucket()
powerpc: remove support for NULL dev in __phys_to_dma / __dma_to_phys
dma-direct: avoid a forward declaration for phys_to_dma
dma-direct: unify the dma_capable definitions
dma-mapping: drop the dev argument to arch_sync_dma_for_*
x86/PCI: sta2x11: use default DMA address translation
dma-direct: check for overflows on 32 bit DMA addresses
dma-debug: increase HASH_SIZE
dma-debug: reorder struct dma_debug_entry fields
xtensa: use the generic uncached segment support
dma-mapping: merge the generic remapping helpers into dma-direct
dma-direct: provide mmap and get_sgtable method overrides
dma-direct: remove the dma_handle argument to __dma_direct_alloc_pages
dma-direct: remove __dma_direct_free_pages
usb: core: Remove redundant vmap checks
kernel: dma-contiguous: mark CMA parameters __initdata/__initconst
dma-debug: add a schedule point in debug_dma_dump_mappings()
...
- PERAMAENT flag to ftrace_ops when attaching a callback to a function
As /proc/sys/kernel/ftrace_enabled when set to zero will disable all
attached callbacks in ftrace, this has a detrimental impact on live
kernel tracing, as it disables all that it patched. If a ftrace_ops
is registered to ftrace with the PERMANENT flag set, it will prevent
ftrace_enabled from being disabled, and if ftrace_enabled is already
disabled, it will prevent a ftrace_ops with PREMANENT flag set from
being registered.
- New register_ftrace_direct(). As eBPF would like to register its own
trampolines to be called by the ftrace nop locations directly,
without going through the ftrace trampoline, this function has been
added. This allows for eBPF trampolines to live along side of
ftrace, perf, kprobe and live patching. It also utilizes the ftrace
enabled_functions file that keeps track of functions that have been
modified in the kernel, to allow for security auditing.
- Allow for kernel internal use of ftrace instances. Subsystems in
the kernel can now create and destroy their own tracing instances
which allows them to have their own tracing buffer, and be able
to record events without worrying about other users from writing over
their data.
- New seq_buf_hex_dump() that lets users use the hex_dump() in their
seq_buf usage.
- Notifications now added to tracing_max_latency to allow user space
to know when a new max latency is hit by one of the latency tracers.
- Wider spread use of generic compare operations for use of bsearch and
friends.
- More synthetic event fields may be defined (32 up from 16)
- Use of xarray for architectures with sparse system calls, for the
system call trace events.
This along with small clean ups and fixes.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXdwv4BQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnB5AP91vsdHQjwE1+/UWG/cO+qFtKvn2QJK
QmBRIJNH/s+1TAD/fAOhgw+ojSK3o/qc+NpvPTEW9AEwcJL1wacJUn+XbQc=
=ztql
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"New tracing features:
- New PERMANENT flag to ftrace_ops when attaching a callback to a
function.
As /proc/sys/kernel/ftrace_enabled when set to zero will disable
all attached callbacks in ftrace, this has a detrimental impact on
live kernel tracing, as it disables all that it patched. If a
ftrace_ops is registered to ftrace with the PERMANENT flag set, it
will prevent ftrace_enabled from being disabled, and if
ftrace_enabled is already disabled, it will prevent a ftrace_ops
with PREMANENT flag set from being registered.
- New register_ftrace_direct().
As eBPF would like to register its own trampolines to be called by
the ftrace nop locations directly, without going through the ftrace
trampoline, this function has been added. This allows for eBPF
trampolines to live along side of ftrace, perf, kprobe and live
patching. It also utilizes the ftrace enabled_functions file that
keeps track of functions that have been modified in the kernel, to
allow for security auditing.
- Allow for kernel internal use of ftrace instances.
Subsystems in the kernel can now create and destroy their own
tracing instances which allows them to have their own tracing
buffer, and be able to record events without worrying about other
users from writing over their data.
- New seq_buf_hex_dump() that lets users use the hex_dump() in their
seq_buf usage.
- Notifications now added to tracing_max_latency to allow user space
to know when a new max latency is hit by one of the latency
tracers.
- Wider spread use of generic compare operations for use of bsearch
and friends.
- More synthetic event fields may be defined (32 up from 16)
- Use of xarray for architectures with sparse system calls, for the
system call trace events.
This along with small clean ups and fixes"
* tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (51 commits)
tracing: Enable syscall optimization for MIPS
tracing: Use xarray for syscall trace events
tracing: Sample module to demonstrate kernel access to Ftrace instances.
tracing: Adding new functions for kernel access to Ftrace instances
tracing: Fix Kconfig indentation
ring-buffer: Fix typos in function ring_buffer_producer
ftrace: Use BIT() macro
ftrace: Return ENOTSUPP when DYNAMIC_FTRACE_WITH_DIRECT_CALLS is not configured
ftrace: Rename ftrace_graph_stub to ftrace_stub_graph
ftrace: Add a helper function to modify_ftrace_direct() to allow arch optimization
ftrace: Add helper find_direct_entry() to consolidate code
ftrace: Add another check for match in register_ftrace_direct()
ftrace: Fix accounting bug with direct->count in register_ftrace_direct()
ftrace/selftests: Fix spelling mistake "wakeing" -> "waking"
tracing: Increase SYNTH_FIELDS_MAX for synthetic_events
ftrace/samples: Add a sample module that implements modify_ftrace_direct()
ftrace: Add modify_ftrace_direct()
tracing: Add missing "inline" in stub function of latency_fsnotify()
tracing: Remove stray tab in TRACE_EVAL_MAP_FILE's help text
tracing: Use seq_buf_hex_dump() to dump buffers
...
ftracetest multiple_kprobes.tc testcase hits the following NULL pointer
exception:
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 800000007bf60067 P4D 800000007bf60067 PUD 7bf5f067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
RIP: 0010:poke_int3_handler+0x39/0x100
Call Trace:
<IRQ>
do_int3+0xd/0xf0
int3+0x42/0x50
RIP: 0010:sched_clock+0x6/0x10
poke_int3_handler+0x39 was alternatives:958:
static inline void *text_poke_addr(struct text_poke_loc *tp)
{
return _stext + tp->rel_addr; <------ Here is line #958
}
This seems to be caused by tp (bp_patching.vec) being NULL but
bp_patching.nr_entries != 0. There is a small chance for this
to happen, because we have no synchronization between the zeroing
of bp_patching.nr_entries and before clearing bp_patching.vec.
Steve suggested we could fix this by adding sync_core(), because int3
is done with interrupts disabled, and the on_each_cpu() requires
all CPUs to have had their interrupts enabled.
[ mingo: Edited the comments and the changelog. ]
Suggested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Fixes: c0213b0ac0 ("x86/alternative: Batch of patch operations")
Link: https://lkml.kernel.org/r/157483421229.25881.15314414408559963162.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a few words describing how it is safe to overwrite the 4 bytes
after a kprobe. In specific it is possible the JMP.d32 required for
the optimized kprobe overwrites multiple instructions.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132458.401696663@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kprobes does something like:
register:
arch_arm_kprobe()
text_poke(INT3)
/* guarantees nothing, INT3 will become visible at some point, maybe */
kprobe_optimizer()
/* guarantees the bytes after INT3 are unused */
synchronize_rcu_tasks();
text_poke_bp(JMP32);
/* implies IPI-sync, kprobe really is enabled */
unregister:
__disarm_kprobe()
unoptimize_kprobe()
text_poke_bp(INT3 + tail);
/* implies IPI-sync, so tail is guaranteed visible */
arch_disarm_kprobe()
text_poke(old);
/* guarantees nothing, old will maybe become visible */
synchronize_rcu()
free-stuff
Now the problem is that on register, the synchronize_rcu_tasks() does
not imply sufficient to guarantee all CPUs have already observed INT3
(although in practice this is exceedingly unlikely not to have
happened) (similar to how MEMBARRIER_CMD_PRIVATE_EXPEDITED does not
imply MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE).
Worse, even if it did, we'd have to do 2 synchronize calls to provide
the guarantee we're looking for, the first to ensure INT3 is visible,
the second to guarantee nobody is then still using the instruction
bytes after INT3.
Similar on unregister; the synchronize_rcu() between
__unregister_kprobe_top() and __unregister_kprobe_bottom() does not
guarantee all CPUs are free of the INT3 (and observe the old text).
Therefore, sprinkle some IPI-sync love around. This guarantees that
all CPUs agree on the text and RCU once again provides the required
guaranteed.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132458.162172862@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... because it calls the .init.text function text_poke_early(). That is
ok because it does call that function early, during boot.
Fixes: 9706f7c3531f ("x86/ftrace: Use text_poke()")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191116204607.GC23231@zn.tnic
Employ the fact that all text must be within a s32 displacement of one
another to shrink the text_poke_loc::addr field. Make it relative to
_stext.
This then shrinks struct text_poke_loc to 16 bytes, and consequently
increases TP_VEC_MAX from 170 to 256.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132458.047052889@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Per the BUG_ON(len != insn.length) in text_poke_loc_init(), tp->len
must indeed be the same as text_opcode_size(tp->opcode). Use this to
remove this field from the structure.
Sadly, due to 8 byte alignment, this only increases the structure
padding.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132457.989922744@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move ftrace over to using the generic x86 text_poke functions; this
avoids having a second/different copy of that code around.
This also avoids ftrace violating the (new) W^X rule and avoids
fragmenting the kernel text page-tables, due to no longer having to
toggle them RW.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132457.761255803@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Adding another text_poke_bp_batch() user made me realize the interface
is all sorts of wrong. The text poke vector should be internal to the
implementation.
This then results in a trivial interface:
text_poke_queue() - which has the 'normal' text_poke_bp() interface
text_poke_finish() - which takes no arguments and flushes any
pending text_poke()s.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132457.646280715@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore).
* Fix for possible overflow in get_tick_count() (Bob Moore).
* Introduction of acpi_unload_table() (Bob Moore).
* Debugger and utilities updates (Erik Schmauss).
* Fix for unloading tables loaded via configfs (Nikolaus Voss).
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams).
- Fix and clean up processing of the HMAT table (Brice Goglin,
Qian Cai, Tao Xu).
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake).
- Always build in support for the Generic Event Device (GED) to
allow one kernel binary to work both on systems with full
hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko).
- Rework the lid blacklist handling in the button driver and add
more lid quirks to it (Hans de Goede).
- Improve ACPI-based device enumeration for some platforms based
on Intel BayTrail SoCs (Hans de Goede).
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
and prevent handlers from being registered for unhandled PMIC
OpRegions (Hans de Goede).
- Unify ACPI _HID/_UID matching (Andy Shevchenko).
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
Evv5nzOIh8Hi
=7Cqr
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream revision
20191018, add support for EFI specific purpose memory, update the ACPI
EC driver to make it work on systems with hardware-reduced ACPI,
improve ACPI-based device enumeration for some platforms, rework the
lid blacklist handling in the button driver and add more lid quirks to
it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
the code and documentation.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore)
* Fix for possible overflow in get_tick_count() (Bob Moore)
* Introduction of acpi_unload_table() (Bob Moore)
* Debugger and utilities updates (Erik Schmauss)
* Fix for unloading tables loaded via configfs (Nikolaus Voss)
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams)
- Fix and clean up processing of the HMAT table (Brice Goglin, Qian
Cai, Tao Xu)
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake)
- Always build in support for the Generic Event Device (GED) to allow
one kernel binary to work both on systems with full hardware ACPI
and hardware-reduced ACPI (Arjan van de Ven)
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko)
- Rework the lid blacklist handling in the button driver and add more
lid quirks to it (Hans de Goede)
- Improve ACPI-based device enumeration for some platforms based on
Intel BayTrail SoCs (Hans de Goede)
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
prevent handlers from being registered for unhandled PMIC OpRegions
(Hans de Goede)
- Unify ACPI _HID/_UID matching (Andy Shevchenko)
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński)"
* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
ACPI: OSI: Shoot duplicate word
ACPI: HMAT: use %u instead of %d to print u32 values
ACPI: NUMA: HMAT: fix a section mismatch
ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
ACPI: NUMA: HMAT: Register HMAT at device_initcall level
device-dax: Add a driver for "hmem" devices
dax: Fix alloc_dax_region() compile warning
lib: Uplevel the pmem "region" ida to a global allocator
x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
arm/efi: EFI soft reservation to memblock
x86/efi: EFI soft reservation to E820 enumeration
efi: Common enable/disable infrastructure for EFI soft reservation
x86/efi: Push EFI_MEMMAP check into leaf routines
efi: Enumerate EFI_MEMORY_SP
ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
ACPICA: Update version to 20191018
ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
ACPICA: acpiexec: initialize all simple types and field units from user input
ACPICA: debugger: add field unit support for acpi_db_get_next_token
...
Pull perf updates from Ingo Molnar:
"The main kernel side changes in this cycle were:
- Various Intel-PT updates and optimizations (Alexander Shishkin)
- Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu)
- Add support for LSM and SELinux checks to control access to the
perf syscall (Joel Fernandes)
- Misc other changes, optimizations, fixes and cleanups - see the
shortlog for details.
There were numerous tooling changes as well - 254 non-merge commits.
Here are the main changes - too many to list in detail:
- Enhancements to core tooling infrastructure, perf.data, libperf,
libtraceevent, event parsing, vendor events, Intel PT, callchains,
BPF support and instruction decoding.
- There were updates to the following tools:
perf annotate
perf diff
perf inject
perf kvm
perf list
perf maps
perf parse
perf probe
perf record
perf report
perf script
perf stat
perf test
perf trace
- And a lot of other changes: please see the shortlog and Git log for
more details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits)
perf parse: Fix potential memory leak when handling tracepoint errors
perf probe: Fix spelling mistake "addrees" -> "address"
libtraceevent: Fix memory leakage in copy_filter_type
libtraceevent: Fix header installation
perf intel-bts: Does not support AUX area sampling
perf intel-pt: Add support for decoding AUX area samples
perf intel-pt: Add support for recording AUX area samples
perf pmu: When using default config, record which bits of config were changed by the user
perf auxtrace: Add support for queuing AUX area samples
perf session: Add facility to peek at all events
perf auxtrace: Add support for dumping AUX area samples
perf inject: Cut AUX area samples
perf record: Add aux-sample-size config term
perf record: Add support for AUX area sampling
perf auxtrace: Add support for AUX area sample recording
perf auxtrace: Move perf_evsel__find_pmu()
perf record: Add a function to test for kernel support for AUX area sampling
perf tools: Add kernel AUX area sampling definitions
perf/core: Make the mlock accounting simple again
perf report: Jump to symbol source view from total cycles view
...
seg_segment_reg() should be unreachable with task == current.
Rather than confusingly trying to make it work, just explicitly
disable this case.
(regset->get is used for current in the coredump code, but the ->set
interface is only used for ptrace, and you can't ptrace yourself.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A double fault has a decent chance of being recoverable by killing
the offending thread. Use die() so that we at least try to recover.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old x86_32 doublefault_fn() was old and crufty, and it did not
even try to recover. do_double_fault() is much nicer. Rewrite the
32-bit double fault code to sanitize CPU state and call
do_double_fault(). This is mostly an exercise i386 archaeology.
With this patch applied, 32-bit double faults get a real stack trace,
just like 64-bit double faults.
[ mingo: merged the patch to a later kernel base. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three problems with the current layout of the doublefault
stack and TSS. First, the TSS is only cacheline-aligned, which is
not enough -- if the hardware portion of the TSS (struct x86_hw_tss)
crosses a page boundary, horrible things happen [0]. Second, the
stack and TSS are global, so simultaneous double faults on different
CPUs will cause massive corruption. Third, the whole mechanism
won't work if user CR3 is loaded, resulting in a triple fault [1].
Let the doublefault stack and TSS share a page (which prevents the
TSS from spanning a page boundary), make it percpu, and move it into
cpu_entry_area. Teach the stack dump code about the doublefault
stack.
[0] Real hardware will read past the end of the page onto the next
*physical* page if a task switch happens. Virtual machines may
have any number of bugs, and I would consider it reasonable for
a VM to summarily kill the guest if it tries to task-switch to
a page-spanning TSS.
[1] Real hardware triple faults. At least some VMs seem to hang.
I'm not sure what's going on.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
doublefault.c now only contains 32-bit code. Rename it to
doublefault_32.c.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 64-bit doublefault handler is much nicer than the 32-bit one.
As a first step toward unifying them, make the 64-bit handler
self-contained. This should have no effect no functional effect
except in the odd case of x86_64 with CONFIG_DOUBLEFAULT=n in which
case it will change the logging a bit.
This also gets rid of CONFIG_DOUBLEFAULT configurability on 64-bit
kernels. It didn't do anything useful -- CONFIG_DOUBLEFAULT=n
didn't actually disable doublefault handling on x86_64.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 iopl updates from Ingo Molnar:
"This implements a nice simplification of the iopl and ioperm code that
Thomas Gleixner discovered: we can implement the IO privilege features
of the iopl system call by using the IO permission bitmap in
permissive mode, while trapping CLI/STI/POPF/PUSHF uses in user-space
if they change the interrupt flag.
This implements that feature, with testing facilities and related
cleanups"
[ "Simplification" may be an over-statement. The main goal is to avoid
the cli/sti of iopl by effectively implementing the IO port access
parts of iopl in terms of ioperm.
This may end up not workign well in case people actually depend on
cli/sti being available, or if there are mixed uses of iopl and
ioperm. We will see.. - Linus ]
* 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
x86/ioperm: Fix use of deprecated config option
x86/entry/32: Clarify register saving in __switch_to_asm()
selftests/x86/iopl: Extend test to cover IOPL emulation
x86/ioperm: Extend IOPL config to control ioperm() as well
x86/iopl: Remove legacy IOPL option
x86/iopl: Restrict iopl() permission scope
x86/iopl: Fixup misleading comment
selftests/x86/ioperm: Extend testing so the shared bitmap is exercised
x86/ioperm: Share I/O bitmap if identical
x86/ioperm: Remove bitmap if all permissions dropped
x86/ioperm: Move TSS bitmap update to exit to user work
x86/ioperm: Add bitmap sequence number
x86/ioperm: Move iobitmap data into a struct
x86/tss: Move I/O bitmap data into a seperate struct
x86/io: Speedup schedule out of I/O bitmap user
x86/ioperm: Avoid bitmap allocation if no permissions are set
x86/ioperm: Simplify first ioperm() invocation logic
x86/iopl: Cleanup include maze
x86/tss: Fix and move VMX BUILD_BUG_ON()
x86/cpu: Unify cpu_init()
...
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- Cross-arch changes to move the linker sections for NOTES and
EXCEPTION_TABLE into the RO_DATA area, where they belong on most
architectures. (Kees Cook)
- Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
trap jumps into the middle of those padding areas instead of
sliding execution. (Kees Cook)
- A thorough cleanup of symbol definitions within x86 assembler code.
The rather randomly named macros got streamlined around a
(hopefully) straightforward naming scheme:
SYM_START(name, linkage, align...)
SYM_END(name, sym_type)
SYM_FUNC_START(name)
SYM_FUNC_END(name)
SYM_CODE_START(name)
SYM_CODE_END(name)
SYM_DATA_START(name)
SYM_DATA_END(name)
etc - with about three times of these basic primitives with some
label, local symbol or attribute variant, expressed via postfixes.
No change in functionality intended. (Jiri Slaby)
- Misc other changes, cleanups and smaller fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
x86/entry/64: Remove pointless jump in paranoid_exit
x86/entry/32: Remove unused resume_userspace label
x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
m68k: Convert missed RODATA to RO_DATA
x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
x86/mm: Report actual image regions in /proc/iomem
x86/mm: Report which part of kernel image is freed
x86/mm: Remove redundant address-of operators on addresses
xtensa: Move EXCEPTION_TABLE to RO_DATA segment
powerpc: Move EXCEPTION_TABLE to RO_DATA segment
parisc: Move EXCEPTION_TABLE to RO_DATA segment
microblaze: Move EXCEPTION_TABLE to RO_DATA segment
ia64: Move EXCEPTION_TABLE to RO_DATA segment
h8300: Move EXCEPTION_TABLE to RO_DATA segment
c6x: Move EXCEPTION_TABLE to RO_DATA segment
arm64: Move EXCEPTION_TABLE to RO_DATA segment
alpha: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Actually use _etext for the end of the text segment
vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
...
Pull x86 fixes from Ingo Molnar:
"These are the fixes left over from the v5.4 cycle:
- Various low level 32-bit entry code fixes and improvements by Andy
Lutomirski, Peter Zijlstra and Thomas Gleixner.
- Fix 32-bit Xen PV breakage, by Jan Beulich"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/32: Fix FIXUP_ESPFIX_STACK with user CR3
x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert precise
selftests/x86/sigreturn/32: Invalidate DS and ES when abusing the kernel
selftests/x86/mov_ss_trap: Fix the SYSENTER test
x86/entry/32: Fix NMI vs ESPFIX
x86/entry/32: Unwind the ESPFIX stack earlier on exception entry
x86/entry/32: Move FIXUP_FRAME after pushing %fs in SAVE_ALL
x86/entry/32: Use %ss segment where required
x86/entry/32: Fix IRET exception
x86/cpu_entry_area: Add guard page for entry stack on 32bit
x86/pti/32: Size initial_page_table correctly
x86/doublefault/32: Fix stack canaries in the double fault handler
x86/xen/32: Simplify ring check in xen_iret_crit_fixup()
x86/xen/32: Make xen_iret_crit_fixup() independent of frame layout
x86/stackframe/32: Repair 32-bit Xen PV
Pull x86 PTI updates from Ingo Molnar:
"Fix reporting bugs of the MDS and TAA mitigation status, if one or
both are set via a boot option.
No change to mitigation behavior intended"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Fix redundant MDS mitigation message
x86/speculation: Fix incorrect MDS/TAA mitigation status
Pull x86 platform updates from Ingo Molnar:
"UV platform updates (with a 'hubless' variant) and Jailhouse updates
for better UART support"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/jailhouse: Only enable platform UARTs if available
x86/jailhouse: Improve setup data version comparison
x86/platform/uv: Account for UV Hubless in is_uvX_hub Ops
x86/platform/uv: Check EFI Boot to set reboot type
x86/platform/uv: Decode UVsystab Info
x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files
x86/platform/uv: Setup UV functions for Hubless UV Systems
x86/platform/uv: Add return code to UV BIOS Init function
x86/platform/uv: Return UV Hubless System Type
x86/platform/uv: Save OEM_ID from ACPI MADT probe
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- A PAT series from Davidlohr Bueso, which simplifies the memtype
rbtree by using the interval tree helpers. (There's more cleanups
in this area queued up, but they didn't make the merge window.)
- Also flip over CONFIG_X86_5LEVEL to default-y. This might draw in a
few more testers, as all the major distros are going to have
5-level paging enabled by default in their next iterations.
- Misc cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/pat: Rename pat_rbtree.c to pat_interval.c
x86/mm/pat: Drop the rbt_ prefix from external memtype calls
x86/mm/pat: Do not pass 'rb_root' down the memtype tree helper functions
x86/mm/pat: Convert the PAT tree to a generic interval tree
x86/mm: Clean up the pmd_read_atomic() comments
x86/mm: Fix function name typo in pmd_read_atomic() comment
x86/cpu: Clean up intel_tlb_table[]
x86/mm: Enable 5-level paging support by default
Pull x86 kdump updates from Ingo Molnar:
"This solves a kdump artifact where encrypted memory contents are
dumped, instead of unencrypted ones.
The solution also happens to simplify the kdump code, to everyone's
delight"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/crash: Align function arguments on opening braces
x86/kdump: Remove the backup region handling
x86/kdump: Always reserve the low 1M when the crashkernel option is specified
x86/crash: Add a forward declaration of struct kimage
Pull x86 hyperv updates from Ingo Molnar:
"Misc updates to the hyperv guest code:
- Rework clockevents initialization to better support hibernation
- Allow guests to enable InvariantTSC
- Micro-optimize send_ipi_one"
* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Initialize clockevents earlier in CPU onlining
x86/hyperv: Allow guests to enable InvariantTSC
x86/hyperv: Micro-optimize send_ipi_one()
Pull x86 cpu and fpu updates from Ingo Molnar:
- math-emu fixes
- CPUID updates
- sanity-check RDRAND output to see whether the CPU at least pretends
to produce random data
- various unaligned-access across cachelines fixes in preparation of
hardware level split-lock detection
- fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with
larger than 512 NR_CPUS
- misc FPU related cleanups
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Align the x86_capability array to size of unsigned long
x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
x86/umip: Make the comments vendor-agnostic
x86/Kconfig: Rename UMIP config parameter
x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK
x86/cpufeatures: Add feature bit RDPRU on AMD
x86/math-emu: Limit MATH_EMULATION to 486SX compatibles
x86/math-emu: Check __copy_from_user() result
x86/rdrand: Sanity-check RDRAND output
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers
x86/fpu: Shrink space allocated for xstate_comp_offsets
x86/fpu: Update stale variable name in comment
Pull x86 boot updates from Ingo Molnar:
"The main changes were:
- Extend the boot protocol to allow future extensions without hitting
the setup_header size limit.
- Add quirk to devicetree systems to disable the RTC unless it's
listed as a supported device.
- Fix ld.lld linker pedantry"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Introduce setup_indirect
x86/boot: Introduce kernel_info.setup_type_max
x86/boot: Introduce kernel_info
x86/init: Allow DT configured systems to disable RTC at boot time
x86/realmode: Explicitly set entry point via ENTRY in linker script
Pull x86 objtool, cleanup, and apic updates from Ingo Molnar:
"Objtool:
- Fix a gawk 5.0 incompatibility in gen-insn-attr-x86.awk. Most
distros are still on gawk 4.2.x.
Cleanup:
- Misc cleanups, plus the removal of obsolete code such as Calgary
IOMMU support, which code hasn't seen any real testing in a long
time and there's no known users left.
apic:
- Two changes: a cleanup and a fix for an (old) race for oneshot
threaded IRQ handlers"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/insn: Fix awk regexp warnings
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove unused asm/rio.h
x86: Fix typos in comments
x86/pci: Remove #ifdef __KERNEL__ guard from <asm/pci.h>
x86/pci: Remove pci_64.h
x86: Remove the calgary IOMMU driver
x86/apic, x86/uprobes: Correct parameter names in kernel-doc comments
x86/kdump: Remove the unused crash_copy_backup_region()
x86/nmi: Remove stale EDAC include leftover
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioapic: Rename misnamed functions
x86/ioapic: Prevent inconsistent state when moving an interrupt
* acpi-mm:
ACPI: HMAT: use %u instead of %d to print u32 values
ACPI: NUMA: HMAT: fix a section mismatch
ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
ACPI: NUMA: HMAT: Register HMAT at device_initcall level
device-dax: Add a driver for "hmem" devices
dax: Fix alloc_dax_region() compile warning
lib: Uplevel the pmem "region" ida to a global allocator
x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
arm/efi: EFI soft reservation to memblock
x86/efi: EFI soft reservation to E820 enumeration
efi: Common enable/disable infrastructure for EFI soft reservation
x86/efi: Push EFI_MEMMAP check into leaf routines
efi: Enumerate EFI_MEMORY_SP
ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
Pull networking updates from David Miller:
"Another merge window, another pull full of stuff:
1) Support alternative names for network devices, from Jiri Pirko.
2) Introduce per-netns netdev notifiers, also from Jiri Pirko.
3) Support MSG_PEEK in vsock/virtio, from Matias Ezequiel Vara
Larsen.
4) Allow compiling out the TLS TOE code, from Jakub Kicinski.
5) Add several new tracepoints to the kTLS code, also from Jakub.
6) Support set channels ethtool callback in ena driver, from Sameeh
Jubran.
7) New SCTP events SCTP_ADDR_ADDED, SCTP_ADDR_REMOVED,
SCTP_ADDR_MADE_PRIM, and SCTP_SEND_FAILED_EVENT. From Xin Long.
8) Add XDP support to mvneta driver, from Lorenzo Bianconi.
9) Lots of netfilter hw offload fixes, cleanups and enhancements,
from Pablo Neira Ayuso.
10) PTP support for aquantia chips, from Egor Pomozov.
11) Add UDP segmentation offload support to igb, ixgbe, and i40e. From
Josh Hunt.
12) Add smart nagle to tipc, from Jon Maloy.
13) Support L2 field rewrite by TC offloads in bnxt_en, from Venkat
Duvvuru.
14) Add a flow mask cache to OVS, from Tonghao Zhang.
15) Add XDP support to ice driver, from Maciej Fijalkowski.
16) Add AF_XDP support to ice driver, from Krzysztof Kazimierczak.
17) Support UDP GSO offload in atlantic driver, from Igor Russkikh.
18) Support it in stmmac driver too, from Jose Abreu.
19) Support TIPC encryption and auth, from Tuong Lien.
20) Introduce BPF trampolines, from Alexei Starovoitov.
21) Make page_pool API more numa friendly, from Saeed Mahameed.
22) Introduce route hints to ipv4 and ipv6, from Paolo Abeni.
23) Add UDP segmentation offload to cxgb4, Rahul Lakkireddy"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1857 commits)
libbpf: Fix usage of u32 in userspace code
mm: Implement no-MMU variant of vmalloc_user_node_flags
slip: Fix use-after-free Read in slip_open
net: dsa: sja1105: fix sja1105_parse_rgmii_delays()
macvlan: schedule bc_work even if error
enetc: add support Credit Based Shaper(CBS) for hardware offload
net: phy: add helpers phy_(un)lock_mdio_bus
mdio_bus: don't use managed reset-controller
ax88179_178a: add ethtool_op_get_ts_info()
mlxsw: spectrum_router: Fix use of uninitialized adjacency index
mlxsw: spectrum_router: After underlay moves, demote conflicting tunnels
bpf: Simplify __bpf_arch_text_poke poke type handling
bpf: Introduce BPF_TRACE_x helper for the tracing tests
bpf: Add bpf_jit_blinding_enabled for !CONFIG_BPF_JIT
bpf, testing: Add various tail call test cases
bpf, x86: Emit patchable direct jump as tail call
bpf: Constant map key tracking for prog array pokes
bpf: Add poke dependency tracking for prog array maps
bpf: Add initial poke descriptor table for jit images
bpf: Move owner type, jited info into array auxiliary data
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAl3bpjoACgkQUqAMR0iA
lPJJDA/+IJT4YCRp2TwV2jvIs0QzvXZrzEsxgCLibLE85mYTJgoQBD3W1bH2eyjp
T/9U0Zh5PGr/84cHd4qiMxzo+5Olz930weG59NcO4RJBSr671aRYs5tJqwaQAZDR
wlwaob5S28vUmjPxKulvxv6V3FdI79ZE9xrCOCSTQvz4iCLsGOu+Dn/qtF64pImX
M/EXzPMBrByiQ8RTM4Ege8JoBqiCZPDG9GR3KPXIXQwEeQgIoeYxwRYakxSmSzz8
W8NduFCbWavg/yHhghHikMiyOZeQzAt+V9k9WjOBTle3TGJegRhvjgI7508q3tXe
jQTMGATBOPkIgFaZz7eEn/iBa3jZUIIOzDY93RYBmd26aBvwKLOma/Vkg5oGYl0u
ZK+CMe+/xXl7brQxQ6JNsQhbSTjT+746LvLJlCvPbbPK9R0HeKNhsdKpGY3ugnmz
VAnOFIAvWUHO7qx+J+EnOo5iiPpcwXZj4AjrwVrs/x5zVhzwQ+4DSU6rbNn0O1Ak
ELrBqCQkQzh5kqK93jgMHeWQ9EOUp1Lj6PJhTeVnOx2x8tCOi6iTQFFrfdUPlZ6K
2DajgrFhti4LvwVsohZlzZuKRm5EuwReLRSOn7PU5qoSm5rcouqMkdlYG/viwyhf
mTVzEfrfemrIQOqWmzPrWEXlMj2mq8oJm4JkC+jJ/+HsfK4UU8I=
=QCEy
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk
Pull printk updates from Petr Mladek:
- Allow to print symbolic error names via new %pe modifier.
- Use pr_warn() instead of the remaining pr_warning() calls. Fix
formatting of the related lines.
- Add VSPRINTF entry to MAINTAINERS.
* tag 'printk-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: (32 commits)
checkpatch: don't warn about new vsprintf pointer extension '%pe'
MAINTAINERS: Add VSPRINTF
tools lib api: Renaming pr_warning to pr_warn
ASoC: samsung: Use pr_warn instead of pr_warning
lib: cpu_rmap: Use pr_warn instead of pr_warning
trace: Use pr_warn instead of pr_warning
dma-debug: Use pr_warn instead of pr_warning
vgacon: Use pr_warn instead of pr_warning
fs: afs: Use pr_warn instead of pr_warning
sh/intc: Use pr_warn instead of pr_warning
scsi: Use pr_warn instead of pr_warning
platform/x86: intel_oaktrail: Use pr_warn instead of pr_warning
platform/x86: asus-laptop: Use pr_warn instead of pr_warning
platform/x86: eeepc-laptop: Use pr_warn instead of pr_warning
oprofile: Use pr_warn instead of pr_warning
of: Use pr_warn instead of pr_warning
macintosh: Use pr_warn instead of pr_warning
idsn: Use pr_warn instead of pr_warning
ide: Use pr_warn instead of pr_warning
crypto: n2: Use pr_warn instead of pr_warning
...
- Data abort report and injection
- Steal time support
- GICv4 performance improvements
- vgic ITS emulation fixes
- Simplify FWB handling
- Enable halt polling counters
- Make the emulated timer PREEMPT_RT compliant
s390:
- Small fixes and cleanups
- selftest improvements
- yield improvements
PPC:
- Add capability to tell userspace whether we can single-step the guest.
- Improve the allocation of XIVE virtual processor IDs
- Rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
- Minor cleanups and improvements.
x86:
- XSAVES support for AMD
- more accurate report of nested guest TSC to the nested hypervisor
- retpoline optimizations
- support for nested 5-level page tables
- PMU virtualization optimizations, and improved support for nested
PMU virtualization
- correct latching of INITs for nested virtualization
- IOAPIC optimization
- TSX_CTRL virtualization for more TAA happiness
- improved allocation and flushing of SEV ASIDs
- many bugfixes and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJd27PMAAoJEL/70l94x66DspsH+gPc6YWtKJFJH58Zj8NrNh6y
t0FwDFcvUa51+m4jaY4L5Y8+zqu1dZFnPPhFGqNWpxrjCEvE/glQJv3BiUX06Seh
aYUHNymGoYCTJOHaaGhV+NlgQaDuZOCOkIsOLAPehyFd1KojwB+FRC0xmO6aROPw
9yQgYrKuK1UUn5HwxBNrMS4+Xv+2iKv/9sTnq1G4W2qX2NZQg84LVPg1zIdkCh3D
3GOvoCBEk3ivQqjmdE7rP/InPr0XvW0b6TFhchIk8J6jEIQFHsmOUefiTvTxsIHV
OKAZwvyeYPrYHA/aDZpaBmY2aR0ydfKDUQcviNIJoF1vOktGs0hvl3VbsmG8QCg=
=OSI1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- data abort report and injection
- steal time support
- GICv4 performance improvements
- vgic ITS emulation fixes
- simplify FWB handling
- enable halt polling counters
- make the emulated timer PREEMPT_RT compliant
s390:
- small fixes and cleanups
- selftest improvements
- yield improvements
PPC:
- add capability to tell userspace whether we can single-step the
guest
- improve the allocation of XIVE virtual processor IDs
- rewrite interrupt synthesis code to deliver interrupts in virtual
mode when appropriate.
- minor cleanups and improvements.
x86:
- XSAVES support for AMD
- more accurate report of nested guest TSC to the nested hypervisor
- retpoline optimizations
- support for nested 5-level page tables
- PMU virtualization optimizations, and improved support for nested
PMU virtualization
- correct latching of INITs for nested virtualization
- IOAPIC optimization
- TSX_CTRL virtualization for more TAA happiness
- improved allocation and flushing of SEV ASIDs
- many bugfixes and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
kvm: nVMX: Relax guest IA32_FEATURE_CONTROL constraints
KVM: x86: Grab KVM's srcu lock when setting nested state
KVM: x86: Open code shared_msr_update() in its only caller
KVM: Fix jump label out_free_* in kvm_init()
KVM: x86: Remove a spurious export of a static function
KVM: x86: create mmu/ subdirectory
KVM: nVMX: Remove unnecessary TLB flushes on L1<->L2 switches when L1 use apic-access-page
KVM: x86: remove set but not used variable 'called'
KVM: nVMX: Do not mark vmcs02->apic_access_page as dirty when unpinning
KVM: vmx: use MSR_IA32_TSX_CTRL to hard-disable TSX on guest that lack it
KVM: vmx: implement MSR_IA32_TSX_CTRL disable RTM functionality
KVM: x86: implement MSR_IA32_TSX_CTRL effect on CPUID
KVM: x86: do not modify masked bits of shared MSRs
KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES
KVM: PPC: Book3S HV: XIVE: Fix potential page leak on error path
KVM: PPC: Book3S HV: XIVE: Free previous EQ page when setting up a new one
KVM: nVMX: Assume TLB entries of L1 and L2 are tagged differently if L0 use EPT
KVM: x86: Unexport kvm_vcpu_reload_apic_access_page()
KVM: nVMX: add CR4_LA57 bit to nested CR4_FIXED1
KVM: nVMX: Use semi-colon instead of comma for exit-handlers initialization
...
Pull RAS updates from Borislav Petkov:
- Fully reworked thermal throttling notifications, there should be no
more spamming of dmesg (Srinivas Pandruvada and Benjamin Berg)
- More enablement for the Intel-compatible CPUs Zhaoxin (Tony W
Wang-oc)
- PPIN support for Icelake (Tony Luck)
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/therm_throt: Optimize notifications of thermal throttle
x86/mce: Add Xeon Icelake to list of CPUs that support PPIN
x86/mce: Lower throttling MCE messages' priority to warning
x86/mce: Add Zhaoxin LMCE support
x86/mce: Add Zhaoxin CMCI support
x86/mce: Add Zhaoxin MCE support
x86/mce/amd: Make disable_err_thresholding() static
Pull x86 microcode updates from Borislav Petkov:
"This converts the late loading method to load the microcode in
parallel (vs sequentially currently). The patch remained in linux-next
for the maximum amount of time so that any potential and hard to debug
fallout be minimized.
Now cloud folks have their milliseconds back but all the normal people
should use early loading anyway :-)"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/intel: Issue the revision updated message only on the BSP
x86/microcode: Update late microcode in parallel
x86/microcode/amd: Fix two -Wunused-but-set-variable warnings
Commit 945fd17ab6 ("x86/cpu_entry_area: Sync cpu_entry_area to
initial_page_table") introduced the sync for the initial page table for
32bit.
sync_initial_page_table() uses clone_pgd_range() which does the update for
the kernel page table. If PTI is enabled it also updates the user space
page table counterpart, which is assumed to be in the next page after the
target PGD.
At this point in time 32-bit did not have PTI support, so the user space
page table update was not taking place.
The support for PTI on 32-bit which was introduced later on, did not take
that into account and missed to add the user space counter part for the
initial page table.
As a consequence sync_initial_page_table() overwrites any data which is
located in the page behing initial_page_table causing random failures,
e.g. by corrupting doublefault_tss and wreckaging the doublefault handler
on 32bit.
Fix it by adding a "user" page table right after initial_page_table.
Fixes: 7757d607c6 ("x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Cc: stable@kernel.org
The double fault TSS was missing GS setup, which is needed for stack
canaries to work.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@kernel.org
Using a mask to represent bus DMA constraints has a set of limitations.
The biggest one being it can only hold a power of two (minus one). The
DMA mapping code is already aware of this and treats dev->bus_dma_mask
as a limit. This quirk is already used by some architectures although
still rare.
With the introduction of the Raspberry Pi 4 we've found a new contender
for the use of bus DMA limits, as its PCIe bus can only address the
lower 3GB of memory (of a total of 4GB). This is impossible to represent
with a mask. To make things worse the device-tree code rounds non power
of two bus DMA limits to the next power of two, which is unacceptable in
this case.
In the light of this, rename dev->bus_dma_mask to dev->bus_dma_limit all
over the tree and treat it as such. Note that dev->bus_dma_limit should
contain the higher accessible DMA address.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-11-20
The following pull-request contains BPF updates for your *net-next* tree.
We've added 81 non-merge commits during the last 17 day(s) which contain
a total of 120 files changed, 4958 insertions(+), 1081 deletions(-).
There are 3 trivial conflicts, resolve it by always taking the chunk from
196e8ca748:
<<<<<<< HEAD
=======
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
>>>>>>> 196e8ca748
<<<<<<< HEAD
void *bpf_map_area_alloc(u64 size, int numa_node)
=======
static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable)
>>>>>>> 196e8ca748
<<<<<<< HEAD
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
=======
/* kmalloc()'ed memory can't be mmap()'ed */
if (!mmapable && size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
>>>>>>> 196e8ca748
The main changes are:
1) Addition of BPF trampoline which works as a bridge between kernel functions,
BPF programs and other BPF programs along with two new use cases: i) fentry/fexit
BPF programs for tracing with practically zero overhead to call into BPF (as
opposed to k[ret]probes) and ii) attachment of the former to networking related
programs to see input/output of networking programs (covering xdpdump use case),
from Alexei Starovoitov.
2) BPF array map mmap support and use in libbpf for global data maps; also a big
batch of libbpf improvements, among others, support for reading bitfields in a
relocatable manner (via libbpf's CO-RE helper API), from Andrii Nakryiko.
3) Extend s390x JIT with usage of relative long jumps and loads in order to lift
the current 64/512k size limits on JITed BPF programs there, from Ilya Leoshkevich.
4) Add BPF audit support and emit messages upon successful prog load and unload in
order to have a timeline of events, from Daniel Borkmann and Jiri Olsa.
5) Extension to libbpf and xdpsock sample programs to demo the shared umem mode
(XDP_SHARED_UMEM) as well as RX-only and TX-only sockets, from Magnus Karlsson.
6) Several follow-up bug fixes for libbpf's auto-pinning code and a new API
call named bpf_get_link_xdp_info() for retrieving the full set of prog
IDs attached to XDP, from Toke Høiland-Jørgensen.
7) Add BTF support for array of int, array of struct and multidimensional arrays
and enable it for skb->cb[] access in kfree_skb test, from Martin KaFai Lau.
8) Fix AF_XDP by using the correct number of channels from ethtool, from Luigi Rizzo.
9) Two fixes for BPF selftest to get rid of a hang in test_tc_tunnel and to avoid
xdping to be run as standalone, from Jiri Benc.
10) Various BPF selftest fixes when run with latest LLVM trunk, from Yonghong Song.
11) Fix a memory leak in BPF fentry test run data, from Colin Ian King.
12) Various smaller misc cleanups and improvements mostly all over BPF selftests and
samples, from Daniel T. Lee, Andre Guedes, Anders Roxell, Mao Wenan, Yue Haibing.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The valid memory address check in dma_capable only makes sense when mapping
normal memory, not when using dma_map_resource to map a device resource.
Add a new boolean argument to dma_capable to exclude that check for the
dma_map_resource case.
Fixes: b12d66278d ("dma-direct: check for overflows on 32 bit DMA addresses")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
BIOSen -> BIOSes; paing -> paging. Append to 640 its proper unit "Kb".
encomapssing -> encompassing.
[ bp: Merge into a single patch, fix one more typo, massage. ]
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191118070012.27850-1-caoj.fnst@cn.fujitsu.com
Pull x86 fixes from Ingo Molnar:
"Two fixes: disable unreliable HPET on Intel Coffe Lake platforms, and
fix a lockdep splat in the resctrl code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix potential lockdep warning
x86/quirks: Disable HPET on Intel Coffe Lake platforms
This patch enables KCSAN for x86, with updates to build rules to not use
KCSAN for several incompatible compilation units.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since MDS and TAA mitigations are inter-related for processors that are
affected by both vulnerabilities, the followiing confusing messages can
be printed in the kernel log:
MDS: Vulnerable
MDS: Mitigation: Clear CPU buffers
To avoid the first incorrect message, defer the printing of MDS
mitigation after the TAA mitigation selection has been done. However,
that has the side effect of printing TAA mitigation first before MDS
mitigation.
[ bp: Check box is affected/mitigations are disabled first before
printing and massage. ]
Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mark Gross <mgross@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-3-longman@redhat.com
For MDS vulnerable processors with TSX support, enabling either MDS or
TAA mitigations will enable the use of VERW to flush internal processor
buffers at the right code path. IOW, they are either both mitigated
or both not. However, if the command line options are inconsistent,
the vulnerabilites sysfs files may not report the mitigation status
correctly.
For example, with only the "mds=off" option:
vulnerabilities/mds:Vulnerable; SMT vulnerable
vulnerabilities/tsx_async_abort:Mitigation: Clear CPU buffers; SMT vulnerable
The mds vulnerabilities file has wrong status in this case. Similarly,
the taa vulnerability file will be wrong with mds mitigation on, but
taa off.
Change taa_select_mitigation() to sync up the two mitigation status
and have them turned off if both "mds=off" and "tsx_async_abort=off"
are present.
Update documentation to emphasize the fact that both "mds=off" and
"tsx_async_abort=off" have to be specified together for processors that
are affected by both TAA and MDS to be effective.
[ bp: Massage and add kernel-parameters.txt change too. ]
Fixes: 1b42f01741 ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-doc@vger.kernel.org
Cc: Mark Gross <mgross@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-2-longman@redhat.com
If iopl() is disabled, then providing ioperm() does not make much sense.
Rename the config option and disable/enable both syscalls with it. Guard
the code with #ifdefs where appropriate.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The IOPL emulation via the I/O bitmap is sufficient. Remove the legacy
cruft dealing with the (e)flags based IOPL mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com> (Paravirt and Xen parts)
Acked-by: Andy Lutomirski <luto@kernel.org>
The access to the full I/O port range can be also provided by the TSS I/O
bitmap, but that would require to copy 8k of data on scheduling in the
task. As shown with the sched out optimization TSS.io_bitmap_base can be
used to switch the incoming task to a preallocated I/O bitmap which has all
bits zero, i.e. allows access to all I/O ports.
Implementing this allows to provide an iopl() emulation mode which restricts
the IOPL level 3 permissions to I/O port access but removes the STI/CLI
permission which is coming with the hardware IOPL mechansim.
Provide a config option to switch IOPL to emulation mode, make it the
default and while at it also provide an option to disable IOPL completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
The comment for the sys_iopl() implementation is outdated and actively
misleading in some parts. Fix it up.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
The I/O bitmap is duplicated on fork. That's wasting memory and slows down
fork. There is no point to do so. As long as the bitmap is not modified it
can be shared between threads and processes.
Add a refcount and just share it on fork. If a task modifies the bitmap
then it has to do the duplication if and only if it is shared.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
If ioperm() results in a bitmap with all bits set (no permissions to any
I/O port), then handling that bitmap on context switch and exit to user
mode is pointless. Drop it.
Move the bitmap exit handling to the ioport code and reuse it for both the
thread exit path and dropping it. This allows to reuse this code for the
upcoming iopl() emulation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
There is no point to update the TSS bitmap for tasks which use I/O bitmaps
on every context switch. It's enough to update it right before exiting to
user space.
That reduces the context switch bitmap handling to invalidating the io
bitmap base offset in the TSS when the outgoing task has TIF_IO_BITMAP
set. The invaldiation is done on purpose when a task with an IO bitmap
switches out to prevent any possible leakage of an activated IO bitmap.
It also removes the requirement to update the tasks bitmap atomically in
ioperm().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a globally unique sequence number which is incremented when ioperm() is
changing the I/O bitmap of a task. Store the new sequence number in the
io_bitmap structure and compare it with the sequence number of the I/O
bitmap which was last loaded on a CPU. Only update the bitmap if the
sequence is different.
That should further reduce the overhead of I/O bitmap scheduling when there
are only a few I/O bitmap users on the system.
The 64bit sequence counter is sufficient. A wraparound of the sequence
counter assuming an ioperm() call every nanosecond would require about 584
years of uptime.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point in having all the data in thread_struct, especially as upcoming
changes add more.
Make the bitmap in the new struct accessible as array of longs and as array
of characters via a union, so both the bitmap functions and the update
logic can avoid type casts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the non hardware portion of I/O bitmap data into a seperate struct for
readability sake.
Originally-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no requirement to update the TSS I/O bitmap when a thread using it is
scheduled out and the incoming thread does not use it.
For the permission check based on the TSS I/O bitmap the CPU calculates the memory
location of the I/O bitmap by the address of the TSS and the io_bitmap_base member
of the tss_struct. The easiest way to invalidate the I/O bitmap is to switch the
offset to an address outside of the TSS limit.
If an I/O instruction is issued from user space the TSS limit causes #GP to be
raised in the same was as valid I/O bitmap with all bits set to 1 would do.
This removes the extra work when an I/O bitmap using task is scheduled out
and puts the burden on the rare I/O bitmap users when they are scheduled
in.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If ioperm() is invoked the first time and the @turn_on argument is 0, then
there is no point to allocate a bitmap just to clear permissions which are
not set.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On the first allocation of a task the I/O bitmap needs to be
allocated. After the allocation it is installed as an empty bitmap and
immediately afterwards updated.
Avoid that and just do the initial updates (store bitmap pointer, set TIF
flag and make TSS limit valid) in the update path unconditionally. If the
bitmap was already active this is redundant but harmless.
Preparatory change for later optimizations in the context switch code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Similar to copy_thread_tls() the 32bit and 64bit implementations of
cpu_init() are very similar and unification avoids duplicate changes in the
future.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
While looking at the TSS io bitmap it turned out that any change in that
area would require identical changes to copy_thread_tls(). The 32 and 64
bit variants share sufficient code to consolidate them into a common
function to avoid duplication of upcoming modifications.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
The active() callback of the IO bitmap regset divides the IO bitmap size by
the word size (32/64 bit). As the I/O bitmap size is in bytes the active
check fails for bitmap sizes of 1-3 bytes on 32bit and 1-7 bytes on 64bit.
Use DIV_ROUND_UP() instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
In preparation for static_call and variable size jump_label support,
teach text_poke_bp() to emulate instructions, namely:
JMP32, JMP8, CALL, NOP2, NOP_ATOMIC5, INT3
The current text_poke_bp() takes a @handler argument which is used as
a jump target when the temporary INT3 is hit by a different CPU.
When patching CALL instructions, this doesn't work because we'd miss
the PUSH of the return address. Instead, teach poke_int3_handler() to
emulate an instruction, typically the instruction we're patching in.
This fits almost all text_poke_bp() users, except
arch_unoptimize_kprobe() which restores random text, and for that site
we have to build an explicit emulate instruction.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132457.529086974@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
(cherry picked from commit 8c7eebc10687af45ac8e40ad1bac0cf7893dba9f)
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
cpu_caps_cleared[] and cpu_caps_set[] are arrays of type u32 and therefore
naturally aligned to 4 bytes, which is also unsigned long aligned on
32-bit, but not on 64-bit.
The array pointer is handed into atomic bit operations. If the access not
aligned to unsigned long then the atomic bit operations can end up crossing
a cache line boundary, which causes the CPU to do a full bus lock as it
can't lock both cache lines at once. The bus lock operation is heavy weight
and can cause severe performance degradation.
The upcoming #AC split lock detection mechanism will issue warnings for
this kind of access.
Force the alignment of these arrays to unsigned long. This avoids the
massive code changes which would be required when converting the array data
type to unsigned long.
[ tglx: Rewrote changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20190916223958.27048-2-tony.luck@intel.com
The calgary IOMMU was only used on high-end IBM systems in the early
x86_64 age and has no known users left. Remove it to avoid having to
touch it for pending changes to the DMA API.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191113071836.21041-2-hch@lst.de
... or let function calls stick out and thus remain on a single line,
even if the 80 cols rule is violated by a couple of chars, for better
readability.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20191114172200.19563-1-bp@alien8.de
When the crashkernel kernel command line option is specified, the low
1M memory will always be reserved now. Therefore, it's not necessary to
create a backup region anymore and also no need to copy the contents of
the first 640k to it.
Remove all the code related to handling that backup region.
[ bp: Massage commit message. ]
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: bhe@redhat.com
Cc: Dave Young <dyoung@redhat.com>
Cc: d.hatayama@fujitsu.com
Cc: dhowells@redhat.com
Cc: ebiederm@xmission.com
Cc: horms@verge.net.au
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jürgen Gross <jgross@suse.com>
Cc: kexec@lists.infradead.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191108090027.11082-3-lijiang@redhat.com
On x86, purgatory() copies the first 640K of memory to a backup region
because the kernel needs those first 640K for the real mode trampoline
during boot, among others.
However, when SME is enabled, the kernel cannot properly copy the old
memory to the backup area but reads only its encrypted contents. The
result is that the crash tool gets invalid pointers when parsing vmcore:
crash> kmem -s|grep -i invalid
kmem: dma-kmalloc-512: slab:ffffd77680001c00 invalid freepointer:a6086ac099f0c5a4
kmem: dma-kmalloc-512: slab:ffffd77680001c00 invalid freepointer:a6086ac099f0c5a4
crash>
So reserve the remaining low 1M memory when the crashkernel option is
specified (after reserving real mode memory) so that allocated memory
does not fall into the low 1M area and thus the copying of the contents
of the first 640k to a backup region in purgatory() can be avoided
altogether.
This way, it does not need to be included in crash dumps or used for
anything except the trampolines that must live in the low 1M.
[ bp: Heavily rewrite commit message, flip check logic in
crash_reserve_low_1M().]
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: bhe@redhat.com
Cc: Dave Young <dyoung@redhat.com>
Cc: d.hatayama@fujitsu.com
Cc: dhowells@redhat.com
Cc: ebiederm@xmission.com
Cc: horms@verge.net.au
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jürgen Gross <jgross@suse.com>
Cc: kexec@lists.infradead.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191108090027.11082-2-lijiang@redhat.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=204793
Objtool complains about the new ftrace direct trampoline code:
arch/x86/kernel/ftrace_64.o: warning: objtool: ftrace_regs_caller()+0x190: stack state mismatch: cfa1=7+16 cfa2=7+24
Typically, code has a deterministic stack layout, such that at a given
instruction address, the stack frame size is always the same.
That's not the case for the new ftrace_regs_caller() code after it
adjusts the stack for the direct case. Just plead ignorance and assume
it's always the non-direct path. Note this creates a tiny window for
ORC to get confused.
Link: http://lkml.kernel.org/r/20191108225100.ea3bhsbdf6oerj6g@treble
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As testing for direct calls from the function graph tracer adds a little
overhead (which is a lot when tracing every function), add a counter that
can be used to test if function_graph tracer needs to test for a direct
caller or not.
It would have been nicer if we could use a static branch, but the static
branch logic fails when used within the function graph tracer trampoline.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Enable x86 to allow for register_ftrace_direct(), where a custom trampoline
may be called directly from an ftrace mcount/fentry location.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
rdtgroup_cpus_write() and mkdir_rdt_prepare() call
rdtgroup_kn_lock_live() -> kernfs_to_rdtgroup() to get 'rdtgrp', and
then call the rdt_last_cmd_{clear,puts,...}() functions which will check
if rdtgroup_mutex is held/requires its caller to hold rdtgroup_mutex.
But if 'rdtgrp' returned from kernfs_to_rdtgroup() is NULL,
rdtgroup_mutex is not held and calling rdt_last_cmd_{clear,puts,...}()
will result in a self-incurred, potential lockdep warning.
Remove the rdt_last_cmd_{clear,puts,...}() calls in these two paths.
Just returning error should be sufficient to report to the user that the
entry doesn't exist any more.
[ bp: Massage. ]
Fixes: 94457b36e8 ("x86/intel_rdt: Add diagnostics when writing the cpus file")
Fixes: cfd0f34e4c ("x86/intel_rdt: Add diagnostics when making directories")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1573079796-11713-1-git-send-email-xiaochen.shen@intel.com
Pull x86 TSX Async Abort and iTLB Multihit mitigations from Thomas Gleixner:
"The performance deterioration departement is not proud at all of
presenting the seventh installment of speculation mitigations and
hardware misfeature workarounds:
1) TSX Async Abort (TAA) - 'The Annoying Affair'
TAA is a hardware vulnerability that allows unprivileged
speculative access to data which is available in various CPU
internal buffers by using asynchronous aborts within an Intel TSX
transactional region.
The mitigation depends on a microcode update providing a new MSR
which allows to disable TSX in the CPU. CPUs which have no
microcode update can be mitigated by disabling TSX in the BIOS if
the BIOS provides a tunable.
Newer CPUs will have a bit set which indicates that the CPU is not
vulnerable, but the MSR to disable TSX will be available
nevertheless as it is an architected MSR. That means the kernel
provides the ability to disable TSX on the kernel command line,
which is useful as TSX is a truly useful mechanism to accelerate
side channel attacks of all sorts.
2) iITLB Multihit (NX) - 'No eXcuses'
iTLB Multihit is an erratum where some Intel processors may incur
a machine check error, possibly resulting in an unrecoverable CPU
lockup, when an instruction fetch hits multiple entries in the
instruction TLB. This can occur when the page size is changed
along with either the physical address or cache type. A malicious
guest running on a virtualized system can exploit this erratum to
perform a denial of service attack.
The workaround is that KVM marks huge pages in the extended page
tables as not executable (NX). If the guest attempts to execute in
such a page, the page is broken down into 4k pages which are
marked executable. The workaround comes with a mechanism to
recover these shattered huge pages over time.
Both issues come with full documentation in the hardware
vulnerabilities section of the Linux kernel user's and administrator's
guide.
Thanks to all patch authors and reviewers who had the extraordinary
priviledge to be exposed to this nuisance.
Special thanks to Borislav Petkov for polishing the final TAA patch
set and to Paolo Bonzini for shepherding the KVM iTLB workarounds and
providing also the backports to stable kernels for those!"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs
Documentation: Add ITLB_MULTIHIT documentation
kvm: x86: mmu: Recovery of shattered NX large pages
kvm: Add helper function for creating VM worker threads
kvm: mmu: ITLB_MULTIHIT mitigation
cpu/speculation: Uninline and export CPU mitigations helpers
x86/cpu: Add Tremont to the cpu vulnerability whitelist
x86/bugs: Add ITLB_MULTIHIT bug infrastructure
x86/tsx: Add config options to set tsx=on|off|auto
x86/speculation/taa: Add documentation for TSX Async Abort
x86/tsx: Add "auto" option to the tsx= cmdline parameter
kvm/x86: Export MDS_NO=0 to guests when TSX is enabled
x86/speculation/taa: Add sysfs reporting for TSX Async Abort
x86/speculation/taa: Add mitigation for TSX Async Abort
x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default
x86/cpu: Add a helper function x86_read_arch_cap_msr()
x86/msr: Add the IA32_TSX_CTRL MSR
The setup_data is a bit awkward to use for extremely large data objects,
both because the setup_data header has to be adjacent to the data object
and because it has a 32-bit length field. However, it is important that
intermediate stages of the boot process have a way to identify which
chunks of memory are occupied by kernel data. Thus introduce an uniform
way to specify such indirect data as setup_indirect struct and
SETUP_INDIRECT type.
And finally bump setup_header version in arch/x86/boot/header.S.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-4-daniel.kiper@oracle.com
Some modern systems have very tight thermal tolerances. Because of this
they may cross thermal thresholds when running normal workloads (even
during boot). The CPU hardware will react by limiting power/frequency
and using duty cycles to bring the temperature back into normal range.
Thus users may see a "critical" message about the "temperature above
threshold" which is soon followed by "temperature/speed normal". These
messages are rate-limited, but still may repeat every few minutes.
This issue became worse starting with the Ivy Bridge generation of
CPUs because they include a TCC activation offset in the MSR
IA32_TEMPERATURE_TARGET. OEMs use this to provide alerts long before
critical temperatures are reached.
A test run on a laptop with Intel 8th Gen i5 core for two hours with a
workload resulted in 20K+ thermal interrupts per CPU for core level and
another 20K+ interrupts at package level. The kernel logs were full of
throttling messages.
The real value of these threshold interrupts, is to debug problems with
the external cooling solutions and performance issues due to excessive
throttling.
So the solution here is the following:
- In the current thermal_throttle folder, show:
- the maximum time for one throttling event and,
- the total amount of time the system was in throttling state.
- Do not log short excursions.
- Log only when, in spite of thermal throttling, the temperature is rising.
On the high threshold interrupt trigger a delayed workqueue that
monitors the threshold violation log bit (THERM_STATUS_PROCHOT_LOG). When
the log bit is set, this workqueue callback calculates three point moving
average and logs a warning message when the temperature trend is rising.
When this log bit is clear and temperature is below threshold
temperature, then the workqueue callback logs a "Normal" message. Once a
high threshold event is logged, the logging is rate-limited.
With this patch on the same test laptop, no warnings are printed in the logs
as the max time the processor could bring the temperature under control is
only 280 ms.
This implementation is done with the inputs from Alan Cox and Tony Luck.
[ bp: Touchups. ]
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: bberg@redhat.com
Cc: ckellner@redhat.com
Cc: hdegoede@redhat.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191111214312.81365-1-srinivas.pandruvada@linux.intel.com
Some Coffee Lake platforms have a skewed HPET timer once the SoCs entered
PC10, which in consequence marks TSC as unstable because HPET is used as
watchdog clocksource for TSC.
Harry Pan tried to work around it in the clocksource watchdog code [1]
thereby creating a circular dependency between HPET and TSC. This also
ignores the fact, that HPET is not only unsuitable as watchdog clocksource
on these systems, it becomes unusable in general.
Disable HPET on affected platforms.
Suggested-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203183
Link: https://lore.kernel.org/lkml/20190516090651.1396-1-harry.pan@intel.com/ [1]
Link: https://lkml.kernel.org/r/20191016103816.30650-1-kai.heng.feng@canonical.com
Systems which do not support RTC run into boot problems as the kernel
assumes the availability of the RTC by default.
On device tree configured systems the availability of the RTC can be
detected by querying the corresponding device tree node.
Implement a wallclock init function to query the device tree and disable
RTC if the RTC is marked as not available in the corresponding node.
[ tglx: Rewrote changelog and comments. Added proper __init(const)
annotations. ]
Suggested-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Signed-off-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/b84d9152ce0c1c09896ff4987e691a0715cb02df.1570693058.git.rahul.tanwar@linux.intel.com
If the hardware supports TSC scaling, Hyper-V will set bit 15 of the
HV_PARTITION_PRIVILEGE_MASK in guest VMs with a compatible Hyper-V
configuration version. Bit 15 corresponds to the
AccessTscInvariantControls privilege. If this privilege bit is set,
guests can access the HvSyntheticInvariantTscControl MSR: guests can
set bit 0 of this synthetic MSR to enable the InvariantTSC feature.
After setting the synthetic MSR, CPUID will enumerate support for
InvariantTSC.
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lkml.kernel.org/r/20191003155200.22022-1-parri.andrea@gmail.com
For new IBRS_ALL CPUs, the Enhanced IBRS check at the beginning of
cpu_bugs_smt_update() causes the function to return early, unintentionally
skipping the MDS and TAA logic.
This is not a problem for MDS, because there appears to be no overlap
between IBRS_ALL and MDS-affected CPUs. So the MDS mitigation would be
disabled and nothing would need to be done in this function anyway.
But for TAA, the TAA_MSG_SMT string will never get printed on Cascade
Lake and newer.
The check is superfluous anyway: when 'spectre_v2_enabled' is
SPECTRE_V2_IBRS_ENHANCED, 'spectre_v2_user' is always
SPECTRE_V2_USER_NONE, and so the 'spectre_v2_user' switch statement
handles it appropriately by doing nothing. So just remove the check.
Fixes: 1b42f01741 ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".
The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback. Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.
This patch introduces 2 new concepts at once given the entanglement
between early boot enumeration relative to memory that can optionally be
reserved from the kernel page allocator by default. The new concepts
are:
- E820_TYPE_SOFT_RESERVED: Upon detecting the EFI_MEMORY_SP
attribute on EFI_CONVENTIONAL memory, update the E820 map with this
new type. Only perform this classification if the
CONFIG_EFI_SOFT_RESERVE=y policy is enabled, otherwise treat it as
typical ram.
- IORES_DESC_SOFT_RESERVED: Add a new I/O resource descriptor for
a device driver to search iomem resources for application specific
memory. Teach the iomem code to identify such ranges as "Soft Reserved".
Note that the comment for do_add_efi_memmap() needed refreshing since it
seemed to imply that the efi map might overflow the e820 table, but that
is not an issue as of commit 7b6e4ba3cb "x86/boot/e820: Clean up the
E820_X_MAX definition" that removed the 128 entry limit for
e820__range_add().
A follow-on change integrates parsing of the ACPI HMAT to identify the
node and sub-range boundaries of EFI_MEMORY_SP designated memory. For
now, just identify and reserve memory of this type.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In preparation for adding another EFI_MEMMAP dependent call that needs
to occur before e820__memblock_setup() fixup the existing efi calls to
check for EFI_MEMMAP internally. This ends up being cleaner than the
alternative of checking EFI_MEMMAP multiple times in setup_arch().
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
AMD 2nd generation EPYC processors support the UMIP (User-Mode
Instruction Prevention) feature. So, rename X86_INTEL_UMIP to
generic X86_UMIP and modify the text to cover both Intel and AMD.
[ bp: take of the disabled-features.h copy in tools/ too. ]
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/157298912544.17462.2018334793891409521.stgit@naples-babu.amd.com
The introduction of clocksource_tsc_early broke the functionality of
"tsc=reliable" and "tsc=nowatchdog" command line parameters, since
clocksource_tsc_early is unconditionally registered with
CLOCK_SOURCE_MUST_VERIFY and thus put on the watchdog list.
This can cause the TSC to be declared unstable during boot:
clocksource: timekeeping watchdog on CPU0: Marking clocksource
'tsc-early' as unstable because the skew is too large:
clocksource: 'refined-jiffies' wd_now: fffb7018 wd_last: fffb6e9d
mask: ffffffff
clocksource: 'tsc-early' cs_now: 68a6a7070f6a0 cs_last: 68a69ab6f74d6
mask: ffffffffffffffff
tsc: Marking TSC unstable due to clocksource watchdog
The corresponding elapsed times are cs_nsec=1224152026 and wd_nsec=378942392, so
the watchdog differs from TSC by 0.84 seconds.
This happens when HPET is not available and jiffies are used as the TSC
watchdog instead and the jiffies update is not happening due to lost timer
interrupts in periodic mode, which can happen e.g. with expensive debug
mechanisms enabled or under massive overload conditions in virtualized
environments.
Before the introduction of the early TSC clocksource the command line
parameters "tsc=reliable" and "tsc=nowatchdog" could be used to work around
this issue.
Restore the behaviour by disabling the watchdog if requested on the kernel
command line.
[ tglx: Clarify changelog ]
Fixes: aa83c45762 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Michael Zhivich <mzhivich@akamai.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191024175945.14338-1-mzhivich@akamai.com
Cyrill reported the following crash:
BUG: unable to handle page fault for address: 0000000000001ff0
#PF: supervisor read access in kernel mode
RIP: 0010:get_stack_info+0xb3/0x148
It turns out that if the stack tracer is invoked before the exception stack
mappings are initialized in_exception_stack() can erroneously classify an
invalid address as an address inside of an exception stack:
begin = this_cpu_read(cea_exception_stacks); <- 0
end = begin + sizeof(exception stacks);
i.e. any address between 0 and end will be considered as exception stack
address and the subsequent code will then try to derefence the resulting
stack frame at a non mapped address.
end = begin + (unsigned long)ep->size;
==> end = 0x2000
regs = (struct pt_regs *)end - 1;
==> regs = 0x2000 - sizeof(struct pt_regs *) = 0x1ff0
info->next_sp = (unsigned long *)regs->sp;
==> Crashes due to accessing 0x1ff0
Prevent this by checking the validity of the cea_exception_stack base
address and bailing out if it is zero.
Fixes: afcd21dad8 ("x86/dumpstack/64: Use cpu_entry_area instead of orig_ist")
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1910231950590.1852@nanos.tec.linutronix.de
The removal of the LDR initialization in the bigsmp_32 APIC code unearthed
a problem in setup_local_APIC().
The code checks unconditionally for a mismatch of the logical APIC id by
comparing the early APIC id which was initialized in get_smp_config() with
the actual LDR value in the APIC.
Due to the removal of the bogus LDR initialization the check now can
trigger on bigsmp_32 APIC systems emitting a warning for every booting
CPU. This is of course a false positive because the APIC is not using
logical destination mode.
Restrict the check and the possibly resulting fixup to systems which are
actually using the APIC in logical destination mode.
[ tglx: Massaged changelog and added Cc stable ]
Fixes: bae3a8d330 ("x86/apic: Do not initialize LDR and DFR for bigsmp")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/666d8f91-b5a8-1afd-7add-821e72a35f03@suse.com
When setting up sizes and offsets for legacy header entries the code uses
hardcoded 0/1 instead of the corresponding enum values XFEATURE_FP and
XFEATURE_SSE.
Replace the hardcoded numbers which enhances readability of the code and
also makes this code the first user of those enum values..
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191101130153.GG1615@uranus.lan
commit 8ff925e10f ("x86/xsaves: Clean up code in xstate offsets
computation in xsave area") introduced an allocation of 64 entries for
xstate_comp_offsets while the code only handles up to XFEATURE_MAX entries.
For this reason xstate_offsets and xstate_sizes are already defined with
the explicit XFEATURE_MAX limit.
Do the same for compressed format for consistency sake.
As the changelog of that commit is not giving any information it's assumed
that the main idea was to cover all possible bits in xfeatures_mask, but
this doesn't explain why other variables such as the non-compacted offsets
and sizes are explicitely limited to XFEATURE_MAX.
For consistency it's better to use the XFEATURE_MAX limit everywhere and
extend it on demand when new features get implemented at the hardware
level and subsequently supported by the kernel.
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191101124228.GF1615@uranus.lan
When the fpu code was reworked pcntxt_mask was renamed to
xfeatures_mask. Reflect it in the comment as well.
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191101123850.GE1615@uranus.lan
Instead of using 0x90 (NOP) to fill bytes between functions, which makes
it easier to sloppily target functions in function pointer overwrite
attacks, fill with 0xCC (INT3) to force a trap. Also drop the space
between "=" and the value to better match the binutils documentation
https://sourceware.org/binutils/docs/ld/Output-Section-Fill.html#Output-Section-Fill
Example "objdump -d" before:
...
ffffffff810001e0 <start_cpu0>:
ffffffff810001e0: 48 8b 25 e1 b1 51 01 mov 0x151b1e1(%rip),%rsp # ffffffff8251b3c8 <initial_stack>
ffffffff810001e7: e9 d5 fe ff ff jmpq ffffffff810000c1 <secondary_startup_64+0x91>
ffffffff810001ec: 90 nop
ffffffff810001ed: 90 nop
ffffffff810001ee: 90 nop
ffffffff810001ef: 90 nop
ffffffff810001f0 <__startup_64>:
...
After:
...
ffffffff810001e0 <start_cpu0>:
ffffffff810001e0: 48 8b 25 41 79 53 01 mov 0x1537941(%rip),%rsp # ffffffff82537b28 <initial_stack>
ffffffff810001e7: e9 d5 fe ff ff jmpq ffffffff810000c1 <secondary_startup_64+0x91>
ffffffff810001ec: cc int3
ffffffff810001ed: cc int3
ffffffff810001ee: cc int3
ffffffff810001ef: cc int3
ffffffff810001f0 <__startup_64>:
...
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-30-keescook@chromium.org
The resource reservations in /proc/iomem made for the kernel image did
not reflect the gaps between text, rodata, and data. Add the "rodata"
resource and update the start/end calculations to match the respective
calls to free_kernel_image_pages().
Before (booted with "nokaslr" for easier comparison):
00100000-bffd9fff : System RAM
01000000-01e011d0 : Kernel code
01e011d1-025619bf : Kernel data
02a95000-035fffff : Kernel bss
After:
00100000-bffd9fff : System RAM
01000000-01e011d0 : Kernel code
02000000-023d4fff : Kernel rodata
02400000-025619ff : Kernel data
02a95000-035fffff : Kernel bss
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-29-keescook@chromium.org
The exception table was needlessly marked executable. In preparation
for execute-only memory, move the table into the RO_DATA segment via
the new macro that can be used by any architectures that want to make
a similar consolidation.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-17-keescook@chromium.org
Various calculations are using the end of the exception table (which
does not need to be executable) as the end of the text segment. Instead,
in preparation for moving the exception table into RO_DATA, move _etext
after the exception table and update the calculations.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-16-keescook@chromium.org
In a linker script, if one places a section in one or more segments using
":PHDR", then the linker will place all subsequent allocatable sections,
which do not specify ":PHDR", into the same segments. In order to have
the NOTES section in both PT_LOAD (":text") and PT_NOTE (":note"), both
segments are marked, and the only way to undo this to keep subsequent
sections out of PT_NOTE is to mark the following section with just the
single desired PT_LOAD (":text").
In preparation for having a common NOTES macro, perform the segment
assignment using a dummy section (as done by other architectures).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191029211351.13243-8-keescook@chromium.org
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.
Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.
Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen. With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.
[ tglx: Fixup default to auto and massage wording a bit ]
Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the new cpu family ATOM_TREMONT_D to the cpu vunerability
whitelist. ATOM_TREMONT_D is not affected by X86_BUG_ITLB_MULTIHIT.
ATOM_TREMONT_D might have mitigations against other issues as well, but
only the ITLB multihit mitigation is confirmed at this point.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:
https://bugzilla.kernel.org/show_bug.cgi?id=205195
There are other processors affected for which the erratum does not fully
disclose the impact.
This issue affects both bare-metal x86 page tables and EPT.
It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.
Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.
Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When a mon group is being deleted, rdtgrp->flags is set to RDT_DELETED
in rdtgroup_rmdir_mon() firstly. The structure of rdtgrp will be freed
until rdtgrp->waitcount is dropped to 0 in rdtgroup_kn_unlock() later.
During the window of deleting a mon group, if an application calls
rdtgroup_mondata_show() to read mondata under this mon group,
'rdtgrp' returned from rdtgroup_kn_lock_live() is a NULL pointer when
rdtgrp->flags is RDT_DELETED. And then 'rdtgrp' is passed in this path:
rdtgroup_mondata_show() --> mon_event_read() --> mon_event_count().
Thus it results in NULL pointer dereference in mon_event_count().
Check 'rdtgrp' in rdtgroup_mondata_show(), and return -ENOENT
immediately when reading mondata during the window of deleting a mon
group.
Fixes: d89b737901 ("x86/intel_rdt/cqm: Add mon_data")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1572326702-27577-1-git-send-email-xiaochen.shen@intel.com
New CPU model, same MSRs to control and read the inventory number.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191028163719.19708-1-tony.luck@intel.com
There is a general consensus that TSX usage is not largely spread while
the history shows there is a non trivial space for side channel attacks
possible. Therefore the tsx is disabled by default even on platforms
that might have a safe implementation of TSX according to the current
knowledge. This is a fair trade off to make.
There are, however, workloads that really do benefit from using TSX and
updating to a newer kernel with TSX disabled might introduce a
noticeable regressions. This would be especially a problem for Linux
distributions which will provide TAA mitigations.
Introduce config options X86_INTEL_TSX_MODE_OFF, X86_INTEL_TSX_MODE_ON
and X86_INTEL_TSX_MODE_AUTO to control the TSX feature. The config
setting can be overridden by the tsx cmdline options.
[ bp: Text cleanups from Josh. ]
Suggested-by: Borislav Petkov <bpetkov@suse.de>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Platforms which are not affected by X86_BUG_TAA may want the TSX feature
enabled. Add "auto" option to the TSX cmdline parameter. When tsx=auto
disable TSX when X86_BUG_TAA is present, otherwise enable TSX.
More details on X86_BUG_TAA can be found here:
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
[ bp: Extend the arg buffer to accommodate "auto\0". ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Add the sysfs reporting file for TSX Async Abort. It exposes the
vulnerability and the mitigation state similar to the existing files for
the other hardware vulnerabilities.
Sysfs file path is:
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Mark Gross <mgross@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
TSX Async Abort (TAA) is a side channel vulnerability to the internal
buffers in some Intel processors similar to Microachitectural Data
Sampling (MDS). In this case, certain loads may speculatively pass
invalid data to dependent operations when an asynchronous abort
condition is pending in a TSX transaction.
This includes loads with no fault or assist condition. Such loads may
speculatively expose stale data from the uarch data structures as in
MDS. Scope of exposure is within the same-thread and cross-thread. This
issue affects all current processors that support TSX, but do not have
ARCH_CAP_TAA_NO (bit 8) set in MSR_IA32_ARCH_CAPABILITIES.
On CPUs which have their IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0,
CPUID.MD_CLEAR=1 and the MDS mitigation is clearing the CPU buffers
using VERW or L1D_FLUSH, there is no additional mitigation needed for
TAA. On affected CPUs with MDS_NO=1 this issue can be mitigated by
disabling the Transactional Synchronization Extensions (TSX) feature.
A new MSR IA32_TSX_CTRL in future and current processors after a
microcode update can be used to control the TSX feature. There are two
bits in that MSR:
* TSX_CTRL_RTM_DISABLE disables the TSX sub-feature Restricted
Transactional Memory (RTM).
* TSX_CTRL_CPUID_CLEAR clears the RTM enumeration in CPUID. The other
TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally
disabled with updated microcode but still enumerated as present by
CPUID(EAX=7).EBX{bit4}.
The second mitigation approach is similar to MDS which is clearing the
affected CPU buffers on return to user space and when entering a guest.
Relevant microcode update is required for the mitigation to work. More
details on this approach can be found here:
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
The TSX feature can be controlled by the "tsx" command line parameter.
If it is force-enabled then "Clear CPU buffers" (MDS mitigation) is
deployed. The effective mitigation state can be read from sysfs.
[ bp:
- massage + comments cleanup
- s/TAA_MITIGATION_TSX_DISABLE/TAA_MITIGATION_TSX_DISABLED/g - Josh.
- remove partial TAA mitigation in update_mds_branch_idle() - Josh.
- s/tsx_async_abort_cmdline/tsx_async_abort_parse_cmdline/g
]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Add a kernel cmdline parameter "tsx" to control the Transactional
Synchronization Extensions (TSX) feature. On CPUs that support TSX
control, use "tsx=on|off" to enable or disable TSX. Not specifying this
option is equivalent to "tsx=off". This is because on certain processors
TSX may be used as a part of a speculative side channel attack.
Carve out the TSX controlling functionality into a separate compilation
unit because TSX is a CPU feature while the TSX async abort control
machinery will go to cpu/bugs.c.
[ bp: - Massage, shorten and clear the arg buffer.
- Clarifications of the tsx= possible options - Josh.
- Expand on TSX_CTRL availability - Pawan. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Rename parameter names to the correct ones used in the function. No
functional changes.
[ bp: Merge two patches into a single one. ]
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1571816442-22494-1-git-send-email-wang.yi59@zte.com.cn
We get two warning when build kernel with W=1:
arch/x86/kernel/kvm.c:872:6: warning: no previous prototype for ‘arch_haltpoll_enable’ [-Wmissing-prototypes]
arch/x86/kernel/kvm.c:885:6: warning: no previous prototype for ‘arch_haltpoll_disable’ [-Wmissing-prototypes]
Including the missing head file can fix this.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
History lesson courtesy of Steve:
"When ftrace first was introduced to the kernel, it used gcc's
mcount profiling mechanism. The mcount mechanism would add a call to
"mcount" at the start of every function but after the stack frame was
set up. Later, in gcc 4.6, gcc introduced -mfentry, that would create a
call to "__fentry__" instead of "mcount", before the stack frame was
set up. In order to handle both cases, ftrace defined a macro
"function_hook" that would be either "mcount" or "__fentry__" depending
on which one was being used.
The Linux kernel no longer supports the "mcount" method, thus there's
no reason to keep the "function_hook" define around. Simply use
"__fentry__", as there is no ambiguity to the name anymore."
Drop it everywhere.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jiri Slaby <jslaby@suse.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20191018124800.0a7006bb@gandalf.local.home
ioapic_irqd_[un]mask() are misnomers as both functions do way more than
masking and unmasking the interrupt line. Both deal with the moving the
affinity of the interrupt within interrupt context. The mask/unmask is just
a tiny part of the functionality.
Rename them to ioapic_prepare/finish_move(), fixup the call sites and
rename the related variables in the code to reflect what this is about.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20191017101938.412489856@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is an issue with threaded interrupts which are marked ONESHOT
and using the fasteoi handler:
if (IS_ONESHOT())
mask_irq();
....
cond_unmask_eoi_irq()
chip->irq_eoi();
if (setaffinity_pending) {
mask_ioapic();
...
move_affinity();
unmask_ioapic();
}
So if setaffinity is pending the interrupt will be moved and then
unconditionally unmasked at the ioapic level, which is wrong in two
aspects:
1) It should be kept masked up to the point where the threaded handler
finished.
2) The physical chip state and the software masked state are inconsistent
Guard both the mask and the unmask with a check for the software masked
state. If the line is marked masked then the ioapic line is also masked, so
both mask_ioapic() and unmask_ioapic() can be skipped safely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Fixes: 3aa551c9b4 ("genirq: add threaded interrupt handler support")
Link: https://lkml.kernel.org/r/20191017101938.321393687@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A small set of x86 fixes:
- Prevent a NULL pointer dereference in the X2APIC code in case of a
CPU hotplug failure.
- Prevent boot failures on HP superdome machines by invalidating the
level2 kernel pagetable entries outside of the kernel area as
invalid so BIOS reserved space won't be touched unintentionally.
Also ensure that memory holes are rounded up to the next PMD
boundary correctly.
- Enable X2APIC support on Hyper-V to prevent boot failures.
- Set the paravirt name when running on Hyper-V for consistency
- Move a function under the appropriate ifdef guard to prevent build
warnings"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/acpi: Move get_cmdline_acpi_rsdp() under #ifdef guard
x86/hyperv: Set pv_info.name to "Hyper-V"
x86/apic/x2apic: Fix a NULL pointer deref when handling a dying cpu
x86/hyperv: Make vapic support x2apic mode
x86/boot/64: Round memory hole size up to next PMD page
x86/boot/64: Make level2_kernel_pgt pages invalid outside kernel area
As said in commit f2c2cbcc35 ("powerpc: Use pr_warn instead of
pr_warning"), removing pr_warning so all logging messages use a
consistent <prefix>_warn style. Let's do it.
Link: http://lkml.kernel.org/r/20191018031850.48498-7-wangkefeng.wang@huawei.com
To: linux-kernel@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Robert Richter <rric@kernel.org>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Andy Shevchenko <andy@infradead.org>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Michael reported that the x86/hyperv initialization code prints the
following dmesg when running in a VM on Hyper-V:
[ 0.000738] Booting paravirtualized kernel on bare hardware
Let the x86/hyperv initialization code set pv_info.name to "Hyper-V" so
dmesg reports correctly:
[ 0.000172] Booting paravirtualized kernel on Hyper-V
[ tglx: Folded build fix provided by Yue ]
Reported-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Link: https://lkml.kernel.org/r/20191015103502.13156-1-parri.andrea@gmail.com
Use the new SYM_INNER_LABEL_ALIGN for WEAK entries in the middle of x86
assembly functions.
And make sure WEAK is not defined for x86 anymore as these were the last
users.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-29-jslaby@suse.cz
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Now, ENTRY/ENDPROC can be forced to be undefined on X86, so do so.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bill Metzenthen <billm@melbpc.org.au>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-28-jslaby@suse.cz
Change all assembly code which is marked using END (and not ENDPROC) to
appropriate new markings SYM_CODE_START and SYM_CODE_END.
And since the last user of END on X86 is gone now, make sure that END is
not defined there.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-27-jslaby@suse.cz
All these are functions which are invoked from elsewhere but they are
not typical C functions. So annotate them using the new SYM_CODE_START.
All these were not balanced with any END, so mark their ends by
SYM_CODE_END, appropriately.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191011115108.12392-26-jslaby@suse.cz
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Make sure ENTRY/ENDPROC is not defined on X86_64, given these were the
last users.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate]
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Herbert Xu <herbert@gondor.apana.org.au> [crypto]
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Armijn Hemel <armijn@tjaldur.nl>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-25-jslaby@suse.cz
Change all assembly code which is marked using END (and not ENDPROC).
Switch all these to the appropriate new annotation SYM_CODE_START and
SYM_CODE_END.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-arch@vger.kernel.org
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191011115108.12392-24-jslaby@suse.cz
Relabel function_hook to be marked really as a function. It is called
from C and has the same expectations towards the stack etc.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-22-jslaby@suse.cz
The GLOBAL macro had several meanings and is going away. Convert all the
inner function labels marked with GLOBAL to use SYM_INNER_LABEL instead.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-18-jslaby@suse.cz
GLOBAL is an x86's custom macro and is going to die very soon. It was
meant for global symbols, but here, it was used for functions. Instead,
use the new macros SYM_FUNC_START* and SYM_CODE_START* (depending on the
type of the function) which are dedicated to global functions. And since
they both require a closing by SYM_*_END, do that here too.
startup_64, which does not use GLOBAL but uses .globl explicitly, is
converted too.
"No alignments" are preserved.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Allison Randal <allison@lohutok.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-arch@vger.kernel.org
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-17-jslaby@suse.cz
Use the new SYM_DATA, SYM_DATA_START, and SYM_DATA_END in both 32 and 64
bit head_*.S. In the 64-bit version, define also
SYM_DATA_START_PAGE_ALIGNED locally using the new SYM_START. It is used
in the code instead of NEXT_PAGE() which was defined in this file and
had been using the obsolete macro GLOBAL().
Now, the data in the 64-bit object file look sane:
Value Size Type Bind Vis Ndx Name
0000 4096 OBJECT GLOBAL DEFAULT 15 init_level4_pgt
1000 4096 OBJECT GLOBAL DEFAULT 15 level3_kernel_pgt
2000 2048 OBJECT GLOBAL DEFAULT 15 level2_kernel_pgt
3000 4096 OBJECT GLOBAL DEFAULT 15 level2_fixmap_pgt
4000 4096 OBJECT GLOBAL DEFAULT 15 level1_fixmap_pgt
5000 2 OBJECT GLOBAL DEFAULT 15 early_gdt_descr
5002 8 OBJECT LOCAL DEFAULT 15 early_gdt_descr_base
500a 8 OBJECT GLOBAL DEFAULT 15 phys_base
0000 8 OBJECT GLOBAL DEFAULT 17 initial_code
0008 8 OBJECT GLOBAL DEFAULT 17 initial_gs
0010 8 OBJECT GLOBAL DEFAULT 17 initial_stack
0000 4 OBJECT GLOBAL DEFAULT 19 early_recursion_flag
1000 4096 OBJECT GLOBAL DEFAULT 19 early_level4_pgt
2000 0x40000 OBJECT GLOBAL DEFAULT 19 early_dynamic_pgts
0000 4096 OBJECT GLOBAL DEFAULT 22 empty_zero_page
All have correct size and type now.
Note that this also removes implicit 16B alignment previously inserted
by ENTRY:
* initial_code, setup_once_ref, initial_page_table, initial_stack,
boot_gdt are still aligned
* early_gdt_descr is now properly aligned as was intended before ENTRY
was added there long time ago
* phys_base's alignment is kept by an explicitly added new alignment
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-arch@vger.kernel.org
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-12-jslaby@suse.cz
Use the newly added SYM_CODE_START_LOCAL* to annotate beginnings of
all pseudo-functions (those ending with END until now) which do not
have ".globl" annotation. This is needed to balance END for tools that
generate debuginfo. Note that ENDs are switched to SYM_CODE_END too so
that everybody can see the pairing.
C-like functions (which handle frame ptr etc.) are not annotated here,
hence SYM_CODE_* macros are used here, not SYM_FUNC_*. Note that the
32bit version of early_idt_handler_common already had ENDPROC -- switch
that to SYM_CODE_END for the same reason as above (and to be the same as
64bit).
While early_idt_handler_common is LOCAL, it's name is not prepended with
".L" as it happens to appear in call traces.
bad_get_user*, and bad_put_user are now aligned, as they are separate
functions. They do not mind to be aligned -- no need to be compact
there.
early_idt_handler_common is aligned now too, as it is after
early_idt_handler_array, so as well no need to be compact there.
verify_cpu is self-standing and included in other .S files, so align it
too.
The others have alignment preserved to what it used to be (using the
_NOALIGN variant of macros).
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexios Zavras <alexios.zavras@intel.com>
Cc: Allison Randal <allison@lohutok.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-arch@vger.kernel.org
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-6-jslaby@suse.cz
There are functions in relocate_kernel_{32,64}.c which are not
annotated. This makes automatic annotations on them rather hard. So
annotate all the functions now.
Note that these are not C-like functions, so FUNC is not used. Instead
CODE markers are used. Also the functions are not aligned, so the
NOALIGN versions are used:
- SYM_CODE_START_NOALIGN
- SYM_CODE_START_LOCAL_NOALIGN
- SYM_CODE_END
The result is:
0000 108 NOTYPE GLOBAL DEFAULT 1 relocate_kernel
006c 165 NOTYPE LOCAL DEFAULT 1 identity_mapped
0146 127 NOTYPE LOCAL DEFAULT 1 swap_pages
0111 53 NOTYPE LOCAL DEFAULT 1 virtual_mapped
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexios Zavras <alexios.zavras@intel.com>
Cc: Allison Randal <allison@lohutok.net>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-4-jslaby@suse.cz
Some global data in the suspend code were marked as `ENTRY'. ENTRY was
intended for functions and shall be paired with ENDPROC. ENTRY also
aligns symbols to 16 bytes which creates unnecessary holes.
Note that:
* saved_magic (long) in wakeup_32 is still prepended by section's ALIGN
* saved_magic (quad) in wakeup_64 follows a bunch of quads which are
aligned (but need not be aligned to 16)
Since historical markings are being dropped, make proper use of newly
added SYM_DATA in this code.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-3-jslaby@suse.cz
Prohibit probing on instruction which has XEN_EMULATE_PREFIX
or KVM's emulate prefix. Since that prefix is a marker for Xen
and KVM, if we modify the marker by kprobe's int3, that doesn't
work as expected.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/156777566048.25081.6296162369492175325.stgit@devnote2
On modern CPUs it is quite normal that the temperature limits are
reached and the CPU is throttled. In fact, often the thermal design is
not sufficient to cool the CPU at full load and limits can quickly be
reached when a burst in load happens. This will even happen with
technologies like RAPL limitting the long term power consumption of
the package.
Also, these limits are "softer", as Srinivas explains:
"CPU temperature doesn't have to hit max(TjMax) to get these warnings.
OEMs ha[ve] an ability to program a threshold where a thermal interrupt
can be generated. In some systems the offset is 20C+ (Read only value).
In recent systems, there is another offset on top of it which can be
programmed by OS, once some agent can adjust power limits dynamically.
By default this is set to low by the firmware, which I guess the
prime motivation of Benjamin to submit the patch."
So these messages do not usually indicate a hardware issue (e.g.
insufficient cooling). Log them as warnings to avoid confusion about
their severity.
[ bp: Massage commit mesage. ]
Signed-off-by: Benjamin Berg <bberg@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Tested-by: Christian Kellner <ckellner@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191009155424.249277-1-bberg@redhat.com
Check that the per-cpu cluster mask pointer has been set prior to
clearing a dying cpu's bit. The per-cpu pointer is not set until the
target cpu reaches smp_callin() during CPUHP_BRINGUP_CPU, whereas the
teardown function, x2apic_dead_cpu(), is associated with the earlier
CPUHP_X2APIC_PREPARE. If an error occurs before the cpu is awakened,
e.g. if do_boot_cpu() itself fails, x2apic_dead_cpu() will dereference
the NULL pointer and cause a panic.
smpboot: do_boot_cpu failed(-22) to wakeup CPU#1
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:x2apic_dead_cpu+0x1a/0x30
Call Trace:
cpuhp_invoke_callback+0x9a/0x580
_cpu_up+0x10d/0x140
do_cpu_up+0x69/0xb0
smp_init+0x63/0xa9
kernel_init_freeable+0xd7/0x229
? rest_init+0xa0/0xa0
kernel_init+0xa/0x100
ret_from_fork+0x35/0x40
Fixes: 023a611748 ("x86/apic/x2apic: Simplify cluster management")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191001205019.5789-1-sean.j.christopherson@intel.com
Pull x86 fixes from Ingo Molnar:
"A handful of fixes: a kexec linking fix, an AMD MWAITX fix, a vmware
guest support fix when built under Clang, and new CPU model number
definitions"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Add Comet Lake to the Intel CPU models header
lib/string: Make memzero_explicit() inline instead of external
x86/cpu/vmware: Use the full form of INL in VMWARE_PORT
x86/asm: Fix MWAITX C-state hint value
Our hardware (UV aka Superdome Flex) has address ranges marked
reserved by the BIOS. Access to these ranges is caught as an error,
causing the BIOS to halt the system.
Initial page tables mapped a large range of physical addresses that
were not checked against the list of BIOS reserved addresses, and
sometimes included reserved addresses in part of the mapped range.
Including the reserved range in the map allowed processor speculative
accesses to the reserved range, triggering a BIOS halt.
Used early in booting, the page table level2_kernel_pgt addresses 1
GiB divided into 2 MiB pages, and it was set up to linearly map a full
1 GiB of physical addresses that included the physical address range
of the kernel image, as chosen by KASLR. But this also included a
large range of unused addresses on either side of the kernel image.
And unlike the kernel image's physical address range, this extra
mapped space was not checked against the BIOS tables of usable RAM
addresses. So there were times when the addresses chosen by KASLR
would result in processor accessible mappings of BIOS reserved
physical addresses.
The kernel code did not directly access any of this extra mapped
space, but having it mapped allowed the processor to issue speculative
accesses into reserved memory, causing system halts.
This was encountered somewhat rarely on a normal system boot, and much
more often when starting the crash kernel if "crashkernel=512M,high"
was specified on the command line (this heavily restricts the physical
address of the crash kernel, in our case usually within 1 GiB of
reserved space).
The solution is to invalidate the pages of this table outside the kernel
image's space before the page table is activated. It fixes this problem
on our hardware.
[ bp: Touchups. ]
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dimitri.sivanich@hpe.com
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: mike.travis@hpe.com
Cc: russ.anderson@hpe.com
Cc: stable@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/9c011ee51b081534a7a15065b1681d200298b530.1569358539.git.steve.wahl@hpe.com
ACPI tables aren't available if Linux runs as guest of the hypervisor
Jailhouse. This makes the 8250 driver probe for all platform UARTs as it
assumes that all UARTs are present in case of !ACPI. Jailhouse will stop
execution of Linux guest due to port access violation.
So far, these access violations were solved by tuning the 8250.nr_uarts
cmdline parameter, but this has limitations: Only consecutive platform
UARTs can be mapped to Linux, and only in the sequence 0x3f8, 0x2f8,
0x3e8, 0x2e8.
Beginning from setup_data version 2, Jailhouse will place information of
available platform UARTs in setup_data. This allows for selective
activation of platform UARTs.
Query setup_data version and only activate available UARTS. This
patch comes with backward compatibility, and will still support older
setup_data versions. In case of older setup_data versions, Linux falls
back to the old behaviour.
Signed-off-by: Ralf Ramsauer <ralf.ramsauer@oth-regensburg.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: jailhouse-dev@googlegroups.com
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191010102102.421035-3-ralf.ramsauer@oth-regensburg.de
Soon, setup_data will contain information on passed-through platform
UARTs. This requires some preparational work for the sanity check of the
header and the check of the version.
Use the following strategy:
1. Ensure that the header declares at least enough space for the
version and the compatible_version as it must hold that fields for
any version. The location and semantics of header+version fields
will never change.
2. Copy over data -- as much as as possible. The length is either
limited by the header length or the length of setup_data.
3. Things are now in place -- sanity check if the header length
complies the actual version.
For future versions of the setup_data, only step 3 requires alignment.
Signed-off-by: Ralf Ramsauer <ralf.ramsauer@oth-regensburg.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: jailhouse-dev@googlegroups.com
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191010102102.421035-2-ralf.ramsauer@oth-regensburg.de
LLVM's assembler doesn't accept the short form INL instruction:
inl (%%dx)
but instead insists on the output register to be explicitly specified:
<inline asm>:1:7: error: invalid operand for instruction
inl (%dx)
^
LLVM ERROR: Error parsing inline asm
Use the full form of the instruction to fix the build.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
Cc: clang-built-linux@googlegroups.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: "VMware, Inc." <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/734
Link: https://lkml.kernel.org/r/20191007192129.104336-1-samitolvanen@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change to checking for EFI Boot type from previous check on if this
is a KDUMP kernel. This allows for KDUMP kernels that can handle
EFI reboots.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.215091717@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Decode the hubless UVsystab passed from BIOS to the kernel saving
pertinent info in a similar manner that hubbed UVsystabs are decoded.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.135325066@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Indicate to UV user utilities that UV hubless support is available on
this system via the existing /proc infterface. The current interface is
maintained with the addition of new /proc leaves ("hubbed", "hubless",
and "oemid") that contain the specific type of UV arch this one is.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145840.055590900@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add more support for UV systems that do not contain a UV Hub (AKA
"hubless"). This update adds support for additional functions required:
Use PCH NMI handler instead of a UV Hub NMI handler.
Initialize the UV BIOS callback interface used to support specific
UV functions.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.975787119@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Return the type of UV hubless system for UV specific code that depends
on that. Add a function to convert UV system type to bit pattern needed
for is_uv_hubless().
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.814880843@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Save the OEM_ID and OEM_TABLE_ID passed to the apic driver probe function
for later use. Also, convert the char list arg passed from the kernel
to a true null-terminated string.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Reviewed-by: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi.berriche@hpe.com>
Cc: Justin Ernst <justin.ernst@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190910145839.732237241@stormcage.eag.rdlabs.hpecorp.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As far as I can see, it was never used outside of head_32.S. Not even
when added in 2004. So make it local.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191003095238.29831-2-jslaby@suse.cz
Moving early_recursion_flag (4 bytes) after early_level4_pgt (4k) and
early_dynamic_pgts (256k) saves 4k which are used for alignment of
early_level4_pgt after early_recursion_flag.
The real improvement is merely on the source code side. Previously it
was:
* __INITDATA + .balign
* early_recursion_flag variable
* a ton of CPP MACROS
* __INITDATA (again)
* early_top_pgt and early_recursion_flag variables
* .data
Now, it is a bit simpler:
* a ton of CPP MACROS
* __INITDATA + .balign
* early_top_pgt and early_recursion_flag variables
* early_recursion_flag variable
* .data
On the binary level the change looks like this:
Before:
(sections)
12 .init.data 00042000 0000000000000000 0000000000000000 00008000 2**12
(symbols)
000000 4 OBJECT GLOBAL DEFAULT 22 early_recursion_flag
001000 4096 OBJECT GLOBAL DEFAULT 22 early_top_pgt
002000 0x40000 OBJECT GLOBAL DEFAULT 22 early_dynamic_pgts
After:
(sections)
12 .init.data 00041004 0000000000000000 0000000000000000 00008000 2**12
(symbols)
000000 4096 OBJECT GLOBAL DEFAULT 22 early_top_pgt
001000 0x40000 OBJECT GLOBAL DEFAULT 22 early_dynamic_pgts
041000 4 OBJECT GLOBAL DEFAULT 22 early_recursion_flag
So the resulting vmlinux is smaller by 4k with my toolchain as many
other variables can be placed after early_recursion_flag to fill the
rest of the page. Note that this is only .init data, so it is freed
right after being booted anyway. Savings on-disk are none -- compression
of zeros is easy, so the size of bzImage is the same pre and post the
change.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191003095238.29831-1-jslaby@suse.cz
It turned out recently that on certain AMD F15h and F16h machines, due
to the BIOS dropping the ball after resume, yet again, RDRAND would not
function anymore:
c49a0a8013 ("x86/CPU/AMD: Clear RDRAND CPUID bit on AMD family 15h/16h")
Add a silly test to the CPU bringup path, to sanity-check the random
data RDRAND returns and scream as loudly as possible if that returned
random data doesn't change.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/CAHk-=wjWPDauemCmLTKbdMYFB0UveMszZpcrwoUkJRRWKrqaTw@mail.gmail.com
... in order to not pollute dmesg with a line for each updated microcode
engine.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jon Grimm <Jon.Grimm@amd.com>
Cc: kanth.ghatraju@oracle.com
Cc: konrad.wilk@oracle.com
Cc: Mihai Carabas <mihai.carabas@oracle.com>
Cc: patrick.colp@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190824085341.GC16813@zn.tnic
Microcode update was changed to be serialized due to restrictions after
Spectre days. Updating serially on a large multi-socket system can be
painful since it is being done on one CPU at a time.
Cloud customers have expressed discontent as services disappear for
a prolonged time. The restriction is that only one core (or only one
thread of a core in the case of an SMT system) goes through the update
while other cores (or respectively, SMT threads) are quiesced.
Do the microcode update only on the first thread of each core while
other siblings simply wait for this to complete.
[ bp: Simplify, massage, cleanup comments. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jon Grimm <Jon.Grimm@amd.com>
Cc: kanth.ghatraju@oracle.com
Cc: konrad.wilk@oracle.com
Cc: patrick.colp@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1566506627-16536-2-git-send-email-mihai.carabas@oracle.com
All newer Zhaoxin CPUs support CMCI and are compatible with Intel's
Machine-Check Architecture. Add that support for Zhaoxin CPUs.
[ bp: Massage comments and export intel_init_cmci(). ]
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: CooperYan@zhaoxin.com
Cc: DavidWang@zhaoxin.com
Cc: HerryYang@zhaoxin.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: QiyuanWang@zhaoxin.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1568787573-1297-4-git-send-email-TonyWWang-oc@zhaoxin.com
The dummy variable is the high part of the microcode revision MSR which
is defined as reserved. Mark it unused so that W=1 builds don't trigger
the above warning.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190928162559.26294-1-bp@alien8.de
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
UMWAIT and TPAUSE instructions use 32bit IA32_UMWAIT_CONTROL at MSR index
E1H to determines the maximum time in TSC-quanta that the processor can
reside in either C0.1 or C0.2.
This patch emulates MSR IA32_UMWAIT_CONTROL in guest and differentiate
IA32_UMWAIT_CONTROL between host and guest. The variable
mwait_control_cached in arch/x86/kernel/cpu/umwait.c caches the MSR value,
so this patch uses it to avoid frequently rdmsr of IA32_UMWAIT_CONTROL.
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Initial support for running on a system with an Ultravisor, which is software
that runs below the hypervisor and protects guests against some attacks by
the hypervisor.
- Support for building the kernel to run as a "Secure Virtual Machine", ie. as
a guest capable of running on a system with an Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with medium
sized DMA masks (> 32 && < 59 bits) to use more than 2GB of DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas macros, both
to make it more readable and also enable some future optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to:
Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh
Kumar K.V, Anju T Sudhakar, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Cédric Le Goater, Christophe JAILLET, Christophe Leroy,
Christopher M. Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens,
David Gibson, David Hildenbrand, Desnes A. Nunes do Rosario, Ganesh Goudar,
Gautham R. Shenoy, Greg Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari
Bathini, Joakim Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras,
Lianbo Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan Chancellor,
Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Qian Cai, Ram
Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm, Sam Bobroff, Santosh Sivaraj,
Segher Boessenkool, Sukadev Bhattiprolu, Thiago Bauermann, Thiago Jung
Bauermann, Thomas Gleixner, Tom Lendacky, Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2EtEcTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPfsD/9uXyBXn3anI/H08+mk74k5gCsmMQpn
D442CD/ByogZcccp23yBTlhawtCE03hcHnCLygn0Xgd8a4YvHts/RGHUe3fPHqlG
bEyZ7jsLVz5ebNZQP7r4eGs2pSzCajwJy2N9HJ/C1ojf15rrfRxoVJtnyhE2wXpm
DL+6o2K+nUCB3gTQ1Inr3DnWzoGOOUfNTOea2u+J+yfHwGRqOBYpevwqiwy5eelK
aRjUJCqMTvrzra49MeFwjo0Nt3/Y8UNcwA+JlGdeR8bRuWhFrYmyBRiZEKPaujNO
5EAfghBBlB0KQCqvF/tRM/c0OftHqK59AMobP9T7u9oOaBXeF/FpZX/iXjzNDPsN
j9Oo2tKLTu/YVEXqBFuREGP+znANr1Wo4CFyOG8SbvYz0HFjR6XbtRJsS+0e8GWl
kqX5/ZhYz3lBnKSNe9jgWOrh/J0KCSFigBTEWJT3xsn4YE8x8kK2l9KPqAIldWEP
sKb2UjGS7v0NKq+NvShH88Q9AeQUEIjTcg/9aDDQDe6FaRQ7KiF8bUxSdwSPi+Fn
j0lnF6i+1ATWZKuCr85veVi7C5qoe/+MqalnmP7MxULyzgXLLxUgN0SzEYO6QofK
LQK/VaH2XVr5+M5YAb7K4/NX5gbM3s1bKrCiUy4EyHNvgG7gricYdbz6HgAjKpR7
oP0rHfgmVYvF1g==
=WlW+
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This is a bit late, partly due to me travelling, and partly due to a
power outage knocking out some of my test systems *while* I was
travelling.
- Initial support for running on a system with an Ultravisor, which
is software that runs below the hypervisor and protects guests
against some attacks by the hypervisor.
- Support for building the kernel to run as a "Secure Virtual
Machine", ie. as a guest capable of running on a system with an
Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with
medium sized DMA masks (> 32 && < 59 bits) to use more than 2GB of
DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas
macros, both to make it more readable and also enable some future
optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to: Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Cédric Le Goater, Christophe
JAILLET, Christophe Leroy, Christopher M. Riedl, Christoph Hellwig,
Claudio Carvalho, Daniel Axtens, David Gibson, David Hildenbrand,
Desnes A. Nunes do Rosario, Ganesh Goudar, Gautham R. Shenoy, Greg
Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari Bathini, Joakim
Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras, Lianbo
Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Qian Cai, Ram Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm,
Sam Bobroff, Santosh Sivaraj, Segher Boessenkool, Sukadev Bhattiprolu,
Thiago Bauermann, Thiago Jung Bauermann, Thomas Gleixner, Tom
Lendacky, Vasant Hegde"
* tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (264 commits)
powerpc/mm/mce: Keep irqs disabled during lockless page table walk
powerpc: Use ftrace_graph_ret_addr() when unwinding
powerpc/ftrace: Enable HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
ftrace: Look up the address of return_to_handler() using helpers
powerpc: dump kernel log before carrying out fadump or kdump
docs: powerpc: Add missing documentation reference
powerpc/xmon: Fix output of XIVE IPI
powerpc/xmon: Improve output of XIVE interrupts
powerpc/mm/radix: remove useless kernel messages
powerpc/fadump: support holes in kernel boot memory area
powerpc/fadump: remove RMA_START and RMA_END macros
powerpc/fadump: update documentation about option to release opalcore
powerpc/fadump: consider f/w load area
powerpc/opalcore: provide an option to invalidate /sys/firmware/opal/core file
powerpc/opalcore: export /sys/firmware/opal/core for analysing opal crashes
powerpc/fadump: update documentation about CONFIG_PRESERVE_FA_DUMP
powerpc/fadump: add support to preserve crash data on FADUMP disabled kernel
powerpc/fadump: improve how crashed kernel's memory is reserved
powerpc/fadump: consider reserved ranges while releasing memory
powerpc/fadump: make crash memory ranges array allocation generic
...
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJdgfi4AAoJEAx081l5xIa+uYQP/3lbB75F60oSb0Y17uOtAwrS
/ZMKZ3/EXcCw42JuYTbz17EiQSajkJcOC+tNRo22nlg4d9R0x3/kXwA7O/eu5RWI
8Qi1rfrMZ6LotQXBfc4nVlHvyocsYc/GVNfsCboUCLwU/aNwnrufS9jeEsvWd2Vt
iIn/okeQ7mTyB/3Dm4RFIAexE21+d5is6YTs45xUnDLhWzXYLU7VnHt5S5kXurEI
cmVA7C1EAqV+GAwkeFWFx/jBpBRKqvTPa8EpOu7cQL01x7KwU2cQeNdOyBF6Uf8a
cNKFI7jZZmu/mFp+YqU33ZIZxbLELm5PN1sz4ZvoIT8BJAQf1VmZg+GG87AvQCUz
zbWKrbHGVy/c+sohUmvCOQvmzca/7rZutFyaCOx2mEdrheRZMWQI/w2C03VfkNFS
vPpXrKXaWbVezHwF6x9PemRxvOPvLkeKAgSVuAfK0DhT5kEldqdzFzI7UO9MYfyX
j+HOUIRP/pseshUV6YbnAe9MS3T4zb5P+Qd1zRTGgo8R9/l1AmVHyrkbH1hGNjY0
mECHucCOh/VsyPAdg1XADJHqMg9081prySK8hNV6oazwSHdC38GdajuOmdyO3azQ
OpJZDQd0eP4fHPMU6F5HSzLOO/wYuAie8gWVSZ3ylDxDPIKfqcjVo+4bxJ8sbmpI
akj6BoMX7we0fjhlbdit
=5CRH
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2019-09-18' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie:
"This is the main pull request for 5.4-rc1 merge window. I don't think
there is anything outstanding so next week should just be fixes, but
we'll see if I missed anything. I landed some fixes earlier in the
week but got delayed writing summary and sending it out, due to a mix
of sick kid and jetlag!
There are some fixes pending, but I'd rather get the main merge out of
the way instead of delaying it longer.
It's also pretty large in commit count and new amd header file size.
The largest thing is four new amdgpu products (navi12/14, arcturus and
renoir APU support).
Otherwise it's pretty much lots of work across the board, i915 has
started landing tigerlake support, lots of icelake fixes and lots of
locking reworking for future gpu support, lots of header file rework
(drmP.h is nearly gone), some old legacy hacks (DRM_WAIT_ON) have been
put into the places they are needed.
uapi:
- content protection type property for HDCP
core:
- rework include dependencies
- lots of drmP.h removals
- link rate calculation robustness fix
- make fb helper map only when required
- add connector->DDC adapter link
- DRM_WAIT_ON removed
- drop DRM_AUTH usage from drivers
dma-buf:
- reservation object fence helper
dma-fence:
- shrink dma_fence struct
- merge signal functions
- store timestamps in dma_fence
- selftests
ttm:
- embed drm_get_object struct into ttm_buffer_object
- release_notify callback
bridges:
- sii902x - audio graph card support
- tc358767 - aux data handling rework
- ti-snd64dsi86 - debugfs support, DSI mode flags support
panels:
- Support for GiantPlus GPM940B0, Sharp LQ070Y3DG3B, Ortustech
COM37H3M, Novatek NT39016, Sharp LS020B1DD01D, Raydium RM67191, Boe
Himax8279d, Sharp LD-D5116Z01B
- TI nspire, NEC NL8048HL11, LG Philips LB035Q02, Sharp LS037V7DW01,
Sony ACX565AKM, Toppoly TD028TTEC1 Toppoly TD043MTEA1
i915:
- Initial tigerlake platform support
- Locking simplification work, general all over refactoring.
- Selftests
- HDCP debug info improvements
- DSI properties
- Icelake display PLL fixes, colorspace fixes, bandwidth fixes, DSI
suspend/resume
- GuC fixes
- Perf fixes
- ElkhartLake enablement
- DP MST fixes
- GVT - command parser enhancements
amdgpu:
- add wipe memory on release flag for buffer creation
- Navi12/14 support (may be marked experimental)
- Arcturus support
- Renoir APU support
- mclk DPM for Navi
- DC display fixes
- Raven scatter/gather support
- RAS support for GFX
- Navi12 + Arcturus power features
- GPU reset for Picasso
- smu11 i2c controller support
amdkfd:
- navi12/14 support
- Arcturus support
radeon:
- kexec fix
nouveau:
- improved display color management
- detect lack of GPU power cables
vmwgfx:
- evicition priority support
- remove unused security feature
msm:
- msm8998 display support
- better async commit support for cursor updates
etnaviv:
- per-process address space support
- performance counter fixes
- softpin support
mcde:
- DCS transfers fix
exynos:
- drmP.h cleanup
lima:
- reduce logging
kirin:
- misc clenaups
komeda:
- dual-link support
- DT memory regions
hisilicon:
- misc fixes
imx:
- IPUv3 image converter fixes
- 32-bit RGB V4L2 pixel format support
ingenic:
- more support for panel related cases
mgag200:
- cursor support fix
panfrost:
- export GPU features register to userspace
- gpu heap allocations
- per-fd address space support
pl111:
- CLD pads wiring support removed from DT
rockchip:
- rework to use DRM PSR helpers
- fix bug in VOP_WIN_GET macro
- DSI DT binding rework
sun4i:
- improve support for color encoding and range
- DDC enabled GPIO
tinydrm:
- rework SPI support
- improve MIPI-DBI support
- moved to drm/tiny
vkms:
- rework CRC tracking
dw-hdmi:
- get_eld and i2s improvements
gm12u320:
- misc fixes
meson:
- global code cleanup
- vpu feature detect
omap:
- alpha/pixel blend mode properties
rcar-du:
- misc fixes"
* tag 'drm-next-2019-09-18' of git://anongit.freedesktop.org/drm/drm: (2112 commits)
drm/nouveau/bar/gm20b: Avoid BAR1 teardown during init
drm/nouveau: Fix ordering between TTM and GEM release
drm/nouveau/prime: Extend DMA reservation object lock
drm/nouveau: Fix fallout from reservation object rework
drm/nouveau/kms/nv50-: Don't create MSTMs for eDP connectors
drm/i915: Use NOEVICT for first pass on attemping to pin a GGTT mmap
drm/i915: to make vgpu ppgtt notificaiton as atomic operation
drm/i915: Flush the existing fence before GGTT read/write
drm/i915: Hold irq-off for the entire fake lock period
drm/i915/gvt: update RING_START reg of vGPU when the context is submitted to i915
drm/i915/gvt: update vgpu workload head pointer correctly
drm/mcde: Fix DSI transfers
drm/msm: Use the correct dma_sync calls harder
drm/msm: remove unlikely() from WARN_ON() conditions
drm/msm/dsi: Fix return value check for clk_get_parent
drm/msm: add atomic traces
drm/msm/dpu: async commit support
drm/msm: async commit support
drm/msm: split power control from prepare/complete_commit
drm/msm: add kms->flush_commit()
...
- add dma-mapping and block layer helpers to take care of IOMMU
merging for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask (me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl2CSucLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPfrhAAgXZA/EdFPvkkCoDrmgtf3XkudX9gajeCd9g4NZy6
ZBQElTVvm4S0sQj7IXgALnMumDMbbTibW5SQLX5GwQDe+XXBpZ8ajpAnJAXc8a5T
qaFQ4SInr4CgBZf9nZKDkbSBZ1Tu3AQm1c0QI8riRCkrVTuX4L06xpCef4Yh4mgO
rwWEjIioYpQiKZMmu98riXh3ZNfFG3mVJRhKt8B6XJbBgnUnjDOPYGgaUwp6CU20
tFBKL2GaaV0vdLJ5wYhIGXT4DJ8tp9T5n3IYGZv1Ux889RaZEHlCrMxzelYeDbCT
KhZbhcSECGnddsh73t/UX7/KhytuqnfKa9n+Xo6AWuA47xO4c36quOOcTk9M0vE5
TfGDmewgL6WIv4lzokpRn5EkfDhyL33j8eYJrJ8e0ldcOhSQIFk4ciXnf2stWi6O
JrlzzzSid+zXxu48iTfoPdnMr7psTpiMvvRvKfEeMp2FX9Fg6EdMzJYLTEl+COHB
0WwNacZmY3P01+b5EZXEgqKEZevIIdmPKbyM9rPtTjz8BjBwkABHTpN3fWbVBf7/
Ax6OPYyW40xp1fnJuzn89m3pdOxn88FpDdOaeLz892Zd+Qpnro1ayulnFspVtqGM
mGbzA9whILvXNRpWBSQrvr2IjqMRjbBxX3BVACl3MMpOChgkpp5iANNfSDjCftSF
Zu8=
=/wGv
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- add dma-mapping and block layer helpers to take care of IOMMU merging
for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask
(me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
* tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping: (41 commits)
mmc: renesas_sdhi_internal_dmac: Add MMC_CAP2_MERGE_CAPABLE
mmc: queue: Fix bigger segments usage
arm64: use asm-generic/dma-mapping.h
swiotlb-xen: merge xen_unmap_single into xen_swiotlb_unmap_page
swiotlb-xen: simplify cache maintainance
swiotlb-xen: use the same foreign page check everywhere
swiotlb-xen: remove xen_swiotlb_dma_mmap and xen_swiotlb_dma_get_sgtable
xen: remove the exports for xen_{create,destroy}_contiguous_region
xen/arm: remove xen_dma_ops
xen/arm: simplify dma_cache_maint
xen/arm: use dev_is_dma_coherent
xen/arm: consolidate page-coherent.h
xen/arm: use dma-noncoherent.h calls for xen-swiotlb cache maintainance
arm: remove wrappers for the generic dma remap helpers
dma-mapping: introduce a dma_common_find_pages helper
dma-mapping: always use VM_DMA_COHERENT for generic DMA remap
vmalloc: lift the arm flag for coherent mappings to common code
dma-mapping: provide a better default ->get_required_mask
dma-mapping: remove the dma_declare_coherent_memory export
remoteproc: don't allow modular build
...
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching
governor for virtualized guests wanting to do guest-side polling
in the idle loop (Marcelo Tosatti, Joao Martins, Wanpeng Li,
Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling
typos in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard
Crestez, MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl2ArZ4SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxgfYQAK80hs43vWQDmp7XKrN4pQe8+qYULAGO
fBfrFl+NG9y/cnuqnt3NtA8MoyNsMMkMLkpkEDMfSbYqqH5ehEzX5+uGJWiWx8+Y
oH5KU8MH7Tj/utYaalGzDt0AHfHZDIGC0NCUNQJVtE/4mOANFabwsCwscp4MrD5Q
WjFN8U4BrsmWgJdZ/U9QIWcDZ0I+1etCF+rZG2yxSv31FMq2Zk/Qm4YyobqCvQFl
TR9rxl08wqUmIYIz5cDjt/3AKH7NLLDqOTstbCL7cmufM5XPFc1yox69xc89UrIa
4AMgmDp7SMwFG/gdUPof0WQNmx7qxmiRAPleAOYBOZW/8jPNZk2y+RhM5NeF72m7
AFqYiuxqatkSb4IsT8fLzH9IUZOdYr8uSmoMQECw+MHdApaKFjFV8Lb/qx5+AwkD
y7pwys8dZSamAjAf62eUzJDWcEwkNrujIisGrIXrVHb7ISbweskMOmdAYn9p4KgP
dfRzpJBJ45IaMIdbaVXNpg3rP7Apfs7X1X+/ZhG6f+zHH3zYwr8Y81WPqX8WaZJ4
qoVCyxiVWzMYjY2/1lzjaAdqWojPWHQ3or3eBaK52DouyG3jY6hCDTLwU7iuqcCX
jzAtrnqrNIKufvaObEmqcmYlIIOFT7QaJCtGUSRFQLfSon8fsVSR7LLeXoAMUJKT
JWQenuNaJngK
=TBDQ
-----END PGP SIGNATURE-----
Merge tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a rework of the main suspend-to-idle code flow (related
to the handling of spurious wakeups), a switch over of several users
of cpufreq notifiers to QoS-based limits, a new devfreq driver for
Tegra20, a new cpuidle driver and governor for virtualized guests, an
extension of the wakeup sources framework to expose wakeup sources as
device objects in sysfs, and more.
Specifics:
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching governor
for virtualized guests wanting to do guest-side polling in the idle
loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel
Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling typos
in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez,
MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski)"
* tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits)
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
PM: runtime: Documentation: add runtime_status ABI document
pm-graph: make setVal unbuffered again for python2 and python3
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist
cpufreq: qcom: Add support for qcs404 on nvmem driver
cpufreq: qcom: Refactor the driver to make it easier to extend
cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs
dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR
dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain
Documentation: cpufreq: Update policy notifier documentation
cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events
PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state()
PM / Domains: Simplify genpd_lookup_dev()
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
Pull x86 apic updates from Thomas Gleixner:
- Cleanup the apic IPI implementation by removing duplicated code and
consolidating the functions into the APIC core.
- Implement a safe variant of the IPI broadcast mode. Contrary to
earlier attempts this uses the core tracking of which CPUs have been
brought online at least once so that a broadcast does not end up in
some dead end in BIOS/SMM code when the CPU is still waiting for
init. Once all CPUs have been brought up once, IPI broadcasting is
enabled. Before that regular one by one IPIs are issued.
- Drop the paravirt CR8 related functions as they have no user anymore
- Initialize the APIC TPR to block interrupt 16-31 as they are reserved
for CPU exceptions and should never be raised by any well behaving
device.
- Emit a warning when vector space exhaustion breaks the admin set
affinity of an interrupt.
- Make sure to use the NMI fallback when shutdown via reboot vector IPI
fails. The original code had conditions which prevent the code path
to be reached.
- Annotate various APIC config variables as RO after init.
[ The ipi broadcase change came in earlier through the cpu hotplug
branch, but I left the explanation in the commit message since it was
shared between the two different branches - Linus ]
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86/apic/vector: Warn when vector space exhaustion breaks affinity
x86/apic: Annotate global config variables as "read-only after init"
x86/apic/x2apic: Implement IPI shorthands support
x86/apic/flat64: Remove the IPI shorthand decision logic
x86/apic: Share common IPI helpers
x86/apic: Remove the shorthand decision logic
x86/smp: Enhance native_send_call_func_ipi()
x86/smp: Move smp_function_call implementations into IPI code
x86/apic: Provide and use helper for send_IPI_allbutself()
x86/apic: Add static key to Control IPI shorthands
x86/apic: Move no_ipi_broadcast() out of 32bit
x86/apic: Add NMI_VECTOR wait to IPI shorthand
x86/apic: Remove dest argument from __default_send_IPI_shortcut()
x86/hotplug: Silence APIC and NMI when CPU is dead
x86/cpu: Move arch_smt_update() to a neutral place
x86/apic/uv: Make x2apic_extra_bits static
x86/apic: Consolidate the apic local headers
x86/apic: Move apic_flat_64 header into apic directory
x86/apic: Move ipi header into apic directory
x86/apic: Cleanup the include maze
...
Pull x86 interrupt updates from Thomas Gleixner:
"A small set of changes to simplify and improve the interrupt handling
in do_IRQ() by moving the common case into common code and thereby
cleaning it up"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Check for VECTOR_UNUSED directly
x86/irq: Move IS_ERR_OR_NULL() check into common do_IRQ() code
x86/irq: Improve definition of VECTOR_SHUTDOWN et al
* pm-cpuidle:
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpuidle: teo: Get rid of redundant check in teo_update()
cpuidle: teo: Allow tick to be stopped if PM QoS is used
cpuidle: menu: Allow tick to be stopped if PM QoS is used
cpuidle: header file stubs must be "static inline"
cpuidle-haltpoll: disable host side polling when kvm virtualized
cpuidle: add haltpoll governor
governors: unify last_state_idx
cpuidle: add poll_limit_ns to cpuidle_device structure
add cpuidle-haltpoll driver
Pull x86 vmware updates from Ingo Molnar:
"This updates the VMWARE guest driver with support for VMCALL/VMMCALL
based hypercalls"
* 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
input/vmmouse: Update the backdoor call with support for new instructions
drm/vmwgfx: Update the backdoor call with support for new instructions
x86/vmware: Add a header file for hypercall definitions
x86/vmware: Update platform detection code for VMCALL/VMMCALL hypercalls
Pull x86 mm updates from Ingo Molnar:
- Make cpumask_of_node() more robust against invalid node IDs
- Simplify and speed up load_mm_cr4()
- Unexport and remove various unused set_memory_*() APIs
- Misc cleanups
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix cpumask_of_node() error condition
x86/mm: Remove the unused set_memory_wt() function
x86/mm: Remove set_pages_x() and set_pages_nx()
x86/mm: Remove the unused set_memory_array_*() functions
x86/mm: Unexport set_memory_x() and set_memory_nx()
x86/fixmap: Cleanup outdated comments
x86/kconfig: Remove X86_DIRECT_GBPAGES dependency on !DEBUG_PAGEALLOC
x86/mm: Avoid redundant interrupt disable in load_mm_cr4()
Pull x86 entry updates from Ingo Molnar:
"This contains x32 and compat syscall improvements, the biggest one of
which splits x32 syscalls into their own table, which allows new
syscalls to share the x32 and x86-64 number - which turns the
512-547 special syscall numbers range into a legacy wart that won't be
extended going forward"
* 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/syscalls: Split the x32 syscalls into their own table
x86/syscalls: Disallow compat entries for all types of 64-bit syscalls
x86/syscalls: Use the compat versions of rt_sigsuspend() and rt_sigprocmask()
x86/syscalls: Make __X32_SYSCALL_BIT be unsigned long
Pull x86 cpu-feature updates from Ingo Molnar:
- Rework the Intel model names symbols/macros, which were decades of
ad-hoc extensions and added random noise. It's now a coherent, easy
to follow nomenclature.
- Add new Intel CPU model IDs:
- "Tiger Lake" desktop and mobile models
- "Elkhart Lake" model ID
- and the "Lightning Mountain" variant of Airmont, plus support code
- Add the new AVX512_VP2INTERSECT instruction to cpufeatures
- Remove Intel MPX user-visible APIs and the self-tests, because the
toolchain (gcc) is not supporting it going forward. This is the
first, lowest-risk phase of MPX removal.
- Remove X86_FEATURE_MFENCE_RDTSC
- Various smaller cleanups and fixes
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
x86/cpu: Update init data for new Airmont CPU model
x86/cpu: Add new Airmont variant to Intel family
x86/cpu: Add Elkhart Lake to Intel family
x86/cpu: Add Tiger Lake to Intel family
x86: Correct misc typos
x86/intel: Add common OPTDIFFs
x86/intel: Aggregate microserver naming
x86/intel: Aggregate big core graphics naming
x86/intel: Aggregate big core mobile naming
x86/intel: Aggregate big core client naming
x86/cpufeature: Explain the macro duplication
x86/ftrace: Remove mcount() declaration
x86/PCI: Remove superfluous returns from void functions
x86/msr-index: Move AMD MSRs where they belong
x86/cpu: Use constant definitions for CPU models
lib: Remove redundant ftrace flag removal
x86/crash: Remove unnecessary comparison
x86/bitops: Use __builtin_constant_p() directly instead of IS_IMMEDIATE()
x86: Remove X86_FEATURE_MFENCE_RDTSC
x86/mpx: Remove MPX APIs
...
Pull x86 asm updates from Ingo Molnar:
- Add UMIP emulation/spoofing for 64-bit processes as well, because of
Wine based gaming.
- Clean up symbols/labels in low level asm code
- Add an assembly optimized mul_u64_u32_div() implementation on x86-64.
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/umip: Add emulation (spoofing) for UMIP covered instructions in 64-bit processes as well
x86/asm: Make some functions local labels
x86/asm/suspend: Get rid of bogus_64_magic
x86/math64: Provide a sane mul_u64_u32_div() implementation for x86_64
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
Including:
- Batched unmap support for the IOMMU-API
- Support for unlocked command queueing in the ARM-SMMU driver
- Rework the ATS support in the ARM-SMMU driver
- More refactoring in the ARM-SMMU driver to support hardware
implemention specific quirks and errata
- Bounce buffering DMA-API implementatation in the Intel VT-d driver
for untrusted devices (like Thunderbolt devices)
- Fixes for runtime PM support in the OMAP iommu driver
- MT8183 IOMMU support in the Mediatek IOMMU driver
- Rework of the way the IOMMU core sets the default domain type for
groups. Changing the default domain type on x86 does not require two
kernel parameters anymore.
- More smaller fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAl1/pdoACgkQK/BELZcB
GuMvCw/+K1GPyyZbPWAuXcnclraSZTHXS1lV0yilBXXyT2omFRQpRJYZGN/8NTbE
SqD2FtzTKGuGSy2jA0drd3RcMKK/zZsFYnJShiM3FHLXatZdaFrnkK7vRHuzKlHf
dvOlH7gHKtjIPPXodUEb0xd/oRAEIVsKjJyq1fBMARPPAluhU7mIFUI/xbGvX17g
LM00hIxEhVNsSPemU2kTVISNBPVneecNVLlKXySjp0YPW/+sf8R7tTvwlSXX6h3I
JM6wOU479O8mBvIcpAjfZlanHCHtqLk0ybaPx666DjdgYx6cUBHbDCF0P57XnGJA
HNeVGtBwGQb8VWgbPLJKrStSOzYudDG8ndctqfKYN7uiPDjYM2/sqXcwQSVXR9vX
AjT2s0GFEWT/AJhgBSeg9PJilEX1hPtomGKcQhKfR0wRGycixeZJFbwToQqzJrZN
7XoORbZPH1S5W6sjXsXH3eVPW3EGnKipulJSPGDqFLa2aIUG+PXuu/A+iJS6sADh
mqzVfcEs3/NYsro40eA/iQc0t99ftJXgpX18KxYprjyL6VWcwC/xeHcT/Zw9abxz
r7dYDGTR0z6RIew0GOaeZVdZJh/J6yraKCNDS0ARZgol6JPaU7HGHhh6Ohdmmu8L
Gtsgdxp4NeLEgp4mQiRvvpQ5pPJ/YR+oCOx3v+PPnKRLhMTxymQ=
=UF08
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- batched unmap support for the IOMMU-API
- support for unlocked command queueing in the ARM-SMMU driver
- rework the ATS support in the ARM-SMMU driver
- more refactoring in the ARM-SMMU driver to support hardware
implemention specific quirks and errata
- bounce buffering DMA-API implementatation in the Intel VT-d driver
for untrusted devices (like Thunderbolt devices)
- fixes for runtime PM support in the OMAP iommu driver
- MT8183 IOMMU support in the Mediatek IOMMU driver
- rework of the way the IOMMU core sets the default domain type for
groups. Changing the default domain type on x86 does not require two
kernel parameters anymore.
- more smaller fixes and cleanups
* tag 'iommu-updates-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (113 commits)
iommu/vt-d: Declare Broadwell igfx dmar support snafu
iommu/vt-d: Add Scalable Mode fault information
iommu/vt-d: Use bounce buffer for untrusted devices
iommu/vt-d: Add trace events for device dma map/unmap
iommu/vt-d: Don't switch off swiotlb if bounce page is used
iommu/vt-d: Check whether device requires bounce buffer
swiotlb: Split size parameter to map/unmap APIs
iommu/omap: Mark pm functions __maybe_unused
iommu/ipmmu-vmsa: Disable cache snoop transactions on R-Car Gen3
iommu/ipmmu-vmsa: Move IMTTBCR_SL0_TWOBIT_* to restore sort order
iommu: Don't use sme_active() in generic code
iommu/arm-smmu-v3: Fix build error without CONFIG_PCI_ATS
iommu/qcom: Use struct_size() helper
iommu: Remove wrong default domain comments
iommu/dma: Fix for dereferencing before null checking
iommu/mediatek: Clean up struct mtk_smi_iommu
memory: mtk-smi: Get rid of need_larbid
iommu/mediatek: Fix VLD_PA_RNG register backup when suspend
memory: mtk-smi: Add bus_sel for mt8183
memory: mtk-smi: Invoke pm runtime_callback to enable clocks
...
New drivers and chip support
- Add Inspur Power System power supply driver
- Add Synaptics AS370 PVT sensor driver
- Add support for SHTC3 to shtc1 driver
- Add support for NCT6116 to nct6775 driver
- Add support for AMD family 17h, model 70h CPUs to k10temp driver
- Add support for PCT2075 to lm75 driver
Removed drivers
- Remove ads1015 driver (now supported in iio)
Other changes
- Convert drivers to use devm_i2c_new_dummy_device
- Substantial structural improvements in lm75 driver
Add support for writing sample interval for supported chips
- Add support for PSU version 2 to ibm-cffps driver
- Add support for power attribute to iio_hwmon bridge
- Add support for additional fan, voltage and temperature attributes
to nct7904 driver
- Convert adt7475 driver to use hwmon_device_register_with_groups()
- Convert k8temp driver to use hwmon_device_register_with_info()
- Various other improvements and minor fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEiHPvMQj9QTOCiqgVyx8mb86fmYEFAl1+t+UACgkQyx8mb86f
mYF3VA/9EMM6XOOTAyDgxmiE3UltgIWsKzVyWvU/uJpaxmTNG9aPF2cQXBslJyqH
6vqHYCh6ilPqNR7ExFf1Y85rvpA+8oOzn9jkWxVr4ywJYsiJfIC9Amxf55hfKk3V
ej+MZ2WjWXmwyHfV0vw8LPB8LEnDBH5f9bwM4Q5vCwwrgByfV7z3F7zpGjv5kZmm
XbqCkfPgge+lZOV3/hDJKh9ylajpxJDhdrP4hhsFDVq9Tys17WZVSRGyKAvJLPMm
Ya4TcJzQlIlr7OaxRQjONvPn34Wh3L299Hg6L5rqIxS8+WnIkLPse4YAOXbpO4Nf
J01mS1H7XNHHWf76fedbK6+jnhLhyl67QaGoTttiNyjQyW/PYEz7PkmRNz8xsLbd
TbUjqd3izPCrx2OEJYBoQDhQS6K3HijtRo8mBO7Svh61Y749+v0DegnEzpz6J+l4
fIegne/LvNcyB0nQUtNQl+UpeqSlGeujAR2MVT6RYIiMlVCMueLfVk/zlGIO+tzO
TPQoYyhosYdBG9uLgG796pQ4LPmx9L3aqd8oXqAWDx55+sOjLMWiNolJJgkH3Vfz
8eUV8CrdNgs7NQadv+Dp5NoS3pXle8SZAbSqy40GYDlX6BORPujIJgXOcazRIreG
IhyMoxGt6WfgSob38Od+jRE6d9rkke36gFfDUJTUzJROOCRMLLw=
=sRtz
-----END PGP SIGNATURE-----
Merge tag 'hwmon-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging
Pull hwmon updates from Guenter Roeck:
"New drivers:
- Inspur Power System power supply driver
- Synaptics AS370 PVT sensor driver
Chip support:
- support SHTC3 in shtc1 driver
- support NCT6116 in nct6775 driver
- support AMD family 17h, model 70h CPUs in k10temp driver
- support PCT2075 in lm75 driver
Removed drivers:
- ads1015 driver (now supported in iio)
Other changes:
- Convert drivers to use devm_i2c_new_dummy_device
- Substantial structural improvements in lm75 driver adding support
for writing sample interval for supported chips
- Add support for PSU version 2 to ibm-cffps driver
- Add support for power attribute to iio_hwmon bridge
- Add support for additional fan, voltage and temperature attributes
to nct7904 driver
- Convert adt7475 driver to use hwmon_device_register_with_groups()
- Convert k8temp driver to use hwmon_device_register_with_info()
- Various other improvements and minor fixes"
* tag 'hwmon-for-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: (48 commits)
hwmon: submitting-patches: Add note on comment style
hwmon: submitting-patches: Point to with_info API
hwmon: (nct7904) Fix incorrect SMI status register setting of LTD temperature and fan.
hwmon: (shtc1) add support for the SHTC3 sensor
hwmon: (shtc1) fix shtc1 and shtw1 id mask
hwmon: (lm75) Aproximate sample times to data-sheet values
hwmon: (w83793d) convert to use devm_i2c_new_dummy_device
hwmon: (w83792d) convert to use devm_i2c_new_dummy_device
hwmon: (w83791d) convert to use devm_i2c_new_dummy_device
hwmon: (as370-hwmon) fix devm_platform_ioremap_resource.cocci warnings
hwmon: (lm75) Add support for writing sampling period on PCT2075
hwmon: (lm75) Add support for writing conversion time for TMP112
hwmon: (lm75) Move updating the sample interval to its own function
hwmon: (lm75) Support configuring the sample time for various chips
hwmon: (nct7904) Fix incorrect temperature limitation register setting of LTD.
hwmon: (as370-hwmon) Add DT bindings for Synaptics AS370 PVT
hwmon: Add Synaptics AS370 PVT sensor driver
pmbus: (ibm-cffps) Add support for version 2 of the PSU
dt-bindings: hwmon: Document ibm,cffps2 compatible string
hwmon: (iio_hwmon) Enable power exporting from IIO
...
Pull RAS updates from Borislav Petkov:
"The latest meager RAS updates:
- Enable processing of action-optional MCEs which have the Overflow
bit set (Tony Luck)
- -Wmissing-prototypes warning fix and a build fix (Valdis
Klētnieks)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
RAS: Build debugfs.o only when enabled in Kconfig
RAS: Fix prototype warnings
x86/mce: Don't check for the overflow bit on action optional machine checks
- Remove the unneeded backslash at EOL: that's not a macro.
And let's please checkpatch by aligning to open parenthesis.
- For 0x4f descriptor, remove " */" from the info field.
- For 0xc2 descriptor, sync the beginning of info to match the tlb_type.
(The value of info fields could be made more regular, but it's unused by
the code and will be read only by developers, so don't bother.)
Signed-off-by: Sylvain 'ythier' Hitier <sylvain.hitier@gmail.com>
Cc: Alex Shi <alex.shi@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: trivial@kernel.org
Link: https://lkml.kernel.org/r/20190915090917.GA5086@lilas
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IPI shorthand is supported now by linux apic/x2apic driver, switch to
IPI shorthand for all excluding self and all including self destination
shorthand in kvm guest, to avoid splitting the target mask into several
PV IPI hypercalls. This patch removes the kvm_send_ipi_all() and
kvm_send_ipi_allbutself() since the callers in APIC codes have already
taken care of apic_use_ipi_shorthand and fallback to ->send_IPI_mask
and ->send_IPI_mask_allbutself if it is false.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Nadav Amit <namit@vmware.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"A KVM guest fix, and a kdump kernel relocation errors fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/timer: Force PIT initialization when !X86_FEATURE_ARAT
x86/purgatory: Change compiler flags from -mcmodel=kernel to -mcmodel=large to fix kexec relocation errors
The downside of guest side polling is that polling is performed even
with other runnable tasks in the host. However, even if poll in kvm
can aware whether or not other runnable tasks in the same pCPU, it
can still incur extra overhead in over-subscribe scenario. Now we can
just enable guest polling when dedicated pCPUs are available.
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add emulation (spoofing) of the SGDT, SIDT, and SMSW instructions for 64-bit
processes.
Wine users have encountered a number of 64-bit Windows games that use
these instructions (particularly SGDT), and were crashing when run on
UMIP-enabled systems.
Originally-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Brendan Shanks <bshanks@codeweavers.com>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190905232222.14900-1-bshanks@codeweavers.com
[ Minor edits: capitalization, added 'spoofing' wording. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KVM guests with commit c8c4076723 ("x86/timer: Skip PIT initialization on
modern chipsets") applied to guest kernel have been observed to have
unusually higher CPU usage with symptoms of increase in vm exits for HLT
and MSW_WRITE (MSR_IA32_TSCDEADLINE).
This is caused by older QEMUs lacking support for X86_FEATURE_ARAT. lapic
clock retains CLOCK_EVT_FEAT_C3STOP and nohz stays inactive. There's no
usable broadcast device either.
Do the PIT initialization if guest CPU lacks X86_FEATURE_ARAT. On real
hardware it shouldn't matter as ARAT and DEADLINE come together.
Fixes: c8c4076723 ("x86/timer: Skip PIT initialization on modern chipsets")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This reverts commit 558682b529.
Chris Wilson reports that it breaks his CPU hotplug test scripts. In
particular, it breaks offlining and then re-onlining the boot CPU, which
we treat specially (and the BIOS does too).
The symptoms are that we can offline the CPU, but it then does not come
back online again:
smpboot: CPU 0 is now offline
smpboot: Booting Node 0 Processor 0 APIC 0x0
smpboot: do_boot_cpu failed(-1) to wakeup CPU#0
Thomas says he knows why it's broken (my personal suspicion: our magic
handling of the "cpu0_logical_apicid" thing), but for 5.3 the right fix
is to just revert it, since we've never touched the LDR bits before, and
it's not worth the risk to do anything else at this stage.
[ Hotpluging of the boot CPU is special anyway, and should be off by
default. See the "BOOTPARAM_HOTPLUG_CPU0" config option and the
cpu0_hotplug kernel parameter.
In general you should not do it, and it has various known limitations
(hibernate and suspend require the boot CPU, for example).
But it should work, even if the boot CPU is special and needs careful
treatment - Linus ]
Link: https://lore.kernel.org/lkml/156785100521.13300.14461504732265570003@skylake-alporthouse-com/
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bandan Das <bsd@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bogus_64_magic is only a dead-end loop. There is no need for an
out-of-order function (and unannotated local label), so just handle it
in-place and also store 0xbad-m-a-g-i-c to %rcx beforehand, in case
someone is inspecting registers.
Here a qemu+gdb example:
Remote debugging using localhost:1235
wakeup_long64 () at arch/x86/kernel/acpi/wakeup_64.S:26
26 jmp 1b
(gdb) info registers
rax 0x123456789abcdef0 1311768467463790320
rbx 0x0 0
rcx 0xbad6d61676963 3286910041024867
^^^^^^^^^^^^^^^
[ bp: Add the gdb example. ]
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: linux-pm@vger.kernel.org
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190906075550.23435-1-jslaby@suse.cz
Most dma_map_ops instances are IOMMUs that work perfectly fine in 32-bits
of IOVA space, and the generic direct mapping code already provides its
own routines that is intelligent based on the amount of memory actually
present. Wire up the dma-direct routine for the ARM direct mapping code
as well, and otherwise default to the constant 32-bit mask. This way
we only need to override it for the occasional odd IOMMU that requires
64-bit IOVA support, or IOMMU drivers that are more efficient if they
can fall back to the direct mapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
While the default ->mmap and ->get_sgtable implementations work for the
majority of our dma_map_ops impementations they are inherently safe
for others that don't use the page allocator or CMA and/or use their
own way of remapping not covered by the common code. So remove the
defaults if these methods are not wired up, but instead wire up the
default implementations for all safe instances.
Fixes: e1c7e32453 ("dma-mapping: always provide the dma_map_ops based implementation")
Signed-off-by: Christoph Hellwig <hch@lst.de>
The AMD Ryzen gen 3 processors came with a different PCI IDs for the
function 3 & 4 which are used to access the SMN interface. The root
PCI address however remained at the same address as the model 30h.
Adding the F3/F4 PCI IDs respectively to the misc and link ids appear
to be sufficient for k10temp, so let's add them and follow up on the
patch if other functions need more tweaking.
Vicki Pfau sent an identical patch after I checked that no-one had
written this patch. I would have been happy about dropping my patch but
unlike for his patch series, I had already Cc:ed the x86 people and
they already reviewed the changes. Since Vicki has not answered to
any email after his initial series, let's assume she is on vacation
and let's avoid duplication of reviews from the maintainers and merge
my series. To acknowledge Vicki's anteriority, I added her S-o-b to
the patch.
v2, suggested by Guenter Roeck and Brian Woods:
- rename from 71h to 70h
Signed-off-by: Vicki Pfau <vi@endrift.com>
Signed-off-by: Marcel Bocu <marcel.p.bocu@gmail.com>
Tested-by: Marcel Bocu <marcel.p.bocu@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Brian Woods <brian.woods@amd.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci_ids.h
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: "Woods, Brian" <Brian.Woods@amd.com>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: Jean Delvare <jdelvare@suse.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: linux-hwmon@vger.kernel.org
Link: https://lore.kernel.org/r/20190722174510.2179-1-marcel.p.bocu@gmail.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
When cpus != maxcpus cpuidle-haltpoll will fail to register all vcpus
past the online ones and thus fail to register the idle driver.
This is because cpuidle_add_sysfs() will return with -ENODEV as a
consequence from get_cpu_device() return no device for a non-existing
CPU.
Instead switch to cpuidle_register_driver() and manually register each
of the present cpus through cpuhp_setup_state() callbacks and future
ones that get onlined or offlined. This mimmics similar logic that
intel_idle does.
Fixes: fa86ee90eb ("add cpuidle-haltpoll driver")
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
These wrappers don't provide a real benefit over just using
set_memory_x() and set_memory_nx().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190826075558.8125-4-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43e ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After commit cf65a0f6f6 ("dma-mapping: move all DMA mapping code to
kernel/dma") some of the files are referring to outdated information,
i.e. old file names of DMA mapping sources. Fix it here.
Note, the lines with "Glue code for..." have been removed completely.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Conflicts:
tools/power/x86/turbostat/turbostat.c
Recent turbostat changes conflicted with a pending rename of x86 model names in tip:x86/cpu,
sort it out.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86, CPUs are limited in the number of interrupts they can have affined
to them as they only support 256 interrupt vectors per CPU. 32 vectors are
reserved for the CPU and the kernel reserves another 22 for internal
purposes. That leaves 202 vectors for assignement to devices.
When an interrupt is set up or the affinity is changed by the kernel or the
administrator, the vector assignment code attempts to honor the requested
affinity mask. If the vector space on the CPUs in that affinity mask is
exhausted the code falls back to a wider set of CPUs and assigns a vector
on a CPU outside of the requested affinity mask silently.
While the effective affinity is reflected in the corresponding
/proc/irq/$N/effective_affinity* files the silent breakage of the requested
affinity can lead to unexpected behaviour for administrators.
Add a pr_warn() when this happens so that adminstrators get at least
informed about it in the syslog.
[ tglx: Massaged changelog and made the pr_warn() more informative ]
Reported-by: djuran@redhat.com
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: djuran@redhat.com
Link: https://lkml.kernel.org/r/20190822143421.9535-1-nhorman@tuxdriver.com
The new header is intended to be used by drivers using the backdoor.
Follow the KVM example using alternatives self-patching to choose
between vmcall, vmmcall and io instructions.
Also define two new CPU feature flags to indicate hypervisor support
for vmcall- and vmmcall instructions. The new XF86_FEATURE_VMW_VMMCALL
flag is needed because using XF86_FEATURE_VMMCALL might break QEMU/KVM
setups using the vmmouse driver. They rely on XF86_FEATURE_VMMCALL
on AMD to get the kvm_hypercall() right. But they do not yet implement
vmmcall for the VMware hypercall used by the vmmouse driver.
[ bp: reflow hypercall %edx usage explanation comment. ]
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Doug Covelli <dcovelli@vmware.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-graphics-maintainer@vmware.com
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190828080353.12658-3-thomas_os@shipmail.org
hv_setup_sched_clock() references pv_ops which is only available when
CONFIG_PARAVIRT=Y.
Wrap it into a #ifdef
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190828080747.204419-1-Tianyu.Lan@microsoft.com
Currently big microservers have _XEON_D while small microservers have
_X, Make it uniformly: _D.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(X\|XEON_D\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*ATOM.*\)_X/\1_D/g' \
-e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_XEON_D/\1_D/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.677152989@infradead.org
Currently big core clients with extra graphics on have:
- _G
- _GT3E
Make it uniformly: _G
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_GT3E"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_GT3E/\1_G/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.622802314@infradead.org
Currently big core mobile chips have either:
- _L
- _ULT
- _MOBILE
Make it uniformly: _L.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(MOBILE\|ULT\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(MOBILE\|ULT\)/\1_L/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.568978530@infradead.org
Currently the big core client models either have:
- no OPTDIFF
- _CORE
- _DESKTOP
Make it uniformly: 'no OPTDIFF'.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(CORE\|DESKTOP\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(CORE\|DESKTOP\)/\1/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.513945586@infradead.org
Vmware has historically used an INL instruction for this, but recent
hardware versions support using VMCALL/VMMCALL instead, so use this
method if supported at platform detection time. Explicitly code separate
macro versions since the alternatives self-patching has not been
performed at platform detection time.
Also put tighter constraints on the assembly input parameters.
Co-developed-by: Doug Covelli <dcovelli@vmware.com>
Signed-off-by: Doug Covelli <dcovelli@vmware.com>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Doug Covelli <dcovelli@vmware.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-graphics-maintainer@vmware.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190828080353.12658-2-thomas_os@shipmail.org
Although APIC initialization will typically clear out the LDR before
setting it, the APIC cleanup code should reset the LDR.
This was discovered with a 32-bit KVM guest jumping into a kdump
kernel. The stale bits in the LDR triggered a bug in the KVM APIC
implementation which caused the destination mapping for VCPUs to be
corrupted.
Note that this isn't intended to paper over the KVM APIC bug. The kernel
has to clear the LDR when resetting the APIC registers except when X2APIC
is enabled.
This lacks a Fixes tag because missing to clear LDR goes way back into pre
git history.
[ tglx: Made x2apic_enabled a function call as required ]
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190826101513.5080-3-bsd@redhat.com
Legacy apic init uses bigsmp for smp systems with 8 and more CPUs. The
bigsmp APIC implementation uses physical destination mode, but it
nevertheless initializes LDR and DFR. The LDR even ends up incorrectly with
multiple bit being set.
This does not cause a functional problem because LDR and DFR are ignored
when physical destination mode is active, but it triggered a problem on a
32-bit KVM guest which jumps into a kdump kernel.
The multiple bits set unearthed a bug in the KVM APIC implementation. The
code which creates the logical destination map for VCPUs ignores the
disabled state of the APIC and ends up overwriting an existing valid entry
and as a result, APIC calibration hangs in the guest during kdump
initialization.
Remove the bogus LDR/DFR initialization.
This is not intended to work around the KVM APIC bug. The LDR/DFR
ininitalization is wrong on its own.
The issue goes back into the pre git history. The fixes tag is the commit
in the bitkeeper import which introduced bigsmp support in 2003.
git://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Fixes: db7b9e9f26b8 ("[PATCH] Clustered APIC setup for >8 CPU systems")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190826101513.5080-2-bsd@redhat.com
32-bit processes running on a 64-bit kernel are not always detected
correctly, causing the process to crash when uretprobes are installed.
The reason for the crash is that in_ia32_syscall() is used to determine the
process's mode, which only works correctly when called from a syscall.
In the case of uretprobes, however, the function is called from a exception
and always returns 'false' on a 64-bit kernel. In consequence this leads to
corruption of the process's return address.
Fix this by using user_64bit_mode() instead of in_ia32_syscall(), which
is correct in any situation.
[ tglx: Add a comment and the following historical info ]
This should have been detected by the rename which happened in commit
abfb9498ee ("x86/entry: Rename is_{ia32,x32}_task() to in_{ia32,x32}_syscall()")
which states in the changelog:
The is_ia32_task()/is_x32_task() function names are a big misnomer: they
suggests that the compat-ness of a system call is a task property, which
is not true, the compatness of a system call purely depends on how it
was invoked through the system call layer.
.....
and then it went and blindly renamed every call site.
Sadly enough this was already mentioned here:
8faaed1b9f ("uprobes/x86: Introduce sizeof_long(), cleanup adjust_ret_addr() and
arch_uretprobe_hijack_return_addr()")
where the changelog says:
TODO: is_ia32_task() is not what we actually want, TS_COMPAT does
not necessarily mean 32bit. Fortunately syscall-like insns can't be
probed so it actually works, but it would be better to rename and
use is_ia32_frame().
and goes all the way back to:
0326f5a94d ("uprobes/core: Handle breakpoint and singlestep exceptions")
Oh well. 7+ years until someone actually tried a uretprobe on a 32bit
process on a 64bit kernel....
Fixes: 0326f5a94d ("uprobes/core: Handle breakpoint and singlestep exceptions")
Signed-off-by: Sebastian Mayr <me@sam.st>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190728152617.7308-1-me@sam.st
Rahul Tanwar reported the following bug on DT systems:
> 'ioapic_dynirq_base' contains the virtual IRQ base number. Presently, it is
> updated to the end of hardware IRQ numbers but this is done only when IOAPIC
> configuration type is IOAPIC_DOMAIN_LEGACY or IOAPIC_DOMAIN_STRICT. There is
> a third type IOAPIC_DOMAIN_DYNAMIC which applies when IOAPIC configuration
> comes from devicetree.
>
> See dtb_add_ioapic() in arch/x86/kernel/devicetree.c
>
> In case of IOAPIC_DOMAIN_DYNAMIC (DT/OF based system), 'ioapic_dynirq_base'
> remains to zero initialized value. This means that for OF based systems,
> virtual IRQ base will get set to zero.
Such systems will very likely not even boot.
For DT enabled machines ioapic_dynirq_base is irrelevant and not
updated, so simply map the IRQ base 1:1 instead.
Reported-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Tested-by: Rahul Tanwar <rahul.tanwar@linux.intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: alan@linux.intel.com
Cc: bp@alien8.de
Cc: cheol.yong.kim@intel.com
Cc: qi-ming.wu@intel.com
Cc: rahul.tanwar@intel.com
Cc: rppt@linux.ibm.com
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/20190821081330.1187-1-rahul.tanwar@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hyper-V guests use the default native_sched_clock() in
pv_ops.time.sched_clock on x86. But native_sched_clock() directly uses the
raw TSC value, which can be discontinuous in a Hyper-V VM.
Add the generic hv_setup_sched_clock() to set the sched clock function
appropriately. On x86, this sets pv_ops.time.sched_clock to read the
Hyper-V reference TSC value that is scaled and adjusted to be continuous.
Also move the Hyper-V reference TSC initialization much earlier in the boot
process so no discontinuity is observed when pv_ops.time.sched_clock
calculates its offset.
[ tglx: Folded build fix ]
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lkml.kernel.org/r/20190814123216.32245-3-Tianyu.Lan@microsoft.com
This variable has no users anymore. Remove it and tell the
IOMMU code via its new functions about requested DMA modes.
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This option allows userspace to pass the RSDP address to the kernel, which
makes it possible for a user to modify the workings of hardware. Reject
the option when the kernel is locked down. This requires some reworking
of the existing RSDP command line logic, since the early boot code also
makes use of a command-line passed RSDP when locating the SRAT table
before the lockdown code has been initialised. This is achieved by
separating the command line RSDP path in the early boot code from the
generic RSDP path, and then copying the command line RSDP into boot
params in the kernel proper if lockdown is not enabled. If lockdown is
enabled and an RSDP is provided on the command line, this will only be
used when parsing SRAT (which shouldn't permit kernel code execution)
and will be ignored in the rest of the kernel.
(Modified by Matthew Garrett in order to handle the early boot RSDP
environment)
Signed-off-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: Dave Young <dyoung@redhat.com>
cc: linux-acpi@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Writing to MSRs should not be allowed if the kernel is locked down, since
it could lead to execution of arbitrary code in kernel mode. Based on a
patch by Kees Cook.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
IO port access would permit users to gain access to PCI configuration
registers, which in turn (on a lot of hardware) give access to MMIO
register space. This would potentially permit root to trigger arbitrary
DMA, so lock it down by default.
This also implicitly locks down the KDADDIO, KDDELIO, KDENABIO and
KDDISABIO console ioctls.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
This is a preparatory patch for kexec_file_load() lockdown. A locked down
kernel needs to prevent unsigned kernel images from being loaded with
kexec_file_load(). Currently, the only way to force the signature
verification is compiling with KEXEC_VERIFY_SIG. This prevents loading
usigned images even when the kernel is not locked down at runtime.
This patch splits KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE.
Analogous to the MODULE_SIG and MODULE_SIG_FORCE for modules, KEXEC_SIG
turns on the signature verification but allows unsigned images to be
loaded. KEXEC_SIG_FORCE disallows images without a valid signature.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
Kexec reboot in case secure boot being enabled does not keep the secure
boot mode in new kernel, so later one can load unsigned kernel via legacy
kexec_load. In this state, the system is missing the protections provided
by secure boot.
Adding a patch to fix this by retain the secure_boot flag in original
kernel.
secure_boot flag in boot_params is set in EFI stub, but kexec bypasses the
stub. Fixing this issue by copying secure_boot flag across kexec reboot.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
It's simpler and more intuitive to directly check for VECTOR_UNUSED than
checking whether the other error codes are not set.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/caeaca93-5ee1-cea1-8894-3aa0d5b19241@gmail.com
Both the 64bit and the 32bit handle_irq() implementation check the irq
descriptor pointer with IS_ERR_OR_NULL() and return failure. That can be
done simpler in the common do_IRQ() code.
This reduces the 64bit handle_irq() function to a wrapper around
generic_handle_irq_desc(). Invoke it directly from do_IRQ() to spare the
extra function call.
[ tglx: Got rid of the #ifdef and massaged changelog ]
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/2ec758c7-9aaa-73ab-f083-cc44c86aa741@gmail.com
There have been reports of RDRAND issues after resuming from suspend on
some AMD family 15h and family 16h systems. This issue stems from a BIOS
not performing the proper steps during resume to ensure RDRAND continues
to function properly.
RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be
reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND
support using CPUID, including the kernel, will believe that RDRAND is
not supported.
Update the CPU initialization to clear the RDRAND CPUID bit for any family
15h and 16h processor that supports RDRAND. If it is known that the family
15h or family 16h system does not have an RDRAND resume issue or that the
system will not be placed in suspend, the "rdrand=force" kernel parameter
can be used to stop the clearing of the RDRAND CPUID bit.
Additionally, update the suspend and resume path to save and restore the
MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in
place after resuming from suspend.
Note, that clearing the RDRAND CPUID bit does not prevent a processor
that normally supports the RDRAND instruction from executing it. So any
code that determined the support based on family and model won't #UD.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chen Yu <yu.c.chen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org>
Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
Some newer machines do not advertise legacy timers. The kernel can handle
that situation if the TSC and the CPU frequency are enumerated by CPUID or
MSRs and the CPU supports TSC deadline timer. If the CPU does not support
TSC deadline timer the local APIC timer frequency has to be known as well.
Some Ryzens machines do not advertize legacy timers, but there is no
reliable way to determine the bus frequency which feeds the local APIC
timer when the machine allows overclocking of that frequency.
As there is no legacy timer the local APIC timer calibration crashes due to
a NULL pointer dereference when accessing the not installed global clock
event device.
Switch the calibration loop to a non interrupt based one, which polls
either TSC (if frequency is known) or jiffies. The latter requires a global
clockevent. As the machines which do not have a global clockevent installed
have a known TSC frequency this is a non issue. For older machines where
TSC frequency is not known, there is no known case where the legacy timers
do not exist as that would have been reported long ago.
Reported-by: Daniel Drake <drake@endlessm.com>
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908091443030.21433@nanos.tec.linutronix.de
Link: http://bugzilla.opensuse.org/show_bug.cgi?id=1142926#c12
Fix
arch/x86/kernel/apic/probe_32.c: In function ‘default_setup_apic_routing’:
arch/x86/kernel/apic/probe_32.c:146:7: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (!APIC_XAPIC(version)) {
^
arch/x86/kernel/apic/probe_32.c:151:3: note: here
case X86_VENDOR_HYGON:
^~~~
for 32-bit builds.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190811154036.29805-1-bp@alien8.de
Currently, failure of cpuhp_setup_state() is ignored and the syscore ops
and the control interfaces can still be added even after the failure. But,
this error handling will cause a few issues:
1. The CPUs may have different values in the IA32_UMWAIT_CONTROL
MSR because there is no way to roll back the control MSR on
the CPUs which already set the MSR before the failure.
2. If the sysfs interface is added successfully, there will be a mismatch
between the global control value and the control MSR:
- The interface shows the default global control value. But,
the control MSR is not set to the value because the CPU online
function, which is supposed to set the MSR to the value,
is not installed.
- If the sysadmin changes the global control value through
the interface, the control MSR on all current online CPUs is
set to the new value. But, the control MSR on newly onlined CPUs
after the value change will not be set to the new value due to
lack of the CPU online function.
3. On resume from suspend/hibernation, the boot CPU restores the control
MSR to the global control value through the syscore ops. But, the
control MSR on all APs is not set due to lake of the CPU online
function.
To solve the issues and enforce consistent behavior on the failure
of the CPU hotplug setup, make the following changes:
1. Cache the original control MSR value which is configured by
hardware or BIOS before kernel boot. This value is likely to
be 0. But it could be a different number as well. Cache the
control MSR only once before the MSR is changed.
2. Add the CPU offline function so that the MSR is restored to the
original control value on all CPUs on the failure.
3. On the failure, exit from cpumait_init() so that the syscore ops
and the control interfaces are not added.
Reported-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1565401237-60936-1-git-send-email-fenghua.yu@intel.com
Pull x86 fixes from Thomas Gleixner:
"A few fixes for x86:
- Don't reset the carefully adjusted build flags for the purgatory
and remove the unwanted flags instead. The 'reset all' approach led
to build fails under certain circumstances.
- Unbreak CLANG build of the purgatory by avoiding the builtin
memcpy/memset implementations.
- Address missing prototype warnings by including the proper header
- Fix yet more fall-through issues"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/lib/cpu: Address missing prototypes warning
x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS
x86/purgatory: Do not use __builtin_memcpy and __builtin_memset
x86: mtrr: cyrix: Mark expected switch fall-through
x86/ptrace: Mark expected switch fall-through
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdTfRfAAoJEL/70l94x66DcN0IAIwyaU2+kwP0jd2miQuKxgwl
WU4u7dZCoQC6meWEVmrSJIVMBONRubmZ9iCqT7807YP8YZSQpOth51FMbULUWuy1
VW1eaRwqidX0EAihDhg2ZbBZ8H6RQ9Fn0aiEEh44dAZZAwGSVnO3PRKvQEJ15xjk
q+OQ4hrxtoorwLj+myejmq3YenTFTCMMJfYwwvlCl+J1FfrLZi5k3X5Gjk+j8Ixd
8CL8/6u5Lu6MCgfYVvxvo8/bUPiATBdF1sWJMMALwXTrDiSy4tQRD0NvZP1HM8G1
hy0XnhgtsS9rWNLtAFOj+r/XhP9V5lOOGX8yBcj0XQQr+DC9MG6MCL+pXXOaMcA=
=ZZh8
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes (arm and x86) and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
selftests: kvm: Adding config fragments
KVM: selftests: Update gitignore file for latest changes
kvm: remove unnecessary PageReserved check
KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enable
KVM: arm: Don't write junk to CP15 registers on reset
KVM: arm64: Don't write junk to sysregs on reset
KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block
x86: kvm: remove useless calls to kvm_para_available
KVM: no need to check return value of debugfs_create functions
KVM: remove kvm_arch_has_vcpu_debugfs()
KVM: Fix leak vCPU's VMCS value into other pCPU
KVM: Check preempted_in_kernel for involuntary preemption
KVM: LAPIC: Don't need to wakeup vCPU twice afer timer fire
arm64: KVM: hyp: debug-sr: Mark expected switch fall-through
KVM: arm64: Update kvm_arm_exception_class and esr_class_str for new EC
KVM: arm: vgic-v3: Mark expected switch fall-through
arm64: KVM: regmap: Fix unexpected switch fall-through
KVM: arm/arm64: Introduce kvm_pmu_vcpu_init() to setup PMU counter index
Secure Encrypted Virtualization is an x86-specific feature, so it shouldn't
appear in generic kernel code because it forces non-x86 architectures to
define the sev_active() function, which doesn't make a lot of sense.
To solve this problem, add an x86 elfcorehdr_read() function to override
the generic weak implementation. To do that, it's necessary to make
read_from_oldmem() public so that it can be used outside of vmcore.c.
Also, remove the export for sev_active() since it's only used in files that
won't be built as modules.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190806044919.10622-6-bauerman@linux.ibm.com
Mark the APIC's global config variables that are constant after boot as
__ro_after_init to help document that the majority of the APIC config is
not changed at runtime, and to harden the kernel a smidge.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190805212134.12001-1-sean.j.christopherson@intel.com
Mark switch cases where we are expecting to fall through.
Fix the following warning (Building: i386_defconfig i386):
arch/x86/kernel/cpu/mtrr/cyrix.c:99:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20190805201712.GA19927@embeddedor
Mark switch cases where we are expecting to fall through.
Fix the following warning (Building: allnoconfig i386):
arch/x86/kernel/ptrace.c:202:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (unlikely(value == 0))
^
arch/x86/kernel/ptrace.c:206:2: note: here
default:
^~~~~~~
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20190805195654.GA17831@embeddedor
- Selftests fixes and improvements (Chris)
- More work around engine tracking for better handling (Chris, Tvrtko)
- HDCP debug and info improvements (Ram, Ashuman)
- Add DSI properties (Vandita)
- Rework on sdvo support for better debuggability before fixing bugs (Ville)
- Display PLLs fixes and improvements, specially targeting Ice Lake (Imre, Matt, Ville)
- Perf fixes and improvements (Lionel)
- Enumerate scratch buffers (Lionel)
- Add infra to hold off preemption on a request (Lionel)
- Ice Lake color space fixes (Uma)
- Type-C fixes and improvements (Lucas)
- Fix and improvements around workarounds (Chris, John, Tvrtko)
- GuC related fixes and improvements (Chris, Daniele, Michal, Tvrtko)
- Fix on VLV/CHV display power domain (Ville)
- Improvements around Watermark (Ville)
- Favor intel_ types on intel_atomic functions (Ville)
- Don’t pass stack garbage to pcode (Ville)
- Improve display tracepoints (Steven)
- Don’t overestimate 4:2:0 link symbol clock (Ville)
- Add support for 4th pipe and transcoder (Lucas)
- Introduce initial support for Tiger Lake platform (Daniele, Lucas, Mahesh, Jose, Imre, Mika, Vandita, Rodrigo, Michel)
- PPGTT allocation simplification (Chris)
- Standardize function names and suffixes to make clean, symmetric and let checkpatch happy (Janusz)
- Skip SINK_COUNT read on CH7511 (Ville)
- Fix on kernel documentation (Chris, Michal)
- Add modular FIA (Anusha, Lucas)
- Fix EHL display (Matt, Vivek)
- Enable hotplug retry (Imre, Jose)
- Disable preemption under GVT (Chris)
- OA; Reconfigure context on the fly (Chris)
- Fixes and improvements around engine reset. (Chris)
- Small clean up on display pipe fault mask (Ville)
- Make sure cdclk is high enough for DP audio on VLV/CHV (Ville)
- Drop some wmb() and improve pwrite flush (Chris)
- Fix critical PSR regression (DK)
- Remove unused variables (YueHaibing)
- Use dev_get_drvdata for simplification (Chunhong)
- Use upstream version of header tests (Jani)
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJdQJHXAAoJEPpiX2QO6xPKIpkH/3lMqbuv6UXyX1zvcYj6Ap4g
c6ocA7O1ooQDfFBfnLJNd6D+Gs3uTt9KROL0WdhmolfgzfLihFnvSx1VP/pvi7gC
kVT1JbwbzuwYbBXQ8WhmtkfqDp/quy3wku/ThNchY9pG1IaqNuRiP35+pXRNLO08
Q+RUHl8j1OkoLTLuzxfYGFtY72F8mIlkki8zMwlthH2Skz9h9d8POh8phOv+3TDx
aQ7CsOfScnLSrEyWlnOeYFexps0LpNC7TAG8fGkVI28Jig16DSwg7QR3MhQ9UtB1
8IC3+Jz8+p83PQHx7mGS7Va/XTERVT4czsoNC/IK7cFMy1yFilzoqpFHH8Is3sk=
=dAkP
-----END PGP SIGNATURE-----
Merge tag 'drm-intel-next-2019-07-30' of git://anongit.freedesktop.org/drm/drm-intel into drm-next
- More changes on simplifying locking mechanisms (Chris)
- Selftests fixes and improvements (Chris)
- More work around engine tracking for better handling (Chris, Tvrtko)
- HDCP debug and info improvements (Ram, Ashuman)
- Add DSI properties (Vandita)
- Rework on sdvo support for better debuggability before fixing bugs (Ville)
- Display PLLs fixes and improvements, specially targeting Ice Lake (Imre, Matt, Ville)
- Perf fixes and improvements (Lionel)
- Enumerate scratch buffers (Lionel)
- Add infra to hold off preemption on a request (Lionel)
- Ice Lake color space fixes (Uma)
- Type-C fixes and improvements (Lucas)
- Fix and improvements around workarounds (Chris, John, Tvrtko)
- GuC related fixes and improvements (Chris, Daniele, Michal, Tvrtko)
- Fix on VLV/CHV display power domain (Ville)
- Improvements around Watermark (Ville)
- Favor intel_ types on intel_atomic functions (Ville)
- Don’t pass stack garbage to pcode (Ville)
- Improve display tracepoints (Steven)
- Don’t overestimate 4:2:0 link symbol clock (Ville)
- Add support for 4th pipe and transcoder (Lucas)
- Introduce initial support for Tiger Lake platform (Daniele, Lucas, Mahesh, Jose, Imre, Mika, Vandita, Rodrigo, Michel)
- PPGTT allocation simplification (Chris)
- Standardize function names and suffixes to make clean, symmetric and let checkpatch happy (Janusz)
- Skip SINK_COUNT read on CH7511 (Ville)
- Fix on kernel documentation (Chris, Michal)
- Add modular FIA (Anusha, Lucas)
- Fix EHL display (Matt, Vivek)
- Enable hotplug retry (Imre, Jose)
- Disable preemption under GVT (Chris)
- OA; Reconfigure context on the fly (Chris)
- Fixes and improvements around engine reset. (Chris)
- Small clean up on display pipe fault mask (Ville)
- Make sure cdclk is high enough for DP audio on VLV/CHV (Ville)
- Drop some wmb() and improve pwrite flush (Chris)
- Fix critical PSR regression (DK)
- Remove unused variables (YueHaibing)
- Use dev_get_drvdata for simplification (Chunhong)
- Use upstream version of header tests (Jani)
drm-intel-next-2019-07-08:
- Signal fence completion from i915_request_wait (Chris)
- Fixes and improvements around rings pin/unpin (Chris)
- Display uncore prep patches (Daniele)
- Execlists preemption improvements (Chris)
- Selftests fixes and improvements (Chris)
- More Elkhartlake enabling work (Vandita, Jose, Matt, Vivek)
- Defer address space cleanup to an RCU worker (Chris)
- Implicit dev_priv removal and GT compartmentalization and other related follow-ups (Tvrtko, Chris)
- Prevent dereference of engine before NULL check in error capture (Chris)
- GuC related fixes (Daniele, Robert)
- Many changes on active tracking, timelines and locking mechanisms (Chris)
- Disable SAMPLER_STATE prefetching on Gen11 (HW W/a) (Kenneth)
- I915_perf fixes (Lionel)
- Add Ice Lake PCI ID (Mika)
- eDP backlight fix (Lee)
- Fix various gen2 tracepoints (Ville)
- Some irq vfunc clean-up and improvements (Ville)
- Move OA files to separated folder (Michal)
- Display self contained headers clean-up (Jani)
- Preparation for 4th pile (Lucas)
- Move atomic commit, watermark and other places to use more intel_crtc_state (Maarten)
- Many Ice Lake Type C and Thunderbolt fixes (Imre)
- Fix some Ice Lake hw w/a whitelist regs (Lionel)
- Fix memleak in runtime wakeref tracking (Mika)
- Remove unused Private PPAT manager (Michal)
- Don't check PPGTT presence on PPGTT-only platforms (Michal)
- Fix ICL DSI suspend/resume (Chris)
- Fix ICL Bandwidth issues (Ville)
- Add N & CTS values for 10/12 bit deep color (Aditya)
- Moving more GT related stuff under gt folder (Chris)
- Forcewake related fixes (Chris)
- Show support for accurate sw PMU busyness tracking (Chris)
- Handle gtt double alloc failures (Chris)
- Upgrade to new GuC version (Michal)
- Improve w/a debug dumps and pull engine w/a initialization into a common (Chris)
- Look for instdone on all engines at hangcheck (Tvrtko)
- Engine lookup simplification (Chris)
- Many plane color formats fixes and improvements (Ville)
- Fix some compilation issues (YueHaibing)
- GTT page directory clean up and improvements (Mika)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190801201314.GA23635@intel.com
Most code in arch/x86/kernel/kvm.c is called through x86_hyper_kvm, and thus only
runs if KVM has been detected. There is no need to check again for the CPUID
base.
Cc: Sergio Lopez <slp@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently do not process SRAO (Software Recoverable Action Optional)
machine checks if they are logged with the overflow bit set to 1 in the
machine check bank status register. This is overly conservative.
There are two cases where we could end up with an SRAO+OVER log based
on the SDM volume 3 overwrite rules in "Table 15-8. Overwrite Rules for
UC, CE, and UCR Errors"
1) First a corrected error is logged, then the SRAO error overwrites.
The second error overwrites the first because uncorrected errors
have a higher severity than corrected errors.
2) The SRAO error was logged first, followed by a correcetd error.
In this case the first error is retained in the bank.
So in either case the machine check bank will contain the address
of the SRAO error. So we can process that even if the overflow bit
was set.
Reported-by: Yongkai Wu <yongkaiwu@tencent.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190718182920.32621-1-tony.luck@intel.com
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the conditional for async pagefaults to use CONFIG_PREEMPTION.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.789755413@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stack dumps print whether the kernel has preemption enabled or not. Extend
it so a PREEMPT_RT enabled kernel can be identified.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.699136351@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the entry code, preempt and kprobes conditionals over to
CONFIG_PREEMPTION.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.608488448@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When performing guest side polling, it is not necessary to
also perform host side polling.
So disable host side polling, via the new MSR interface,
when loading cpuidle-haltpoll driver.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add a cpuidle driver that calls the architecture default_idle routine.
To be used in conjunction with the haltpoll governor.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Intel provided the following information:
On all current Atom processors, instructions that use a segment register
value (e.g. a load or store) will not speculatively execute before the
last writer of that segment retires. Thus they will not use a
speculatively written segment value.
That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS
entry paths can be excluded from the extra LFENCE if PTI is disabled.
Create a separate bug flag for the through SWAPGS speculation and mark all
out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs
are excluded from the whole mitigation mess anyway.
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Implement shorthand support for x2apic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.134696837@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the APIC code and the duplicate
helper in probe_64.c.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.042964120@linutronix.de
The 64bit implementations need the same wrappers around
__default_send_IPI_shortcut() as 32bit.
Move them out of the 32bit section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.951534451@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the 32bit implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.860244707@linutronix.de
Nadav noticed that the cpumask allocations in native_send_call_func_ipi()
are noticeable in microbenchmarks.
Use the new cpumask_or_equal() function to simplify the decision whether
the supplied target CPU mask is either equal to cpu_online_mask or equal to
cpu_online_mask except for the CPU on which the function is invoked.
cpumask_or_equal() or's the target mask and the cpumask of the current CPU
together and compares it to cpu_online_mask.
If the result is false, use the mask based IPI function, otherwise check
whether the current CPU is set in the target mask and invoke either the
send_IPI_all() or the send_IPI_allbutselt() APIC callback.
Make the shorthand decision also depend on the static key which enables
shorthand mode. That allows to remove the extra cpumask comparison with
cpu_callout_mask.
Reported-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.768238809@linutronix.de
Move it where it belongs. That allows to keep all the shorthand logic in
one place.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.677835995@linutronix.de
To support IPI shorthands wrap invocations of apic->send_IPI_allbutself()
in a helper function, so the static key controlling the shorthand mode is
only in one place.
Fixup all callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.492691679@linutronix.de
The IPI shorthand functionality delivers IPI/NMI broadcasts to all CPUs in
the system. This can have similar side effects as the MCE broadcasting when
CPUs are waiting in the BIOS or are offlined.
The kernel tracks already the state of offlined CPUs whether they have been
brought up at least once so that the CR4 MCE bit is set to make sure that
MCE broadcasts can't brick the machine.
Utilize that information and compare it to the cpu_present_mask. If all
present CPUs have been brought up at least once then the broadcast side
effect is mitigated by disabling regular interrupt/IPI delivery in the APIC
itself and by the cpu offline check at the begin of the NMI handler.
Use a static key to switch between broadcasting via shorthands or sending
the IPI/NMI one by one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.386410643@linutronix.de
For the upcoming shorthand support for all APIC incarnations the command
line option needs to be available for 64 bit as well.
While at it, rename the control variable, make it static and mark it
__ro_after_init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.278327940@linutronix.de
To support NMI shorthand broadcasts add the safe wait for ICR idle for NMI
vector delivery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.185838026@linutronix.de
The SDM states:
"The destination shorthand field of the ICR allows the delivery mode to be
by-passed in favor of broadcasting the IPI to all the processors on the
system bus and/or back to itself (see Section 10.6.1, Interrupt Command
Register (ICR)). Three destination shorthands are supported: self, all
excluding self, and all including self. The destination mode is ignored
when a destination shorthand is used."
So there is no point to supply the destination mode to the shorthand
delivery function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.094613426@linutronix.de
In order to support IPI/NMI broadcasting via the shorthand mechanism side
effects of shorthands need to be mitigated:
Shorthand IPIs and NMIs hit all CPUs including unplugged CPUs
Neither of those can be handled on unplugged CPUs for obvious reasons.
It would be trivial to just fully disable the APIC via the enable bit in
MSR_APICBASE. But that's not possible because clearing that bit on systems
based on the 3 wire APIC bus would require a hardware reset to bring it
back as the APIC would lose track of bus arbitration. On systems with FSB
delivery APICBASE could be disabled, but it has to be guaranteed that no
interrupt is sent to the APIC while in that state and it's not clear from
the SDM whether it still responds to INIT/SIPI messages.
Therefore stay on the safe side and switch the APIC into soft disabled mode
so it won't deliver any regular vector to the CPU.
NMIs are still propagated to the 'dead' CPUs. To mitigate that add a check
for the CPU being offline on early nmi entry and if so bail.
Note, this cannot use the stop/restart_nmi() magic which is used in the
alternatives code. A dead CPU cannot invoke nmi_enter() or anything else
due to RCU and other reasons.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907241723290.1791@nanos.tec.linutronix.de
arch_smt_update() will be used to control IPI/NMI broadcasting via the
shorthand mechanism. Keeping it in the bugs file and calling the apic
function from there is possible, but not really intuitive.
Move it to a neutral place and invoke the bugs function from there.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.910317273@linutronix.de
Now there are three small local headers. Some contain functions which are
only used in one source file.
Move all the inlines and declarations into a single local header and the
inlines which are only used in one source file into that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.618612624@linutronix.de
All of these APIC files include the world and some more. Remove the
unneeded cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.342631201@linutronix.de
In course of developing shorthand based IPI support issues with the
function which tries to clear eventually pending ISR bits in the local APIC
were observed.
1) O-day testing triggered the WARN_ON() in apic_pending_intr_clear().
This warning is emitted when the function fails to clear pending ISR
bits or observes pending IRR bits which are not delivered to the CPU
after the stale ISR bit(s) are ACK'ed.
Unfortunately the function only emits a WARN_ON() and fails to dump
the IRR/ISR content. That's useless for debugging.
Feng added spot on debug printk's which revealed that the stale IRR
bit belonged to the APIC timer interrupt vector, but adding ad hoc
debug code does not help with sporadic failures in the field.
Rework the loop so the full IRR/ISR contents are saved and on failure
dumped.
2) The loop termination logic is interesting at best.
If the machine has no TSC or cpu_khz is not known yet it tries 1
million times to ack stale IRR/ISR bits. What?
With TSC it uses the TSC to calculate the loop termination. It takes a
timestamp at entry and terminates the loop when:
(rdtsc() - start_timestamp) >= (cpu_hkz << 10)
That's roughly one second.
Both methods are problematic. The APIC has 256 vectors, which means
that in theory max. 256 IRR/ISR bits can be set. In practice this is
impossible and the chance that more than a few bits are set is close
to zero.
With the pure loop based approach the 1 million retries are complete
overkill.
With TSC this can terminate too early in a guest which is running on a
heavily loaded host even with only a couple of IRR/ISR bits set. The
reason is that after acknowledging the highest priority ISR bit,
pending IRRs must get serviced first before the next round of
acknowledge can take place as the APIC (real and virtualized) does not
honour EOI without a preceeding interrupt on the CPU. And every APIC
read/write takes a VMEXIT if the APIC is virtualized. While trying to
reproduce the issue 0-day reported it was observed that the guest was
scheduled out long enough under heavy load that it terminated after 8
iterations.
Make the loop terminate after 512 iterations. That's plenty enough
in any case and does not take endless time to complete.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.158847694@linutronix.de
If the APIC was already enabled on entry of setup_local_APIC() then
disabling it soft via the SPIV register makes a lot of sense.
That masks all LVT entries and brings it into a well defined state.
Otherwise previously enabled LVTs which are not touched in the setup
function stay unmasked and might surprise the just booting kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.068290579@linutronix.de
If the APIC is soft disabled then unmasking an LVT entry does not work and
the write is ignored. perf_events_lapic_init() tries to do so.
Move the invocation after the point where the APIC has been enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105218.962517234@linutronix.de
apic->send_IPI_allbutself() takes a vector number as argument.
APIC_DM_NMI is clearly not a vector number. It's defined to 0x400 which is
outside the vector space.
Use NMI_VECTOR instead as that's what it is intended to be.
Fixes: 82da3ff89d ("x86: kgdb support")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105218.855189979@linutronix.de
A reboot request sends an IPI via the reboot vector and waits for all other
CPUs to stop. If one or more CPUs are in critical regions with interrupts
disabled then the IPI is not handled on those CPUs and the shutdown hangs
if native_stop_other_cpus() is called with the wait argument set.
Such a situation can happen when one CPU was stopped within a lock held
section and another CPU is trying to acquire that lock with interrupts
disabled. There are other scenarios which can cause such a lockup as well.
In theory the shutdown should be attempted by an NMI IPI after the timeout
period elapsed. Though the wait loop after sending the reboot vector IPI
prevents this. It checks the wait request argument and the timeout. If wait
is set, which is true for sys_reboot() then it won't fall through to the
NMI shutdown method after the timeout period has finished.
This was an oversight when the NMI shutdown mechanism was added to handle
the 'reboot IPI is not working' situation. The mechanism was added to deal
with stuck panic shutdowns, which do not have the wait request set, so the
'wait request' case was probably not considered.
Remove the wait check from the post reboot vector IPI wait loop and enforce
that the wait loop in the NMI fallback path is invoked even if NMI IPIs are
disabled or the registration of the NMI handler fails. That second wait
loop will then hang if not all CPUs shutdown and the wait argument is set.
[ tglx: Avoid the hard to parse line break in the NMI fallback path,
add comments and massage the changelog ]
Fixes: 7d007d21e5 ("x86/reboot: Use NMI to assist in shutting down if IRQ fails")
Signed-off-by: Grzegorz Halat <ghalat@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Don Zickus <dzickus@redhat.com>
Link: https://lkml.kernel.org/r/20190628122813.15500-1-ghalat@redhat.com
X86_HYPER_NATIVE isn't accurate for checking if running on native platform,
e.g. CONFIG_HYPERVISOR_GUEST isn't set or "nopv" is enabled.
Checking the CPU feature bit X86_FEATURE_HYPERVISOR to determine if it's
running on native platform is more accurate.
This still doesn't cover the platforms on which X86_FEATURE_HYPERVISOR is
unsupported, e.g. VMware, but there is nothing which can be done about this
scenario.
Fixes: 8a4b06d391 ("x86/speculation/mds: Add sysfs reporting for MDS")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1564022349-17338-1-git-send-email-zhenzhong.duan@oracle.com
Rui reported that on a Pentium D machine which has HPET forced enabled
because it is not advertised by ACPI, the early counter is counting check
leads to a silent boot hang.
The reason is that the ordering of checking the counter first and then
reconfiguring the HPET fails to work on that machine. As the HPET is not
advertised and presumably not initialized by the BIOS the early enable and
the following reconfiguration seems to bring it into a broken state. Adding
clocksource=jiffies to the command line results in the following
clocksource watchdog warning:
clocksource: timekeeping watchdog on CPU1:
Marking clocksource 'tsc-early' as unstable because the skew is too large:
clocksource: 'hpet' wd_now: 33 wd_last: 33 mask: ffffffff
That clearly shows that the HPET is not counting after it got reconfigured
and reenabled. If the counter is not working then the HPET timer is not
expiring either, which explains the boot hang.
Move the counter is counting check after the full configuration again to
unbreak these systems.
Reported-by: Rui Salvaterra <rsalvaterra@gmail.com>
Fixes: 3222daf970 ("x86/hpet: Separate counter check out of clocksource register code")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Rui Salvaterra <rsalvaterra@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907250810530.1791@nanos.tec.linutronix.de
The ret comparison and return are unnecessary as of commit f296f26349
("x86/kexec: Remove walk_iomem_res() call with GART type")
elf_header_exclude_ranges() returns ret in any case, with or without this
comparison.
[ tglx: Use a proper commit reference instead of full SHA ]
Signed-off-by: Nikolas Nyby <nikolas@gnu.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190724041337.8346-1-nikolas@gnu.org
AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1 was announced.
Back then, there was a proposal to remove the serializing mfence feature
bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have
serializing lfence. At the time, it was (ahem) speculated that some
hypervisors might not yet support its removal, so it remained for the
time being.
Now a year-and-a-half later, it should be safe to remove.
I asked Andrew Cooper about whether it's still needed:
So if you're virtualised, you've got no choice in the matter. lfence
is either dispatch-serialising or not on AMD, and you won't be able to
change it.
Furthermore, you can't accurately tell what state the bit is in, because
the MSR might not be virtualised at all, or may not reflect the true
state in hardware. Worse still, attempting to set the bit may not be
successful even if there isn't a fault for doing so.
Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of
things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT). ISTR other hypervisor
vendors saying the same, but I don't have any information to hand.
If you are running under a hypervisor which has been updated, then
lfence will almost certainly be dispatch-serialising in practice, and
you'll almost certainly see the bit already set in DE_CFG. If you're
running under a hypervisor which hasn't been patched since Spectre,
you've already lost in many more ways.
I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping.
So remove it. This will reduce some code rot, and also make it easier
to hook barrier_nospec() up to a cmdline disable for performance
raisins, without having to need an alternative_3() macro.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
There is no reader of trampoline_status, it's only written.
It turns out that after commit ce4b1b1650 ("x86/smpboot: Initialize
secondary CPU only if master CPU will wait for it"), trampoline_status is
not needed any more.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1563266424-3472-1-git-send-email-kernelfans@gmail.com
Commit e6401c1309 ("x86/irq/64: Split the IRQ stack into its own pages")
missed to update one piece of comment as it did to its peer in Xen, which
will confuse people who still need to read comment.
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190719081635.26528-1-caoj.fnst@cn.fujitsu.com
Some Lenovo 2-in-1s with a detachable keyboard have a portrait screen but
advertise a landscape resolution and pitch, resulting in a messed up
display if the kernel tries to show anything on the efifb (because of the
wrong pitch).
Fix this by adding a new DMI match table for devices which need to have
their width and height swapped.
At first it was tried to use the existing table for overriding some of the
efifb parameters, but some of the affected devices have variants with
different LCD resolutions which will not work with hardcoded override
values.
Reference: https://bugzilla.redhat.com/show_bug.cgi?id=1730783
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190721152418.11644-1-hdegoede@redhat.com
When arch_stack_walk_user() is called from atomic contexts, access_ok() can
trigger the following warning if compiled with CONFIG_DEBUG_ATOMIC_SLEEP=y.
Reproducer:
// CONFIG_DEBUG_ATOMIC_SLEEP=y
# cd /sys/kernel/debug/tracing
# echo 1 > options/userstacktrace
# echo 1 > events/irq/irq_handler_entry/enable
WARNING: CPU: 0 PID: 2649 at arch/x86/kernel/stacktrace.c:103 arch_stack_walk_user+0x6e/0xf6
CPU: 0 PID: 2649 Comm: bash Not tainted 5.3.0-rc1+ #99
RIP: 0010:arch_stack_walk_user+0x6e/0xf6
Call Trace:
<IRQ>
stack_trace_save_user+0x10a/0x16d
trace_buffer_unlock_commit_regs+0x185/0x240
trace_event_buffer_commit+0xec/0x330
trace_event_raw_event_irq_handler_entry+0x159/0x1e0
__handle_irq_event_percpu+0x22d/0x440
handle_irq_event_percpu+0x70/0x100
handle_irq_event+0x5a/0x8b
handle_edge_irq+0x12f/0x3f0
handle_irq+0x34/0x40
do_IRQ+0xa6/0x1f0
common_interrupt+0xf/0xf
</IRQ>
Fix it by calling __range_not_ok() directly instead of access_ok() as
copy_from_user_nmi() does. This is fine here because the actual copy is
inside a pagefault disabled region.
Reported-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190722083216.16192-2-devel@etsukata.com
Add a new AVX512 instruction group/feature for enumeration in
/proc/cpuinfo: AVX512_VP2INTERSECT.
CPUID.(EAX=7,ECX=0):EDX[bit 8] AVX512_VP2INTERSECT
Detailed information of CPUID bits for this feature can be found in
the Intel Architecture Intsruction Set Extensions Programming Reference
document (refer to Table 1-2). A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=204215.
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190717234632.32673-3-gayatri.kammela@intel.com
Improve code readability by adding a tab between the elements of each
structure in an array of cpuid-dep struct so longer feature names will fit.
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190717234632.32673-2-gayatri.kammela@intel.com
For unfortunate historical reasons, the x32 syscalls and the x86_64
syscalls are not all numbered the same. As an example, ioctl() is nr 16 on
x86_64 but 514 on x32.
This has potentially nasty consequences, since it means that there are two
valid RAX values to do ioctl(2) and two invalid RAX values. The valid
values are 16 (i.e. ioctl(2) using the x86_64 ABI) and (514 | 0x40000000)
(i.e. ioctl(2) using the x32 ABI).
The invalid values are 514 and (16 | 0x40000000). 514 will enter the
"COMPAT_SYSCALL_DEFINE3(ioctl, ...)" entry point with in_compat_syscall()
and in_x32_syscall() returning false, whereas (16 | 0x40000000) will enter
the native entry point with in_compat_syscall() and in_x32_syscall()
returning true. Both are bogus, and both will exercise code paths in the
kernel and in any running seccomp filters that really ought to be
unreachable.
Splitting out the x32 syscalls into their own tables, allows both bogus
invocations to return -ENOSYS. I've checked glibc, musl, and Bionic, and
all of them appear to call syscalls with their correct numbers, so this
change should have no effect on them.
There is an added benefit going forward: new syscalls that need special
handling on x32 can share the same number on x32 and x86_64. This means
that the special syscall range 512-547 can be treated as a legacy wart
instead of something that may need to be extended in the future.
Also add a selftest to verify the new behavior.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/208024256b764312598f014ebfb0a42472c19354.1562185330.git.luto@kernel.org
There is a lot of infrastructure for functionality which is used
exclusively in __{save,restore}_processor_state() on the suspend/resume
path.
cr8 is an alias of APIC_TASKPRI, and APIC_TASKPRI is saved/restored by
lapic_{suspend,resume}(). Saving and restoring cr8 independently of the
rest of the Local APIC state isn't a clever thing to be doing.
Delete the suspend/resume cr8 handling, which shrinks the size of struct
saved_context, and allows for the removal of both PVOPS.
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20190715151641.29210-1-andrew.cooper3@citrix.com
The APIC, per spec, is fundamentally confused and thinks that interrupt
vectors 16-31 are valid. This makes no sense -- the CPU reserves vectors
0-31 for exceptions (faults, traps, etc). Obviously, no device should
actually produce an interrupt with vector 16-31, but robustness can be
improved by setting the APIC TPR class to 1, which will prevent delivery of
an interrupt with a vector below 32.
Note: This is *not* intended as a security measure against attackers who
control malicious hardware. Any PCI or similar hardware that can be
controlled by an attacker MUST be behind a functional IOMMU that remaps
interrupts. The purpose of this change is to reduce the chance that a
certain class of device malfunctions crashes the kernel in hard-to-debug
ways.
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/dc04a9f8b234d7b0956a8d2560b8945bcd9c4bf7.1563117760.git.luto@kernel.org
Pull x86 fixes from Thomas Gleixner:
"A set of x86 specific fixes and updates:
- The CR2 corruption fixes which store CR2 early in the entry code
and hand the stored address to the fault handlers.
- Revert a forgotten leftover of the dropped FSGSBASE series.
- Plug a memory leak in the boot code.
- Make the Hyper-V assist functionality robust by zeroing the shadow
page.
- Remove a useless check for dead processes with LDT
- Update paravirt and VMware maintainers entries.
- A few cleanup patches addressing various compiler warnings"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Prevent clobbering of saved CR2 value
x86/hyper-v: Zero out the VP ASSIST PAGE on allocation
x86, boot: Remove multiple copy of static function sanitize_boot_params()
x86/boot/compressed/64: Remove unused variable
x86/boot/efi: Remove unused variables
x86/mm, tracing: Fix CR2 corruption
x86/entry/64: Update comments and sanity tests for create_gap
x86/entry/64: Simplify idtentry a little
x86/entry/32: Simplify common_exception
x86/paravirt: Make read_cr2() CALLEE_SAVE
MAINTAINERS: Update PARAVIRT_OPS_INTERFACE and VMWARE_HYPERVISOR_INTERFACE
x86/process: Delete useless check for dead process with LDT
x86: math-emu: Hide clang warnings for 16-bit overflow
x86/e820: Use proper booleans instead of 0/1
x86/apic: Silence -Wtype-limits compiler warnings
x86/mm: Free sme_early_buffer after init
x86/boot: Fix memory leak in default_get_smp_config()
Revert "x86/ptrace: Prevent ptrace from clearing the FS/GS selector" and fix the test
Pull core fixes from Thomas Gleixner:
- A collection of objtool fixes which address recent fallout partially
exposed by newer toolchains, clang, BPF and general code changes.
- Force USER_DS for user stack traces
[ Note: the "objtool fixes" are not all to objtool itself, but for
kernel code that triggers objtool warnings.
Things like missing function size annotations, or code that confuses
the unwinder etc. - Linus]
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
objtool: Support conditional retpolines
objtool: Convert insn type to enum
objtool: Fix seg fault on bad switch table entry
objtool: Support repeated uses of the same C jump table
objtool: Refactor jump table code
objtool: Refactor sibling call detection logic
objtool: Do frame pointer check before dead end check
objtool: Change dead_end_function() to return boolean
objtool: Warn on zero-length functions
objtool: Refactor function alias logic
objtool: Track original function across branches
objtool: Add mcsafe_handle_tail() to the uaccess safe list
bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()
x86/uaccess: Remove redundant CLACs in getuser/putuser error paths
x86/uaccess: Don't leak AC flag into fentry from mcsafe_handle_tail()
x86/uaccess: Remove ELF function annotation from copy_user_handle_tail()
x86/head/64: Annotate start_cpu0() as non-callable
x86/entry: Fix thunk function ELF sizes
x86/kvm: Don't call kvm_spurious_fault() from .fixup
x86/kvm: Replace vmx_vmenter()'s call to kvm_spurious_fault() with UD2
...
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXTFdBAAKCRCAXGG7T9hj
vkwEAQDKDApCcJymAaq+BP2/lU/kErzFFXQ7seDN84q13ZMfcwEAzDz7vU1zicMP
Sdq1LzFdiuXjk34BBi2PURXZAVoaXgU=
=KkHz
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.3a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"Fixes and features:
- A series to introduce a common command line parameter for disabling
paravirtual extensions when running as a guest in virtualized
environment
- A fix for int3 handling in Xen pv guests
- Removal of the Xen-specific tmem driver as support of tmem in Xen
has been dropped (and it was experimental only)
- A security fix for running as Xen dom0 (XSA-300)
- A fix for IRQ handling when offlining cpus in Xen guests
- Some small cleanups"
* tag 'for-linus-5.3a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: let alloc_xenballooned_pages() fail if not enough memory free
xen/pv: Fix a boot up hang revealed by int3 self test
x86/xen: Add "nopv" support for HVM guest
x86/paravirt: Remove const mark from x86_hyper_xen_hvm variable
xen: Map "xen_nopv" parameter to "nopv" and mark it obsolete
x86: Add "nopv" parameter to disable PV extensions
x86/xen: Mark xen_hvm_need_lapic() and xen_x2apic_para_available() as __init
xen: remove tmem driver
Revert "x86/paravirt: Set up the virt_spin_lock_key after static keys get initialized"
xen/events: fix binding user event channels to cpus
Pull vfs mount updates from Al Viro:
"The first part of mount updates.
Convert filesystems to use the new mount API"
* 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
mnt_init(): call shmem_init() unconditionally
constify ksys_mount() string arguments
don't bother with registering rootfs
init_rootfs(): don't bother with init_ramfs_fs()
vfs: Convert smackfs to use the new mount API
vfs: Convert selinuxfs to use the new mount API
vfs: Convert securityfs to use the new mount API
vfs: Convert apparmorfs to use the new mount API
vfs: Convert openpromfs to use the new mount API
vfs: Convert xenfs to use the new mount API
vfs: Convert gadgetfs to use the new mount API
vfs: Convert oprofilefs to use the new mount API
vfs: Convert ibmasmfs to use the new mount API
vfs: Convert qib_fs/ipathfs to use the new mount API
vfs: Convert efivarfs to use the new mount API
vfs: Convert configfs to use the new mount API
vfs: Convert binfmt_misc to use the new mount API
convenience helper: get_tree_single()
convenience helper get_tree_nodev()
vfs: Kill sget_userns()
...
Merge yet more updates from Andrew Morton:
"The rest of MM and a kernel-wide procfs cleanup.
Summary of the more significant patches:
- Patch series "mm/memory_hotplug: Factor out memory block
devicehandling", v3. David Hildenbrand.
Some spring-cleaning of the memory hotplug code, notably in
drivers/base/memory.c
- "mm: thp: fix false negative of shmem vma's THP eligibility". Yang
Shi.
Fix /proc/pid/smaps output for THP pages used in shmem.
- "resource: fix locking in find_next_iomem_res()" + 1. Nadav Amit.
Bugfix and speedup for kernel/resource.c
- Patch series "mm: Further memory block device cleanups", David
Hildenbrand.
More spring-cleaning of the memory hotplug code.
- Patch series "mm: Sub-section memory hotplug support". Dan
Williams.
Generalise the memory hotplug code so that pmem can use it more
completely. Then remove the hacks from the libnvdimm code which
were there to work around the memory-hotplug code's constraints.
- "proc/sysctl: add shared variables for range check", Matteo Croce.
We have about 250 instances of
int zero;
...
.extra1 = &zero,
in the tree. This is a tree-wide sweep to make all those private
"zero"s and "one"s use global variables.
Alas, it isn't practical to make those two global integers const"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
proc/sysctl: add shared variables for range check
mm: migrate: remove unused mode argument
mm/sparsemem: cleanup 'section number' data types
libnvdimm/pfn: stop padding pmem namespaces to section alignment
libnvdimm/pfn: fix fsdax-mode namespace info-block zero-fields
mm/devm_memremap_pages: enable sub-section remap
mm: document ZONE_DEVICE memory-model implications
mm/sparsemem: support sub-section hotplug
mm/sparsemem: prepare for sub-section ranges
mm: kill is_dev_zone() helper
mm/hotplug: kill is_dev_zone() usage in __remove_pages()
mm/sparsemem: convert kmalloc_section_memmap() to populate_section_memmap()
mm/hotplug: prepare shrink_{zone, pgdat}_span for sub-section removal
mm/sparsemem: add helpers track active portions of a section at boot
mm/sparsemem: introduce a SECTION_IS_EARLY flag
mm/sparsemem: introduce struct mem_section_usage
drivers/base/memory.c: get rid of find_memory_block_hinted()
mm/memory_hotplug: move and simplify walk_memory_blocks()
mm/memory_hotplug: rename walk_memory_range() and pass start+size instead of pfns
mm: make register_mem_sect_under_node() static
...
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After an objtool improvement, it complains about the fact that
start_cpu0() jumps to code which has an LRET instruction.
arch/x86/kernel/head_64.o: warning: objtool: .head.text+0xe4: unsupported instruction in callable function
Technically, start_cpu0() is callable, but it acts nothing like a
callable function. Prevent objtool from treating it like one by
removing its ELF function annotation.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/6b1b4505fcb90571a55fa1b52d71fb458ca24454.1563413318.git.jpoimboe@redhat.com
The __raw_callee_save_*() functions have an ELF symbol size of zero,
which confuses objtool and other tools.
Fixes a bunch of warnings like the following:
arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_pte_val() is missing an ELF size annotation
arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_pgd_val() is missing an ELF size annotation
arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_make_pte() is missing an ELF size annotation
arch/x86/xen/mmu_pv.o: warning: objtool: __raw_callee_save_xen_make_pgd() is missing an ELF size annotation
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/afa6d49bb07497ca62e4fc3b27a2d0cece545b4e.1563413318.git.jpoimboe@redhat.com
- Add user space specific memory reading for kprobes
- Allow kprobes to be executed earlier in boot
The rest are mostly just various clean ups and small fixes.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXS88txQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qhaPAQDHaAmu6wXtZjZE6GU4ZP61UNgDECmZ
4wlGrNc1AAlqAQD/QC8339p37aDCp9n27VY1wmJwF3nca+jAHfQLqWkkYgw=
=n/tz
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The main changes in this release include:
- Add user space specific memory reading for kprobes
- Allow kprobes to be executed earlier in boot
The rest are mostly just various clean ups and small fixes"
* tag 'trace-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
tracing: Make trace_get_fields() global
tracing: Let filter_assign_type() detect FILTER_PTR_STRING
tracing: Pass type into tracing_generic_entry_update()
ftrace/selftest: Test if set_event/ftrace_pid exists before writing
ftrace/selftests: Return the skip code when tracing directory not configured in kernel
tracing/kprobe: Check registered state using kprobe
tracing/probe: Add trace_event_call accesses APIs
tracing/probe: Add probe event name and group name accesses APIs
tracing/probe: Add trace flag access APIs for trace_probe
tracing/probe: Add trace_event_file access APIs for trace_probe
tracing/probe: Add trace_event_call register API for trace_probe
tracing/probe: Add trace_probe init and free functions
tracing/uprobe: Set print format when parsing command
tracing/kprobe: Set print format right after parsed command
kprobes: Fix to init kprobes in subsys_initcall
tracepoint: Use struct_size() in kmalloc()
ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS
ftrace: Enable trampoline when rec count returns back to one
tracing/kprobe: Do not run kprobe boot tests if kprobe_event is on cmdline
tracing: Make a separate config for trace event self tests
...
Despite the current efforts to read CR2 before tracing happens there still
exist a number of possible holes:
idtentry page_fault do_page_fault has_error_code=1
call error_entry
TRACE_IRQS_OFF
call trace_hardirqs_off*
#PF // modifies CR2
CALL_enter_from_user_mode
__context_tracking_exit()
trace_user_exit(0)
#PF // modifies CR2
call do_page_fault
address = read_cr2(); /* whoopsie */
And similar for i386.
Fix it by pulling the CR2 read into the entry code, before any of that
stuff gets a chance to run and ruin things.
Reported-by: He Zhe <zhe.he@windriver.com>
Reported-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: bp@alien8.de
Cc: rostedt@goodmis.org
Cc: torvalds@linux-foundation.org
Cc: hpa@zytor.com
Cc: dave.hansen@linux.intel.com
Cc: jgross@suse.com
Cc: joel@joelfernandes.org
Link: https://lkml.kernel.org/r/20190711114336.116812491@infradead.org
Debugged-by: Steven Rostedt <rostedt@goodmis.org>
PVH guest needs PV extentions to work, so "nopv" parameter should be
ignored for PVH but not for HVM guest.
If PVH guest boots up via the Xen-PVH boot entry, xen_pvh is set early,
we know it's PVH guest and ignore "nopv" parameter directly.
If PVH guest boots up via the normal boot entry same as HVM guest, it's
hard to distinguish PVH and HVM guest at that time. In this case, we
have to panic early if PVH is detected and nopv is enabled to avoid a
worse situation later.
Remove static from bool_x86_init_noop/x86_op_int_noop so they could be
used globally. Move xen_platform_hvm() after xen_hvm_guest_late_init()
to avoid compile error.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
.. as "nopv" support needs it to be changeable at boot up stage.
Checkpatch reports warning, so move variable declarations from
hypervisor.c to hypervisor.h
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
In virtualization environment, PV extensions (drivers, interrupts,
timers, etc) are enabled in the majority of use cases which is the
best option.
However, in some cases (kexec not fully working, benchmarking)
we want to disable PV extensions. We have "xen_nopv" for that purpose
but only for XEN. For a consistent admin experience a common command
line parameter "nopv" set across all PV guest implementations is a
better choice.
There are guest types which just won't work without PV extensions,
like Xen PV, Xen PVH and jailhouse. add a "ignore_nopv" member to
struct hypervisor_x86 set to true for those guest types and call
the detect functions only if nopv is false or ignore_nopv is true.
Suggested-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Juergen Gross <jgross@suse.com>
This reverts commit ca5d376e17.
Commit 8990cac6e5 ("x86/jump_label: Initialize static branching
early") adds jump_label_init() call in setup_arch() to make static
keys initialized early, so we could use the original simpler code
again.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
At release_thread(), ->mm is NULL; and it is fine for the former mm to
still have an LDT. Delete this check in process_64.c, similar to
commit 2684927c6b ("[PATCH] x86: Deprecate useless bug"), which did the
same in process_32.c.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190712224152.13129-1-jannh@google.com
This fixes the following coccinelle warning:
./arch/x86/kernel/e820.c:89:9-10: WARNING: return of 0/1 in function '_e820__mapped_any' with return type bool
Return type bool instead of 0/1.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1563158829-44373-1-git-send-email-wang.yi59@zte.com.cn
There are many compiler warnings like this,
In file included from ./arch/x86/include/asm/smp.h:13,
from ./arch/x86/include/asm/mmzone_64.h:11,
from ./arch/x86/include/asm/mmzone.h:5,
from ./include/linux/mmzone.h:969,
from ./include/linux/gfp.h:6,
from ./include/linux/mm.h:10,
from arch/x86/kernel/apic/io_apic.c:34:
arch/x86/kernel/apic/io_apic.c: In function 'check_timer':
./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned
expression >= 0 is always true [-Wtype-limits]
if ((v) <= apic_verbosity) \
^~
arch/x86/kernel/apic/io_apic.c:2160:2: note: in expansion of macro
'apic_printk'
apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
^~~~~~~~~~~
./arch/x86/include/asm/apic.h:37:11: warning: comparison of unsigned
expression >= 0 is always true [-Wtype-limits]
if ((v) <= apic_verbosity) \
^~
arch/x86/kernel/apic/io_apic.c:2207:4: note: in expansion of macro
'apic_printk'
apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
^~~~~~~~~~~
APIC_QUIET is 0, so silence them by making apic_verbosity type int.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1562621805-24789-1-git-send-email-cai@lca.pw
When default_get_smp_config() is called with early == 1 and mpf->feature1
is non-zero, mpf is leaked because the return path does not do
early_memunmap().
Fix this and share a common exit routine.
Fixes: 5997efb967 ("x86/boot: Use memremap() to map the MPF and MPC data")
Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907091942570.28240@chino.kir.corp.google.com
This reverts commit 48f5e52e91.
The ptrace ABI change was a prerequisite to the proposed design for
FSGSBASE. Since FSGSBASE support has been reverted, and since I'm not
convinced that the ABI was ever adequately tested, revert the ABI change as
well.
This also modifies the test case so that it tests the preexisting behavior.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/fca39c478ea7fb15bc76fe8a36bd180810a067f6.1563200250.git.luto@kernel.org
* support for chained PMU counters in guests
* improved SError handling
* handle Neoverse N1 erratum #1349291
* allow side-channel mitigation status to be migrated
* standardise most AArch64 system register accesses to msr_s/mrs_s
* fix host MPIDR corruption on 32bit
* selftests ckleanups
x86:
* PMU event {white,black}listing
* ability for the guest to disable host-side interrupt polling
* fixes for enlightened VMCS (Hyper-V pv nested virtualization),
* new hypercall to yield to IPI target
* support for passing cstate MSRs through to the guest
* lots of cleanups and optimizations
Generic:
* Some txt->rST conversions for the documentation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdJzdIAAoJEL/70l94x66DQDoH/i83/8kX4I8AWDlushPru4ts
Q4lCE5VAPha+o4pLb1dtfFL3gTmSbsB1N++JSlqK3JOo6LphIOy6b0wBjQBbAa6U
3CT1dJaHJoScLLj09vyBlvClGUH2ZKEQTWOiquCCf7JfPofxwPUA6vJ7TYsdkckx
zR3ygbADWmnfS7hFfiqN3JzuYh9eoooGNWSU+Giq6VF41SiL3IqhBGZhWS0zE9c2
2c5lpqqdeHmAYNBqsyzNiDRKp7+zLFSmZ7Z5/0L755L8KYwR6F5beTnmBMHvb4lA
PWH/SWOC8EYR+PEowfrH+TxKZwp0gMn1kcAKjilHk0uCRwG1IzuHAr2jlNxICCk=
=t/Oq
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for chained PMU counters in guests
- improved SError handling
- handle Neoverse N1 erratum #1349291
- allow side-channel mitigation status to be migrated
- standardise most AArch64 system register accesses to msr_s/mrs_s
- fix host MPIDR corruption on 32bit
- selftests ckleanups
x86:
- PMU event {white,black}listing
- ability for the guest to disable host-side interrupt polling
- fixes for enlightened VMCS (Hyper-V pv nested virtualization),
- new hypercall to yield to IPI target
- support for passing cstate MSRs through to the guest
- lots of cleanups and optimizations
Generic:
- Some txt->rST conversions for the documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (128 commits)
Documentation: virtual: Add toctree hooks
Documentation: kvm: Convert cpuid.txt to .rst
Documentation: virtual: Convert paravirt_ops.txt to .rst
KVM: x86: Unconditionally enable irqs in guest context
KVM: x86: PMU Event Filter
kvm: x86: Fix -Wmissing-prototypes warnings
KVM: Properly check if "page" is valid in kvm_vcpu_unmap
KVM: arm/arm64: Initialise host's MPIDRs by reading the actual register
KVM: LAPIC: Retry tune per-vCPU timer_advance_ns if adaptive tuning goes insane
kvm: LAPIC: write down valid APIC registers
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
KVM: doc: Add API documentation on the KVM_REG_ARM_WORKAROUNDS register
KVM: arm/arm64: Add save/restore support for firmware workaround state
arm64: KVM: Propagate full Spectre v2 workaround state to KVM guests
KVM: arm/arm64: Support chained PMU counters
KVM: arm/arm64: Remove pmc->bitmask
KVM: arm/arm64: Re-create event when setting counter value
KVM: arm/arm64: Extract duplicated code to own function
KVM: arm/arm64: Rename kvm_pmu_{enable/disable}_counter functions
KVM: LAPIC: ARBPRI is a reserved register for x2APIC
...
Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups. Because of this, there is going
to be some merge issues with your tree at the moment, I'll follow up
with the expected resolutions to make it easier for you.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups (will cause build warnings
with s390 and coresight drivers in your tree)
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse
easier due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of merge
issues that Stephen has been patient with me for. Other than the merge
issues, functionality is working properly in linux-next :)
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXSgpnQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykcwgCfS30OR4JmwZydWGJ7zK/cHqk+KjsAnjOxjC1K
LpRyb3zX29oChFaZkc5a
=XrEZ
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core and debugfs updates from Greg KH:
"Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse easier
due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of
merge issues that Stephen has been patient with me for"
* tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (102 commits)
debugfs: make error message a bit more verbose
orangefs: fix build warning from debugfs cleanup patch
ubifs: fix build warning after debugfs cleanup patch
driver: core: Allow subsystems to continue deferring probe
drivers: base: cacheinfo: Ensure cpu hotplug work is done before Intel RDT
arch_topology: Remove error messages on out-of-memory conditions
lib: notifier-error-inject: no need to check return value of debugfs_create functions
swiotlb: no need to check return value of debugfs_create functions
ceph: no need to check return value of debugfs_create functions
sunrpc: no need to check return value of debugfs_create functions
ubifs: no need to check return value of debugfs_create functions
orangefs: no need to check return value of debugfs_create functions
nfsd: no need to check return value of debugfs_create functions
lib: 842: no need to check return value of debugfs_create functions
debugfs: provide pr_fmt() macro
debugfs: log errors when something goes wrong
drivers: s390/cio: Fix compilation warning about const qualifiers
drivers: Add generic helper to match by of_node
driver_find_device: Unify the match function with class_find_device()
bus_find_device: Unify the match callback with class_find_device
...
This patch is a pre-requisite for enabling KASAN bitops instrumentation;
using static_cpu_has instead of boot_cpu_has avoids instrumentation of
test_bit inside the uaccess region. With instrumentation, the KASAN
check would otherwise be flagged by objtool.
For consistency, kernel/signal.c was changed to mirror this change,
however, is never instrumented with KASAN (currently unsupported under
x86 32bit).
Link: http://lkml.kernel.org/r/20190613125950.197667-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Thomas Gleixner:
"A collection of assorted fixes:
- Fix for the pinned cr0/4 fallout which escaped all testing efforts
because the kvm-intel module was never loaded when the kernel was
compiled with CONFIG_PARAVIRT=n. The cr0/4 accessors are moved out
of line and static key is now solely used in the core code and
therefore can stay in the RO after init section. So the kvm-intel
and other modules do not longer reference the (read only) static
key which the module loader tried to update.
- Prevent an infinite loop in arch_stack_walk_user() by breaking out
of the loop once the return address is detected to be 0.
- Prevent the int3_emulate_call() selftest from corrupting the stack
when KASAN is enabled. KASASN clobbers more registers than covered
by the emulated call implementation. Convert the int3_magic()
selftest to a ASM function so the compiler cannot KASANify it.
- Unbreak the build with old GCC versions and with the Gold linker by
reverting the 'Move of _etext to the actual end of .text'. In both
cases the build fails with 'Invalid absolute R_X86_64_32S
relocation: _etext'
- Initialize the context lock for init_mm, which was never an issue
until the alternatives code started to use a temporary mm for
patching.
- Fix a build warning vs. the LOWMEM_PAGES constant where clang
complains rightfully about a signed integer overflow in the shift
operation by converting the operand to an ULL.
- Adjust the misnamed ENDPROC() of common_spurious in the 32bit entry
code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/stacktrace: Prevent infinite loop in arch_stack_walk_user()
x86/asm: Move native_write_cr0/4() out of line
x86/pgtable/32: Fix LOWMEM_PAGES constant
x86/alternatives: Fix int3_emulate_call() selftest stack corruption
x86/entry/32: Fix ENDPROC of common_spurious
Revert "x86/build: Move _etext to actual end of .text"
x86/ldt: Initialize the context lock for init_mm
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl0kge4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDYyQP/3XY5tFcLKkp/h9rnGaCXwAxhNzn
TyF/IZEFBKFTSoDMXKLLc8KllvoPQ7aUl03heYbuayYpyKR1+LCx7lDwu1MYyEf+
aSSuOKlbG//tLUEGp09pTRCgjs2mhhZYqOj5GF2mZ7xpovFVSNOPzTazbXDNQ7tw
zUAs43YNg+bUMwj+SLWpBlizjrLr7T34utIr6daKJE/GSfmIrcYXhGbZqUh0zbO0
z5LNasebws8/pHyeGI7+/yoMIKaQ8foMgywTpsRpBsx6YI+AbOLjEmCk2IBOPcEK
pm9KkSIBZEO2CSxZKl3NQiEow/Qd/lnz2xLMCSfh4XrYoI2Th4gNcsbJpiBDWP5a
0eZ5jSiexxKngIbM+to7jR3m0yc9RgcuzceJg3Uly7Ya0vb5RqKwOX4Ge4XP4VDT
DzIVFdQjxDKdVIf3EvGp1cj4P7dRUU3xbZcbzyuRPEmT3vgjEnbxawmPLs3QMAl1
31Wd2wIsPB86kSxzSMel27Vs5VgMhgyHE26zN91R745CvhDXaDKydIWjGjdVMHsB
GuX/h2kL+ohx+N/OpZPgwsVUAGLSOQFP3pE/EcGtqc2kkfqa+bx12DKcZ3zdmJvy
+cu5ixU8q5thPH/pZob/C3hKUY/eLy02emS34RK0Jh2sZHbQgAOtMsiqUxNHEjUm
6TkpdWa5SRd7CtGV
=yfCs
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 5.3
- Add support for chained PMU counters in guests
- Improve SError handling
- Handle Neoverse N1 erratum #1349291
- Allow side-channel mitigation status to be migrated
- Standardise most AArch64 system register accesses to msr_s/mrs_s
- Fix host MPIDR corruption on 32bit
arch_stack_walk_user() checks `if (fp == frame.next_fp)` to prevent a
infinite loop by self reference but it's not enogh for circular reference.
Once a lack of return address is found, there is no point to continue the
loop, so break out.
Fixes: 02b67518e2 ("tracing: add support for userspace stacktraces in tracing/iter_ctrl")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20190711023501.963-1-devel@etsukata.com
The pinning of sensitive CR0 and CR4 bits caused a boot crash when loading
the kvm_intel module on a kernel compiled with CONFIG_PARAVIRT=n.
The reason is that the static key which controls the pinning is marked RO
after init. The kvm_intel module contains a CR4 write which requires to
update the static key entry list. That obviously does not work when the key
is in a RO section.
With CONFIG_PARAVIRT enabled this does not happen because the CR4 write
uses the paravirt indirection and the actual write function is built in.
As the key is intended to be immutable after init, move
native_write_cr0/4() out of line.
While at it consolidate the update of the cr4 shadow variable and store the
value right away when the pinning is initialized on a booting CPU. No point
in reading it back 20 instructions later. This allows to confine the static
key and the pinning variable to cpu/common and allows to mark them static.
Fixes: 8dbec27a24 ("x86/asm: Pin sensitive CR0 bits")
Fixes: 873d50d58f ("x86/asm: Pin sensitive CR4 bits")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Xi Ruoyao <xry111@mengyan1223.wang>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Xi Ruoyao <xry111@mengyan1223.wang>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907102140340.1758@nanos.tec.linutronix.de
KASAN shows the following splat during boot:
BUG: KASAN: unknown-crash in unwind_next_frame+0x3f6/0x490
Read of size 8 at addr ffffffff84007db0 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Tainted: G T 5.2.0-rc6-00013-g7457c0d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
Call Trace:
dump_stack+0x19/0x1b
print_address_description+0x1b0/0x2b2
__kasan_report+0x10f/0x171
kasan_report+0x12/0x1c
__asan_load8+0x54/0x81
unwind_next_frame+0x3f6/0x490
unwind_next_frame+0x1b/0x23
arch_stack_walk+0x68/0xa5
stack_trace_save+0x7b/0xa0
save_trace+0x3c/0x93
mark_lock+0x1ef/0x9b1
lock_acquire+0x122/0x221
__mutex_lock+0xb6/0x731
mutex_lock_nested+0x16/0x18
_vm_unmap_aliases+0x141/0x183
vm_unmap_aliases+0x14/0x16
change_page_attr_set_clr+0x15e/0x2f2
set_memory_4k+0x2a/0x2c
check_bugs+0x11fd/0x1298
start_kernel+0x793/0x7eb
x86_64_start_reservations+0x55/0x76
x86_64_start_kernel+0x87/0xaa
secondary_startup_64+0xa4/0xb0
Memory state around the buggy address:
ffffffff84007c80: 00 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1
ffffffff84007d00: f1 00 00 00 00 00 00 00 00 00 f2 f2 f2 f3 f3 f3
>ffffffff84007d80: f3 79 be 52 49 79 be 00 00 00 00 00 00 00 00 f1
It turns out that int3_selftest() is corrupting the stack. The problem is
that the KASAN-ified version of int3_magic() is much less trivial than the
C code appears. It clobbers several unexpected registers. So when the
selftest's INT3 is converted to an emulated call to int3_magic(), the
registers are clobbered and Bad Things happen when the function returns.
Fix this by converting int3_magic() to the trivial ASM function it should
be, avoiding all calling convention issues. Also add ASM_CALL_CONSTRAINT to
the INT3 ASM, since it contains a 'CALL'.
[peterz: cribbed changelog from josh]
Fixes: 7457c0da02 ("x86/alternatives: Add int3_emulate_call() selftest")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Debugged-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20190709125744.GB3402@hirez.programming.kicks-ass.net
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Pull x865 kdump updates from Thomas Gleixner:
"Yet more kexec/kdump updates:
- Properly support kexec when AMD's memory encryption (SME) is
enabled
- Pass reserved e820 ranges to the kexec kernel so both PCI and SME
can work"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
fs/proc/vmcore: Enable dumping of encrypted memory when SEV was active
x86/kexec: Set the C-bit in the identity map page table when SEV is active
x86/kexec: Do not map kexec area as decrypted when SEV is active
x86/crash: Add e820 reserved ranges to kdump kernel's e820 table
x86/mm: Rework ioremap resource mapping determination
x86/e820, ioport: Add a new I/O resource descriptor IORES_DESC_RESERVED
x86/mm: Create a workarea in the kernel for SME early encryption
x86/mm: Identify the end of the kernel area to be reserved
Pull x86 boot updates from Thomas Gleixner:
"Assorted updates to kexec/kdump:
- Proper kexec support for 4/5-level paging and jumping from a
5-level to a 4-level paging kernel.
- Make the EFI support for kexec/kdump more robust
- Enforce that the GDT is properly aligned instead of getting the
alignment by chance"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump/64: Restrict kdump kernel reservation to <64TB
x86/kexec/64: Prevent kexec from 5-level paging to a 4-level only kernel
x86/boot: Add xloadflags bits to check for 5-level paging support
x86/boot: Make the GDT 8-byte aligned
x86/kexec: Add the ACPI NVS region to the ident map
x86/boot: Call get_rsdp_addr() after console_init()
Revert "x86/boot: Disable RSDP parsing temporarily"
x86/boot: Use efi_setup_data for searching RSDP on kexec-ed kernels
x86/kexec: Add the EFI system tables and ACPI tables to the ident map
The previous commit added macro calls in the entry code which mitigate the
Spectre v1 swapgs issue if the X86_FEATURE_FENCE_SWAPGS_* features are
enabled. Enable those features where applicable.
The mitigations may be disabled with "nospectre_v1" or "mitigations=off".
There are different features which can affect the risk of attack:
- When FSGSBASE is enabled, unprivileged users are able to place any
value in GS, using the wrgsbase instruction. This means they can
write a GS value which points to any value in kernel space, which can
be useful with the following gadget in an interrupt/exception/NMI
handler:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
// dependent load or store based on the value of %reg
// for example: mov %(reg1), %reg2
If an interrupt is coming from user space, and the entry code
speculatively skips the swapgs (due to user branch mistraining), it
may speculatively execute the GS-based load and a subsequent dependent
load or store, exposing the kernel data to an L1 side channel leak.
Note that, on Intel, a similar attack exists in the above gadget when
coming from kernel space, if the swapgs gets speculatively executed to
switch back to the user GS. On AMD, this variant isn't possible
because swapgs is serializing with respect to future GS-based
accesses.
NOTE: The FSGSBASE patch set hasn't been merged yet, so the above case
doesn't exist quite yet.
- When FSGSBASE is disabled, the issue is mitigated somewhat because
unprivileged users must use prctl(ARCH_SET_GS) to set GS, which
restricts GS values to user space addresses only. That means the
gadget would need an additional step, since the target kernel address
needs to be read from user space first. Something like:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
mov (%reg1), %reg2
// dependent load or store based on the value of %reg2
// for example: mov %(reg2), %reg3
It's difficult to audit for this gadget in all the handlers, so while
there are no known instances of it, it's entirely possible that it
exists somewhere (or could be introduced in the future). Without
tooling to analyze all such code paths, consider it vulnerable.
Effects of SMAP on the !FSGSBASE case:
- If SMAP is enabled, and the CPU reports RDCL_NO (i.e., not
susceptible to Meltdown), the kernel is prevented from speculatively
reading user space memory, even L1 cached values. This effectively
disables the !FSGSBASE attack vector.
- If SMAP is enabled, but the CPU *is* susceptible to Meltdown, SMAP
still prevents the kernel from speculatively reading user space
memory. But it does *not* prevent the kernel from reading the
user value from L1, if it has already been cached. This is probably
only a small hurdle for an attacker to overcome.
Thanks to Dave Hansen for contributing the speculative_smap() function.
Thanks to Andrew Cooper for providing the inside scoop on whether swapgs
is serializing on AMD.
[ tglx: Fixed the USER fence decision and polished the comment as suggested
by Dave Hansen ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
This reverts commit 392bef7096.
Per the discussion here:
https://lkml.kernel.org/r/201906201042.3BF5CD6@keescook
the above referenced commit breaks kernel compilation with old GCC
toolchains as well as current versions of the Gold linker.
Revert it to fix the regression and to keep the ability to compile the
kernel with these tools.
Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: <stable@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Klaus Kusche <klaus.kusche@computerix.info>
Cc: samitolvanen@google.com
Cc: Guenter Roeck <groeck@google.com>
Link: https://lkml.kernel.org/r/20190701155208.211815-1-zwisler@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull force_sig() argument change from Eric Biederman:
"A source of error over the years has been that force_sig has taken a
task parameter when it is only safe to use force_sig with the current
task.
The force_sig function is built for delivering synchronous signals
such as SIGSEGV where the userspace application caused a synchronous
fault (such as a page fault) and the kernel responded with a signal.
Because the name force_sig does not make this clear, and because the
force_sig takes a task parameter the function force_sig has been
abused for sending other kinds of signals over the years. Slowly those
have been fixed when the oopses have been tracked down.
This set of changes fixes the remaining abusers of force_sig and
carefully rips out the task parameter from force_sig and friends
making this kind of error almost impossible in the future"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus
signal: Remove the signal number and task parameters from force_sig_info
signal: Factor force_sig_info_to_task out of force_sig_info
signal: Generate the siginfo in force_sig
signal: Move the computation of force into send_signal and correct it.
signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal
signal: Remove the task parameter from force_sig_fault
signal: Use force_sig_fault_to_task for the two calls that don't deliver to current
signal: Explicitly call force_sig_fault on current
signal/unicore32: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from ptrace_break
signal/nds32: Remove tsk parameter from send_sigtrap
signal/riscv: Remove tsk parameter from do_trap
signal/sh: Remove tsk parameter from force_sig_info_fault
signal/um: Remove task parameter from send_sigtrap
signal/x86: Remove task parameter from send_sigtrap
signal: Remove task parameter from force_sig_mceerr
signal: Remove task parameter from force_sig
signal: Remove task parameter from force_sigsegv
...
Pull integrity updates from Mimi Zohar:
"Bug fixes, code clean up, and new features:
- IMA policy rules can be defined in terms of LSM labels, making the
IMA policy dependent on LSM policy label changes, in particular LSM
label deletions. The new environment, in which IMA-appraisal is
being used, frequently updates the LSM policy and permits LSM label
deletions.
- Prevent an mmap'ed shared file opened for write from also being
mmap'ed execute. In the long term, making this and other similar
changes at the VFS layer would be preferable.
- The IMA per policy rule template format support is needed for a
couple of new/proposed features (eg. kexec boot command line
measurement, appended signatures, and VFS provided file hashes).
- Other than the "boot-aggregate" record in the IMA measuremeent
list, all other measurements are of file data. Measuring and
storing the kexec boot command line in the IMA measurement list is
the first buffer based measurement included in the measurement
list"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
integrity: Introduce struct evm_xattr
ima: Update MAX_TEMPLATE_NAME_LEN to fit largest reasonable definition
KEXEC: Call ima_kexec_cmdline to measure the boot command line args
IMA: Define a new template field buf
IMA: Define a new hook to measure the kexec boot command line arguments
IMA: support for per policy rule template formats
integrity: Fix __integrity_init_keyring() section mismatch
ima: Use designated initializers for struct ima_event_data
ima: use the lsm policy update notifier
LSM: switch to blocking policy update notifiers
x86/ima: fix the Kconfig dependency for IMA_ARCH_POLICY
ima: Make arch_policy_entry static
ima: prevent a file already mmap'ed write to be mmap'ed execute
x86/ima: check EFI SetupMode too
Pull x86 topology updates from Ingo Molnar:
"Implement multi-die topology support on Intel CPUs and expose the die
topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.
These changes should have no effect on the kernel's existing
understanding of topologies, i.e. there should be no behavioral impact
on cache, NUMA, scheduler, perf and other topologies and overall
system performance"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
perf/x86/intel/cstate: Support multi-die/package
perf/x86/intel/rapl: Support multi-die/package
perf/x86/intel/uncore: Support multi-die/package
topology: Create core_cpus and die_cpus sysfs attributes
topology: Create package_cpus sysfs attribute
hwmon/coretemp: Support multi-die/package
powercap/intel_rapl: Update RAPL domain name and debug messages
thermal/x86_pkg_temp_thermal: Support multi-die/package
powercap/intel_rapl: Support multi-die/package
powercap/intel_rapl: Simplify rapl_find_package()
x86/topology: Define topology_logical_die_id()
x86/topology: Define topology_die_id()
cpu/topology: Export die_id
x86/topology: Create topology_max_die_per_package()
x86/topology: Add CPUID.1F multi-die/package support
Pull x86 platform updayes from Ingo Molnar:
"Most of the commits add ACRN hypervisor guest support, plus two
cleanups"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/jailhouse: Mark jailhouse_x2apic_available() as __init
x86/platform/geode: Drop <linux/gpio.h> includes
x86/acrn: Use HYPERVISOR_CALLBACK_VECTOR for ACRN guest upcall vector
x86: Add support for Linux guests on an ACRN hypervisor
x86/Kconfig: Add new X86_HV_CALLBACK_VECTOR config symbol
Pull x86 paravirt updates from Ingo Molnar:
"A handful of paravirt patching code enhancements to make it more
robust against patching failures, and related cleanups and not so
related cleanups - by Thomas Gleixner and myself"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Rename paravirt_patch_site::instrtype to paravirt_patch_site::type
x86/paravirt: Standardize 'insn_buff' variable names
x86/paravirt: Match paravirt patchlet field definition ordering to initialization ordering
x86/paravirt: Replace the paravirt patch asm magic
x86/paravirt: Unify the 32/64 bit paravirt patching code
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_call()
x86/paravirt: Detect over-sized patching bugs in paravirt_patch_insns()
x86/paravirt: Remove bogus extern declarations
Pull x86 AVX512 status update from Ingo Molnar:
"This adds a new ABI that the main scheduler probably doesn't want to
deal with but HPC job schedulers might want to use: the
AVX512_elapsed_ms field in the new /proc/<pid>/arch_status task status
file, which allows the user-space job scheduler to cluster such tasks,
to avoid turbo frequency drops"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/filesystems/proc.txt: Add arch_status file
x86/process: Add AVX-512 usage elapsed time to /proc/pid/arch_status
proc: Add /proc/<pid>/arch_status
Pull x86 cleanups from Ingo Molnar:
"Misc small cleanups: removal of superfluous code and coding style
cleanups mostly"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kexec: Make variable static and config dependent
x86/defconfigs: Remove useless UEVENT_HELPER_PATH
x86/amd_nb: Make hygon_nb_misc_ids static
x86/tsc: Move inline keyword to the beginning of function declarations
x86/io_delay: Define IO_DELAY macros in C instead of Kconfig
x86/io_delay: Break instead of fallthrough in switch statement
Pull x86 cache resource control update from Ingo Molnar:
"Two cleanup patches"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Cleanup cbm_ensure_valid()
x86/resctrl: Use _ASM_BX to avoid ifdeffery
Pull x86 asm updates from Ingo Molnar:
"Most of the changes relate to Peter Zijlstra's cleanup of ptregs
handling, in particular the i386 part is now much simplified and
standardized - no more partial ptregs stack frames via the esp/ss
oddity. This simplifies ftrace, kprobes, the unwinder, ptrace, kdump
and kgdb.
There's also a CR4 hardening enhancements by Kees Cook, to make the
generic platform functions such as native_write_cr4() less useful as
ROP gadgets that disable SMEP/SMAP. Also protect the WP bit of CR0
against similar attacks.
The rest is smaller cleanups/fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternatives: Add int3_emulate_call() selftest
x86/stackframe/32: Allow int3_emulate_push()
x86/stackframe/32: Provide consistent pt_regs
x86/stackframe, x86/ftrace: Add pt_regs frame annotations
x86/stackframe, x86/kprobes: Fix frame pointer annotations
x86/stackframe: Move ENCODE_FRAME_POINTER to asm/frame.h
x86/entry/32: Clean up return from interrupt preemption path
x86/asm: Pin sensitive CR0 bits
x86/asm: Pin sensitive CR4 bits
Documentation/x86: Fix path to entry_32.S
x86/asm: Remove unused TASK_TI_flags from asm-offsets.c
Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
Pull RAS updates from Ingo Molnar:
"Boris is on vacation so I'm sending the RAS bits this time. The main
changes were:
- Various RAS/CEC improvements and fixes by Borislav Petkov:
- error insertion fixes
- offlining latency fix
- memory leak fix
- additional sanity checks
- cleanups
- debug output improvements
- More SMCA enhancements by Yazen Ghannam:
- make banks truly per-CPU which they are in the hardware
- don't over-cache certain registers
- make the number of MCA banks per-CPU variable
The long term goal with these changes is to support future
heterogenous SMCA extensions.
- Misc fixes and improvements"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Do not check return value of debugfs_create functions
x86/MCE: Determine MCA banks' init state properly
x86/MCE: Make the number of MCA banks a per-CPU variable
x86/MCE/AMD: Don't cache block addresses on SMCA systems
x86/MCE: Make mce_banks a per-CPU array
x86/MCE: Make struct mce_banks[] static
RAS/CEC: Add copyright
RAS/CEC: Add CONFIG_RAS_CEC_DEBUG and move CEC debug features there
RAS/CEC: Dump the different array element sections
RAS/CEC: Rename count_threshold to action_threshold
RAS/CEC: Sanity-check array on every insertion
RAS/CEC: Fix potential memory leak
RAS/CEC: Do not set decay value on error
RAS/CEC: Check count_threshold unconditionally
RAS/CEC: Fix pfn insertion
Pull locking updates from Ingo Molnar:
"The main changes in this cycle are:
- rwsem scalability improvements, phase #2, by Waiman Long, which are
rather impressive:
"On a 2-socket 40-core 80-thread Skylake system with 40 reader
and writer locking threads, the min/mean/max locking operations
done in a 5-second testing window before the patchset were:
40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810
40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255
After the patchset, they became:
40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741
40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098"
There's a lot of changes to the locking implementation that makes
it similar to qrwlock, including owner handoff for more fair
locking.
Another microbenchmark shows how across the spectrum the
improvements are:
"With a locking microbenchmark running on 5.1 based kernel, the
total locking rates (in kops/s) on a 2-socket Skylake system
with equal numbers of readers and writers (mixed) before and
after this patchset were:
# of Threads Before Patch After Patch
------------ ------------ -----------
2 2,618 4,193
4 1,202 3,726
8 802 3,622
16 729 3,359
32 319 2,826
64 102 2,744"
The changes are extensive and the patch-set has been through
several iterations addressing various locking workloads. There
might be more regressions, but unless they are pathological I
believe we want to use this new implementation as the baseline
going forward.
- jump-label optimizations by Daniel Bristot de Oliveira: the primary
motivation was to remove IPI disturbance of isolated RT-workload
CPUs, which resulted in the implementation of batched jump-label
updates. Beyond the improvement of the real-time characteristics
kernel, in one test this patchset improved static key update
overhead from 57 msecs to just 1.4 msecs - which is a nice speedup
as well.
- atomic64_t cross-arch type cleanups by Mark Rutland: over the last
~10 years of atomic64_t existence the various types used by the
APIs only had to be self-consistent within each architecture -
which means they became wildly inconsistent across architectures.
Mark puts and end to this by reworking all the atomic64
implementations to use 's64' as the base type for atomic64_t, and
to ensure that this type is consistently used for parameters and
return values in the API, avoiding further problems in this area.
- A large set of small improvements to lockdep by Yuyang Du: type
cleanups, output cleanups, function return type and othr cleanups
all around the place.
- A set of percpu ops cleanups and fixes by Peter Zijlstra.
- Misc other changes - please see the Git log for more details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
locking/lockdep: increase size of counters for lockdep statistics
locking/atomics: Use sed(1) instead of non-standard head(1) option
locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
x86/jump_label: Make tp_vec_nr static
x86/percpu: Optimize raw_cpu_xchg()
x86/percpu, sched/fair: Avoid local_clock()
x86/percpu, x86/irq: Relax {set,get}_irq_regs()
x86/percpu: Relax smp_processor_id()
x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}()
locking/rwsem: Guard against making count negative
locking/rwsem: Adaptive disabling of reader optimistic spinning
locking/rwsem: Enable time-based spinning on reader-owned rwsem
locking/rwsem: Make rwsem->owner an atomic_long_t
locking/rwsem: Enable readers spinning on writer
locking/rwsem: Clarify usage of owner's nonspinaable bit
locking/rwsem: Wake up almost all readers in wait queue
locking/rwsem: More optimal RT task handling of null owner
locking/rwsem: Always release wait_lock before waking up tasks
locking/rwsem: Implement lock handoff to prevent lock starvation
locking/rwsem: Make rwsem_spin_on_owner() return owner state
...
Pull x86 pti updates from Thomas Gleixner:
"The speculative paranoia departement delivers a few more plugs for
possible (probably theoretical) spectre/mds leaks"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tls: Fix possible spectre-v1 in do_get_thread_area()
x86/ptrace: Fix possible spectre-v1 in ptrace_get_debugreg()
x86/speculation/mds: Eliminate leaks by trace_hardirqs_on()
Pull x86 timer updates from Thomas Gleixner:
"A rather large series consolidating the HPET code, which was triggered
by the attempt to bolt HPET NMI watchdog support on to the existing
maze with the usual duct tape and super glue approach.
This mainly removes two separate partially redundant storage layers
and consolidates them into a single one which provides a consistent
view of the different HPET channels and their usage and allows to
integrate HPET NMI watchdog support (if it turns out to be feasible)
in a non intrusive way"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/hpet: Use channel for legacy clockevent storage
x86/hpet: Use common init for legacy clockevent
x86/hpet: Carve out shareable parts of init_one_hpet_msi_clockevent()
x86/hpet: Consolidate clockevent functions
x86/hpet: Wrap legacy clockevent in hpet_channel
x86/hpet: Use cached info instead of extra flags
x86/hpet: Move clockevents into channels
x86/hpet: Rename variables to prepare for switching to channels
x86/hpet: Add function to select a /dev/hpet channel
x86/hpet: Add mode information to struct hpet_channel
x86/hpet: Use cached channel data
x86/hpet: Introduce struct hpet_base and struct hpet_channel
x86/hpet: Coding style cleanup
x86/hpet: Clean up comments
x86/hpet: Make naming consistent
x86/hpet: Remove not required includes
x86/hpet: Decapitalize and rename EVT_TO_HPET_DEV
x86/hpet: Simplify counter validation
x86/hpet: Separate counter check out of clocksource register code
x86/hpet: Shuffle code around for readability sake
...
Pull x86 CPU feature updates from Thomas Gleixner:
"Updates for x86 CPU features:
- Support for UMWAIT/UMONITOR, which allows to use MWAIT and MONITOR
instructions in user space to save power e.g. in HPC workloads
which spin wait on synchronization points.
The maximum time a MWAIT can halt in userspace is controlled by the
kernel and can be adjusted by the sysadmin.
- Speed up the MTRR handling code on CPUs which support cache
self-snooping correctly.
On those CPUs the wbinvd() invocations can be omitted which speeds
up the MTRR setup by a factor of 50.
- Support for the new x86 vendor Zhaoxin who develops processors
based on the VIA Centaur technology.
- Prevent 'cat /proc/cpuinfo' from affecting isolated NOHZ_FULL CPUs
by sending IPIs to retrieve the CPU frequency and use the cached
values instead.
- The addition and late revert of the FSGSBASE support. The revert
was required as it turned out that the code still has hard to
diagnose issues. Yet another engineering trainwreck...
- Small fixes, cleanups, improvements and the usual new Intel CPU
family/model addons"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/fsgsbase: Revert FSGSBASE support
selftests/x86/fsgsbase: Fix some test case bugs
x86/entry/64: Fix and clean up paranoid_exit
x86/entry/64: Don't compile ignore_sysret if 32-bit emulation is enabled
selftests/x86: Test SYSCALL and SYSENTER manually with TF set
x86/mtrr: Skip cache flushes on CPUs with cache self-snooping
x86/cpu/intel: Clear cache self-snoop capability in CPUs with known errata
Documentation/ABI: Document umwait control sysfs interfaces
x86/umwait: Add sysfs interface to control umwait maximum time
x86/umwait: Add sysfs interface to control umwait C0.2 state
x86/umwait: Initialize umwait control values
x86/cpufeatures: Enumerate user wait instructions
x86/cpu: Disable frequency requests via aperfmperf IPI for nohz_full CPUs
x86/acpi/cstate: Add Zhaoxin processors support for cache flush policy in C3
ACPI, x86: Add Zhaoxin processors support for NONSTOP TSC
x86/cpu: Create Zhaoxin processors architecture support file
x86/cpu: Split Tremont based Atoms from the rest
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
...
Pull x86 FPU updates from Thomas Gleixner:
"A small set of updates for the FPU code:
- Make the no387/nofxsr command line options useful by restricting
them to 32bit and actually clearing all dependencies to prevent
random crashes and malfunction.
- Simplify and cleanup the kernel_fpu_*() helpers"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Inline fpu__xstate_clear_all_cpu_caps()
x86/fpu: Make 'no387' and 'nofxsr' command line options useful
x86/fpu: Remove the fpu__save() export
x86/fpu: Simplify kernel_fpu_begin()
x86/fpu: Simplify kernel_fpu_end()
Pull x96 apic updates from Thomas Gleixner:
"Updates for the x86 APIC interrupt handling and APIC timer:
- Fix a long standing issue with spurious interrupts which was caused
by the big vector management rework a few years ago. Robert Hodaszi
provided finally enough debug data and an excellent initial failure
analysis which allowed to understand the underlying issues.
This contains a change to the core interrupt management code which
is required to handle this correctly for the APIC/IO_APIC. The core
changes are NOOPs for most architectures except ARM64. ARM64 is not
impacted by the change as confirmed by Marc Zyngier.
- Newer systems allow to disable the PIT clock for power saving
causing panic in the timer interrupt delivery check of the IO/APIC
when the HPET timer is not enabled either. While the clock could be
turned on this would cause an endless whack a mole game to chase
the proper register in each affected chipset.
These systems provide the relevant frequencies for TSC, CPU and the
local APIC timer via CPUID and/or MSRs, which allows to avoid the
PIT/HPET based calibration. As the calibration code is the only
usage of the legacy timers on modern systems and is skipped anyway
when the frequencies are known already, there is no point in
setting up the PIT and actually checking for the interrupt delivery
via IO/APIC.
To achieve this on a wide variety of platforms, the CPUID/MSR based
frequency readout has been made more robust, which also allowed to
remove quite some workarounds which turned out to be not longer
required. Thanks to Daniel Drake for analysis, patches and
verification"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Seperate unused system vectors from spurious entry again
x86/irq: Handle spurious interrupt after shutdown gracefully
x86/ioapic: Implement irq_get_irqchip_state() callback
genirq: Add optional hardware synchronization for shutdown
genirq: Fix misleading synchronize_irq() documentation
genirq: Delay deactivation in free_irq()
x86/timer: Skip PIT initialization on modern chipsets
x86/apic: Use non-atomic operations when possible
x86/apic: Make apic_bsp_setup() static
x86/tsc: Set LAPIC timer period to crystal clock frequency
x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period'
x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency
Pull timer updates from Thomas Gleixner:
"The timer and timekeeping departement delivers:
Core:
- The consolidation of the VDSO code into a generic library including
the conversion of x86 and ARM64. Conversion of ARM and MIPS are en
route through the relevant maintainer trees and should end up in
5.4.
This gets rid of the unnecessary different copies of the same code
and brings all architectures on the same level of VDSO
functionality.
- Make the NTP user space interface more robust by restricting the
TAI offset to prevent undefined behaviour. Includes a selftest.
- Validate user input in the compat settimeofday() syscall to catch
invalid values which would be turned into valid values by a
multiplication overflow
- Consolidate the time accessors
- Small fixes, improvements and cleanups all over the place
Drivers:
- Support for the NXP system counter, TI davinci timer
- Move the Microsoft HyperV clocksource/events code into the
drivers/clocksource directory so it can be shared between x86 and
ARM64.
- Overhaul of the Tegra driver
- Delay timer support for IXP4xx
- Small fixes, improvements and cleanups as usual"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
time: Validate user input in compat_settimeofday()
timer: Document TIMER_PINNED
clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic
clocksource/drivers: Make Hyper-V clocksource ISA agnostic
MAINTAINERS: Fix Andy's surname and the directory entries of VDSO
hrtimer: Use a bullet for the returns bullet list
arm64: vdso: Fix compilation with clang older than 8
arm64: compat: Fix __arch_get_hw_counter() implementation
arm64: Fix __arch_get_hw_counter() implementation
lib/vdso: Make delta calculation work correctly
MAINTAINERS: Add entry for the generic VDSO library
arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system
arm64: vdso: Remove unnecessary asm-offsets.c definitions
vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h
clocksource/drivers/davinci: Add support for clocksource
clocksource/drivers/davinci: Add support for clockevents
clocksource/drivers/tegra: Set up maximum-ticks limit properly
clocksource/drivers/tegra: Cycles can't be 0
clocksource/drivers/tegra: Restore base address before cleanup
clocksource/drivers/tegra: Add verbose definition for 1MHz constant
...
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG
and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags'
introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl0eHqcACgkQa9axLQDI
XvFyNA/+L+bnkz8m3ncydlqqfXomQn4eJJVQ8Uksb0knJz+1+3CUxxbO4ry4jXZN
fMkbggYrDPRKpDbsUl0lsRipj7jW9bqan+N37c3SWqCkgb6HqDaHViwxdx6Ec/Uk
gHudozDSPh/8c7hxGcSyt/CFyuW6b+8eYIQU5rtIgz8aVY2BypBvS/7YtYCbIkx0
w4CFleRTK1zXD5mJQhrc6jyDx659sVkrAvdhf6YIymOY8nBTv40vwdNo3beJMYp8
Po/+0Ixu+VkHUNtmYYZQgP/AGH96xiTcRnUqd172JdtRPpCLqnLqwFokXeVIlUKT
KZFMDPzK+756Ayn4z4huEePPAOGlHbJje8JVNnFyreKhVVcCotW7YPY/oJR10bnc
eo7yD+DxABTn+93G2yP436bNVa8qO1UqjOBfInWBtnNFJfANIkZweij/MQ6MjaTA
o7KtviHnZFClefMPoiI7HDzwL8XSmsBDbeQ04s2Wxku1Y2xUHLx4iLmadwLQ1ZPb
lZMTZP3N/T1554MoURVA1afCjAwiqU3bt1xDUGjbBVjLfSPBAn/25IacsG9Li9AF
7Rp1M9VhrfLftjFFkB2HwpbhRASOxaOSx+EI3kzEfCtM2O9I1WHgP3rvCdc3l0HU
tbK0/IggQicNgz7GSZ8xDlWPwwSadXYGLys+xlMZEYd3pDIOiFc=
=0TDT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
All fpu__xstate_clear_all_cpu_caps() does is to invoke one simple
function since commit
73e3a7d2a7 ("x86/fpu: Remove the explicit clearing of XSAVE dependent features")
so invoke that function directly and remove the wrapper.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190704060743.rvew4yrjd6n33uzx@linutronix.de
The command line option `no387' is designed to disable the FPU
entirely. This only 'works' with CONFIG_MATH_EMULATION enabled.
But on 64bit this cannot work because user space expects SSE to work which
required basic FPU support. MATH_EMULATION does not help because SSE is not
emulated.
The command line option `nofxsr' should also be limited to 32bit because
FXSR is part of the required flags on 64bit so turning it off is not
possible.
Clearing X86_FEATURE_FPU without emulation enabled will not work anyway and
hang in fpu__init_system_early_generic() before the console is enabled.
Setting additioal dependencies, ensures that the CPU still boots on a
modern CPU. Otherwise, dropping FPU will leave FXSR enabled causing the
kernel to crash early in fpu__init_system_mxcsr().
With XSAVE support it will crash in fpu__init_cpu_xstate(). The problem is
that xsetbv() with XMM set and SSE cleared is not allowed. That means
XSAVE has to be disabled. The XSAVE support is disabled in
fpu__init_system_xstate_size_legacy() but it is too late. It can be
removed, it has been added in commit
1f999ab5a1 ("x86, xsave: Disable xsave in i387 emulation mode")
to use `no387' on a CPU with XSAVE support.
All this happens before console output.
After hat, the next possible crash is in RAID6 detect code because MMX
remained enabled. With a 3DNOW enabled config it will explode in memcpy()
for instance due to kernel_fpu_begin() but this is unconditionally enabled.
This is enough to boot a Debian Wheezy on a 32bit qemu "host" CPU which
supports everything up to XSAVES, AVX2 without 3DNOW. Later, Debian
increased the minimum requirements to i686 which means it does not boot
userland atleast due to CMOV.
After masking the additional features it still keeps SSE4A and 3DNOW*
enabled (if present on the host) but those are unused in the kernel.
Restrict `no387' and `nofxsr' otions to 32bit only. Add dependencies for
FPU, FXSR to additionaly mask CMOV, MMX, XSAVE if FXSR or FPU is cleared.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190703083247.57kjrmlxkai3vpw3@linutronix.de
- Fixes a deadlock from a previous fix to keep module loading
and function tracing text modifications from stepping on each other.
(this has a few patches to help document the issue in comments)
- Fix a crash when the snapshot buffer gets out of sync with the
main ring buffer.
- Fix a memory leak when reading the memory logs
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXRzBCBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qnDaAP9qTFBOFtgIGCT5wVP8xjQeESxh1b8R
tbaT7/U2oPpeiwEAvp1mYo5UYcc8KauBqVaLSLJVN4pv07xiZF5Qgh9C1QE=
=m2IT
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"This includes three fixes:
- Fix a deadlock from a previous fix to keep module loading and
function tracing text modifications from stepping on each other
(this has a few patches to help document the issue in comments)
- Fix a crash when the snapshot buffer gets out of sync with the main
ring buffer
- Fix a memory leak when reading the memory logs"
* tag 'trace-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace/x86: Anotate text_mutex split between ftrace_arch_code_modify_post_process() and ftrace_arch_code_modify_prepare()
tracing/snapshot: Resize spare buffer if size changed
tracing: Fix memory leak in tracing_err_log_open()
ftrace/x86: Add a comment to why we take text_mutex in ftrace_arch_code_modify_prepare()
ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()
The FSGSBASE series turned out to have serious bugs and there is still an
open issue which is not fully understood yet.
The confidence in those changes has become close to zero especially as the
test cases which have been shipped with that series were obviously never
run before sending the final series out to LKML.
./fsgsbase_64 >/dev/null
Segmentation fault
As the merge window is close, the only sane decision is to revert FSGSBASE
support. The revert is necessary as this branch has been merged into
perf/core already and rebasing all of that a few days before the merge
window is not the most brilliant idea.
I could definitely slap myself for not noticing the test case fail when
merging that series, but TBH my expectations weren't that low back
then. Won't happen again.
Revert the following commits:
539bca535d ("x86/entry/64: Fix and clean up paranoid_exit")
2c7b5ac5d5 ("Documentation/x86/64: Add documentation for GS/FS addressing mode")
f987c955c7 ("x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2")
2032f1f96e ("x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit")
5bf0cab60e ("x86/entry/64: Document GSBASE handling in the paranoid path")
708078f657 ("x86/entry/64: Handle FSGSBASE enabled paranoid entry/exit")
79e1932fa3 ("x86/entry/64: Introduce the FIND_PERCPU_BASE macro")
1d07316b13 ("x86/entry/64: Switch CR3 before SWAPGS in paranoid entry")
f60a83df45 ("x86/process/64: Use FSGSBASE instructions on thread copy and ptrace")
1ab5f3f7fe ("x86/process/64: Use FSBSBASE in switch_to() if available")
a86b462513 ("x86/fsgsbase/64: Enable FSGSBASE instructions in helper functions")
8b71340d70 ("x86/fsgsbase/64: Add intrinsics for FSGSBASE instructions")
b64ed19b93 ("x86/cpu: Add 'unsafe_fsgsbase' to enable CR4.FSGSBASE")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Hyper-V clock/timer code and data structures are currently mixed
in with other code in the ISA independent drivers/hv directory as
well as the ISA dependent Hyper-V code under arch/x86.
Consolidate this code and data structures into a Hyper-V clocksource driver
to better follow the Linux model. In doing so, separate out the ISA
dependent portions so the new clocksource driver works for x86 and for the
in-process Hyper-V on ARM64 code.
To start, move the existing clockevents code to create the new clocksource
driver. Update the VMbus driver to call initialization and cleanup routines
since the Hyper-V synthetic timers are not independently enumerated in
ACPI.
No behavior is changed and no new functionality is added.
Suggested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "bp@alien8.de" <bp@alien8.de>
Cc: "will.deacon@arm.com" <will.deacon@arm.com>
Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com>
Cc: "mark.rutland@arm.com" <mark.rutland@arm.com>
Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org>
Cc: "olaf@aepfle.de" <olaf@aepfle.de>
Cc: "apw@canonical.com" <apw@canonical.com>
Cc: "jasowang@redhat.com" <jasowang@redhat.com>
Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com>
Cc: Sunil Muthuswamy <sunilmut@microsoft.com>
Cc: KY Srinivasan <kys@microsoft.com>
Cc: "sashal@kernel.org" <sashal@kernel.org>
Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com>
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org>
Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org>
Cc: "arnd@arndb.de" <arnd@arndb.de>
Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk>
Cc: "ralf@linux-mips.org" <ralf@linux-mips.org>
Cc: "paul.burton@mips.com" <paul.burton@mips.com>
Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org>
Cc: "salyzyn@android.com" <salyzyn@android.com>
Cc: "pcc@google.com" <pcc@google.com>
Cc: "shuah@kernel.org" <shuah@kernel.org>
Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com>
Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk>
Cc: "huw@codeweavers.com" <huw@codeweavers.com>
Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au>
Cc: "pbonzini@redhat.com" <pbonzini@redhat.com>
Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com>
Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org>
Link: https://lkml.kernel.org/r/1561955054-1838-2-git-send-email-mikelley@microsoft.com
Quite some time ago the interrupt entry stubs for unused vectors in the
system vector range got removed and directly mapped to the spurious
interrupt vector entry point.
Sounds reasonable, but it's subtly broken. The spurious interrupt vector
entry point pushes vector number 0xFF on the stack which makes the whole
logic in __smp_spurious_interrupt() pointless.
As a consequence any spurious interrupt which comes from a vector != 0xFF
is treated as a real spurious interrupt (vector 0xFF) and not
acknowledged. That subsequently stalls all interrupt vectors of equal and
lower priority, which brings the system to a grinding halt.
This can happen because even on 64-bit the system vector space is not
guaranteed to be fully populated. A full compile time handling of the
unused vectors is not possible because quite some of them are conditonally
populated at runtime.
Bring the entry stubs back, which wastes 160 bytes if all stubs are unused,
but gains the proper handling back. There is no point to selectively spare
some of the stubs which are known at compile time as the required code in
the IDT management would be way larger and convoluted.
Do not route the spurious entries through common_interrupt and do_IRQ() as
the original code did. Route it to smp_spurious_interrupt() which evaluates
the vector number and acts accordingly now that the real vector numbers are
handed in.
Fixup the pr_warn so the actual spurious vector (0xff) is clearly
distiguished from the other vectors and also note for the vectored case
whether it was pending in the ISR or not.
"Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen."
"Spurious interrupt vector 0xed on CPU#1. Acked."
"Spurious interrupt vector 0xee on CPU#1. Not pending!."
Fixes: 2414e021ac ("x86: Avoid building unused IRQ entry stubs")
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jan Beulich <jbeulich@suse.com>
Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.de
Since the rework of the vector management, warnings about spurious
interrupts have been reported. Robert provided some more information and
did an initial analysis. The following situation leads to these warnings:
CPU 0 CPU 1 IO_APIC
interrupt is raised
sent to CPU1
Unable to handle
immediately
(interrupts off,
deep idle delay)
mask()
...
free()
shutdown()
synchronize_irq()
clear_vector()
do_IRQ()
-> vector is clear
Before the rework the vector entries of legacy interrupts were statically
assigned and occupied precious vector space while most of them were
unused. Due to that the above situation was handled silently because the
vector was handled and the core handler of the assigned interrupt
descriptor noticed that it is shut down and returned.
While this has been usually observed with legacy interrupts, this situation
is not limited to them. Any other interrupt source, e.g. MSI, can cause the
same issue.
After adding proper synchronization for level triggered interrupts, this
can only happen for edge triggered interrupts where the IO-APIC obviously
cannot provide information about interrupts in flight.
While the spurious warning is actually harmless in this case it worries
users and driver developers.
Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead
of VECTOR_UNUSED when the vector is freed up.
If that above late handling happens the spurious detector will not complain
and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on
that line will trigger the spurious warning as before.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>-
Tested-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.de
When an interrupt is shut down in free_irq() there might be an inflight
interrupt pending in the IO-APIC remote IRR which is not yet serviced. That
means the interrupt has been sent to the target CPUs local APIC, but the
target CPU is in a state which delays the servicing.
So free_irq() would proceed to free resources and to clear the vector
because synchronize_hardirq() does not see an interrupt handler in
progress.
That can trigger a spurious interrupt warning, which is harmless and just
confuses users, but it also can leave the remote IRR in a stale state
because once the handler is invoked the interrupt resources might be freed
already and therefore acknowledgement is not possible anymore.
Implement the irq_get_irqchip_state() callback for the IO-APIC irq chip. The
callback is invoked from free_irq() via __synchronize_hardirq(). Check the
remote IRR bit of the interrupt and return 'in flight' if it is set and the
interrupt is configured in level mode. For edge mode the remote IRR has no
meaning.
As this is only meaningful for level triggered interrupts this won't cure
the potential spurious interrupt warning for edge triggered interrupts, but
the edge trigger case does not result in stale hardware state. This has to
be addressed at the vector/interrupt entry level seperately.
Fixes: 464d12309e ("x86/vector: Switch IOAPIC to global reservation mode")
Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: https://lkml.kernel.org/r/20190628111440.370295517@linutronix.de
ftrace_arch_code_modify_prepare() is acquiring text_mutex, while the
corresponding release is happening in ftrace_arch_code_modify_post_process().
This has already been documented in the code, but let's also make the fact
that this is intentional clear to the semantic analysis tools such as sparse.
Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1906292321170.27227@cbobk.fhfr.pm
Fixes: 39611265ed ("ftrace/x86: Add a comment to why we take text_mutex in ftrace_arch_code_modify_prepare()")
Fixes: d5b844a2cf ("ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When sending a call-function IPI-many to vCPUs, yield if any of
the IPI target vCPUs was preempted, we just select the first
preempted target vCPU which we found since the state of target
vCPUs can change underneath and to avoid race conditions.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 fixes from Ingo Molnar:
"Misc fixes all over the place:
- might_sleep() atomicity fix in the microcode loader
- resctrl boundary condition fix
- APIC arithmethics bug fix for frequencies >= 4.2 GHz
- three 5-level paging crash fixes
- two speculation fixes
- a perf/stacktrace fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fall back to using frame pointers for generated code
perf/x86: Always store regs->ip in perf_callchain_kernel()
x86/speculation: Allow guests to use SSBD even if host does not
x86/mm: Handle physical-virtual alignment mismatch in phys_p4d_init()
x86/boot/64: Add missing fixup_pointer() for next_early_pgt access
x86/boot/64: Fix crash if kernel image crosses page table boundary
x86/apic: Fix integer overflow on 10 bit left shift of cpu_khz
x86/resctrl: Prevent possible overrun during bitmap operations
x86/microcode: Fix the microcode load on CPU hotplug for real
Pull perf fixes from Ingo Molnar:
"Various fixes, most of them related to bugs perf fuzzing found in the
x86 code"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/regs: Use PERF_REG_EXTENDED_MASK
perf/x86: Remove pmu->pebs_no_xmm_regs
perf/x86: Clean up PEBS_XMM_REGS
perf/x86/regs: Check reserved bits
perf/x86: Disable extended registers for non-supported PMUs
perf/ioctl: Add check for the sample_period value
perf/core: Fix perf_sample_regs_user() mm check
Recent Intel chipsets including Skylake and ApolloLake have a special
ITSSPRC register which allows the 8254 PIT to be gated. When gated, the
8254 registers can still be programmed as normal, but there are no IRQ0
timer interrupts.
Some products such as the Connex L1430 and exone go Rugged E11 use this
register to ship with the PIT gated by default. This causes Linux to fail
to boot:
Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with
apic=debug and send a report.
The panic happens before the framebuffer is initialized, so to the user, it
appears as an early boot hang on a black screen.
Affected products typically have a BIOS option that can be used to enable
the 8254 and make Linux work (Chipset -> South Cluster Configuration ->
Miscellaneous Configuration -> 8254 Clock Gating), however it would be best
to make Linux support the no-8254 case.
Modern sytems allow to discover the TSC and local APIC timer frequencies,
so the calibration against the PIT is not required. These systems have
always running timers and the local APIC timer works also in deep power
states.
So the setup of the PIT including the IO-APIC timer interrupt delivery
checks are a pointless exercise.
Skip the PIT setup and the IO-APIC timer interrupt checks on these systems,
which avoids the panic caused by non ticking PITs and also speeds up the
boot process.
Thanks to Daniel for providing the changelog, initial analysis of the
problem and testing against a variety of machines.
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Cc: hdegoede@redhat.com
Link: https://lkml.kernel.org/r/20190628072307.24678-1-drake@endlessm.com
Taking the text_mutex in ftrace_arch_code_modify_prepare() is to fix a
race against module loading and live kernel patching that might try to
change the text permissions while ftrace has it as read/write. This
really needs to be documented in the code. Add a comment that does such.
Link: http://lkml.kernel.org/r/20190627211819.5a591f52@gandalf.local.home
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The commit 9f255b632b ("module: Fix livepatch/ftrace module text
permissions race") causes a possible deadlock between register_kprobe()
and ftrace_run_update_code() when ftrace is using stop_machine().
The existing dependency chain (in reverse order) is:
-> #1 (text_mutex){+.+.}:
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
__mutex_lock+0x88/0x908
mutex_lock_nested+0x32/0x40
register_kprobe+0x254/0x658
init_kprobes+0x11a/0x168
do_one_initcall+0x70/0x318
kernel_init_freeable+0x456/0x508
kernel_init+0x22/0x150
ret_from_fork+0x30/0x34
kernel_thread_starter+0x0/0xc
-> #0 (cpu_hotplug_lock.rw_sem){++++}:
check_prev_add+0x90c/0xde0
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
cpus_read_lock+0x62/0xd0
stop_machine+0x2e/0x60
arch_ftrace_update_code+0x2e/0x40
ftrace_run_update_code+0x40/0xa0
ftrace_startup+0xb2/0x168
register_ftrace_function+0x64/0x88
klp_patch_object+0x1a2/0x290
klp_enable_patch+0x554/0x980
do_one_initcall+0x70/0x318
do_init_module+0x6e/0x250
load_module+0x1782/0x1990
__s390x_sys_finit_module+0xaa/0xf0
system_call+0xd8/0x2d0
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
It is similar problem that has been solved by the commit 2d1e38f566
("kprobes: Cure hotplug lock ordering issues"). Many locks are involved.
To be on the safe side, text_mutex must become a low level lock taken
after cpu_hotplug_lock.rw_sem.
This can't be achieved easily with the current ftrace design.
For example, arm calls set_all_modules_text_rw() already in
ftrace_arch_code_modify_prepare(), see arch/arm/kernel/ftrace.c.
This functions is called:
+ outside stop_machine() from ftrace_run_update_code()
+ without stop_machine() from ftrace_module_enable()
Fortunately, the problematic fix is needed only on x86_64. It is
the only architecture that calls set_all_modules_text_rw()
in ftrace path and supports livepatching at the same time.
Therefore it is enough to move text_mutex handling from the generic
kernel/trace/ftrace.c into arch/x86/kernel/ftrace.c:
ftrace_arch_code_modify_prepare()
ftrace_arch_code_modify_post_process()
This patch basically reverts the ftrace part of the problematic
commit 9f255b632b ("module: Fix livepatch/ftrace module
text permissions race"). And provides x86_64 specific-fix.
Some refactoring of the ftrace code will be needed when livepatching
is implemented for arm or nds32. These architectures call
set_all_modules_text_rw() and use stop_machine() at the same time.
Link: http://lkml.kernel.org/r/20190627081334.12793-1-pmladek@suse.com
Fixes: 9f255b632b ("module: Fix livepatch/ftrace module text permissions race")
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
[
As reviewed by Miroslav Benes <mbenes@suse.cz>, removed return value of
ftrace_run_update_code() as it is a void function.
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Programming MTRR registers in multi-processor systems is a rather lengthy
process. Furthermore, all processors must program these registers in lock
step and with interrupts disabled; the process also involves flushing
caches and TLBs twice. As a result, the process may take a considerable
amount of time.
On some platforms, this can lead to a large skew of the refined-jiffies
clock source. Early when booting, if no other clock is available (e.g.,
booting with hpet=disabled), the refined-jiffies clock source is used to
monitor the TSC clock source. If the skew of refined-jiffies is too large,
Linux wrongly assumes that the TSC is unstable:
clocksource: timekeeping watchdog on CPU1: Marking clocksource
'tsc-early' as unstable because the skew is too large:
clocksource: 'refined-jiffies' wd_now: fffedc10 wd_last:
fffedb90 mask: ffffffff
clocksource: 'tsc-early' cs_now: 5eccfddebc cs_last: 5e7e3303d4
mask: ffffffffffffffff
tsc: Marking TSC unstable due to clocksource watchdog
As per measurements, around 98% of the time needed by the procedure to
program MTRRs in multi-processor systems is spent flushing caches with
wbinvd(). As per the Section 11.11.8 of the Intel 64 and IA 32
Architectures Software Developer's Manual, it is not necessary to flush
caches if the CPU supports cache self-snooping. Thus, skipping the cache
flushes can reduce by several tens of milliseconds the time needed to
complete the programming of the MTRR registers:
Platform Before After
104-core (208 Threads) Skylake 1437ms 28ms
2-core ( 4 Threads) Haswell 114ms 2ms
Reported-by: Mohammad Etemadi <mohammad.etemadi@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Alan Cox <alan.cox@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/1561689337-19390-3-git-send-email-ricardo.neri-calderon@linux.intel.com
Processors which have self-snooping capability can handle conflicting
memory type across CPUs by snooping its own cache. However, there exists
CPU models in which having conflicting memory types still leads to
unpredictable behavior, machine check errors, or hangs.
Clear this feature on affected CPUs to prevent its use.
Suggested-by: Alan Cox <alan.cox@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Mohammad Etemadi <mohammad.etemadi@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/1561689337-19390-2-git-send-email-ricardo.neri-calderon@linux.intel.com
Restrict kdump to only reserve crashkernel below 64TB.
The reaons is that the kdump may jump from a 5-level paging mode to a
4-level paging mode kernel. If a 4-level paging mode kdump kernel is put
above 64TB, then the kdump kernel cannot start.
The 1st kernel reserves the kdump kernel region during bootup. At that
point it is not known whether the kdump kernel has 5-level or 4-level
paging support.
To support both restrict the kdump kernel reservation to the lower 64TB
address space to ensure that a 4-level paging mode kdump kernel can be
loaded and successfully started.
[ tglx: Massaged changelog ]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20190524073810.24298-4-bhe@redhat.com
If the running kernel has 5-level paging activated, the 5-level paging mode
is preserved across kexec. If the kexec'ed kernel does not contain support
for handling active 5-level paging mode in the decompressor, the
decompressor will crash with #GP.
Prevent this situation at load time. If 5-level paging is active, check the
xloadflags whether the kexec kernel can handle 5-level paging at least in
the decompressor. If not, reject the load attempt and print out an error
message.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: dyoung@redhat.com
Link: https://lkml.kernel.org/r/20190524073810.24298-3-bhe@redhat.com
All preparations are done. Use the channel storage for the legacy
clockevent and remove the static variable.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.737689919@linutronix.de
Replace the static initialization of the legacy clockevent with runtime
initialization utilizing the common init function as the last preparatory
step to switch the legacy clockevent over to the channel 0 storage in
hpet_base.
This comes with a twist. The static clockevent initializer has selected
support for periodic and oneshot mode unconditionally whether the HPET
config advertised periodic mode or not. Even the pre clockevents code did
this. But....
Using the conditional in hpet_init_clockevent() makes at least Qemu and one
hardware machine fail to boot. There are two issues which cause the boot
failure:
#1 After the timer delivery test in IOAPIC and the IOAPIC setup the next
interrupt is not delivered despite the HPET channel being programmed
correctly. Reprogramming the HPET after switching to IOAPIC makes it
work again. After fixing this, the next issue surfaces:
#2 Due to the unconditional periodic mode 'availability' the Local APIC
timer calibration can hijack the global clockevents event handler
without causing damage. Using oneshot at this stage makes if hang
because the HPET does not get reprogrammed due to the handler
hijacking. Duh, stupid me!
Both issues require major surgery and especially the kick HPET again after
enabling IOAPIC results in really nasty hackery. This 'assume periodic
works' magic has survived since HPET support got added, so it's
questionable whether this should be fixed. Both Qemu and the failing
hardware machine support periodic mode despite the fact that both don't
advertise it in the configuration register and both need that extra kick
after switching to IOAPIC. Seems to be a feature...
Keep the 'assume periodic works' magic around and add a big fat comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.646565913@linutronix.de
To finally remove the static channel0/clockevent storage and to utilize the
channel 0 storage in hpet_base, it's required to run time initialize the
clockevent. The MSI clockevents already have a run time init function.
Carve out the parts which can be shared between the legacy and the MSI
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.552451082@linutronix.de
Now that the legacy clockevent is wrapped in a hpet_channel struct most
clockevent functions can be shared between the legacy and the MSI based
clockevents.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.461437795@linutronix.de
For HPET channel 0 there exist two clockevent structures right now:
- the static hpet_clockevent
- the clockevent in channel 0 storage
The goal is to use the clockevent in the channel storage, remove the static
variable and share code with the MSI implementation.
As a first step wrap the legacy clockevent into a hpet_channel struct and
convert the users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.368141247@linutronix.de
Now that HPET clockevent support is integrated into the channel data, reuse
the cached boot configuration instead of copying the same information into
a flags field.
This also allows to consolidate the reservation code into one place, which
can now solely depend on the mode information.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.277510163@linutronix.de
Instead of allocating yet another data structure, move the clock event data
into the channel structure. This allows further consolidation of the
reservation code and the reuse of the cached boot config to replace the
extra flags in the clockevent data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.185851116@linutronix.de
struct hpet_dev is gone with the next change as the clockevent storage
moves into struct hpet_channel. So the variable name hdev will not make
sense anymore. Ditto for timer vs. channel and similar details.
Doing the rename in the change makes the patch harder to review. Doing it
afterward is problematic vs. tracking down issues. Doing it upfront is the
easiest solution as it does not change functionality.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.093113681@linutronix.de
If CONFIG_HPET=y is enabled the x86 specific HPET code should reserve at
least one channel for the /dev/hpet character device, so that not all
channels are absorbed for per CPU clockevent devices.
Create a function to assign HPET_MODE_DEVICE so the rework of the
clockevents allocation code can utilize the mode information instead of
reducing the number of evaluated channels by #ifdef hackery.
The function is not yet used, but provided as a separate patch for ease of
review. It will be used when the rework of the clockevent selection takes
place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132436.002758910@linutronix.de
The usage of the individual HPET channels is not tracked in a central
place. The information is scattered in different data structures. Also the
HPET reservation in the HPET character device is split out into several
places which makes the code hard to follow.
Assigning a mode to the channel allows to consolidate the reservation code
and paves the way for further simplifications.
As a first step set the mode of the legacy channels when the HPET is in
legacy mode.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.911652981@linutronix.de
Instead of rereading the HPET registers over and over use the information
which was cached in hpet_enable().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.821728550@linutronix.de
Introduce new data structures to replace the ad hoc collection of separate
variables and pointers.
Replace the boot configuration store and restore as a first step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.728456320@linutronix.de
It's a function not a macro and the upcoming changes use channel for the
individual hpet timer units to allow a step by step refactoring approach.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.241032433@linutronix.de
There is no point to loop for 200k TSC cycles to check afterwards whether
the HPET counter is working. Read the counter inside of the loop and break
out when the counter value changed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.149535103@linutronix.de
The init code checks whether the HPET counter works late in the init
function when the clocksource is registered. That should happen right with
the other sanity checks.
Split it into a separate validation function and move it to the other
sanity checks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132435.058540608@linutronix.de
It doesn't make sense to have init functions in the middle of other
code. Aside of that, further changes in that area create horrible diffs if
the code stays where it is.
No functional change
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.951733064@linutronix.de
Having static and global variables sprinkled all over the code is just
annoying to read. Move them all to the top of the file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.860549134@linutronix.de
The clockevent device pointer is not used in this function.
While at it, rename the misnamed 'timer' parameter to 'channel', which makes it
clear what this parameter means.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.447880978@linutronix.de
As a preparatory change for further consolidation, restructure the HPET
init code so it becomes more readable. Fix up misleading and stale comments
and rename variables so they actually make sense.
No intended functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.247842972@linutronix.de
The indirection via work scheduled on the upcoming CPU was necessary with the
old hotplug code because the online callback was invoked on the control CPU
not on the upcoming CPU. The rework of the CPU hotplug core guarantees that
the online callbacks are invoked on the upcoming CPU.
Remove the now pointless work redirection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/20190623132434.047254075@linutronix.de
The ORC unwinder can't unwind through BPF JIT generated code because
there are no ORC entries associated with the code.
If an ORC entry isn't available, try to fall back to frame pointers. If
BPF and other generated code always do frame pointer setup (even with
CONFIG_FRAME_POINTERS=n) then this will allow ORC to unwind through most
generated code despite there being no corresponding ORC entries.
Fixes: d15d356887 ("perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER")
Reported-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kairui Song <kasong@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/b6f69208ddff4343d56b7bfac1fc7cfcd62689e8.1561595111.git.jpoimboe@redhat.com
The index to access the threads tls array is controlled by userspace
via syscall: sys_ptrace(), hence leading to a potential exploitation
of the Spectre variant 1 vulnerability.
The index can be controlled from:
ptrace -> arch_ptrace -> do_get_thread_area.
Fix this by sanitizing the user supplied index before using it to access
the p->thread.tls_array.
Signed-off-by: Dianzhang Chen <dianzhangchen0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1561524630-3642-1-git-send-email-dianzhangchen0@gmail.com
The index to access the threads ptrace_bps is controlled by userspace via
syscall: sys_ptrace(), hence leading to a potential exploitation of the
Spectre variant 1 vulnerability.
The index can be controlled from:
ptrace -> arch_ptrace -> ptrace_get_debugreg.
Fix this by sanitizing the user supplied index before using it access
thread->ptrace_bps.
Signed-off-by: Dianzhang Chen <dianzhangchen0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1561476617-3759-1-git-send-email-dianzhangchen0@gmail.com
The bits set in x86_spec_ctrl_mask are used to calculate the guest's value
of SPEC_CTRL that is written to the MSR before VMENTRY, and control which
mitigations the guest can enable. In the case of SSBD, unless the host has
enabled SSBD always on mode (by passing "spec_store_bypass_disable=on" in
the kernel parameters), the SSBD bit is not set in the mask and the guest
can not properly enable the SSBD always on mitigation mode.
This has been confirmed by running the SSBD PoC on a guest using the SSBD
always on mitigation mode (booted with kernel parameter
"spec_store_bypass_disable=on"), and verifying that the guest is vulnerable
unless the host is also using SSBD always on mode. In addition, the guest
OS incorrectly reports the SSB vulnerability as mitigated.
Always set the SSBD bit in x86_spec_ctrl_mask when the host CPU supports
it, allowing the guest to use SSBD whether or not the host has chosen to
enable the mitigation in any of its modes.
Fixes: be6fcb5478 ("x86/bugs: Rework spec_ctrl base and mask logic")
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: bp@alien8.de
Cc: rkrcmar@redhat.com
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1560187210-11054-1-git-send-email-alejandro.j.jimenez@oracle.com
The following sparse warning is emitted:
arch/x86/kernel/crash.c:59:15:
warning: symbol 'crash_zero_bytes' was not declared. Should it be static?
The variable is only used in this compilation unit, but it is also only
used when CONFIG_KEXEC_FILE is enabled. Just making it static would result
in a 'defined but not used' warning for CONFIG_KEXEC_FILE=n.
Make it static and move it into the existing CONFIG_KEXEC_FILE section.
[ tglx: Massaged changelog and moved it into the existing ifdef ]
Fixes: dd5f726076 ("kexec: support for kexec on panic using new system call")
Signed-off-by: Tiezhu Yang <kernelpatch@126.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: kexec@lists.infradead.org
Cc: vgoyal@redhat.com
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/117ef0c6.3d30.16b87c9cfbf.Coremail.kernelpatch@126.com
__startup_64() uses fixup_pointer() to access global variables in a
position-independent fashion. Access to next_early_pgt was wrapped into the
helper, but one instance in the 5-level paging branch was missed.
GCC generates a R_X86_64_PC32 PC-relative relocation for the access which
doesn't trigger the issue, but Clang emmits a R_X86_64_32S which leads to
an invalid memory access and system reboot.
Fixes: 187e91fe5e ("x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190620112422.29264-1-kirill.shutemov@linux.intel.com
A kernel which boots in 5-level paging mode crashes in a small percentage
of cases if KASLR is enabled.
This issue was tracked down to the case when the kernel image unpacks in a
way that it crosses an 1G boundary. The crash is caused by an overrun of
the PMD page table in __startup_64() and corruption of P4D page table
allocated next to it. This particular issue is not visible with 4-level
paging as P4D page tables are not used.
But the P4D and the PUD calculation have similar problems.
The PMD index calculation is wrong due to operator precedence, which fails
to confine the PMDs in the PMD array on wrap around.
The P4D calculation for 5-level paging and the PUD calculation calculate
the first index correctly, but then blindly increment it which causes the
same issue when a kernel image is located across a 512G and for 5-level
paging across a 46T boundary.
This wrap around mishandling was introduced when these parts moved from
assembly to C.
Restore it to the correct behaviour.
Fixes: c88d71508e ("x86/boot/64: Rewrite startup_64() in C")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190620112345.28833-1-kirill.shutemov@linux.intel.com
Given that the entry_*.S changes for this functionality are somewhat
tricky, make sure the paths are tested every boot, instead of on the
rare occasion when we trip an INT3 while rewriting text.
Requested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that x86_32 has an unconditional gap on the kernel stack frame,
the int3_emulate_push() thing will work without further changes.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently pt_regs on x86_32 has an oddity in that kernel regs
(!user_mode(regs)) are short two entries (esp/ss). This means that any
code trying to use them (typically: regs->sp) needs to jump through
some unfortunate hoops.
Change the entry code to fix this up and create a full pt_regs frame.
This then simplifies various trampolines in ftrace and kprobes, the
stack unwinder, ptrace, kdump and kgdb.
Much thanks to Josh for help with the cleanups!
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_FRAME_POINTER, we should mark pt_regs frames.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kprobe trampolines have a FRAME_POINTER annotation that makes no
sense. It marks the frame in the middle of pt_regs, at the place of
saving BP.
Change it to mark the pt_regs frame as per the ENCODE_FRAME_POINTER
from the respective entry_*.S.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All the files added to 'targets' are cleaned. Adding the same file to both
'targets' and 'clean-files' is redundant.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190625073311.18303-1-yamada.masahiro@socionext.com
Without 'set -e', shell scripts continue running even after any
error occurs. The missed 'set -e' is a typical bug in shell scripting.
For example, when a disk space shortage occurs while this script is
running, it actually ends up with generating a truncated capflags.c.
Yet, mkcapflags.sh continues running and exits with 0. So, the build
system assumes it has succeeded.
It will not be re-generated in the next invocation of Make since its
timestamp is newer than that of any of the source files.
Add 'set -e' so that any error in this script is caught and propagated
to the build system.
Since 9c2af1c737 ("kbuild: add .DELETE_ON_ERROR special target"),
make automatically deletes the target on any failure. So, the broken
capflags.c will be deleted automatically.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190625072622.17679-1-yamada.masahiro@socionext.com
Fix sparse warning:
arch/x86/kernel/jump_label.c:106:5: warning:
symbol 'tp_vec_nr' was not declared. Should it be static?
It's only used in jump_label.c, so make it static.
Fixes: ba54f0c3f7 ("x86/jump_label: Batch jump label updates")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <bp@alien8.de>
Cc: <hpa@zytor.com>
Cc: <peterz@infradead.org>
Cc: <bristot@redhat.com>
Cc: <namit@vmware.com>
Link: https://lkml.kernel.org/r/20190625034548.26392-1-yuehaibing@huawei.com
The perf fuzzer triggers a warning which map to:
if (WARN_ON_ONCE(idx >= ARRAY_SIZE(pt_regs_offset)))
return 0;
The bits between XMM registers and generic registers are reserved.
But perf_reg_validate() doesn't check these bits.
Add PERF_REG_X86_RESERVED for reserved bits on X86.
Check the reserved bits in perf_reg_validate().
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 878068ea27 ("perf/x86: Support outputting XMM registers")
Link: https://lkml.kernel.org/r/1559081314-9714-2-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IA32_UMWAIT_CONTROL[31:2] determines the maximum time in TSC-quanta
that processor can stay in C0.1 or C0.2. A zero value means no maximum
time.
Each instruction sets its own deadline in the instruction's implicit
input EDX:EAX value. The instruction wakes up if the time-stamp counter
reaches or exceeds the specified deadline, or the umwait maximum time
expires, or a store happens in the monitored address range in umwait.
The administrator can write an unsigned 32-bit number to
/sys/devices/system/cpu/umwait_control/max_time to change the default
value. Note that a value of zero means there is no limit. The lower two
bits of the value must be zero.
[ tglx: Simplify the write function. Massage changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Andy Lutomirski" <luto@kernel.org>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-5-git-send-email-fenghua.yu@intel.com
C0.2 state in umwait and tpause instructions can be enabled or disabled
on a processor through IA32_UMWAIT_CONTROL MSR register.
By default, C0.2 is enabled and the user wait instructions results in
lower power consumption with slower wakeup time.
But in real time systems which require faster wakeup time although power
savings could be smaller, the administrator needs to disable C0.2 and all
umwait invocations from user applications use C0.1.
Create a sysfs interface which allows the administrator to control C0.2
state during run time.
Andy Lutomirski suggested to turn off local irqs before writing the MSR to
ensure the cached control value is not changed by a concurrent sysfs write
from a different CPU via IPI.
[ tglx: Simplified the update logic in the write function and got rid of
all the convoluted type casts. Added a shared update function and
made the namespace consistent. Moved the sysfs create invocation.
Massaged changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Andy Lutomirski" <luto@kernel.org>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-4-git-send-email-fenghua.yu@intel.com
umwait or tpause allows the processor to enter a light-weight
power/performance optimized state (C0.1 state) or an improved
power/performance optimized state (C0.2 state) for a period specified by
the instruction or until the system time limit or until a store to the
monitored address range in umwait.
IA32_UMWAIT_CONTROL MSR register allows the OS to enable/disable C0.2 on
the processor and to set the maximum time the processor can reside in C0.1
or C0.2.
By default C0.2 is enabled so the user wait instructions can enter the
C0.2 state to save more power with slower wakeup time.
Andy Lutomirski proposed to set the maximum umwait time to 100000 cycles by
default. A quote from Andy:
"What I want to avoid is the case where it works dramatically differently
on NO_HZ_FULL systems as compared to everything else. Also, UMWAIT may
behave a bit differently if the max timeout is hit, and I'd like that
path to get exercised widely by making it happen even on default
configs."
A sysfs interface to adjust the time and the C0.2 enablement is provided in
a follow up change.
[ tglx: Renamed MSR_IA32_UMWAIT_CONTROL_MAX_TIME to
MSR_IA32_UMWAIT_CONTROL_TIME_MASK because the constant is used as
mask throughout the code.
Massaged comments and changelog ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-3-git-send-email-fenghua.yu@intel.com
Using __clear_bit() and __cpumask_clear_cpu() is more efficient than using
their atomic counterparts.
Use them when atomicity is not needed, such as when manipulating bitmasks
that are on the stack.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190613064813.8102-10-namit@vmware.com
The x86 vDSO library requires some adaptations to take advantage of the
newly introduced generic vDSO library.
Introduce the following changes:
- Modification of vdso.c to be compliant with the common vdso datapage
- Use of lib/vdso for gettimeofday
[ tglx: Massaged changelog and cleaned up the function signature formatting ]
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Cc: Shijith Thotton <sthotton@marvell.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Link: https://lkml.kernel.org/r/20190621095252.32307-23-vincenzo.frascino@arm.com
Since commit 7d5905dc14 ("x86 / CPU: Always show current CPU frequency
in /proc/cpuinfo") open and read of /proc/cpuinfo sends IPI to all CPUs.
Many applications read /proc/cpuinfo at the start for trivial reasons like
counting cores or detecting cpu features. While sensitive workloads like
DPDK network polling don't like any interrupts.
Integrates this feature with cpu isolation and do not send IPIs to CPUs
without housekeeping flag HK_FLAG_MISC (set by nohz_full).
Code that requests cpu frequency like show_cpuinfo() falls back to the last
frequency set by the cpufreq driver if this method returns 0.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/155790354043.1104.15333317408370209.stgit@buzz
The left shift of unsigned int cpu_khz will overflow for large values of
cpu_khz, so cast it to a long long before shifting it to avoid overvlow.
For example, this can happen when cpu_khz is 4194305, i.e. ~4.2 GHz.
Addresses-Coverity: ("Unintentional integer overflow")
Fixes: 8c3ba8d049 ("x86, apic: ack all pending irqs when crashed/on kexec")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: kernel-janitors@vger.kernel.org
Link: https://lkml.kernel.org/r/20190619181446.13635-1-colin.king@canonical.com
Several recent exploits have used direct calls to the native_write_cr4()
function to disable SMEP and SMAP before then continuing their exploits
using userspace memory access.
Direct calls of this form can be mitigate by pinning bits of CR4 so that
they cannot be changed through a common function. This is not intended to
be a general ROP protection (which would require CFI to defend against
properly), but rather a way to avoid trivial direct function calling (or
CFI bypasses via a matching function prototype) as seen in:
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
(https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-7308)
The goals of this change:
- Pin specific bits (SMEP, SMAP, and UMIP) when writing CR4.
- Avoid setting the bits too early (they must become pinned only after
CPU feature detection and selection has finished).
- Pinning mask needs to be read-only during normal runtime.
- Pinning needs to be checked after write to validate the cr4 state
Using __ro_after_init on the mask is done so it can't be first disabled
with a malicious write.
Since these bits are global state (once established by the boot CPU and
kernel boot parameters), they are safe to write to secondary CPUs before
those CPUs have finished feature detection. As such, the bits are set at
the first cr4 write, so that cr4 write bugs can be detected (instead of
silently papered over). This uses a few bytes less storage of a location we
don't have: read-only per-CPU data.
A check is performed after the register write because an attack could just
skip directly to the register write. Such a direct jump is possible because
of how this function may be built by the compiler (especially due to the
removal of frame pointers) where it doesn't add a stack frame (function
exit may only be a retq without pops) which is sufficient for trivial
exploitation like in the timer overwrites mentioned above).
The asm argument constraints gain the "+" modifier to convince the compiler
that it shouldn't make ordering assumptions about the arguments or memory,
and treat them as changed.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: kernel-hardening@lists.openwall.com
Link: https://lkml.kernel.org/r/20190618045503.39105-3-keescook@chromium.org
Same as Intel, Zhaoxin MP CPUs support C3 share cache and on all
recent Zhaoxin platforms ARB_DISABLE is a nop. So set related
flags correctly in the same way as Intel does.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "hpa@zytor.com" <hpa@zytor.com>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net>
Cc: "lenb@kernel.org" <lenb@kernel.org>
Cc: David Wang <DavidWang@zhaoxin.com>
Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com>
Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com>
Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com>
Link: https://lkml.kernel.org/r/a370503660994669991a7f7cda7c5e98@zhaoxin.com
Add x86 architecture support for new Zhaoxin processors.
Carve out initialization code needed by Zhaoxin processors into
a separate compilation unit.
To identify Zhaoxin CPU, add a new vendor type X86_VENDOR_ZHAOXIN
for system recognition.
Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "hpa@zytor.com" <hpa@zytor.com>
Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org>
Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net>
Cc: "lenb@kernel.org" <lenb@kernel.org>
Cc: David Wang <DavidWang@zhaoxin.com>
Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com>
Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com>
Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com>
Link: https://lkml.kernel.org/r/01042674b2f741b2aed1f797359bdffb@zhaoxin.com
The kernel needs to explicitly enable FSGSBASE. So, the application needs
to know if it can safely use these instructions. Just looking at the CPUID
bit is not enough because it may be running in a kernel that does not
enable the instructions.
One way for the application would be to just try and catch the SIGILL.
But that is difficult to do in libraries which may not want to overwrite
the signal handlers of the main application.
Enumerate the enabled FSGSBASE capability in bit 1 of AT_HWCAP2 in the ELF
aux vector. AT_HWCAP2 is already used by PPC for similar purposes.
The application can access it open coded or by using the getauxval()
function in newer versions of glibc.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-18-git-send-email-chang.seok.bae@intel.com
Now that FSGSBASE is fully supported, remove unsafe_fsgsbase, enable
FSGSBASE by default, and add nofsgsbase to disable it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-17-git-send-email-chang.seok.bae@intel.com
When FSGSBASE is enabled, copying threads and reading fsbase and gsbase
using ptrace must read the actual values.
When copying a thread, use save_fsgs() and copy the saved values. For
ptrace, the bases must be read from memory regardless of the selector if
FSGSBASE is enabled.
[ tglx: Invoke __rdgsbase_inactive() with interrupts disabled ]
[ luto: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-9-git-send-email-chang.seok.bae@intel.com
With the new FSGSBASE instructions, FS and GSABSE can be efficiently read
and writen in __switch_to(). Use that capability to preserve the full
state.
This will enable user code to do whatever it wants with the new
instructions without any kernel-induced gotchas. (There can still be
architectural gotchas: movl %gs,%eax; movl %eax,%gs may change GSBASE if
WRGSBASE was used, but users are expected to read the CPU manual before
doing things like that.)
This is a considerable speedup. It seems to save about 100 cycles
per context switch compared to the baseline 4.6-rc1 behavior on a
Skylake laptop.
[ chang: 5~10% performance improvements were seen with a context switch
benchmark that ran threads with different FS/GSBASE values (to the
baseline 4.16). Minor edit on the changelog. ]
[ tglx: Masaage changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-8-git-send-email-chang.seok.bae@intel.com
Add cpu feature conditional FSGSBASE access to the relevant helper
functions. That allows to accelerate certain FS/GS base operations in
subsequent changes.
Note, that while possible, the user space entry/exit GSBASE operations are
not going to use the new FSGSBASE instructions. The reason is that it would
require additional storage for the user space value which adds more
complexity to the low level code and experiments have shown marginal
benefit. This may be revisited later but for now the SWAPGS based handling
in the entry code is preserved except for the paranoid entry/exit code.
To preserve the SWAPGS entry mechanism introduce __[rd|wr]gsbase_inactive()
helpers. Note, for Xen PV, paravirt hooks can be added later as they might
allow a very efficient but different implementation.
[ tglx: Massaged changelog ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-7-git-send-email-chang.seok.bae@intel.com
This is temporary. It will allow the next few patches to be tested
incrementally.
Setting unsafe_fsgsbase is a root hole. Don't do it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1557309753-24073-4-git-send-email-chang.seok.bae@intel.com
When a ptracer writes a ptracee's FS/GSBASE with a different value, the
selector is also cleared. This behavior is not correct as the selector
should be preserved.
Update only the base value and leave the selector intact. To simplify the
code further remove the conditional checking for the same value as this
code is not performance critical.
The only recognizable downside of this change is when the selector is
already nonzero on write. The base will be reloaded according to the
selector. But the case is highly unexpected in real usages.
[ tglx: Massage changelog ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/9040CFCD-74BD-4C17-9A01-B9B713CF6B10@intel.com
While the DOC at the beginning of lib/bitmap.c explicitly states that
"The number of valid bits in a given bitmap does _not_ need to be an
exact multiple of BITS_PER_LONG.", some of the bitmap operations do
indeed access BITS_PER_LONG portions of the provided bitmap no matter
the size of the provided bitmap.
For example, if find_first_bit() is provided with an 8 bit bitmap the
operation will access BITS_PER_LONG bits from the provided bitmap. While
the operation ensures that these extra bits do not affect the result,
the memory is still accessed.
The capacity bitmasks (CBMs) are typically stored in u32 since they
can never exceed 32 bits. A few instances exist where a bitmap_*
operation is performed on a CBM by simply pointing the bitmap operation
to the stored u32 value.
The consequence of this pattern is that some bitmap_* operations will
access out-of-bounds memory when interacting with the provided CBM.
This same issue has previously been addressed with commit 49e00eee00
("x86/intel_rdt: Fix out-of-bounds memory access in CBM tests")
but at that time not all instances of the issue were fixed.
Fix this by using an unsigned long to store the capacity bitmask data
that is passed to bitmap functions.
Fixes: e651901187 ("x86/intel_rdt: Introduce "bit_usage" to display cache allocations details")
Fixes: f4e80d67a5 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/58c9b6081fd9bf599af0dfc01a6fdd335768efef.1560975645.git.reinette.chatre@intel.com
AVX512 BFLOAT16 instructions support 16-bit BFLOAT16 floating-point
format (BF16) for deep learning optimization.
BF16 is a short version of 32-bit single-precision floating-point
format (FP32) and has several advantages over 16-bit half-precision
floating-point format (FP16). BF16 keeps FP32 accumulation after
multiplication without loss of precision, offers more than enough
range for deep learning training tasks, and doesn't need to handle
hardware exception.
AVX512 BFLOAT16 instructions are enumerated in CPUID.7.1:EAX[bit 5]
AVX512_BF16.
CPUID.7.1:EAX contains only feature bits. Reuse the currently empty
word 12 as a pure features word to hold the feature bits including
AVX512_BF16.
Detailed information of the CPUID bit and AVX512 BFLOAT16 instructions
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference.
[ bp: Check CPUID(7) subleaf validity before accessing subleaf 1. ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-3-git-send-email-fenghua.yu@intel.com
It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.
Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.
Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.
Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.
KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com
... into a separate function for better readability. Split out from a
patch from Fenghua Yu <fenghua.yu@intel.com> to keep the mechanical,
sole code movement separate for easy review.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: x86@kernel.org
When SEV is active, the second kernel image is loaded into encrypted
memory. For that, make sure that when kexec builds the identity mapping
page table, the memory is encrypted (i.e., _PAGE_ENC is set).
[ bp: Sort local args and OR in _PAGE_ENC for more clarity. ]
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: bhe@redhat.com
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190430074421.7852-3-lijiang@redhat.com
When a virtual machine panics, its memory needs to be dumped for
analysis. With memory encryption in the picture, special care must be
taken when loading a kexec/kdump kernel in a SEV guest.
A SEV guest starts and runs fully encrypted. In order to load a kexec
kernel and initrd, arch_kexec_post_{alloc,free}_pages() need to not map
areas as decrypted unconditionally but differentiate whether the kernel
is running as a SEV guest and if so, leave kexec area encrypted.
[ bp: Reduce commit message to the relevant information pertaining to
this commit only. ]
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: bhe@redhat.com
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190430074421.7852-2-lijiang@redhat.com
At present, when using the kexec_file_load() syscall to load the kernel
image and initramfs, for example:
kexec -s -p xxx
the kernel does not pass the e820 reserved ranges to the second kernel,
which might cause two problems:
1. MMCONFIG: A device in PCI segment 1 cannot be discovered by the
kernel PCI probing without all the e820 I/O reservations being present
in the e820 table. Which is the case currently, because the kdump kernel
does not have those reservations because the kexec command does not pass
the I/O reservation via the "memmap=xxx" command line option.
Further details courtesy of Bjorn Helgaas¹: I think you should regard
correct MCFG/ECAM usage in the kdump kernel as a requirement. MMCONFIG
(aka ECAM) space is described in the ACPI MCFG table. If you don't have
ECAM:
(a) PCI devices won't work at all on non-x86 systems that use only
ECAM for config access,
(b) you won't be able to access devices on non-0 segments (granted,
there aren't very many of these yet, but there will be more in the
future), and
(c) you won't be able to access extended config space (addresses
0x100-0xfff), which means none of the Extended Capabilities will be
available (AER, ACS, ATS, etc).
2. The second issue is that the SME kdump kernel doesn't work without
the e820 reserved ranges. When SME is active in the kdump kernel, those
reserved regions are still decrypted, but because those reserved ranges
are not present at all in kdump kernel's e820 table, they are accessed
as encrypted. Which is obviously wrong.
[1]: https://lkml.kernel.org/r/CABhMZUUscS3jUZUSM5Y6EYJK6weo7Mjj5-EAKGvbw0qEe%2B38zw@mail.gmail.com
[ bp: Heavily massage commit message. ]
Suggested-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bjorn Helgaas <bjorn.helgaas@gmail.com>
Cc: dave.hansen@linux.intel.com
Cc: Dave Young <dyoung@redhat.com>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190423013007.17838-4-lijiang@redhat.com
When executing the kexec_file_load() syscall, the first kernel needs to
pass the e820 reserved ranges to the second kernel because some devices
(PCI, for example) need them present in the kdump kernel for proper
initialization.
But the kernel can not exactly match the e820 reserved ranges when
walking through the iomem resources using the default IORES_DESC_NONE
descriptor, because there are several types of e820 ranges which are
marked IORES_DESC_NONE, see e820_type_to_iores_desc().
Therefore, add a new I/O resource descriptor called IORES_DESC_RESERVED
to mark exactly those ranges. It will be used to match the reserved
resource ranges when walking through iomem resources.
[ bp: Massage commit message. ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: bhe@redhat.com
Cc: dave.hansen@linux.intel.com
Cc: dyoung@redhat.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Huang Zijiang <huang.zijiang@zte.com.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kexec@lists.infradead.org
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190423013007.17838-2-lijiang@redhat.com
In order for the kernel to be encrypted "in place" during boot, a workarea
outside of the kernel must be used. This SME workarea used during early
encryption of the kernel is situated on a 2MB boundary after the end of
the kernel text, data, etc. sections (_end).
This works well during initial boot of a compressed kernel because of
the relocation used for decompression of the kernel. But when performing
a kexec boot, there's a chance that the SME workarea may not be mapped
by the kexec pagetables or that some of the other data used by kexec
could exist in this range.
Create a section for SME in vmlinux.lds.S. Position it after "_end", which
is after "__end_of_kernel_reserve", so that the memory will be reclaimed
during boot and since this area is all zeroes, it compresses well. This
new section will be part of the kernel image, so kexec will account for it
in pagetable mappings and placement of data after the kernel.
Here's an example of a kernel size without and with the SME section:
without:
vmlinux: 36,501,616
bzImage: 6,497,344
100000000-47f37ffff : System RAM
1e4000000-1e47677d4 : Kernel code (0x7677d4)
1e47677d5-1e4e2e0bf : Kernel data (0x6c68ea)
1e5074000-1e5372fff : Kernel bss (0x2fefff)
with:
vmlinux: 44,419,408
bzImage: 6,503,136
880000000-c7ff7ffff : System RAM
8cf000000-8cf7677d4 : Kernel code (0x7677d4)
8cf7677d5-8cfe2e0bf : Kernel data (0x6c68ea)
8d0074000-8d0372fff : Kernel bss (0x2fefff)
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/3c483262eb4077b1654b2052bd14a8d011bffde3.1560969363.git.thomas.lendacky@amd.com
The memory occupied by the kernel is reserved using memblock_reserve()
in setup_arch(). Currently, the area is from symbols _text to __bss_stop.
Everything after __bss_stop must be specifically reserved otherwise it
is discarded. This is not clearly documented.
Add a new symbol, __end_of_kernel_reserve, that more readily identifies
what is reserved, along with comments that indicate what is reserved,
what is discarded and what needs to be done to prevent a section from
being discarded.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7db7da45b435f8477f25e66f292631ff766a844c.1560969363.git.thomas.lendacky@amd.com
cpuinfo_x86.x86_model is an unsigned type, so comparing against zero
will generate a compilation warning:
arch/x86/kernel/cpu/cacheinfo.c: In function 'cacheinfo_amd_init_llc_id':
arch/x86/kernel/cpu/cacheinfo.c:662:19: warning: comparison is always true \
due to limited range of data type [-Wtype-limits]
Remove the unnecessary lower bound check.
[ bp: Massage. ]
Fixes: 68091ee7ac ("x86/CPU/AMD: Calculate last level cache ID from number of sharing threads")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560954773-11967-1-git-send-email-cai@lca.pw
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
subject to gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081204.018005938@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is licensed under the gpl v2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204654.634736654@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 2 normalized pattern(s):
this source code is licensed under the gnu general public license
version 2 see the file copying for more details
this source code is licensed under general public license version 2
see
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 52 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.449021192@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A recent change moved the microcode loader hotplug callback into the early
startup phase which is running with interrupts disabled. It missed that
the callbacks invoke sysfs functions which might sleep causing nice 'might
sleep' splats with proper debugging enabled.
Split the callbacks and only load the microcode in the early startup phase
and move the sysfs handling back into the later threaded and preemptible
bringup phase where it was before.
Fixes: 78f4e932f7 ("x86/microcode, cpuhotplug: Add a microcode loader CPU hotplug callback")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906182228350.1766@nanos.tec.linutronix.de
This function is only use by the core FPU code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-4-hch@lst.de
Merge two helpers into the main function, remove a pointless local
variable and flatten a conditional.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-3-hch@lst.de
Currently, the jump label of a static key is transformed via the arch
specific function:
void arch_jump_label_transform(struct jump_entry *entry,
enum jump_label_type type)
The new approach (batch mode) uses two arch functions, the first has the
same arguments of the arch_jump_label_transform(), and is the function:
bool arch_jump_label_transform_queue(struct jump_entry *entry,
enum jump_label_type type)
Rather than transforming the code, it adds the jump_entry in a queue of
entries to be updated. This functions returns true in the case of a
successful enqueue of an entry. If it returns false, the caller must to
apply the queue and then try to queue again, for instance, because the
queue is full.
This function expects the caller to sort the entries by the address before
enqueueuing then. This is already done by the arch independent code, though.
After queuing all jump_entries, the function:
void arch_jump_label_transform_apply(void)
Applies the changes in the queue.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/57b4caa654bad7e3b066301c9a9ae233dea065b5.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the patch of an address is done in three steps:
-- Pseudo-code #1 - Current implementation ---
1) add an int3 trap to the address that will be patched
sync cores (send IPI to all other CPUs)
2) update all but the first byte of the patched range
sync cores (send IPI to all other CPUs)
3) replace the first byte (int3) by the first byte of replacing opcode
sync cores (send IPI to all other CPUs)
-- Pseudo-code #1 ---
When a static key has more than one entry, these steps are called once for
each entry. The number of IPIs then is linear with regard to the number 'n' of
entries of a key: O(n*3), which is O(n).
This algorithm works fine for the update of a single key. But we think
it is possible to optimize the case in which a static key has more than
one entry. For instance, the sched_schedstats jump label has 56 entries
in my (updated) fedora kernel, resulting in 168 IPIs for each CPU in
which the thread that is enabling the key is _not_ running.
With this patch, rather than receiving a single patch to be processed, a vector
of patches is passed, enabling the rewrite of the pseudo-code #1 in this
way:
-- Pseudo-code #2 - This patch ---
1) for each patch in the vector:
add an int3 trap to the address that will be patched
sync cores (send IPI to all other CPUs)
2) for each patch in the vector:
update all but the first byte of the patched range
sync cores (send IPI to all other CPUs)
3) for each patch in the vector:
replace the first byte (int3) by the first byte of replacing opcode
sync cores (send IPI to all other CPUs)
-- Pseudo-code #2 - This patch ---
Doing the update in this way, the number of IPI becomes O(3) with regard
to the number of keys, which is O(1).
The batch mode is done with the function text_poke_bp_batch(), that receives
two arguments: a vector of "struct text_to_poke", and the number of entries
in the vector.
The vector must be sorted by the addr field of the text_to_poke structure,
enabling the binary search of a handler in the poke_int3_handler function
(a fast path).
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/ca506ed52584c80f64de23f6f55ca288e5d079de.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the definition of the code to be written from
__jump_label_transform() to a specialized function. No functional
change.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d2f52a0010ecd399cf9b02a65bcf5836571b9e52.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove two little helpers and merge them into kernel_fpu_end() to
streamline the function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-2-hch@lst.de
Pull x86 fixes from Thomas Gleixner:
"The accumulated fixes from this and last week:
- Fix vmalloc TLB flush and map range calculations which lead to
stale TLBs, spurious faults and other hard to diagnose issues.
- Use fault_in_pages_writable() for prefaulting the user stack in the
FPU code as it's less fragile than the current solution
- Use the PF_KTHREAD flag when checking for a kernel thread instead
of current->mm as the latter can give the wrong answer due to
use_mm()
- Compute the vmemmap size correctly for KASLR and 5-Level paging.
Otherwise this can end up with a way too small vmemmap area.
- Make KASAN and 5-level paging work again by making sure that all
invalid bits are masked out when computing the P4D offset. This
worked before but got broken recently when the LDT remap area was
moved.
- Prevent a NULL pointer dereference in the resource control code
which can be triggered with certain mount options when the
requested resource is not available.
- Enforce ordering of microcode loading vs. perf initialization on
secondary CPUs. Otherwise perf tries to access a non-existing MSR
as the boot CPU marked it as available.
- Don't stop the resource control group walk early otherwise the
control bitmaps are not updated correctly and become inconsistent.
- Unbreak kgdb by returning 0 on success from
kgdb_arch_set_breakpoint() instead of an error code.
- Add more Icelake CPU model defines so depending changes can be
queued in other trees"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode, cpuhotplug: Add a microcode loader CPU hotplug callback
x86/kasan: Fix boot with 5-level paging and KASAN
x86/fpu: Don't use current->mm to check for a kthread
x86/kgdb: Return 0 from kgdb_arch_set_breakpoint()
x86/resctrl: Prevent NULL pointer dereference when local MBM is disabled
x86/resctrl: Don't stop walking closids when a locksetup group is found
x86/fpu: Update kernel's FPU state before using for the fsave header
x86/mm/KASLR: Compute the size of the vmemmap section properly
x86/fpu: Use fault_in_pages_writeable() for pre-faulting
x86/CPU: Add more Icelake model numbers
mm/vmalloc: Avoid rare case of flushing TLB with weird arguments
mm/vmalloc: Fix calculation of direct map addr range
Adric Blake reported the following warning during suspend-resume:
Enabling non-boot CPUs ...
x86: Booting SMP configuration:
smpboot: Booting Node 0 Processor 1 APIC 0x2
unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0000000000000000) \
at rIP: 0xffffffff8d267924 (native_write_msr+0x4/0x20)
Call Trace:
intel_set_tfa
intel_pmu_cpu_starting
? x86_pmu_dead_cpu
x86_pmu_starting_cpu
cpuhp_invoke_callback
? _raw_spin_lock_irqsave
notify_cpu_starting
start_secondary
secondary_startup_64
microcode: sig=0x806ea, pf=0x80, revision=0x96
microcode: updated to revision 0xb4, date = 2019-04-01
CPU1 is up
The MSR in question is MSR_TFA_RTM_FORCE_ABORT and that MSR is emulated
by microcode. The log above shows that the microcode loader callback
happens after the PMU restoration, leading to the conjecture that
because the microcode hasn't been updated yet, that MSR is not present
yet, leading to the #GP.
Add a microcode loader-specific hotplug vector which comes before
the PERF vectors and thus executes earlier and makes sure the MSR is
present.
Fixes: 400816f60c ("perf/x86/intel: Implement support for TSX Force Abort")
Reported-by: Adric Blake <promarbler14@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: x86@kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=203637
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlz8fAYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG1asH/3ySguxqtqL1MCBa
4/SZ37PHeWKMerfX6ZyJdgEqK3B+PWlmuLiOMNK5h2bPLzeQQQAmHU/mfKmpXqgB
dHwUbG9yNnyUtTfsfRqAnCA6vpuw9Yb1oIzTCVQrgJLSWD0j7scBBvmzYqguOkto
ThwigLUq3AILr8EfR4rh+GM+5Dn9OTEFAxwil9fPHQo7QoczwZxpURhScT6Co9TB
DqLA3fvXbBvLs/CZy/S5vKM9hKzC+p39ApFTURvFPrelUVnythAM0dPDJg3pIn5u
g+/+gDxDFa+7ANxvxO2ng1sJPDqJMeY/xmjJYlYyLpA33B7zLNk2vDHhAP06VTtr
XCMhQ9s=
=cb80
-----END PGP SIGNATURE-----
Merge tag 'v5.2-rc4' into mauro
We need to pick up post-rc1 changes to various document files so they don't
get lost in Mauro's massive RST conversion push.
Fix the following sparse warning:
arch/x86/kernel/amd_nb.c:74:28: warning:
symbol 'hygon_nb_misc_ids' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Brian Woods <Brian.Woods@amd.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190614155441.22076-1-yuehaibing@huawei.com
The inline keyword was not at the beginning of the function declarations.
Fix the following warnings triggered when using W=1:
arch/x86/kernel/tsc.c:62:1: warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
arch/x86/kernel/tsc.c:79:1: warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: trivial@kernel.org
Cc: kernel-janitors@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190524103252.28575-1-malat@debian.org
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
The only way this can fail is if:
* debugfs superblock can not be pinned - something really went wrong with the
vfs layer.
* file is created with same name - the caller's fault.
* new_inode() fails - happens if memory is exhausted.
so failing to clean up debugfs properly is the least of the system's
sproblems in uch a situation.
[ bp: Extend commit message, remove unused err var in inject_init(). ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190612151531.GA16278@kroah.com
current->mm can be non-NULL if a kthread calls use_mm(). Check for
PF_KTHREAD instead to decide when to store user mode FP state.
Fixes: 2722146eb7 ("x86/fpu: Remove fpu->initialized")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604175411.GA27477@lst.de
err must be nonzero in order to reach text_poke(), which caused kgdb to
fail to set breakpoints:
(gdb) break __x64_sys_sync
Breakpoint 1 at 0xffffffff81288910: file ../fs/sync.c, line 124.
(gdb) c
Continuing.
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0xffffffff81288910
Command aborted.
Fixes: 86a2205712 ("x86/kgdb: Avoid redundant comparison of patched code")
Signed-off-by: Matt Mullins <mmullins@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nadav Amit <namit@vmware.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: "Gustavo A. R. Silva" <gustavo@embeddedor.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190531194755.6320-1-mmullins@fb.com
AVX-512 components usage can result in turbo frequency drop. So it's useful
to expose AVX-512 usage elapsed time as a heuristic hint for user space job
schedulers to cluster the AVX-512 using tasks together.
Examples:
$ while [ 1 ]; do cat /proc/tid/arch_status | grep AVX512; sleep 1; done
AVX512_elapsed_ms: 4
AVX512_elapsed_ms: 8
AVX512_elapsed_ms: 4
This means that 4 milliseconds have elapsed since the tsks AVX512 usage was
detected when the task was scheduled out.
$ cat /proc/tid/arch_status | grep AVX512
AVX512_elapsed_ms: -1
'-1' indicates that no AVX512 usage was recorded for this task.
The time exposed is not necessarily accurate when the arch_status file is
read as the AVX512 usage is only evaluated when a task is scheduled
out. Accurate usage information can be obtained with performance counters.
[ tglx: Massaged changelog ]
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: dave.hansen@intel.com
Cc: arjan@linux.intel.com
Cc: adobriyan@gmail.com
Cc: aubrey.li@intel.com
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190606012236.9391-2-aubrey.li@linux.intel.com
Booting with kernel parameter "rdt=cmt,mbmtotal,memlocal,l3cat,mba" and
executing "mount -t resctrl resctrl -o mba_MBps /sys/fs/resctrl" results in
a NULL pointer dereference on systems which do not have local MBM support
enabled..
BUG: kernel NULL pointer dereference, address: 0000000000000020
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 0 PID: 722 Comm: kworker/0:3 Not tainted 5.2.0-0.rc3.git0.1.el7_UNSUPPORTED.x86_64 #2
Workqueue: events mbm_handle_overflow
RIP: 0010:mbm_handle_overflow+0x150/0x2b0
Only enter the bandwith update loop if the system has local MBM enabled.
Fixes: de73f38f76 ("x86/intel_rdt/mba_sc: Feedback loop to dynamically update mem bandwidth")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190610171544.13474-1-prarit@redhat.com
When a new control group is created __init_one_rdt_domain() walks all
the other closids to calculate the sets of used and unused bits.
If it discovers a pseudo_locksetup group, it breaks out of the loop. This
means any later closid doesn't get its used bits added to used_b. These
bits will then get set in unused_b, and added to the new control group's
configuration, even if they were marked as exclusive for a later closid.
When encountering a pseudo_locksetup group, we should continue. This is
because "a resource group enters 'pseudo-locked' mode after the schemata is
written while the resource group is in 'pseudo-locksetup' mode." When we
find a pseudo_locksetup group, its configuration is expected to be
overwritten, we can skip it.
Fixes: dfe9674b04 ("x86/intel_rdt: Enable entering of pseudo-locksetup mode")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H Peter Avin <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190603172531.178830-1-james.morse@arm.com
Use the HYPERVISOR_CALLBACK_VECTOR to notify an ACRN guest.
Co-developed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1559108037-18813-4-git-send-email-yakui.zhao@intel.com
ACRN is an open-source hypervisor maintained by The Linux Foundation. It
is built for embedded IOT with small footprint and real-time features.
Add ACRN guest support so that it allows Linux to be booted under the
ACRN hypervisor. This adds only the barebones implementation.
[ bp: Massage commit message and help text. ]
Co-developed-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Jason Chen CJ <jason.cj.chen@intel.com>
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1559108037-18813-3-git-send-email-yakui.zhao@intel.com
Add a special Kconfig symbol X86_HV_CALLBACK_VECTOR so that the guests
using the hypervisor interrupt callback counter can select and thus
enable that counter. Select it when xen or hyperv support is enabled. No
functional changes.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: linux-hyperv@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/1559108037-18813-2-git-send-email-yakui.zhao@intel.com
The OS is expected to write all bits to MCA_CTL for each bank,
thus enabling error reporting in all banks. However, some banks
may be unused in which case the registers for such banks are
Read-as-Zero/Writes-Ignored. Also, the OS may avoid setting some control
bits because of quirks, etc.
A bank can be considered uninitialized if the MCA_CTL register returns
zero. This is because either the OS did not write anything or because
the hardware is enforcing RAZ/WI for the bank.
Set a bank's init value based on if the control bits are set or not in
hardware. Return an error code in the sysfs interface for uninitialized
banks.
Do a final bank init check in a separate function which is not part of
any user-controlled code flows. This is so a user may enable/disable a
bank during runtime without having to restart their system.
[ bp: Massage a bit. Discover bank init state at boot. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-6-Yazen.Ghannam@amd.com
The number of MCA banks is provided per logical CPU. Historically, this
number has been the same across all CPUs, but this is not an
architectural guarantee. Future AMD systems may have MCA bank counts
that vary between logical CPUs in a system.
This issue was partially addressed in
006c077041 ("x86/mce: Handle varying MCA bank counts")
by allocating structures using the maximum number of MCA banks and by
saving the maximum MCA bank count in a system as the global count. This
means that some extra structures are allocated. Also, this means that
CPUs will spend more time in the #MC and other handlers checking extra
MCA banks.
Thus, define the number of MCA banks as a per-CPU variable.
[ bp: Make mce_num_banks an unsigned int. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-5-Yazen.Ghannam@amd.com
On legacy systems, the addresses of the MCA_MISC* registers need to be
recursively discovered based on a Block Pointer field in the registers.
On Scalable MCA systems, the register space is fixed, and particular
addresses can be derived by regular offsets for bank and register type.
This fixed address space includes the MCA_MISC* registers.
MCA_MISC0 is always available for each MCA bank. MCA_MISC1 through
MCA_MISC4 are considered available if MCA_MISC0[BlkPtr]=1.
Cache the value of MCA_MISC0[BlkPtr] for each bank and per CPU. This
needs to be done only during init. The values should be saved per CPU
to accommodate heterogeneous SMCA systems.
Redo smca_get_block_address() to directly return the block addresses.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-4-Yazen.Ghannam@amd.com
Current AMD systems have unique MCA banks per logical CPU even though
the type of the banks may all align to the same bank number. Each CPU
will have control of a set of MCA banks in the hardware and these are
not shared with other CPUs.
For example, bank 0 may be the Load-Store Unit on every logical CPU, but
each bank 0 is a unique structure in the hardware. In other words, there
isn't a *single* Load-Store Unit at MCA bank 0 that all logical CPUs
share.
This idea extends even to non-core MCA banks. For example, CPU0 and CPU4
may see a Unified Memory Controller at bank 15, but each CPU is actually
seeing a unique hardware structure that is not shared with other CPUs.
Because the MCA banks are all unique hardware structures, it would be
good to control them in a more granular way. For example, if there is a
known issue with the Floating Point Unit on CPU5 and a user wishes to
disable an error type on the Floating Point Unit, then it would be good
to do this only for CPU5 rather than all CPUs.
Also, future AMD systems may have heterogeneous MCA banks. Meaning
the bank numbers may not necessarily represent the same types between
CPUs. For example, bank 20 visible to CPU0 may be a Unified Memory
Controller and bank 20 visible to CPU4 may be a Coherent Slave. So
granular control will be even more necessary should the user wish to
control specific MCA banks.
Split the device attributes from struct mce_bank leaving only the MCA
bank control fields.
Make struct mce_banks[] per_cpu in order to have more granular control
over individual MCA banks in the hardware.
Allocate the device attributes statically based on the maximum number of
MCA banks supported. The sysfs interface will use as many as needed per
CPU. Currently, this is set to mca_cfg.banks, but will be changed to a
per_cpu bank count in a future patch.
Allocate the MCA control bits statically. This is in order to avoid
locking warnings when memory is allocated during secondary CPUs' init
sequences.
Also, remove the now unnecessary return values from
__mcheck_cpu_mce_banks_init() and __mcheck_cpu_cap_init().
Redo the sysfs store/show functions to handle the per_cpu mce_banks[].
[ bp: s/mce_banks_percpu/mce_banks_array/g ]
[ Locking issue reported by ]
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-3-Yazen.Ghannam@amd.com
The struct mce_banks[] array is only used in mce/core.c so move its
definition there and make it static. Also, change the "init" field to
bool type.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-2-Yazen.Ghannam@amd.com
Use the _ASM_BX macro which expands to either %rbx or %ebx, depending on
the 32-bit or 64-bit config selected.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190606200044.5730-1-ubizjak@gmail.com
With the recent addition of RSDP parsing in the decompression stage,
a kexec-ed kernel now needs ACPI tables to be covered by the identity
mapping. And in commit
6bbeb276b7 ("x86/kexec: Add the EFI system tables and ACPI tables to the ident map")
the ACPI tables memory region was added to the ident map.
But some machines have only an ACPI NVS memory region and the ACPI
tables are located in that region. In such case, the kexec-ed kernel
will still fail when trying to access ACPI tables if they're not mapped.
So add the NVS memory region to the ident map as well.
[ bp: Massage. ]
Fixes: 6bbeb276b7 ("x86/kexec: Add the EFI system tables and ACPI tables to the ident map")
Suggested-by: Junichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Junichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dirk van der Merwe <dirk.vandermerwe@netronome.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: kexec@lists.infradead.org
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190610073617.19767-1-kasong@redhat.com
Another round of SPDX header file fixes for 5.2-rc4
These are all more "GPL-2.0-or-later" or "GPL-2.0-only" tags being
added, based on the text in the files. We are slowly chipping away at
the 700+ different ways people tried to write the license text. All of
these were reviewed on the spdx mailing list by a number of different
people.
We now have over 60% of the kernel files covered with SPDX tags:
$ ./scripts/spdxcheck.py -v 2>&1 | grep Files
Files checked: 64533
Files with SPDX: 40392
Files with errors: 0
I think the majority of the "easy" fixups are now done, it's now the
start of the longer-tail of crazy variants to wade through.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXPuGTg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykBvQCg2SG+HmDH+tlwKLT/q7jZcLMPQigAoMpt9Uuy
sxVEiFZo8ZU9v1IoRb1I
=qU++
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull yet more SPDX updates from Greg KH:
"Another round of SPDX header file fixes for 5.2-rc4
These are all more "GPL-2.0-or-later" or "GPL-2.0-only" tags being
added, based on the text in the files. We are slowly chipping away at
the 700+ different ways people tried to write the license text. All of
these were reviewed on the spdx mailing list by a number of different
people.
We now have over 60% of the kernel files covered with SPDX tags:
$ ./scripts/spdxcheck.py -v 2>&1 | grep Files
Files checked: 64533
Files with SPDX: 40392
Files with errors: 0
I think the majority of the "easy" fixups are now done, it's now the
start of the longer-tail of crazy variants to wade through"
* tag 'spdx-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (159 commits)
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 450
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 449
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 448
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 446
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 445
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 444
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 443
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 442
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 441
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 440
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 438
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 437
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 436
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 435
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 434
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 433
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 432
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 431
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 430
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 429
...
Mostly due to x86 and acpi conversion, several documentation
links are still pointing to the old file. Fix them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Wolfram Sang <wsa@the-dreams.de>
Reviewed-by: Sven Van Asbroeck <TheSven73@gmail.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
In commit
39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")
I removed the statement
| if (ia32_fxstate)
| copy_fxregs_to_kernel(fpu);
and argued that it was wrongly merged because the content was already
saved in kernel's state.
This was wrong: It is required to write it back because it is only
saved on the user-stack and save_fsave_header() reads it from task's
FPU-state. I missed that part…
Save x87 FPU state unless thread's FPU registers are already up to date.
Fixes: 39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Eric Biggers <ebiggers@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607142915.y52mfmgk5lvhll7n@linutronix.de
Fix a couple of s/poped/popped/ typos.
Signed-off-by: George G. Davis <george_davis@mentor.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Currently, only the whole physical memory is identity-mapped for the
kexec kernel and the regions reserved by firmware are ignored.
However, the recent addition of RSDP parsing in the decompression stage
and especially:
33f0df8d84 ("x86/boot: Search for RSDP in the EFI tables")
which tries to access EFI system tables and to dig out the RDSP address
from there, becomes a problem because in certain configurations, they
might not be mapped in the kexec'ed kernel's address space.
What is more, this problem doesn't appear on all systems because the
kexec kernel uses gigabyte pages to build the identity mapping. And
the EFI system tables and ACPI tables can, depending on the system
configuration, end up being mapped as part of all physical memory, if
they share the same 1 GB area with the physical memory.
Therefore, make sure they're always mapped.
[ bp: productize half-baked patch:
- rewrite commit message.
- correct the map_acpi_tables() function name in the !ACPI case. ]
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Dirk van der Merwe <dirk.vandermerwe@netronome.com>
Cc: dyoung@redhat.com
Cc: fanc.fnst@cn.fujitsu.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: j-nomura@ce.jp.nec.com
Cc: kexec@lists.infradead.org
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190429002318.GA25400@MiWiFi-R3L-srv
Since commit
d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")
get_user_pages_unlocked() pre-faults user's memory if a write generates
a page fault while the handler is disabled.
This works in general and uncovered a bug as reported by Mike
Rapoport¹. It has been pointed out that this function may be fragile
and a simple pre-fault as in fault_in_pages_writeable() would be a
better solution. Better as in taste and simplicity: that write (as
performed by the alternative function) performs exactly the same
faulting of memory as before. This was suggested by Hugh Dickins and
Andrew Morton.
Use fault_in_pages_writeable() for pre-faulting user's stack.
[ bigeasy: Write commit message. ]
[ bp: Massage some. ]
¹ https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
Fixes: d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190529072540.g46j4kfeae37a3iu@linutronix.de
Link: https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
While the TIF_SYSCALL_EMU is set in ptrace_resume independent of any
architecture, currently only powerpc and x86 unset the TIF_SYSCALL_EMU
flag in ptrace_disable which gets called from ptrace_detach.
Let's move the clearing of TIF_SYSCALL_EMU flag to __ptrace_unlink
which gets executed from ptrace_detach and also keep it along with
or close to clearing of TIF_SYSCALL_TRACE.
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 315 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is licensed under gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 22 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.129548190@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
distribute under gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 8 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190114.475576622@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file is released under the gplv2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 68 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190114.292346262@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
licensed under the terms of the gnu general public license version 2
see file copying for details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531081035.403801661@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
your use of this code is subject to the terms and conditions of the
gnu general public license version 2 see copying or http www gnu org
licenses gpl html
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000437.701946635@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
use of this code is subject to the terms and conditions of the gnu
general public license version 2 see copying or http www gnu org
licenses gpl html
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000437.611918838@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 51 franklin st fifth floor boston ma 02110
1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 111 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.567572064@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not write to the free
software foundation inc 59 temple place suite 330 boston ma 02111
1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 136 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.384967451@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms and conditions of the gnu general public license
version 2 as published by the free software foundation this program
is distributed in the hope it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 263 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In commit:
4b53a3412d ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Two fixes: a quirk for KVM guests running on certain AMD CPUs, and a
KASAN related build fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/CPU/AMD: Don't force the CPB cap when running under a hypervisor
x86/boot: Provide KASAN compatible aliases for string routines
Pull integrity subsystem fixes from Mimi Zohar:
"Four bug fixes, none 5.2-specific, all marked for stable.
The first two are related to the architecture specific IMA policy
support. The other two patches, one is related to EVM signatures,
based on additional hash algorithms, and the other is related to
displaying the IMA policy"
* 'next-fixes-for-5.2-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-integrity:
ima: show rules with IMA_INMASK correctly
evm: check hash algorithm passed to init_desc()
ima: fix wrong signed policy requirement when not appraising
x86/ima: Check EFI_RUNTIME_SERVICES before using
Based on 1 normalized pattern(s):
subject to the gnu public license v 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 9 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171440.130801526@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
subject to the gnu general public license v2 only
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 1 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171439.275006521@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this copyrighted material is made available to anyone wishing to use
modify copy or redistribute it subject to the terms and conditions
of the gnu general public license v 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 45 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528170027.342746075@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this file may be distributed under the terms of the gnu general
public license version 2
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 9 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.395589349@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 02111 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1334 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation inc 675 mass ave cambridge ma 02139 usa
either version 2 of the license or at your option any later version
incorporated herein by reference
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 4 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.465381181@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 9ed0985332 ("x86: intel_epb: Take CONFIG_PM into account")
prevented the majority of the Performance and Energy Bias Hint (EPB)
handling code from being built when CONFIG_PM is unset to fix a
regression introduced by commit b9c273babc ("PM / arch: x86:
MSR_IA32_ENERGY_PERF_BIAS sysfs interface").
In hindsight, however, it would be better to skip all of the EPB
handling code for CONFIG_PM unset as there really is no reason for
it to be there in that case. Namely, if the EPB is not touched
by the kernel at all with CONFIG_PM unset, there is no need to
worry about modifying the EPB inadvertently on CPU online and since
the system will not suspend or hibernate then, there is no need to
worry about possible modifications of the EPB by the platform
firmware during system-wide PM transitions.
For this reason, revert the changes made by commit 9ed0985332
and only allow intel_epb.o to be built when CONFIG_PM is set.
Note that this changes the behavior of the kernels built with
CONFIG_PM unset as they will not modify the EPB on boot if it is
zero initially any more, so it is not a fix strictly speaking, but
users building their kernels with CONFIG_PM unset really should not
expect them to take energy efficiency into account. Moreover, if
CONFIG_PM is unset for performance reasons, leaving EPB as set
initially by the platform firmware will actually be consistent
with the user's expectations.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
As synchronous exceptions really only make sense against the current
task (otherwise how are you synchronous) remove the task parameter
from from force_sig_fault to make it explicit that is what is going
on.
The two known exceptions that deliver a synchronous exception to a
stopped ptraced task have already been changed to
force_sig_fault_to_task.
The callers have been changed with the following emacs regular expression
(with obvious variations on the architectures that take more arguments)
to avoid typos:
force_sig_fault[(]\([^,]+\)[,]\([^,]+\)[,]\([^,]+\)[,]\W+current[)]
->
force_sig_fault(\1,\2,\3)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Update the calls of force_sig_fault that pass in a variable that is
set to current earlier to explicitly use current.
This is to make the next change that removes the task parameter
from force_sig_fault easier to verify.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The send_sigtrap function is always called with task == current. Make
that explicit by removing the task parameter.
This also makes it clear that the x86 send_sigtrap passes current
into force_sig_fault.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
All of the remaining callers pass current into force_sig so
remove the task parameter to make this obvious and to make
misuse more difficult in the future.
This also makes it clear force_sig passes current into force_sig_info.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 or at your option any
later version this program is distributed in the hope that it will
be useful but without any warranty without even the implied warranty
of merchantability or fitness for a particular purpose see the gnu
general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 44 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190523091651.032047323@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
51 franklin st fifth floor boston ma 02110 1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 50 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190523091649.499889647@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 1 normalized pattern(s):
this code is released under the gnu general public license version 2
or later
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520075211.232210963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
For F17h AMD CPUs, the CPB capability ('Core Performance Boost') is forcibly set,
because some versions of that chip incorrectly report that they do not have it.
However, a hypervisor may filter out the CPB capability, for good
reasons. For example, KVM currently does not emulate setting the CPB
bit in MSR_K7_HWCR, and unchecked MSR access errors will be thrown
when trying to set it as a guest:
unchecked MSR access error: WRMSR to 0xc0010015 (tried to write 0x0000000001000011) at rIP: 0xffffffff890638f4 (native_write_msr+0x4/0x20)
Call Trace:
boost_set_msr+0x50/0x80 [acpi_cpufreq]
cpuhp_invoke_callback+0x86/0x560
sort_range+0x20/0x20
cpuhp_thread_fun+0xb0/0x110
smpboot_thread_fn+0xef/0x160
kthread+0x113/0x130
kthread_create_worker_on_cpu+0x70/0x70
ret_from_fork+0x35/0x40
To avoid this issue, don't forcibly set the CPB capability for a CPU
when running under a hypervisor.
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: jiaxun.yang@flygoat.com
Fixes: 0237199186 ("x86/CPU/AMD: Set the CPB bit unconditionally on F17h")
Link: http://lkml.kernel.org/r/20190522221745.GA15789@dev-dsk-fllinden-2c-c1893d73.us-west-2.amazon.com
[ Minor edits to the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit:
21d375b6b3 ("x86/entry/64: Remove the SYSCALL64 fast path")
there is no user of TASK_TI_flags in assembly. There's no need to
keep it around in asm-offsets.c
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190523102325.22eacdf7@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CONFIG_IO_DELAY_TYPE_* are not kernel configuration at all. They just
define constant values, 0, 1, 2, and 3. Define them by #define in C.
CONFIG_DEFAULT_IO_DELAY_TYPE can also be defined in C by using #ifdef
and #define directives.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190521072211.21014-2-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code is fine since 'case CONFIG_IO_DELAY_TYPE_NONE'
does nothing, but scripts/checkpatch.pl complains about this:
warning: Possible switch case/default not preceded by break or fallthrough comment
I like break statement better than a fallthrough comment here.
It avoids the warning and clarify the code.
No behavior change is intended.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190521072211.21014-1-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list"
These attributes represent all of the logical CPUs that share the
same core.
These attriutes is synonymous with the existing "thread_siblings" and
"thread_siblings_list" attribute, which will be deprecated.
Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list".
These attributes represent all of the logical CPUs that share the
same die.
Suggested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
topology_max_packages() is available to size resources to cover all
packages in the system.
But now multi-die/package systems are coming up, and some resources are
per-die.
Create topology_max_die_per_package(), for detecting multi-die/package
systems, and sizing any per-die resources.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/e6eaf384571ae52ac7d0ca41510b7fb7d2fda0e4.1557769318.git.len.brown@intel.com
Some new systems have multiple software-visible die within each package.
Update Linux parsing of the Intel CPUID "Extended Topology Leaf" to handle
either CPUID.B, or the new CPUID.1F.
Add cpuinfo_x86.die_id and cpuinfo_x86.max_dies to store the result.
die_id will be non-zero only for multi-die/package systems.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-doc@vger.kernel.org
Link: https://lkml.kernel.org/r/7b23d2d26d717b8e14ba137c94b70943f1ae4b5c.1557769318.git.len.brown@intel.com
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation 51
franklin street fifth floor boston ma 02110 1301 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 2 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154042.432790911@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not see http www gnu org licenses
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details [based]
[from] [clk] [highbank] [c] you should have received a copy of the
gnu general public license along with this program if not see http
www gnu org licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 355 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Checking efi_enabled(EFI_BOOT) is not sufficient to ensure that
EFI runtime services are available, e.g. if efi=noruntime is used.
Without this, I get an oops on a PREEMPT_RT kernel where efi=noruntime is
the default.
Fixes: 399574c64e ("x86/ima: retry detecting secure boot mode")
Cc: stable@vger.kernel.org (linux-5.0)
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Currently, the Kbuild core manipulates header search paths in a crazy
way [1].
To fix this mess, I want all Makefiles to add explicit $(srctree)/ to
the search paths in the srctree. Some Makefiles are already written in
that way, but not all. The goal of this work is to make the notation
consistent, and finally get rid of the gross hacks.
Having whitespaces after -I does not matter since commit 48f6e3cf5b
("kbuild: do not drop -I without parameter").
[1]: https://patchwork.kernel.org/patch/9632347/
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
memory and performance optimizations.
* x86: support for accessing memory not backed by struct page, fixes and refactoring
* Generic: dirty page tracking improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
=D0+p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
Pull x86 fixes from Ingo Molnar:
"Misc fixes and updates:
- a handful of MDS documentation/comment updates
- a cleanup related to hweight interfaces
- a SEV guest fix for large pages
- a kprobes LTO fix
- and a final cleanup commit for vDSO HPET support removal"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mds: Improve CPU buffer clear documentation
x86/speculation/mds: Revert CPU buffer clear on double fault exit
x86/kconfig: Disable CONFIG_GENERIC_HWEIGHT and remove __HAVE_ARCH_SW_HWEIGHT
x86/mm: Do not use set_{pud, pmd}_safe() when splitting a large page
x86/kprobes: Make trampoline_handler() global and visible
x86/vdso: Remove hpet_page from vDSO
The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb805 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Removing of non-DYNAMIC_FTRACE from 32bit x86
- Removing of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on config
options
And other minor fixes and clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXNxMZxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qq4PAP44kP6VbwL8CHyI2A3xuJ6Hwxd+2Z2r
ip66RtzyJ+2iCgEA2QCuWUlEt2bLpF9a8IQ4N9tWenSeW2i7gunPb+tioQw=
=RVQo
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The major changes in this tracing update includes:
- Removal of non-DYNAMIC_FTRACE from 32bit x86
- Removal of mcount support from x86
- Emulating a call from int3 on x86_64, fixes live kernel patching
- Consolidated Tracing Error logs file
Minor updates:
- Removal of klp_check_compiler_support()
- kdb ftrace dumping output changes
- Accessing and creating ftrace instances from inside the kernel
- Clean up of #define if macro
- Introduction of TRACE_EVENT_NOP() to disable trace events based on
config options
And other minor fixes and clean ups"
* tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
x86: Hide the int3_emulate_call/jmp functions from UML
livepatch: Remove klp_check_compiler_support()
ftrace/x86: Remove mcount support
ftrace/x86_32: Remove support for non DYNAMIC_FTRACE
tracing: Simplify "if" macro code
tracing: Fix documentation about disabling options using trace_options
tracing: Replace kzalloc with kcalloc
tracing: Fix partial reading of trace event's id file
tracing: Allow RCU to run between postponed startup tests
tracing: Fix white space issues in parse_pred() function
tracing: Eliminate const char[] auto variables
ring-buffer: Fix mispelling of Calculate
tracing: probeevent: Fix to make the type of $comm string
tracing: probeevent: Do not accumulate on ret variable
tracing: uprobes: Re-enable $comm support for uprobe events
ftrace/x86_64: Emulate call function while updating in breakpoint handler
x86_64: Allow breakpoints to emulate call instructions
x86_64: Add gap to int3 to allow for call emulation
tracing: kdb: Allow ftdump to skip all but the last few entries
tracing: Add trace_total_entries() / trace_total_entries_cpu()
...
- Fix recent regression causing kernels built with CONFIG_PM
unset to crash on systems that support the Performance and
Energy Bias Hint (EPB) by avoiding to compile the EPB-related
code depending on CONFIG_PM when it is unset (Rafael Wysocki).
- Clean up the transition notifier invocation code in the cpufreq
core and change some users of cpufreq transition notifiers
accordingly (Viresh Kumar).
- Change MAINTAINERS to cover the schedutil governor as part of
cpufreq (Viresh Kumar).
- Simplify cpufreq_init_policy() to avoid redundant computations
(Yue Hu).
- Add explanatory comment to the cpufreq core (Rafael Wysocki).
- Introduce a new flag, GENPD_FLAG_RPM_ALWAYS_ON, to the generic
power domains (genpd) framework along with the first user of it
(Leonard Crestez).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzb4TASHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxiEAP/37uQOx+I8J3IU7HQcPIkdI1hgksLEzo
g2eoREekjszIjFK9xa70X3V/QnGK4YSPQ/cHCjgXfVhwkO5TJzte5T5M2z9gUCDT
7OMYWCI6hP6Mo5UWlP4dQ9Cqce4SB3TdibadevxcVOhFAW/xz42y5Gr6s4WkexJf
Swb2uoLS4gGANyhUhx6XEZ5NpWZkWcK2ygZ8VJZETnoIwxMSUW7FTJkF+4s2tXLZ
GH+F5jWAbwPlg6g2c54lPL1HtiAvK+/018aF8CZMqUBec94RHDFybVOlb5sacfQW
+Y0W/mc/6SMqT3OUcQ0H3Z/qkgwR8mL01hH6gCP1jA5OBljmTjzk0Bbc4c3n9BEN
aRy4M8Qc/GXzEBPO3Z9AlYik6ALH9iUgL2hewGZAFN8kn9ZGPAqYsctdCVkfKL1u
4Esz5+wOsyYmBx910PozL+p2jbTH0x89sSo1qXUQr2JEiNm2iL4I4+ndqhuiq4LO
sQPHCpe4HhYWzIQzJLDurv6hAxxU5PUsGg8XDEGlsyowIPDoIkMgC93RRLGZ/taY
Ivc2FSlwLTSkzBHwVfckakXPvfyFdw8DFL2n66dQbXS9FFNshOF/TFx40iV42i5H
wusyIZIT1y1H74De0EVntUho3xBo3nrrsu1o2NaXsTBoEsYwJiCji4yOZlI1Zh+m
A9coiXKm4hY5
=LqTN
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These fix a recent regression causing kernels built with CONFIG_PM
unset to crash on systems that support the Performance and Energy Bias
Hint (EPB), clean up the cpufreq core and some users of transition
notifiers and introduce a new power domain flag into the generic power
domains framework (genpd).
Specifics:
- Fix recent regression causing kernels built with CONFIG_PM unset to
crash on systems that support the Performance and Energy Bias Hint
(EPB) by avoiding to compile the EPB-related code depending on
CONFIG_PM when it is unset (Rafael Wysocki).
- Clean up the transition notifier invocation code in the cpufreq
core and change some users of cpufreq transition notifiers
accordingly (Viresh Kumar).
- Change MAINTAINERS to cover the schedutil governor as part of
cpufreq (Viresh Kumar).
- Simplify cpufreq_init_policy() to avoid redundant computations (Yue
Hu).
- Add explanatory comment to the cpufreq core (Rafael Wysocki).
- Introduce a new flag, GENPD_FLAG_RPM_ALWAYS_ON, to the generic
power domains (genpd) framework along with the first user of it
(Leonard Crestez)"
* tag 'pm-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
soc: imx: gpc: Use GENPD_FLAG_RPM_ALWAYS_ON for ERR009619
PM / Domains: Add GENPD_FLAG_RPM_ALWAYS_ON flag
cpufreq: Update MAINTAINERS to include schedutil governor
cpufreq: Don't find governor for setpolicy drivers in cpufreq_init_policy()
cpufreq: Explain the kobject_put() in cpufreq_policy_alloc()
cpufreq: Call transition notifier only once for each policy
x86: intel_epb: Take CONFIG_PM into account
* pm-cpufreq:
cpufreq: Update MAINTAINERS to include schedutil governor
cpufreq: Don't find governor for setpolicy drivers in cpufreq_init_policy()
cpufreq: Explain the kobject_put() in cpufreq_policy_alloc()
cpufreq: Call transition notifier only once for each policy
* pm-domains:
soc: imx: gpc: Use GENPD_FLAG_RPM_ALWAYS_ON for ERR009619
PM / Domains: Add GENPD_FLAG_RPM_ALWAYS_ON flag
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
There's two methods of enabling function tracing in Linux on x86. One is
with just "gcc -pg" and the other is "gcc -pg -mfentry". The former will use
calls to a special function "mcount" after the frame is set up in all C
functions. The latter will add calls to a special function called "fentry"
as the very first instruction of all C functions.
At compile time, there is a check to see if gcc supports, -mfentry, and if
it does, it will use that, because it is more versatile and less error prone
for function tracing.
Starting with v4.19, the minimum gcc supported to build the Linux kernel,
was raised to version 4.6. That also happens to be the first gcc version to
support -mfentry. Since on x86, using gcc versions from 4.6 and beyond will
unconditionally enable the -mfentry, it will no longer use mcount as the
method for inserting calls into the C functions of the kernel. This means
that there is no point in continuing to maintain mcount in x86.
Remove support for using mcount. This makes the code less complex, and will
also allow it to be simplified in the future.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When DYNAMIC_FTRACE is enabled in the kernel, all the functions that can be
traced by the function tracer have a "nop" placeholder at the start of the
function. When function tracing is enabled, the nop is converted into a call
to the tracing infrastructure where the functions get traced. This also
allows for specifying specific functions to trace, and a lot of
infrastructure is built on top of this.
When DYNAMIC_FTRACE is not enabled, all the functions have a call to the
ftrace trampoline. A check is made to see if a function pointer is the
ftrace_stub or not, and if it is not, it calls the function pointer to trace
the code. This adds over 10% overhead to the kernel even when tracing is
disabled.
When an architecture supports DYNAMIC_FTRACE there really is no reason to
use the static tracing. I have kept non DYNAMIC_FTRACE available in x86 so
that the generic code for non DYNAMIC_FTRACE can be tested. There is no
reason to support non DYNAMIC_FTRACE for both x86_64 and x86_32. As the non
DYNAMIC_FTRACE for x86_32 does not even support fentry, and we want to
remove mcount completely, there's no reason to keep non DYNAMIC_FTRACE
around for x86_32.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Currently, the notifiers are called once for each CPU of the policy->cpus
cpumask. It would be more optimal if the notifier can be called only
once and all the relevant information be provided to it. Out of the 23
drivers that register for the transition notifiers today, only 4 of them
do per-cpu updates and the callback for the rest can be called only once
for the policy without any impact.
This would also avoid multiple function calls to the notifier callbacks
and reduce multiple iterations of notifier core's code (which does
locking as well).
This patch adds pointer to the cpufreq policy to the struct
cpufreq_freqs, so the notifier callback has all the information
available to it with a single call. The five drivers which perform
per-cpu updates are updated to use the cpufreq policy. The freqs->cpu
field is redundant now and is removed.
Acked-by: David S. Miller <davem@davemloft.net> (sparc)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit b9c273babc ("PM / arch: x86: MSR_IA32_ENERGY_PERF_BIAS sysfs
interface") caused kernels built with CONFIG_PM unset to crash on
systems supporting the Performance and Energy Bias Hint (EPB),
because it attempts to add files to sysfs directories that don't
exist on those systems.
Prevent that from happening by taking CONFIG_PM into account so
that the code depending on it is not compiled at all when it is
not set.
Fixes: b9c273babc ("PM / arch: x86: MSR_IA32_ENERGY_PERF_BIAS sysfs interface")
Reported-by: Ido Schimmel <idosch@mellanox.com>
Tested-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Pull intgrity updates from James Morris:
"This contains just three patches, the remainder were either included
in other pull requests (eg. audit, lockdown) or will be upstreamed via
other subsystems (eg. kselftests, Power).
Included here is one bug fix, one documentation update, and extending
the x86 IMA arch policy rules to coordinate the different kernel
module signature verification methods"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
doc/kernel-parameters.txt: Deprecate ima_appraise_tcb
x86/ima: add missing include
x86/ima: require signed kernel modules
- remove the already broken support for NULL dev arguments to the
DMA API calls
- Kconfig tidyups
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlzT00YLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYO66hAAx2kCUIh+K2gFB5uxHqZiG62UmRjkPzolxcR5/Jx9
4Rz6NRAE+rp8v2fbBr2bveDx7cF5bm1L+pRyRsFMfwkm3a8dCHQ51ldIm5VFoI3e
NiX6Zoxk02BCXP/Qk//aHeNW9dBmuiemiXzdPEhOvWvVzqTO5JZrECQpkHEkG+8A
R/IWU15sr5xzw9Td/HVN9CRJri/qiTAuB9nSoP6BGjZeHkQjREJKNMGKDTvSzH4L
tlyD1G7yEymQvLBqGGO64ztuav00l8sqjI3tn1mmwpw4VTajabeRHPnWh+7g9Od+
sH1pRvIOTvEMc456fizufYIOedB5Ze344kgfrxhngRbBVXmMfShr8ZLzdIUGhGjY
1cdGqIUOEKywiDf13KrHVkNU+lJtvjMCMxvV93mAYRLOIQg0Jf4T2kklgKyEhqrG
rqFdbbtSBzmLjPyqc1FS0heDWmA+yJsKAumGcH4blJXCpsD1rHWGe0AJ34x+OHPT
tw5l+P4zAH1eO1qHCtmxN9s0lXZv1VLcFkOrJH91LPvAhZsUCrdqDjyJpTUYaIao
yzkiLbDwFO7SVoqzaVNlVZIJ/9LX0qfAnl2Atty+sAQomrQMoviNSzGbLSLQqhHN
FbTIEBMxrxS49+3lfzHOS/lYPpJp6B31yotNM+6YpXmbRQZN5gjGNYBqhKD+7Rgn
L0Y=
=IdsP
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.2' of git://git.infradead.org/users/hch/dma-mapping
Pull DMA mapping updates from Christoph Hellwig:
- remove the already broken support for NULL dev arguments to the DMA
API calls
- Kconfig tidyups
* tag 'dma-mapping-5.2' of git://git.infradead.org/users/hch/dma-mapping:
dma-mapping: add a Kconfig symbol to indicate arch_dma_prep_coherent presence
dma-mapping: remove an unnecessary NULL check
x86/dma: Remove the x86_dma_fallback_dev hack
dma-mapping: remove leftover NULL device support
arm: use a dummy struct device for ISA DMA use of the DMA API
pxa3xx-gcu: pass struct device to dma_mmap_coherent
gbefb: switch to managed version of the DMA allocator
da8xx-fb: pass struct device to DMA API functions
parport_ip32: pass struct device to DMA API functions
dma: select GENERIC_ALLOCATOR for DMA_REMAP
The APIC timer calibration (calibrate_APIC_timer()) can be skipped
in cases where we know the APIC timer frequency. On Intel SoCs,
we believe that the APIC is fed by the crystal clock; this would make
sense, and the crystal clock frequency has been verified against the
APIC timer calibration result on ApolloLake, GeminiLake, Kabylake,
CoffeeLake, WhiskeyLake and AmberLake.
Set lapic_timer_period based on the crystal clock frequency
accordingly.
APIC timer calibration would normally be skipped on modern CPUs
by nature of the TSC deadline timer being used instead,
however this change is still potentially useful, e.g. if the
TSC deadline timer has been disabled with a kernel parameter.
calibrate_APIC_timer() uses the legacy timer, but we are seeing
new platforms that omit such legacy functionality, so avoiding
such codepaths is becoming more important.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-3-drake@endlessm.com
Link: https://lkml.kernel.org/r/20190419083533.32388-1-drake@endlessm.com
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904031206440.1967@nanos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This variable is a period unit (number of clock cycles per jiffy),
not a frequency (which is number of cycles per second).
Give it a more appropriate name.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-2-drake@endlessm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
native_calibrate_tsc() had a data mapping Intel CPU families
and crystal clock speed, but hardcoded tables are not ideal, and this
approach was already problematic at least in the Skylake X case, as
seen in commit:
b511203093 ("x86/tsc: Fix erroneous TSC rate on Skylake Xeon")
By examining CPUID data from http://instlatx64.atw.hu/ and units
in the lab, we have found that 3 different scenarios need to be dealt
with, and we can eliminate most of the hardcoded data using an approach a
little more advanced than before:
1. ApolloLake, GeminiLake, CannonLake (and presumably all new chipsets
from this point) report the crystal frequency directly via CPUID.0x15.
That's definitive data that we can rely upon.
2. Skylake, Kabylake and all variants of those two chipsets report a
crystal frequency of zero, however we can calculate the crystal clock
speed by condidering data from CPUID.0x16.
This method correctly distinguishes between the two crystal clock
frequencies present on different Skylake X variants that caused
headaches before.
As the calculations do not quite match the previously-hardcoded values
in some cases (e.g. 23913043Hz instead of 24MHz), TSC refinement is
enabled on all platforms where we had to calculate the crystal
frequency in this way.
3. Denverton (GOLDMONT_X) reports a crystal frequency of zero and does
not support CPUID.0x16, so we leave this entry hardcoded.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-1-drake@endlessm.com
Link: https://lkml.kernel.org/r/20190419083533.32388-1-drake@endlessm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJc04M6AAoJEAx081l5xIa+SJgP/0uIgIOM53vPpydgmr+2IEHF
jbDqrd+mipgNriRVHjDsWdUHCUNtyhB7YEBCMrj3mY0rRFI7FlQQf4lOwYGoHiKP
4JZg4kwC37997lFXl1uabGj3DmJLtxKL2/D15zCH/uLe+2EDzWznP6NVdFT3WK0P
YKZQCWT19PWSsLoBRPutWxkmop4AYvkqE0a6vXUlJlFYZK3Bbytx6/179uWKfiX5
ZkKEEtx1XiDAvcp5gBb6PISurycrBY0e/bkPBnK3ES5vawMbTU5IrmWOrQ4D8yOd
z9qOVZawZ6+b2XBDgBWjQ9bM7I5R7Il1q/LglYEaFI9+wHUnlUdDSm6ft5/5BiCZ
fqgkh5Bj2iEsajbSsacoljMOpxpYPqj63mqc+7fAGXF34V+B+9U1bpt8kCbMKowf
7Abb7IuiCR6vLDapjP6VqTMvdQ4O466OEAN83ULGFTdmMqYYH4AxaIwc+xcAk/aP
RNq7/RHhh4FRynRAj9fCkGlF3ArnM88gLINwWuEQq4SClWGcvdw7eaHpwWo77c4g
iccCnTLqSIg5pDVu07AQzzBlW6KulWxh5o72x+Xx+EXWdYUDHQ1SlNs11bSNUBV1
5MkrzY2GuD+NFEjsXJEDIPOr40mQOyJCXnxq8nXPsz/hD9kHeJPvWn3J3eVKyb5B
Z6/knNqM0BDn3SaYR/rD
=YFiQ
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie:
"This has two exciting community drivers for ARM Mali accelerators.
Since ARM has never been open source friendly on the GPU side of the
house, the community has had to create open source drivers for the
Mali GPUs. Lima covers the older t4xx and panfrost the newer 6xx/7xx
series. Well done to all involved and hopefully this will help ARM
head in the right direction.
There is also now the ability if you don't have any of the legacy
drivers enabled (pre-KMS) to remove all the pre-KMS support code from
the core drm, this saves 10% or so in codesize on my machine.
i915 also enable Icelake/Elkhart Lake Gen11 GPUs by default, vboxvideo
moves out of staging.
There are also some rcar-du patches which crossover with media tree
but all should be acked by Mauro.
Summary:
uapi changes:
- Colorspace connector property
- fourcc - new YUV formts
- timeline sync objects initially merged
- expose FB_DAMAGE_CLIPS to atomic userspace
new drivers:
- vboxvideo: moved out of staging
- aspeed: ASPEED SoC BMC chip display support
- lima: ARM Mali4xx GPU acceleration driver support
- panfrost: ARM Mali6xx/7xx Midgard/Bitfrost acceleration driver support
core:
- component helper docs
- unplugging fixes
- devm device init
- MIPI/DSI rate control
- shmem backed gem objects
- connector, display_info, edid_quirks cleanups
- dma_buf fence chain support
- 64-bit dma-fence seqno comparison fixes
- move initial fb config code to core
- gem fence array helpers for Lima
- ability to remove legacy support code if no drivers requires it (removes 10% of drm.ko size)
- lease fixes
ttm:
- unified DRM_FILE_PAGE_OFFSET handling
- Account for kernel allocations in kernel zone only
panel:
- OSD070T1718-19TS panel support
- panel-tpo-td028ttec1 backlight support
- Ronbo RB070D30 MIPI/DSI
- Feiyang FY07024DI26A30-D MIPI-DSI panel
- Rocktech jh057n00900 MIPI-DSI panel
i915:
- Comet Lake (Gen9) PCI IDs
- Updated Icelake PCI IDs
- Elkhartlake (Gen11) support
- DP MST property addtions
- plane and watermark fixes
- Icelake port sync and VEBOX disable fixes
- struct_mutex usage reduction
- Icelake gamma fix
- GuC reset fixes
- make mmap more asynchronous
- sound display power well race fixes
- DDI/MIPI-DSI clocks for Icelake
- Icelake RPS frequency changing support
- Icelake workarounds
amdgpu:
- Use HMM for userptr
- vega20 experimental smu11 support
- RAS support for vega20
- BACO support for vega12 + fixes for vega20
- reworked IH interrupt handling
- amdkfd RAS support
- Freesync improvements
- initial timeline sync object support
- DC Z ordering fixes
- NV12 planes support
- colorspace properties for planes=
- eDP opts if eDP already initialized
nouveau:
- misc fixes
etnaviv:
- misc fixes
msm:
- GPU zap shader support expansion
- robustness ABI addition
exynos:
- Logging cleanups
tegra:
- Shared reset fix
- CPU cache maintenance fix
cirrus:
- driver rewritten using simple helpers
meson:
- G12A support
vmwgfx:
- Resource dirtying management improvements
- Userspace logging improvements
virtio:
- PRIME fixes
rockchip:
- rk3066 hdmi support
sun4i:
- DSI burst mode support
vc4:
- load tracker to detect underflow
v3d:
- v3d v4.2 support
malidp:
- initial Mali D71 support in komeda driver
tfp410:
- omap related improvement
omapdrm:
- drm bridge/panel support
- drop some omap specific panels
rcar-du:
- Display writeback support"
* tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm: (1507 commits)
drm/msm/a6xx: No zap shader is not an error
drm/cma-helper: Fix drm_gem_cma_free_object()
drm: Fix timestamp docs for variable refresh properties.
drm/komeda: Mark the local functions as static
drm/komeda: Fixed warning: Function parameter or member not described
drm/komeda: Expose bus_width to Komeda-CORE
drm/komeda: Add sysfs attribute: core_id and config_id
drm: add non-desktop quirk for Valve HMDs
drm/panfrost: Show stored feature registers
drm/panfrost: Don't scream about deferred probe
drm/panfrost: Disable PM on probe failure
drm/panfrost: Set DMA masks earlier
drm/panfrost: Add sanity checks to submit IOCTL
drm/etnaviv: initialize idle mask before querying the HW db
drm: introduce a capability flag for syncobj timeline support
drm: report consistent errors when checking syncobj capibility
drm/nouveau/nouveau: forward error generated while resuming objects tree
drm/nouveau/fb/ramgk104: fix spelling mistake "sucessfully" -> "successfully"
drm/nouveau/i2c: Disable i2c bus access after ->fini()
drm/nouveau: Remove duplicate ACPI_VIDEO_NOTIFY_PROBE definition
...
Nicolai Stange discovered[1] that if live kernel patching is enabled, and the
function tracer started tracing the same function that was patched, the
conversion of the fentry call site during the translation of going from
calling the live kernel patch trampoline to the iterator trampoline, would
have as slight window where it didn't call anything.
As live kernel patching depends on ftrace to always call its code (to
prevent the function being traced from being called, as it will redirect
it). This small window would allow the old buggy function to be called, and
this can cause undesirable results.
Nicolai submitted new patches[2] but these were controversial. As this is
similar to the static call emulation issues that came up a while ago[3].
But after some debate[4][5] adding a gap in the stack when entering the
breakpoint handler allows for pushing the return address onto the stack to
easily emulate a call.
[1] http://lkml.kernel.org/r/20180726104029.7736-1-nstange@suse.de
[2] http://lkml.kernel.org/r/20190427100639.15074-1-nstange@suse.de
[3] http://lkml.kernel.org/r/3cf04e113d71c9f8e4be95fb84a510f085aa4afa.1541711457.git.jpoimboe@redhat.com
[4] http://lkml.kernel.org/r/CAHk-=wh5OpheSU8Em_Q3Hg8qw_JtoijxOdPtHru6d+5K8TWM=A@mail.gmail.com
[5] http://lkml.kernel.org/r/CAHk-=wjvQxY4DvPrJ6haPgAa6b906h=MwZXO6G8OtiTGe=N7_w@mail.gmail.com
[
Live kernel patching is not implemented on x86_32, thus the emulate
calls are only for x86_64.
]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: the arch/x86 maintainers <x86@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: "open list:KERNEL SELFTEST FRAMEWORK" <linux-kselftest@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: b700e7f03d ("livepatch: kernel: add support for live patching")
Tested-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Changed to only implement emulated calls for x86_64 ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This function is referenced from assembler, so in LTO
it needs to be global and visible to not be optimized away.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20190330004743.29541-7-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said they
should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here, due
to some changes to the kobject core code. Those too have all been acked
by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHDbw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynDAgCfbb4LBR6I50wFXb8JM/R6cAS7qrsAn1unshKV
8XCYcif2RxjtdJWXbjdm
=/rLh
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core/kobject updates from Greg KH:
"Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said
they should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here,
due to some changes to the kobject core code. Those too have all been
acked by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues"
* tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (47 commits)
kobject: clean up the kobject add documentation a bit more
kobject: Fix kernel-doc comment first line
kobject: Remove docstring reference to kset
firmware_loader: Fix a typo ("syfs" -> "sysfs")
kobject: fix dereference before null check on kobj
Revert "driver core: platform: Fix the usage of platform device name(pdev->name)"
init/config: Do not select BUILD_BIN2C for IKCONFIG
Provide in-kernel headers to make extending kernel easier
kobject: Improve doc clarity kobject_init_and_add()
kobject: Improve docs for kobject_add/del
driver core: platform: Fix the usage of platform device name(pdev->name)
livepatch: Replace klp_ktype_patch's default_attrs with groups
cpufreq: schedutil: Replace default_attrs field with groups
padata: Replace padata_attr_type default_attrs field with groups
irqdesc: Replace irq_kobj_type's default_attrs field with groups
net-sysfs: Replace ktype default_attrs field with groups
block: Replace all ktype default_attrs with groups
samples/kobject: Replace foo_ktype's default_attrs field with groups
kobject: Add support for default attribute groups to kobj_type
driver core: Postpone DMA tear-down until after devres release for probe failure
...
https://lore.kernel.org/linux-fsdevel/CAHk-=wg1tFzcaX2v9Z91vPJiBR486ddW5MtgDL02-fOen2F0Aw@mail.gmail.com/T/#m5b2d9ad3aeacea4bd6aa1964468ac074bf3aa5bf
-----BEGIN PGP SIGNATURE-----
iQJEBAABCgAuFiEECVWwJCUO7/z+QjZbZsp4hBP2dUkFAlzR1UgQHGtpcnJAbmV4
ZWRpLmNvbQAKCRBmyniEE/Z1SZBiEACGw1LzUmjV9eBYFjqaUkgX/Zfcu42D4Ek2
8MuWnNdRabtpGQq0LccYlfoL3yH5xECp14IkCgJvkjqoZ3CcqWcv6uDxf0WtnUqZ
wPx1RYZykb4RZj2A6/ndhInReP4AlXICyTVulKb+BquVkemMvmXX8k+bkr/msKfT
9jdKWFIn+ANNABt3y2D7ywZvs9mkxIx+Fti+tVV4BFBeGfUuj4ArZBOHnngRnIk/
XYlQ7FVzENSPSB+3GvL34jTGEzo8suPHKhHQlIhtcd5hwzVRZKE2sdVXsCc6/WbY
YnT32gmT1/+cUuDl1mZSiQY5R4Xkb07k6/jNrdmjQpwmWbZu90cuRhb+JBXwnmjZ
2Wgy3sfwYISDxtePukg1iYePlHlVlGTYqMo3AQrTBs/gEwCKWrsKQb98mRxlf1YK
e2mdtmq6upYoorLFQesfRgrCg4GTBiPkrR3amXsFgJ2O5fhV6R98ZdGSv4kip19f
ZNoc/t1EtKGwyAJwjINduv36E3RSHODWwSPtSnmSS1ieCGToY1SI3bVUkFM4C0tO
5GMdSugHgXRGGVbTd/VftndJm6Wtj8b1j8c/1Vh04Q8qbKKJDRTDzAbK1v8oLaDh
UXAKMIc8uY4caZy3/bTAB2Ou9dibrSi8Oc+LwZqJlwIcbkwn/IGNvmwtWv4ehorE
N7EhCFZsFQ==
=Mavg
-----END PGP SIGNATURE-----
Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
Pull stream_open conversion from Kirill Smelkov:
- remove unnecessary double nonseekable_open from drivers/char/dtlk.c
as noticed by Pavel Machek while reviewing nonseekable_open ->
stream_open mass conversion.
- the mass conversion patch promised in commit 10dce8af34 ("fs:
stream_open - opener for stream-like files so that read and write can
run simultaneously without deadlock") and is automatically generated
by running
$ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci
I've verified each generated change manually - that it is correct to
convert - and each other nonseekable_open instance left - that it is
either not correct to convert there, or that it is not converted due
to current stream_open.cocci limitations. More details on this in the
patch.
- finally, change VFS to pass ppos=NULL into .read/.write for files
that declare themselves streams. It was suggested by Rasmus Villemoes
and makes sure that if ppos starts to be erroneously used in a stream
file, such bug won't go unnoticed and will produce an oops instead of
creating illusion of position change being taken into account.
Note: this patch does not conflict with "fuse: Add FOPEN_STREAM to
use stream_open()" that will be hopefully coming via FUSE tree,
because fs/fuse/ uses new-style .read_iter/.write_iter, and for these
accessors position is still passed as non-pointer kiocb.ki_pos .
* tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux:
vfs: pass ppos=NULL to .read()/.write() of FMODE_STREAM files
*: convert stream-like files from nonseekable_open -> stream_open
dtlk: remove double call to nonseekable_open
Pull x86 FPU state handling updates from Borislav Petkov:
"This contains work started by Rik van Riel and brought to fruition by
Sebastian Andrzej Siewior with the main goal to optimize when to load
FPU registers: only when returning to userspace and not on every
context switch (while the task remains in the kernel).
In addition, this optimization makes kernel_fpu_begin() cheaper by
requiring registers saving only on the first invocation and skipping
that in following ones.
What is more, this series cleans up and streamlines many aspects of
the already complex FPU code, hopefully making it more palatable for
future improvements and simplifications.
Finally, there's a __user annotations fix from Jann Horn"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails
x86/pkeys: Add PKRU value to init_fpstate
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath
x86/fpu: Add a fastpath to copy_fpstate_to_sigframe()
x86/fpu: Add a fastpath to __fpu__restore_sig()
x86/fpu: Defer FPU state load until return to userspace
x86/fpu: Merge the two code paths in __fpu__restore_sig()
x86/fpu: Restore from kernel memory on the 64-bit path too
x86/fpu: Inline copy_user_to_fpregs_zeroing()
x86/fpu: Update xstate's PKRU value on write_pkru()
x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD
x86/fpu: Always store the registers in copy_fpstate_to_sigframe()
x86/entry: Add TIF_NEED_FPU_LOAD
x86/fpu: Eager switch PKRU state
x86/pkeys: Don't check if PKRU is zero before writing it
x86/fpu: Only write PKRU if it is different from current
x86/pkeys: Provide *pkru() helpers
x86/fpu: Use a feature number instead of mask in two more helpers
x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask
x86/fpu: Add an __fpregs_load_activate() internal helper
...
Pull RAS updates from Borislav Petkov:
- Support for varying MCA bank numbers per CPU: this is in preparation
for future CPU enablement (Yazen Ghannam)
- MCA banks read race fix (Tony Luck)
- Facility to filter MCEs which should not be logged (Yazen Ghannam)
- The usual round of cleanups and fixes
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Don't report L1 BTB MCA errors on some family 17h models
x86/MCE: Add an MCE-record filtering function
RAS/CEC: Increment cec_entered under the mutex lock
x86/mce: Fix debugfs_simple_attr.cocci warnings
x86/mce: Remove mce_report_event()
x86/mce: Handle varying MCA bank counts
x86/mce: Fix machine_check_poll() tests for error types
MAINTAINERS: Fix file pattern for X86 MCE INFRASTRUCTURE
x86/MCE: Group AMD function prototypes in <asm/mce.h>
- Fix the handling of Performance and Energy Bias Hint (EPB) on
Intel processors and expose it to user space via sysfs to avoid
having to access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor
and rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to
some PM documentation files and unify copyright notices in
them (Rafael Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to
the rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzQEwUSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxxXwP/jrxikIXdCOV3CJVioV0NetyebwlOqYp
UsIA7lQBfZ/DY6dHw/oKuAT9LP01vcFg6XGe83Alkta9qczR5KZ/MYHFNSZXjXjL
kEvIMBCS/oykaBuW+Xn9am8Ke3Yq/rBSTKWVom3vzSQY0qvZ9GBwPDrzw+k63Zhz
P3afB4ThyY0e9ftgw4HvSSNm13Kn0ItUIQOdaLatXMMcPqP5aAdnUma5Ibinbtpp
rpTHuHKYx7MSjaCg6wl3kKTJeWbQP4wYO2ISZqH9zEwQgdvSHeFAvfPKTegUkmw9
uUsQnPD1JvdglOKovr2muehD1Ur+zsjKDf2OKERkWsWXHPyWzA/AqaVv1mkkU++b
KaWaJ9pE86kGlJ3EXwRbGfV0dM5rrl+dUUQW6nPI1XJnIOFlK61RzwAbqI26F0Mz
AlKxY4jyPLcM3SpQz9iILqyzHQqB67rm29XvId/9scoGGgoqEI4S+v6LYZqI3Vx6
aeSRu+Yof7p5w4Kg5fODX+HzrtMnMrPmLUTXhbExfsYZMi7hXURcN6s+tMpH0ckM
4yiIpnNGCKUSV4vxHBm8XJdAuUnR4Vcz++yFslszgDVVvw5tkvF7SYeHZ6HqcQVm
af9HdWzx3qajs/oyBwdRBedZYDnP1joC5donBI2ofLeF33NA7TEiPX8Zebw8XLkv
fNikssA7PGdv
=nY9p
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These fix the (Intel-specific) Performance and Energy Bias Hint (EPB)
handling and expose it to user space via sysfs, fix and clean up
several cpufreq drivers, add support for two new chips to the qoriq
cpufreq driver, fix, simplify and clean up the cpufreq core and the
schedutil governor, add support for "CPU" domains to the generic power
domains (genpd) framework and provide low-level PSCI firmware support
for that feature, fix the exynos cpuidle driver and fix a couple of
issues in the devfreq subsystem and clean it up.
Specifics:
- Fix the handling of Performance and Energy Bias Hint (EPB) on Intel
processors and expose it to user space via sysfs to avoid having to
access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor and
rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to some PM
documentation files and unify copyright notices in them (Rafael
Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to the
rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan)"
* tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (72 commits)
cpufreq: Fix kobject memleak
cpufreq: armada-37xx: fix frequency calculation for opp
cpufreq: centrino: Fix centrino_setpolicy() kerneldoc comment
cpufreq: qoriq: add support for lx2160a
x86: tsc: Rework time_cpufreq_notifier()
PM / Domains: Allow to attach a CPU via genpd_dev_pm_attach_by_id|name()
PM / Domains: Search for the CPU device outside the genpd lock
PM / Domains: Drop unused in-parameter to some genpd functions
PM / Domains: Use the base device for driver_deferred_probe_check_state()
cpufreq: qoriq: Add ls1028a chip support
PM / Domains: Enable genpd_dev_pm_attach_by_id|name() for single PM domain
PM / Domains: Allow OF lookup for multi PM domain case from ->attach_dev()
PM / Domains: Don't kfree() the virtual device in the error path
cpufreq: Move ->get callback check outside of __cpufreq_get()
PM / Domains: remove unnecessary unlikely()
cpufreq: Remove needless bios_limit check in show_bios_limit()
drivers/cpufreq/acpi-cpufreq.c: This fixes the following checkpatch warning
firmware/psci: add support for SYSTEM_RESET2
PM / devfreq: add tracing for scheduling work
trace: events: add devfreq trace event file
...
Pull x86 microcode loading update from Borislav Petkov:
"A nice Intel microcode blob loading cleanup which gets rid of the ugly
memcpy wrappers and switches the driver to use the iov_iter API. By
Jann Horn.
In addition, the /dev/cpu/microcode interface is finally deprecated as
it is inadequate for the same reasons the late microcode loading is"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Deprecate MICROCODE_OLD_INTERFACE
x86/microcode: Fix the ancient deprecated microcode loading method
x86/microcode/intel: Refactor Intel microcode blob loading
Pull x86 topology updates from Ingo Molnar:
"Two main changes: preparatory changes for Intel multi-die topology
support, plus a syslog message tweak"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/topology: Make DEBUG_HOTPLUG_CPU0 pr_info() more descriptive
x86/smpboot: Rename match_die() to match_pkg()
topology: Simplify cputopology.txt formatting and wording
x86/topology: Fix documentation typo
Pull x86 timer updates from Ingo Molnar:
"Two changes: an LTO improvement, plus the new 'nowatchdog' boot option
to disable the clocksource watchdog"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/timer: Don't inline __const_udelay()
x86/tsc: Add option to disable tsc clocksource watchdog
Pull x86 platform updates from Ingo Molnar:
"Smaller update for Hyper-V to support EOI assist, plus LTO fixes"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Make steal_time visible
x86/hyperv: Make hv_vcpu_is_preempted() visible
x86/hyper-v: Implement EOI assist
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Pull x86 kdump update from Ingo Molnar:
"This includes two changes:
- Raise the crash kernel reservation limit from from ~896MB to ~4GB.
Only very old (and already known-broken) kexec-tools is supposed to
be affected by this negatively.
- Allow higher than 4GB crash kernel allocations when low allocations
fail"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump: Fall back to reserve high crashkernel memory
x86/kdump: Have crashkernel=X reserve under 4G by default
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
Pull x86 cpu updates from Ingo Molnar:
"Two changes: a Hygon CPU fix, and an optimization Centaur CPUs"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power: Optimize C3 entry on Centaur CPUs
x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors
Pull x86 cleanups from Ingo Molnar:
"A handful of cleanups: dma-ops cleanups, missing boot time kcalloc()
check, a Sparse fix and use struct_size() to simplify a vzalloc()
call"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci: Clean up usage of X86_DEV_DMA_OPS
x86/Kconfig: Remove the unused X86_DMA_REMAP KConfig symbol
x86/kexec/crash: Use struct_size() in vzalloc()
x86/mm/tlb: Define LOADED_MM_SWITCHING with pointer-sized number
x86/platform/uv: Fix missing checks of kcalloc() return values
Pull x86 cache QoS updates from Ingo Molnar:
"An RDT cleanup and a fix for RDT initialization of new resource
groups"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Initialize a new resource group with default MBA values
x86/resctrl: Move per RDT domain initialization to a separate function
Pull x86 asm updates from Ingo Molnar:
"This includes the following changes:
- cpu_has() cleanups
- sync_bitops.h modernization to the rmwcc.h facility, similarly to
bitops.h
- continued LTO annotations/fixes
- misc cleanups and smaller cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/um/vdso: Drop unnecessary cc-ldoption
x86/vdso: Rename variable to fix -Wshadow warning
x86/cpu/amd: Exclude 32bit only assembler from 64bit build
x86/asm: Mark all top level asm statements as .text
x86/build/vdso: Add FORCE to the build rule of %.so
x86/asm: Modernize sync_bitops.h
x86/mm: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86/asm: Clarify static_cpu_has()'s intended use
x86/uaccess: Fix implicit cast of __user pointer
x86/cpufeature: Remove __pure attribute to _static_cpu_has()
Pull x86 apic update from Ingo Molnar:
"A single commit which unifies the unnecessarily diverged
implementations of APIC timer initialization. As a result the
max_delta parameter is now consistently taken into account"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Unify duplicated local apic timer clockevent initialization
Pull perf updates from Ingo Molnar:
"The main kernel changes were:
- add support for Intel's "adaptive PEBS v4" - which embedds LBS data
in PEBS records and can thus batch up and reduce the IRQ (NMI) rate
significantly - reducing overhead and making call-graph profiling
less intrusive.
- add Intel CPU core and uncore support updates for Tremont, Icelake,
- extend the x86 PMU constraints scheduler with 'constraint ranges'
to better support Icelake hw constraints,
- make x86 call-chain support work better with CONFIG_FRAME_POINTER=y
- misc other changes
Tooling changes:
- updates to the main tools: 'perf record', 'perf trace', 'perf
stat'
- updated Intel and S/390 vendor events
- libtraceevent updates
- misc other updates and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER
watchdog: Fix typo in comment
perf/x86/intel: Add Tremont core PMU support
perf/x86/intel/uncore: Add Intel Icelake uncore support
perf/x86/msr: Add Icelake support
perf/x86/intel/rapl: Add Icelake support
perf/x86/intel/cstate: Add Icelake support
perf/x86/intel: Add Icelake support
perf/x86: Support constraint ranges
perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
perf/x86/intel: Support adaptive PEBS v4
perf/x86/intel/ds: Extract code of event update in short period
perf/x86/intel: Extract memory code PEBS parser for reuse
perf/x86: Support outputting XMM registers
perf/x86/intel: Force resched when TFA sysctl is modified
perf/core: Add perf_pmu_resched() as global function
perf/headers: Fix stale comment for struct perf_addr_filter
perf/core: Make perf_swevent_init_cpu() static
perf/x86: Add sanity checks to x86_schedule_events()
perf/x86: Optimize x86_schedule_events()
...
Pull EFI updates from Ingo Molnar:
"The changes in this cycle were:
- Squash a spurious warning when using the EFI framebuffer on a
non-EFI boot
- Use DMI data to annotate RAS memory errors on ARM just like we do
on Intel
- Followup cleanups for DMI
- libstub Makefile cleanups"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/libstub/arm: Omit unneeded stripping of ksymtab/kcrctab sections
efi: Unify DMI setup code over the arm/arm64, ia64 and x86 architectures
efi/arm: Show SMBIOS bank/device location in CPER and GHES error logs
efifb: Omit memory map check on legacy boot
efi/libstub: Refactor the cmd_stubcopy Makefile command
Pull stack trace updates from Ingo Molnar:
"So Thomas looked at the stacktrace code recently and noticed a few
weirdnesses, and we all know how such stories of crummy kernel code
meeting German engineering perfection end: a 45-patch series to clean
it all up! :-)
Here's the changes in Thomas's words:
'Struct stack_trace is a sinkhole for input and output parameters
which is largely pointless for most usage sites. In fact if embedded
into other data structures it creates indirections and extra storage
overhead for no benefit.
Looking at all usage sites makes it clear that they just require an
interface which is based on a storage array. That array is either on
stack, global or embedded into some other data structure.
Some of the stack depot usage sites are outright wrong, but
fortunately the wrongness just causes more stack being used for
nothing and does not have functional impact.
Another oddity is the inconsistent termination of the stack trace
with ULONG_MAX. It's pointless as the number of entries is what
determines the length of the stored trace. In fact quite some call
sites remove the ULONG_MAX marker afterwards with or without nasty
comments about it. Not all architectures do that and those which do,
do it inconsistenly either conditional on nr_entries == 0 or
unconditionally.
The following series cleans that up by:
1) Removing the ULONG_MAX termination in the architecture code
2) Removing the ULONG_MAX fixups at the call sites
3) Providing plain storage array based interfaces for stacktrace
and stackdepot.
4) Cleaning up the mess at the callsites including some related
cleanups.
5) Removing the struct stack_trace based interfaces
This is not changing the struct stack_trace interfaces at the
architecture level, but it removes the exposure to the generic
code'"
* 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/stacktrace: Use common infrastructure
stacktrace: Provide common infrastructure
lib/stackdepot: Remove obsolete functions
stacktrace: Remove obsolete functions
livepatch: Simplify stack trace retrieval
tracing: Remove the last struct stack_trace usage
tracing: Simplify stack trace retrieval
tracing: Make ftrace_trace_userstack() static and conditional
tracing: Use percpu stack trace buffer more intelligently
tracing: Simplify stacktrace retrieval in histograms
lockdep: Simplify stack trace handling
lockdep: Remove save argument from check_prev_add()
lockdep: Remove unused trace argument from print_circular_bug()
drm: Simplify stacktrace handling
dm persistent data: Simplify stack trace handling
dm bufio: Simplify stack trace retrieval
btrfs: ref-verify: Simplify stack trace retrieval
dma/debug: Simplify stracktrace retrieval
fault-inject: Simplify stacktrace retrieval
mm/page_owner: Simplify stack trace handling
...
Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
Pull rseq updates from Ingo Molnar:
"A cleanup and a fix to comments"
* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq: Remove superfluous rseq_len from task_struct
rseq: Clean up comments by reflecting removal of event counter
Pull objtool updates from Ingo Molnar:
"This is a series from Peter Zijlstra that adds x86 build-time uaccess
validation of SMAP to objtool, which will detect and warn about the
following uaccess API usage bugs and weirdnesses:
- call to %s() with UACCESS enabled
- return with UACCESS enabled
- return with UACCESS disabled from a UACCESS-safe function
- recursive UACCESS enable
- redundant UACCESS disable
- UACCESS-safe disables UACCESS
As it turns out not leaking uaccess permissions outside the intended
uaccess functionality is hard when the interfaces are complex and when
such bugs are mostly dormant.
As a bonus we now also check the DF flag. We had at least one
high-profile bug in that area in the early days of Linux, and the
checking is fairly simple. The checks performed and warnings emitted
are:
- call to %s() with DF set
- return with DF set
- return with modified stack frame
- recursive STD
- redundant CLD
It's all x86-only for now, but later on this can also be used for PAN
on ARM and objtool is fairly cross-platform in principle.
While all warnings emitted by this new checking facility that got
reported to us were fixed, there might be GCC version dependent
warnings that were not reported yet - which we'll address, should they
trigger.
The warnings are non-fatal build warnings"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation
sched/x86_64: Don't save flags on context switch
objtool: Add Direction Flag validation
objtool: Add UACCESS validation
objtool: Fix sibling call detection
objtool: Rewrite alt->skip_orig
objtool: Add --backtrace support
objtool: Rewrite add_ignores()
objtool: Handle function aliases
objtool: Set insn->func for alternatives
x86/uaccess, kcov: Disable stack protector
x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP
x86/uaccess, ubsan: Fix UBSAN vs. SMAP
x86/uaccess, kasan: Fix KASAN vs SMAP
x86/smap: Ditch __stringify()
x86/uaccess: Introduce user_access_{save,restore}()
x86/uaccess, signal: Fix AC=1 bloat
x86/uaccess: Always inline user_access_begin()
x86/uaccess, xen: Suppress SMAP warnings
...
Using scripts/coccinelle/api/stream_open.cocci added in 10dce8af34
("fs: stream_open - opener for stream-like files so that read and write
can run simultaneously without deadlock"), search and convert to
stream_open all in-kernel nonseekable_open users for which read and
write actually do not depend on ppos and where there is no other methods
in file_operations which assume @offset access.
I've verified each generated change manually - that it is correct to convert -
and each other nonseekable_open instance left - that it is either not correct
to convert there, or that it is not converted due to current stream_open.cocci
limitations. The script also does not convert files that should be valid to
convert, but that currently have .llseek = noop_llseek or generic_file_llseek
for unknown reason despite file being opened with nonseekable_open (e.g.
drivers/input/mousedev.c)
Among cases converted 14 were potentially vulnerable to read vs write deadlock
(see details in 10dce8af34):
drivers/char/pcmcia/cm4000_cs.c:1685:7-23: ERROR: cm4000_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/gnss/core.c:45:1-17: ERROR: gnss_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/hid/uhid.c:635:1-17: ERROR: uhid_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/infiniband/core/user_mad.c:988:1-17: ERROR: umad_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/evdev.c:527:1-17: ERROR: evdev_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/misc/uinput.c:401:1-17: ERROR: uinput_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/isdn/capi/capi.c:963:8-24: ERROR: capi_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/leds/uleds.c:77:1-17: ERROR: uleds_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/media/rc/lirc_dev.c:198:1-17: ERROR: lirc_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/s390/char/fs3270.c:488:1-17: ERROR: fs3270_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/usb/misc/ldusb.c:310:1-17: ERROR: ld_usb_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/xen/evtchn.c:667:8-24: ERROR: evtchn_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/batman-adv/icmp_socket.c:80:1-17: ERROR: batadv_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/rfkill/core.c:1146:8-24: ERROR: rfkill_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
and the rest were just safe to convert to stream_open because their read and
write do not use ppos at all and corresponding file_operations do not
have methods that assume @offset file access(*):
arch/powerpc/platforms/52xx/mpc52xx_gpt.c:631:8-24: WARNING: mpc52xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/um/drivers/harddog_kern.c:88:8-24: WARNING: harddog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/x86/kernel/cpu/microcode/core.c:430:33-49: WARNING: microcode_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ds1620.c:215:8-24: WARNING: ds1620_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/dtlk.c:301:1-17: WARNING: dtlk_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ipmi/ipmi_watchdog.c:840:9-25: WARNING: ipmi_wdog_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/pcmcia/scr24x_cs.c:95:8-24: WARNING: scr24x_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/tb0219.c:246:9-25: WARNING: tb0219_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/firewire/nosy.c:306:8-24: WARNING: nosy_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/fschmd.c:840:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/w83793.c:1344:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucma.c:1747:8-24: WARNING: ucma_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucm.c:1178:8-24: WARNING: ucm_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/uverbs_main.c:1086:8-24: WARNING: uverbs_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/input/joydev.c:282:1-17: WARNING: joydev_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/pci/switch/switchtec.c:393:1-17: WARNING: switchtec_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/platform/chrome/cros_ec_debugfs.c:135:8-24: WARNING: cros_ec_console_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-ds1374.c:470:9-25: WARNING: ds1374_wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-m41t80.c:805:9-25: WARNING: wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/tape_char.c:293:2-18: WARNING: tape_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/zcore.c:194:8-24: WARNING: zcore_reipl_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/crypto/zcrypt_api.c:528:8-24: WARNING: zcrypt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/spi/spidev.c:594:1-17: WARNING: spidev_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/staging/pi433/pi433_if.c:974:1-17: WARNING: pi433_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/acquirewdt.c:203:8-24: WARNING: acq_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/advantechwdt.c:202:8-24: WARNING: advwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim1535_wdt.c:252:8-24: WARNING: ali_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim7101_wdt.c:217:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ar7_wdt.c:166:8-24: WARNING: ar7_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/at91rm9200_wdt.c:113:8-24: WARNING: at91wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ath79_wdt.c:135:8-24: WARNING: ath79_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/bcm63xx_wdt.c:119:8-24: WARNING: bcm63xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpu5wdt.c:143:8-24: WARNING: cpu5wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpwd.c:397:8-24: WARNING: cpwd_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/eurotechwdt.c:319:8-24: WARNING: eurwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/f71808e_wdt.c:528:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/gef_wdt.c:232:8-24: WARNING: gef_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/geodewdt.c:95:8-24: WARNING: geodewdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ib700wdt.c:241:8-24: WARNING: ibwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ibmasr.c:326:8-24: WARNING: asr_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/indydog.c:80:8-24: WARNING: indydog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/intel_scu_watchdog.c:307:8-24: WARNING: intel_scu_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/iop_wdt.c:104:8-24: WARNING: iop_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/it8712f_wdt.c:330:8-24: WARNING: it8712f_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ixp4xx_wdt.c:68:8-24: WARNING: ixp4xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ks8695_wdt.c:145:8-24: WARNING: ks8695wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/m54xx_wdt.c:88:8-24: WARNING: m54xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/machzwd.c:336:8-24: WARNING: zf_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mixcomwd.c:153:8-24: WARNING: mixcomwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mtx-1_wdt.c:121:8-24: WARNING: mtx1_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mv64x60_wdt.c:136:8-24: WARNING: mv64x60_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nuc900_wdt.c:134:8-24: WARNING: nuc900wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nv_tco.c:164:8-24: WARNING: nv_tco_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pc87413_wdt.c:289:8-24: WARNING: pc87413_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:698:8-24: WARNING: pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:737:8-24: WARNING: pcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:581:8-24: WARNING: pcipcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:623:8-24: WARNING: pcipcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:488:8-24: WARNING: usb_pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:527:8-24: WARNING: usb_pcwd_temperature_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pika_wdt.c:121:8-24: WARNING: pikawdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pnx833x_wdt.c:119:8-24: WARNING: pnx833x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rc32434_wdt.c:153:8-24: WARNING: rc32434_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rdc321x_wdt.c:145:8-24: WARNING: rdc321x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/riowd.c:79:1-17: WARNING: riowd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sa1100_wdt.c:62:8-24: WARNING: sa1100dog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc60xxwdt.c:211:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc7240_wdt.c:139:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc8360.c:274:8-24: WARNING: sbc8360_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_epx_c3.c:81:8-24: WARNING: epx_c3_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_fitpc2_wdt.c:78:8-24: WARNING: fitpc2_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sb_wdog.c:108:1-17: WARNING: sbwdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc1200wdt.c:181:8-24: WARNING: sc1200wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc520_wdt.c:261:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sch311x_wdt.c:319:8-24: WARNING: sch311x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/scx200_wdt.c:105:8-24: WARNING: scx200_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/smsc37b787_wdt.c:369:8-24: WARNING: wb_smsc_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83877f_wdt.c:227:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83977f_wdt.c:301:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wafer5823wdt.c:200:8-24: WARNING: wafwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/watchdog_dev.c:828:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:379:8-24: WARNING: wdrtas_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:445:8-24: WARNING: wdrtas_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt285.c:104:1-17: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt977.c:276:8-24: WARNING: wdt977_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:424:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:484:8-24: WARNING: wdt_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:464:8-24: WARNING: wdtpci_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:527:8-24: WARNING: wdtpci_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
net/batman-adv/log.c:105:1-17: WARNING: batadv_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/control.c:57:7-23: WARNING: snd_ctl_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/rawmidi.c:385:7-23: WARNING: snd_rawmidi_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/seq/seq_clientmgr.c:310:7-23: WARNING: snd_seq_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/timer.c:1428:7-23: WARNING: snd_timer_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
One can also recheck/review the patch via generating it with explanation comments included via
$ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci SPFLAGS="-D explain"
(*) This second group also contains cases with read/write deadlocks that
stream_open.cocci don't yet detect, but which are still valid to convert to
stream_open since ppos is not used. For example drivers/pci/switch/switchtec.c
calls wait_for_completion_interruptible() in its .read, but stream_open.cocci
currently detects only "wait_event*" as blocking.
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yongzhi Pan <panyongzhi@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Nikolaus Rath <Nikolaus@rath.org>
Cc: Han-Wen Nienhuys <hanwen@google.com>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James R. Van Zandt" <jrv@vanzandt.mv.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Harald Welte <laforge@gnumonks.org>
Acked-by: Lubomir Rintel <lkundrak@v3.sk> [scr24x_cs]
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Johan Hovold <johan@kernel.org>
Cc: David Herrmann <dh.herrmann@googlemail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Cc: Jean Delvare <jdelvare@suse.com>
Acked-by: Guenter Roeck <linux@roeck-us.net> [watchdog/* hwmon/*]
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Karsten Keil <isdn@linux-pingi.de>
Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com>
Acked-by: Logan Gunthorpe <logang@deltatee.com> [drivers/pci/switch/switchtec]
Acked-by: Bjorn Helgaas <bhelgaas@google.com> [drivers/pci/switch/switchtec]
Cc: Benson Leung <bleung@chromium.org>
Acked-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> [platform/chrome]
Cc: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> [rtc/*]
Cc: Mark Brown <broonie@kernel.org>
Cc: Wim Van Sebroeck <wim@linux-watchdog.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: bcm-kernel-feedback-list@broadcom.com
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Zwane Mwaikambo <zwanem@gmail.com>
Cc: Marek Lindner <mareklindner@neomailbox.ch>
Cc: Simon Wunderlich <sw@simonwunderlich.de>
Cc: Antonio Quartulli <a@unstable.cc>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Kirill Smelkov <kirr@nexedi.com>
In the compacted form, XSAVES may save only the XMM+SSE state but skip
FP (x87 state).
This is denoted by header->xfeatures = 6. The fastpath
(copy_fpregs_to_sigframe()) does that but _also_ initialises the FP
state (cwd to 0x37f, mxcsr as we do, remaining fields to 0).
The slowpath (copy_xstate_to_user()) leaves most of the FP
state untouched. Only mxcsr and mxcsr_flags are set due to
xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set
unconditionally, see
04944b793e ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"),
on return from the signal, random garbage is loaded as the FP state.
Instead of utilizing copy_xstate_to_user(), fault-in the user memory
and retry the fast path. Ideally, the fast path succeeds on the second
attempt but may be retried again if the memory is swapped out due
to memory pressure. If the user memory can not be faulted-in then
get_user_pages() returns an error so we don't loop forever.
Fault in memory via get_user_pages_unlocked() so
copy_fpregs_to_sigframe() succeeds without a fault.
Fixes: 69277c98f5 ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()")
Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: "linux-mm@kvack.org" <linux-mm@kvack.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
pfn_valid check is not sufficient because it only checks if a page has a struct
page or not, if "mem=" was passed to the kernel some valid pages won't have a
struct page. This means that if guests were assigned valid memory that lies
after the mem= boundary it will be passed uncached to the guest no matter what
the guest caching attributes are for this memory.
Introduce a new function e820__mapped_raw_any which is equivalent to
e820__mapped_any but uses the original e820 unmodified and use it to
identify real *RAM*.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment to clarify that users of text_poke() must ensure that
no races with module removal take place.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-22-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-21-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-20-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two types of text poking: early and breakpoint based. The use
of a function pointer to perform text poking complicates the code and is
probably inefficient due to the use of indirect branches.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-13-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When modules and BPF filters are loaded, there is a time window in
which some memory is both writable and executable. An attacker that has
already found another vulnerability (e.g., a dangling pointer) might be
able to exploit this behavior to overwrite kernel code. Prevent having
writable executable PTEs in this stage.
In addition, avoiding having W+X mappings can also slightly simplify the
patching of modules code on initialization (e.g., by alternatives and
static-key), as would be done in the next patch. This was actually the
main motivation for this patch.
To avoid having W+X mappings, set them initially as RW (NX) and after
they are set as RO set them as X as well. Setting them as executable is
done as a separate step to avoid one core in which the old PTE is cached
(hence writable), and another which sees the updated PTE (executable),
which would break the W^X protection.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20190426001143.4983-12-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Set the page as executable after allocation. This patch is a
preparatory patch for a following patch that makes module allocated
pages non-executable.
While at it, do some small cleanup of what appears to be unnecessary
masking.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-11-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since alloc_module() will not set the pages as executable soon, set
ftrace trampoline pages as executable after they are allocated.
For the time being, do not change ftrace to use the text_poke()
interface. As a result, ftrace still breaks W^X.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-10-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() already ensures that the written value is the correct one
and fails if that is not the case. There is no need for an additional
comparison. Remove it.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-9-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() can potentially compromise security as it sets temporary
PTEs in the fixmap. These PTEs might be used to rewrite the kernel code
from other cores accidentally or maliciously, if an attacker gains the
ability to write onto kernel memory.
Moreover, since remote TLBs are not flushed after the temporary PTEs are
removed, the time-window in which the code is writable is not limited if
the fixmap PTEs - maliciously or accidentally - are cached in the TLB.
To address these potential security hazards, use a temporary mm for
patching the code.
Finally, text_poke() is also not conservative enough when mapping pages,
as it always tries to map 2 pages, even when a single one is sufficient.
So try to be more conservative, and do not map more than needed.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-8-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prevent improper use of the PTEs that are used for text patching, the
next patches will use a temporary mm struct. Initailize it by copying
the init mm.
The address that will be used for patching is taken from the lower area
that is usually used for the task memory. Doing so prevents the need to
frequently synchronize the temporary-mm (e.g., when BPF programs are
installed), since different PGDs are used for the task memory.
Finally, randomize the address of the PTEs to harden against exploits
that use these PTEs.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: ard.biesheuvel@linaro.org
Cc: deneen.t.dock@intel.com
Cc: kernel-hardening@lists.openwall.com
Cc: kristen@linux.intel.com
Cc: linux_dti@icloud.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190426232303.28381-8-nadav.amit@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no apparent reason not to use text_poke_early() during
early-init, since no patching of code that might be on the stack is done
and only a single core is running.
This is required for the next patches that would set a temporary mm for
text poking, and this mm is only initialized after some static-keys are
enabled/disabled.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-3-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_mutex is currently expected to be held before text_poke() is
called, but kgdb does not take the mutex, and instead *supposedly*
ensures the lock is not taken and will not be acquired by any other core
while text_poke() is running.
The reason for the "supposedly" comment is that it is not entirely clear
that this would be the case if gdb_do_roundup is zero.
Create two wrapper functions, text_poke() and text_poke_kgdb(), which do
or do not run the lockdep assertion respectively.
While we are at it, change the return code of text_poke() to something
meaningful. One day, callers might actually respect it and the existing
BUG_ON() when patching fails could be removed. For kgdb, the return
value can actually be used.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9222f60650 ("x86/alternatives: Lockdep-enforce text_mutex in text_poke*()")
Link: https://lkml.kernel.org/r/20190426001143.4983-2-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's used as 'type' in almost every paravirt patching function, so standardize
the field name from the somewhat weird 'instrtype' name to 'type'.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently have 6 (!) separate naming variants to name temporary instruction
buffers that are used for code patching:
- insnbuf
- insnbuff
- insn_buff
- insn_buffer
- ibuf
- ibuffer
These are used as local variables, percpu fields and function parameters.
Standardize all the names to a single variant: 'insn_buff'.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are problems with running time_cpufreq_notifier() on SMP
systems.
First off, the rdtsc() called from there runs on the CPU executing
that code and not necessarily on the CPU whose sched_clock() rate is
updated which is questionable at best.
Second, in the cases when the frequencies of all CPUs in an SMP
system are always in sync, it is not sufficient to update just
one of them or the set associated with a given cpufreq policy on
frequency changes - all CPUs in the system should be updated and
that would require more than a simple transition notifier.
Note, however, that the underlying issue (the TSC rate depending on
the CPU frequency) has not been present in hardware shipping for the
last few years and in quite a few relevant cases (acpi-cpufreq in
particular) running time_cpufreq_notifier() will cause the TSC to
be marked as unstable anyway.
For this reason, make time_cpufreq_notifier() simply mark the TSC
as unstable and give up when run on SMP and only try to carry out
any adjustments otherwise.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Local APIC timer clockevent parameters can be calculated based on platform
specific methods. However the code is mostly duplicated with the interrupt
based calibration. The commit which increased the max_delta parameter
updated only one place and made the implementations diverge.
Unify it to prevent further damage.
[ tglx: Rename function to lapic_init_clockevent() and adjust changelog a bit ]
Fixes: 4aed89d6b5 ("x86, lapic-timer: Increase the max_delta to 31 bits")
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/1556213272-63568-1-git-send-email-jacob.jun.pan@linux.intel.com
The magic macro DEF_NATIVE() in the paravirt patching code uses inline
assembly to generate a data table for patching in the native instructions.
While clever this is falling apart with LTO and even aside of LTO the
construct is just working by chance according to GCC folks.
Aside of that the tables are constant data and not some form of magic
text.
As these constructs are not subject to frequent changes it is not a
maintenance issue to convert them to regular data tables which are
initialized with hex bytes.
Create a new set of macros and data structures to store the instruction
sequences and convert the code over.
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20190424134223.690835713@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Large parts of these two files are identical. Merge them together.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20190424134223.603491680@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
paravirt_patch_call() currently handles patching failures inconsistently:
we generate a warning in the retpoline case, but don't in other cases where
we might end up with a non-working kernel as well.
So just convert it all to a BUG_ON(), these patching calls are *not* supposed
to fail, and if they do we want to know it immediately.
This also makes the kernel smaller and removes an #ifdef ugly.
I tried it with a richly paravirt-enabled kernel and no patching bugs
were detected.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190425095039.GC115378@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So paravirt_patch_insns() contains this gem of logic:
unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
const char *start, const char *end)
{
unsigned insn_len = end - start;
if (insn_len > len || start == NULL)
insn_len = len;
else
memcpy(insnbuf, start, insn_len);
return insn_len;
}
Note how 'len' (size of the original instruction) is checked against the new
instruction, and silently discarded with no warning printed whatsoever.
This crashes the kernel in funny ways if the patching template is buggy,
and usually in much later places.
Instead do a direct BUG_ON(), there's no way to continue successfully at that point.
I've tested this patch, with the vanilla kernel check never triggers, and
if I intentionally increase the size of one of the patch templates to a
too high value the assert triggers:
[ 0.164385] kernel BUG at arch/x86/kernel/paravirt.c:167!
Without this patch a broken kernel randomly crashes in later places,
after the silent patching failure.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190425091717.GA72229@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building x86 with Clang LTO and CFI, CFI jump regions are
automatically added to the end of the .text section late in linking. As a
result, the _etext position was being labelled before the appended jump
regions, causing confusion about where the boundaries of the executable
region actually are in the running kernel, and broke at least the fault
injection code. This moves the _etext mark to outside (and immediately
after) the .text area, as it already the case on other architectures
(e.g. arm64, arm).
Reported-and-tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190423183827.GA4012@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
UAPI Changes:
- uAPI "Fixes:" patch for the upcoming kernel 5.1, included here too
We have an Ack from the media folks (only current user) for this
late tweak
Cross-subsystem Changes:
- ALSA: hda: Fix racy display power access (Takashi, Chris)
Driver Changes:
- DDI and MIPI-DSI clocks fixes for Icelake (Vandita)
- Fix Icelake frequency change/locking (RPS) (Mika)
- Temporarily disable ppGTT read-only bit on Icelake (Mika)
- Add missing Icelake W/As (Mika)
- Enable 12 deep CSB status FIFO on Icelake (Mika)
- Inherit more Icelake code for Elkhartlake (Bob, Jani)
- Handle catastrophic error on engine reset (Mika)
- Shortcut readiness to reset check (Mika)
- Regression fix for GEM_BUSY causing us to report a mixed uabi-class request as not busy (Chris)
- Revert back to max link rate and lane count on eDP (Jani)
- Fix pipe BPP readout for BXT/GLK DSI (Ville)
- Set DP min_bpp to 8*3 for non-RGB output formats (Ville)
- Enable coarse preemption boundaries for Gen8 (Chris)
- Do not enable FEC without DSC (Ville)
- Restore correct BXT DDI latency optim setting calculation (Ville)
- Always reset context's RING registers to avoid running workload twice during reset (Chris)
- Set GPU wedged on driver unload (Janusz)
- Consolidate two similar barries from timeline into one (Chris)
- Only reset the pinned kernel contexts on resume (Chris)
- Wakeref tracking improvements (Chris, Imre)
- Lockdep fixes for shrinker interactions (Chris)
- Bump ready tasks ahead of busywaits in prep of semaphore use (Chris)
- Huge step in splitting display code into fine grained files (Jani)
- Refactor the IRQ init/reset macros for code saving (Paulo)
- Convert IRQ initialization code to uncore MMIO access (Paulo)
- Convert workarounds code to use uncore MMIO access (Chris)
- Nuke drm_crtc_state and use intel_atomic_state instead (Manasi)
- Update SKL clock-gating WA (Radhakrishna, Ville)
- Isolate GuC reset code flow (Chris)
- Expose force_dsc_enable through debugfs (Manasi)
- Header standalone compile testing framework (Jani)
- Code cleanups to reduce driver footprint (Chris)
- PSR code fixes and cleanups (Jose)
- Sparse and kerneldoc updates (Chris)
- Suppress spurious combo PHY B warning (Vile)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190418080426.GA6409@jlahtine-desk.ger.corp.intel.com
AMD family 17h Models 10h-2Fh may report a high number of L1 BTB MCA
errors under certain conditions. The errors are benign and can safely be
ignored. However, the high error rate may cause the MCA threshold
counter to overflow causing a high rate of thresholding interrupts.
In addition, users may see the errors reported through the AMD MCE
decoder module, even with the interrupt disabled, due to MCA polling.
Clear the "Counter Present" bit in the Instruction Fetch bank's
MCA_MISC0 register. This will prevent enabling MCA thresholding on this
bank which will prevent the high interrupt rate due to this error.
Define an AMD-specific function to filter these errors from the MCE
event pool so that they don't get reported during early boot.
Rename filter function in EDAC/mce_amd to avoid a naming conflict, while
at it.
[ bp: Move function prototype to the internal header and
massage/cleanup, fix typos. ]
Reported-by: Rafał Miłecki <rafal@milecki.pl>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org> # 5.0.x: c95b323dcd: x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
Cc: <stable@vger.kernel.org> # 5.0.x: 30aa3d26ed: x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
Cc: <stable@vger.kernel.org> # 5.0.x: 9308fd4074: x86/MCE: Group AMD function prototypes in <asm/mce.h>
Cc: <stable@vger.kernel.org> # 5.0.x
Link: https://lkml.kernel.org/r/20190325163410.171021-2-Yazen.Ghannam@amd.com
Some systems may report spurious MCA errors. In general, spurious MCA
errors may be disabled by clearing a particular bit in MCA_CTL. However,
clearing a bit in MCA_CTL may not be recommended for some errors, so the
only option is to ignore them.
An MCA error is printed and handled after it has been added to the MCE
event pool. So an MCA error can be ignored by not adding it to that pool
in the first place.
Add such a filtering function.
[ bp: Move function prototype to the internal header and massage. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: "rafal@milecki.pl" <rafal@milecki.pl>
Cc: Shirish S <Shirish.S@amd.com>
Cc: <stable@vger.kernel.org> # 5.0.x
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190325163410.171021-1-Yazen.Ghannam@amd.com
crashkernel=xM tries to reserve memory for the crash kernel under 4G,
which is enough, usually. But this could fail sometimes, for example
when one tries to reserve a big chunk like 2G, for example.
So let the crashkernel=xM just fall back to use high memory in case it
fails to find a suitable low range. Do not set the ,high as default
because it allocates extra low memory for DMA buffers and swiotlb, and
this is not always necessary for all machines.
Typically, crashkernel=128M usually works with low reservation under 4G,
so keep <4G as default.
[ bp: Massage. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@linux.ibm.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thymo van Beers <thymovanbeers@gmail.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190422031905.GA8387@dhcp-128-65.nay.redhat.com
The kdump crashkernel low reservation is limited to under 896M even for
X86_64. This obscure and miserable limitation exists for compatibility
with old kexec-tools but the reason is not documented anywhere.
Some more tests/investigations about the background:
a) Previously, old kexec-tools could only load purgatory to memory under
2G. Eric removed that limitation in 2012 in kexec-tools:
b4f9f8599679 ("kexec x86_64: Make purgatory relocatable anywhere
in the 64bit address space.")
b) Back in 2013 Yinghai removed all the limitations in new kexec-tools,
bzImage64 can be loaded anywhere:
82c3dd2280d2 ("kexec, x86_64: Load bzImage64 above 4G")
c) Test results with old kexec-tools with old and latest kernels:
1. Old kexec-tools can not build with modern toolchain anymore,
I built it in a RHEL6 vm.
2. 2.0.0 kexec-tools does not work with the latest kernel even with
memory under 896M and gives an error:
"ELF core (kcore) parse failed"
For that it needs below kexec-tools fix:
ed15ba1b9977 ("build_mem_phdrs(): check if p_paddr is invalid")
3. Even with patched kexec-tools which fixes 2), it still needs some
other fixes to work correctly for KASLR-enabled kernels.
So the situation is:
* Old kexec-tools is already broken with latest kernels.
* We can not keep these limitations forever just for compatibility with very
old kexec-tools.
* If one must use old tools then he/she can choose crashkernel=X@Y.
* People have reported bugs where crashkernel=384M failed because KASLR
makes the 0-896M space sparse.
* Crashkernel can reserve in low or high area, it is natural to understand
low as memory under 4G.
Hence drop the 896M limitation and change crashkernel low reservation to
reserve under 4G by default.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190421035058.943630505@redhat.com
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- various tooling fixes
- kretprobe fixes
- kprobes annotation fixes
- kprobes error checking fix
- fix the default events for AMD Family 17h CPUs
- PEBS fix
- AUX record fix
- address filtering fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Avoid kretprobe recursion bug
kprobes: Mark ftrace mcount handler functions nokprobe
x86/kprobes: Verify stack frame on kretprobe
perf/x86/amd: Add event map for AMD Family 17h
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_btf()
perf tools: Fix map reference counting
perf evlist: Fix side band thread draining
perf tools: Check maps for bpf programs
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_bpf_prog_info()
tools include uapi: Sync sound/asound.h copy
perf top: Always sample time to satisfy needs of use of ordered queuing
perf evsel: Use hweight64() instead of hweight_long(attr.sample_regs_user)
tools lib traceevent: Fix missing equality check for strcmp
perf stat: Disable DIR_FORMAT feature for 'perf stat record'
perf scripts python: export-to-sqlite.py: Fix use of parent_id in calls_view
perf header: Fix lock/unlock imbalances when processing BPF/BTF info
perf/x86: Fix incorrect PEBS_REGS
perf/ring_buffer: Fix AUX record suppression
perf/core: Fix the address filtering fix
kprobes: Fix error check when reusing optimized probes
DEBUG_HOTPLUG_CPU0 debug feature offlines a CPU as early as possible
allowing userspace to boot up without that CPU (so that it is possible
to check for unwanted dependencies towards the offlined CPU). After
doing so it emits a "CPU %u is now offline" pr_info, which is not enough
descriptive of why the CPU was offlined (e.g., one might be running with
a config that triggered some problem, not being aware that CONFIG_DEBUG_
HOTPLUG_CPU0 is set).
Add a bit more of informative text to the pr_info, so that it is
immediately obvious why a CPU has been offlined in early boot stages.
Background:
Got to scratch my head a bit while debugging a WARNING splat related to
the offlining of CPU0. Without being aware yet of this debug option it
wasn't immediately obvious why CPU0 was being offlined by the kernel.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Link: http://lkml.kernel.org/r/20181219151647.15073-1-juri.lelli@redhat.com
[ Merge line-broken line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For new Centaur CPUs the ucode will take care of the preservation of cache coherence
between CPU cores in C-states regardless of how deep the C-states are. So, it is not
necessary to flush the caches in software befor entering C3. This useless operation
will cause performance drop for the cores which share some caches with the idling core.
Signed-off-by: David Wang <davidwang@zhaoxin.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: len.brown@intel.com
Cc: linux-pm@kernel.org
Cc: qiyuanwang@zhaoxin.com
Cc: rjw@rjwysocki.net
Cc: timguo@zhaoxin.com
Link: http://lkml.kernel.org/r/1545900110-2757-1-git-send-email-davidwang@zhaoxin.com
[ Tidy up the comment. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "ENERGY_PERF_BIAS: Set to 'normal', was 'performance'" message triggers
on pretty much every Intel machine. The purpose of log messages with
a warning level is to notify the user of something which potentially is
a problem, or at least somewhat unexpected.
This message clearly does not match those criteria, so lower its log
priority from warning to info.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181230172715.17469-1-hdegoede@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "vide" inline assembler is only needed on 32bit kernels for old
32bit only CPUs.
Guard it with an #ifdef so it's not included in 64bit builds.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-2-andi@firstfloor.org
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Avoid kretprobe recursion loop bg by setting a dummy
kprobes to current_kprobe per-CPU variable.
This bug has been introduced with the asm-coded trampoline
code, since previously it used another kprobe for hooking
the function return placeholder (which only has a nop) and
trampoline handler was called from that kprobe.
This revives the old lost kprobe again.
With this fix, we don't see deadlock anymore.
And you can see that all inner-called kretprobe are skipped.
event_1 235 0
event_2 19375 19612
The 1st column is recorded count and the 2nd is missed count.
Above shows (event_1 rec) + (event_2 rec) ~= (event_2 missed)
(some difference are here because the counter is racy)
Reported-by: Andrea Righi <righi.andrea@gmail.com>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c9becf58d9 ("[PATCH] kretprobe: kretprobe-booster")
Link: http://lkml.kernel.org/r/155094064889.6137.972160690963039.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Verify the stack frame pointer on kretprobe trampoline handler,
If the stack frame pointer does not match, it skips the wrong
entry and tries to find correct one.
This can happen if user puts the kretprobe on the function
which can be used in the path of ftrace user-function call.
Such functions should not be probed, so this adds a warning
message that reports which function should be blacklisted.
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/155094059185.6137.15527904013362842072.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "event counter" was removed from rseq before it was merged upstream.
However, a few comments in the source code still refer to it. Adapt the
comments to match reality.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-2-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Syntax only, no functional or semantic change.
This routine matches packages, not die, so name it thus.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/7ca18c4ae7816a1f9eda37414725df676e63589d.1551160674.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add MDS to the new 'mitigations=' cmdline option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, when a new resource group is created, the allocation values
of the MBA resource are not initialized and remain meaningless data.
For example:
mkdir /sys/fs/resctrl/p1
cat /sys/fs/resctrl/p1/schemata
MB:0=100;1=100
echo "MB:0=10;1=20" > /sys/fs/resctrl/p1/schemata
cat /sys/fs/resctrl/p1/schemata
MB:0= 10;1= 20
rmdir /sys/fs/resctrl/p1
mkdir /sys/fs/resctrl/p2
cat /sys/fs/resctrl/p2/schemata
MB:0= 10;1= 20
Therefore, when the new group is created, it is reasonable to initialize
MBA resource with default values.
Initialize the MBA resource and cache resources in separate functions.
[ bp: Add newlines between code blocks for better readability. ]
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-3-git-send-email-xiaochen.shen@intel.com
Carve out per rdt_domain initialization code from rdtgroup_init_alloc()
into a separate function.
No functional change, make the code more readable and save us at least
two indentation levels.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-2-git-send-email-xiaochen.shen@intel.com
This code is only for CPUs which are affected by MSBDS, but are *not*
affected by the other two MDS issues.
For such CPUs, enabling the mds_idle_clear mitigation is enough to
mitigate SMT.
However if user boots with 'mds=off' and still has SMT enabled, we should
not report that SMT is mitigated:
$cat /sys//devices/system/cpu/vulnerabilities/mds
Vulnerable; SMT mitigated
But rather:
Vulnerable; SMT vulnerable
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain
All stack types on x86 64-bit have guard pages now.
So there is no point in executing probabilistic overflow checks as the
guard pages are a accurate and reliable overflow prevention.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.466354762@linutronix.de
The IRQ stack lives in percpu space, so an IRQ handler that overflows it
will overwrite other data structures.
Use vmap() to remap the IRQ stack so that it will have the usual guard
pages that vmap()/vmalloc() allocations have. With this, the kernel will
panic immediately on an IRQ stack overflow.
[ tglx: Move the map code to a proper place and invoke it only when a CPU
is about to be brought online. No point in installing the map at
early boot for all possible CPUs. Fail the CPU bringup if the vmap()
fails as done for all other preparatory stages in CPU hotplug. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.363733568@linutronix.de
Currently, the IRQ stack is hardcoded as the first page of the percpu
area, and the stack canary lives on the IRQ stack. The former gets in
the way of adding an IRQ stack guard page, and the latter is a potential
weakness in the stack canary mechanism.
Split the IRQ stack into its own private percpu pages.
[ tglx: Make 64 and 32 bit share struct irq_stack ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
Preparatory change for disentangling the irq stack union as a
prerequisite for irq stacks with guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190414160146.177558566@linutronix.de
irq_ctx_init() crashes hard on page allocation failures. While that's ok
during early boot, it's just wrong in the CPU hotplug bringup code.
Check the page allocation failure and return -ENOMEM and handle it at the
call sites. On early boot the only way out is to BUG(), but on CPU hotplug
there is no reason to crash, so just abort the operation.
Rename the function to something more sensible while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
irq_ctx_init() is invoked from native_init_IRQ() or from xen_init_IRQ()
code. There is no reason to have this split. The interrupt stacks must be
allocated no matter what.
Invoke it from init_IRQ() before invoking the native or XEN init
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Abraham <j.abraham1776@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.001162606@linutronix.de
The current implementation of in_exception_stack() iterates over the
exception stacks array. Most of the time this is an useless exercise, but
even for the actual use cases (perf and ftrace) it takes at least 2
iterations to get to the NMI stack.
As the exception stacks and the guard pages are page aligned the loop can
be avoided completely.
Add a initial check whether the stack pointer is inside the full exception
stack area and leave early if not.
Create a lookup table which describes the stack area. The table index is
the page offset from the beginning of the exception stacks. So for any
given stack pointer the page offset is computed and a lookup in the
description table is performed. If it is inside a guard page, return. If
not, use the descriptor to fill in the info structure.
The table is filled at compile time and for the !KASAN case the interesting
page descriptors exactly fit into a single cache line. Just the last guard
page descriptor is in the next cacheline, but that should not be accessed
in the regular case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.543320386@linutronix.de
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
The entry order of the TSS.IST array and the order of the stack
storage/mapping are not required to be the same.
With the upcoming split of the debug stack this is going to fall apart as
the number of TSS.IST array entries stays the same while the actual stacks
are increasing.
Make them separate so that code like dumpstack can just utilize the mapping
order. The IST index is solely required for the actual TSS.IST array
initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.241588113@linutronix.de
Convert the TSS.IST setup code to use the cpu entry area information
directly instead of assuming a linear mapping of the IST stacks.
The store to orig_ist[] is no longer required as there are no users
anymore.
This is the last preparatory step towards IST guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.061686012@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.974900463@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.885741626@linutronix.de
At the moment everything assumes a full linear mapping of the various
exception stacks. Adding guard pages to the cpu entry area mapping of the
exception stacks will break that assumption.
As a preparatory step convert both the real storage and the effective
mapping in the cpu entry area from character arrays to structures.
To ensure that both arrays have the same ordering and the same size of the
individual stacks fill the members with a macro. The guard size is the only
difference between the two resulting structures. For now both have guard
size 0 until the preparation of all usage sites is done.
Provide a couple of helper macros which are used in the following
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
The defines for the exception stack (IST) array in the TSS are using the
SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for
array indices related to IST. That's confusing at best and does not provide
any value.
Make the indices zero based and fixup the usage sites. The only code which
needs to adjust the 0 based index is the interrupt descriptor setup which
needs to add 1 now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de
Commit
d8ba61ba58 ("x86/entry/64: Don't use IST entry for #BP stack")
removed the last user but left the macro around.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.050689789@linutronix.de
On x86, stacks go top to bottom, but the stack overflow check uses it
the other way round, which is just confusing. Clean it up and sanitize
the warning string a bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.961241397@linutronix.de
stack_overflow_check() is using both irq_stack_ptr and irq_stack_union
to find the IRQ stack. That's going to break when vmapped irq stacks are
introduced.
Change it to just use irq_stack_ptr.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.872549191@linutronix.de
The get_stack_info() function is off-by-one when checking whether an
address is on a IRQ stack or a IST stack. This prevents an overflowed
IRQ or IST stack from being dumped properly.
[ tglx: Do the same for 32-bit ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.785651055@linutronix.de
Commit
37fe6a42b3 ("x86: Check stack overflow in detail")
added a broad check for the full exception stack area, i.e. it considers
the full exception stack area as valid.
That's wrong in two aspects:
1) It does not check the individual areas one by one
2) #DF, NMI and #MCE are not enabling interrupts which means that a
regular device interrupt cannot happen in their context. In fact if a
device interrupt hits one of those IST stacks that's a bug because some
code path enabled interrupts while handling the exception.
Limit the check to the #DB stack and consider all other IST stacks as
'overflow' or invalid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.682135110@linutronix.de
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.
Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.
XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.
The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.
Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.
Add REG_NOSUPPORT for 32bit to exclude unsupported registers.
Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.
The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Upon reboot, the Acer TravelMate X514-51T laptop appears to complete the
shutdown process, but then it hangs in BIOS POST with a black screen.
The problem is intermittent - at some points it has appeared related to
Secure Boot settings or different kernel builds, but ultimately we have
not been able to identify the exact conditions that trigger the issue to
come and go.
Besides, the EFI mode cannot be disabled in the BIOS of this model.
However, after extensive testing, we observe that using the EFI reboot
method reliably avoids the issue in all cases.
So add a boot time quirk to use EFI reboot on such systems.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=203119
Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux@endlessm.com
Link: http://lkml.kernel.org/r/20190412080152.3718-1-jian-hong@endlessm.com
[ Fix !CONFIG_EFI build failure, clarify the code and the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y, we compile the kernel with
-fdata-sections, which also splits the .bss section.
The new section, with a new .bss.* name, which pattern gets missed by the
main x86 linker script which only expects the '.bss' name. This results
in the discarding of the second part and a too small, truncated .bss
section and an unhappy, non-working kernel.
Use the common BSS_MAIN macro in the linker script to properly capture
and merge all the generated BSS sections.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190415164956.124067-1-samitolvanen@google.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mikhail reported a lockdep splat related to the AMD specific ssb_state
lock:
CPU0 CPU1
lock(&st->lock);
local_irq_disable();
lock(&(&sighand->siglock)->rlock);
lock(&st->lock);
<Interrupt>
lock(&(&sighand->siglock)->rlock);
*** DEADLOCK ***
The connection between sighand->siglock and st->lock comes through seccomp,
which takes st->lock while holding sighand->siglock.
Make sure interrupts are disabled when __speculation_ctrl_update() is
invoked via prctl() -> speculation_ctrl_update(). Add a lockdep assert to
catch future offenders.
Fixes: 1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904141948200.4917@nanos.tec.linutronix.de
Terminating the last trace entry with ULONG_MAX is a completely pointless
exercise and none of the consumers can rely on it because it's
inconsistently implemented across architectures. In fact quite some of the
callers remove the entry and adjust stack_trace.nr_entries afterwards.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190410103643.750954603@linutronix.de
When cache allocation is supported and the user creates a new resctrl
resource group, the allocations of the new resource group are
initialized to all regions that it can possibly use. At this time these
regions are all that are shareable by other resource groups as well as
regions that are not currently used. The new resource group's mode is
also initialized to reflect this initialization and set to "shareable".
The new resource group's mode is currently repeatedly initialized within
the loop that configures the hardware with the resource group's default
allocations.
Move the initialization of the resource group's mode outside the
hardware configuration loop. The resource group's mode is now
initialized only once as the final step to reflect that its configured
allocations are "shareable".
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
The task's initial PKRU value is set partly for fpu__clear()/
copy_init_pkru_to_fpregs(). It is not part of init_fpstate.xsave and
instead it is set explicitly.
If the user removes the PKRU state from XSAVE in the signal handler then
__fpu__restore_sig() will restore the missing bits from `init_fpstate'
and initialize the PKRU value to 0.
Add the `init_pkru_value' to `init_fpstate' so it is set to the init
value in such a case.
In theory copy_init_pkru_to_fpregs() could be removed because restoring
the PKRU at return-to-userland should be enough.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-28-bigeasy@linutronix.de
If a task is scheduled out and receives a signal then it won't be
able to take the fastpath because the registers aren't available. The
slowpath is more expensive compared to XRSTOR + XSAVE which usually
succeeds.
Here are some clock_gettime() numbers from a bigger box with AVX512
during bootup:
- __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent
FPU context on the CPU then the optimisation in __fpregs_load_activate()
will skip the load (which was disabled during the test).
- copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a
pagefault it is 1.8us - 3us usually in the 2.6us area.
- The slowpath takes 1.5us - 6us. Usually in the 2.6us area.
My testcases (including lat_sig) take the fastpath without
__fpregs_load_activate(). I expect this to be the majority.
Since the slowpath is in the >1us area it makes sense to load the
registers and attempt to save them directly. The direct save may fail
but should only happen on the first invocation or after fork() while the
page is read-only.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
Try to save the FPU registers directly to the userland stack frame if
the CPU holds the FPU registers for the current task. This has to be
done with the pagefault disabled because we can't fault (while the FPU
registers are locked) and therefore the operation might fail. If it
fails try the slowpath which can handle faults.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-26-bigeasy@linutronix.de
The previous commits refactor the restoration of the FPU registers so
that they can be loaded from in-kernel memory. This overhead can be
avoided if the load can be performed without a pagefault.
Attempt to restore FPU registers by invoking
copy_user_to_fpregs_zeroing(). If it fails try the slowpath which can
handle pagefaults.
[ bp: Add a comment over the fastpath to be able to find one's way
around the function. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-25-bigeasy@linutronix.de
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().
The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.
KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.
Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.
[
bp: Correct and update commit message and fix checkpatch warnings.
s/register/registers/ where it is used in plural.
minor comment corrections.
remove unused trace_x86_fpu_activate_state() TP.
]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
The ia32_fxstate case (32bit with fxsr) and the other (64bit frames or
32bit frames without fxsr) restore both from kernel memory and sanitize
the content.
The !ia32_fxstate version restores missing xstates from "init state"
while the ia32_fxstate doesn't and skips it.
Merge the two code paths and keep the !ia32_fxstate one. Copy only the
user_i387_ia32_struct data structure in the ia32_fxstate.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-23-bigeasy@linutronix.de
The 64-bit case (both 64-bit and 32-bit frames) loads the new state from
user memory.
However, doing this is not desired if the FPU state is going to be
restored on return to userland: it would be required to disable
preemption in order to avoid a context switch which would set
TIF_NEED_FPU_LOAD. If this happens before the restore operation then the
loaded registers would become volatile.
Furthermore, disabling preemption while accessing user memory requires
to disable the pagefault handler. An error during FXRSTOR would then
mean that either a page fault occurred (and it would have to be retried
with enabled page fault handler) or a #GP occurred because the xstate is
bogus (after all, the signal handler can modify it).
In order to avoid that mess, copy the FPU state from userland, validate
it and then load it. The copy_kernel_…() helpers are basically just
like the old helpers except that they operate on kernel memory and the
fault handler just sets the error value and the caller handles it.
copy_user_to_fpregs_zeroing() and its helpers remain and will be used
later for a fastpath optimisation.
[ bp: Clarify commit message. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
Start refactoring __fpu__restore_sig() by inlining
copy_user_to_fpregs_zeroing(). The original function remains and will be
used to restore from userland memory if possible.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-21-bigeasy@linutronix.de
The FPU registers need only to be saved if TIF_NEED_FPU_LOAD is not set.
Otherwise this has been already done and can be skipped.
[ bp: Massage a bit. ]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-19-bigeasy@linutronix.de
copy_fpstate_to_sigframe() stores the registers directly to user space.
This is okay because the FPU registers are valid and saving them
directly avoids saving them into kernel memory and making a copy.
However, this cannot be done anymore if the FPU registers are going
to be restored on the return to userland. It is possible that the FPU
registers will be invalidated in the middle of the save operation and
this should be done with disabled preemption / BH.
Save the FPU registers to the task's FPU struct and copy them to the
user memory later on.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-18-bigeasy@linutronix.de
Commit
2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
added the new define UCODE_NEW to denote that an update should happen
only when newer microcode (than installed on the system) has been found.
But it missed adjusting that for the old /dev/cpu/microcode loading
interface. Fix it.
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20190405133010.24249-3-bp@alien8.de
As reported by 0-DAY kernel test infrastructure:
arch/x86//kernel/ima_arch.c: In function 'arch_get_ima_policy':
>> arch/x86//kernel/ima_arch.c:78:4: error: implicit declaration of
function 'set_module_sig_enforced' [-Werror=implicit-function-declaration]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Change generic_load_microcode() to use the iov_iter API instead of a
clumsy open-coded version which has to pay attention to __user data
or kernel data, depending on the loading method. This allows to avoid
explicit casting between user and kernel pointers.
Because the iov_iter API makes it hard to read the same location twice,
as a side effect, also fix a double-read of the microcode header (which
could e.g. lead to out-of-bounds reads in microcode_sanity_check()).
Not that it matters much, only root is allowed to load microcode
anyway...
[ bp: Massage a bit, sort function-local variables. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190404111128.131157-1-jannh@google.com
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.
Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)
Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.
Furthermore, use xfeature_nr and xfeature_mask consistently.
This results in the following changes to the kvm code:
feature -> xfeature_mask
index -> xfeature_nr
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
Most users of __raw_xsave_addr() use a feature number, shift it to a
mask and then __raw_xsave_addr() shifts it back to the feature number.
Make __raw_xsave_addr() use the feature number as an argument.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-11-bigeasy@linutronix.de
user_fpu_begin() sets fpu_fpregs_owner_ctx to task's fpu struct. This is
always the case since there is no lazy FPU anymore.
fpu_fpregs_owner_ctx is used during context switch to decide if it needs
to load the saved registers or if the currently loaded registers are
valid. It could be skipped during a
taskA -> kernel thread -> taskA
switch because the switch to the kernel thread would not alter the CPU's
sFPU tate.
Since this field is always updated during context switch and
never invalidated, setting it manually (in user context) makes no
difference. A kernel thread with kernel_fpu_begin() block could
set fpu_fpregs_owner_ctx to NULL but a kernel thread does not use
user_fpu_begin().
This is a leftover from the lazy-FPU time.
Remove user_fpu_begin(), it does not change fpu_fpregs_owner_ctx's
content.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-9-bigeasy@linutronix.de
The struct fpu.initialized member is always set to one for user tasks
and zero for kernel tasks. This avoids saving/restoring the FPU
registers for kernel threads.
The ->initialized = 0 case for user tasks has been removed in previous
changes, for instance, by doing an explicit unconditional init at fork()
time for FPU-less systems which was otherwise delayed until the emulated
opcode.
The context switch code (switch_fpu_prepare() + switch_fpu_finish())
can't unconditionally save/restore registers for kernel threads. Not
only would it slow down the switch but also load a zeroed xcomp_bv for
XSAVES.
For kernel_fpu_begin() (+end) the situation is similar: EFI with runtime
services uses this before alternatives_patched is true. Which means that
this function is used too early and it wasn't the case before.
For those two cases, use current->mm to distinguish between user and
kernel thread. For kernel_fpu_begin() skip save/restore of the FPU
registers.
During the context switch into a kernel thread don't do anything. There
is no reason to save the FPU state of a kernel thread.
The reordering in __switch_to() is important because the current()
pointer needs to be valid before switch_fpu_finish() is invoked so ->mm
is seen of the new task instead the old one.
N.B.: fpu__save() doesn't need to check ->mm because it is called by
user tasks only.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-8-bigeasy@linutronix.de
In commit
72a671ced6 ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")
the 32bit and 64bit path of the signal delivery code were merged.
The 32bit version:
int save_i387_xstate_ia32(void __user *buf)
…
if (cpu_has_xsave)
return save_i387_xsave(fp);
if (cpu_has_fxsr)
return save_i387_fxsave(fp);
The 64bit version:
int save_i387_xstate(void __user *buf)
…
if (user_has_fpu()) {
if (use_xsave())
err = xsave_user(buf);
else
err = fxsave_user(buf);
if (unlikely(err)) {
__clear_user(buf, xstate_size);
return err;
The merge:
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
…
if (user_has_fpu()) {
/* Save the live register state to the user directly. */
if (save_user_xstate(buf_fx))
return -1;
/* Update the thread's fxstate to save the fsave header. */
if (ia32_fxstate)
fpu_fxsave(&tsk->thread.fpu);
I don't think that we needed to save the FPU registers to ->thread.fpu
because the registers were stored in buf_fx. Today the state will be
restored from buf_fx after the signal was handled (I assume that this
was also the case with lazy-FPU).
Since commit
66463db4fc ("x86, fpu: shift drop_init_fpu() from save_xstate_sig() to handle_signal()")
it is ensured that the signal handler starts with clear/fresh set of FPU
registers which means that the previous store is futile.
Remove the copy_fxregs_to_kernel() call because task's FPU state is
cleared later in handle_signal() via fpu__clear().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-7-bigeasy@linutronix.de
With lazy-FPU support the (now named variable) ->initialized was set to
true if the CPU's FPU registers were holding a valid state of the
FPU registers for the active process. If it was set to false then the
FPU state was saved in fpu->state and the FPU was deactivated.
With lazy-FPU gone, ->initialized is always true for user threads and
kernel threads never call this function so ->initialized is always true
in copy_fpstate_to_sigframe().
The using_compacted_format() check is also a leftover from the lazy-FPU
time. In the
->initialized == false
case copy_to_user() would copy the compacted buffer while userland would
expect the non-compacted format instead. So in order to save the FPU
state in the non-compacted form it issues XSAVE to save the *current*
FPU state.
If the FPU is not enabled, the attempt raises the FPU trap, the trap
restores the FPU contents and re-enables the FPU and XSAVE is invoked
again and succeeds.
*This* does not longer work since commit
bef8b6da95 ("x86/fpu: Handle #NM without FPU emulation as an error")
Remove the check for ->initialized because it is always true and remove
the false condition. Update the comment to reflect that the state is
always live.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-6-bigeasy@linutronix.de
fpu__clear() only initializes the state if the CPU has FPU support.
This initialisation is also required for FPU-less systems and takes
place in math_emulate(). Since fpu__initialize() only performs the
initialization if ->initialized is zero it does not matter that it
is invoked each time an opcode is emulated. It makes the removal of
->initialized easier if the struct is also initialized in the FPU-less
case at the same time.
Move fpu__initialize() before the FPU feature check so it is also
performed in the FPU-less case too.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Bill Metzenthen <billm@melbpc.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-5-bigeasy@linutronix.de
The preempt_disable() section was introduced in commit
a10b6a16cd ("x86/fpu: Make the fpu state change in fpu__clear() scheduler-atomic")
and it was said to be temporary.
fpu__initialize() initializes the FPU struct to its initial value and
then sets ->initialized to 1. The last part is the important one.
The content of the state does not matter because it gets set via
copy_init_fpstate_to_fpregs().
A preemption here has little meaning because the registers will always be
set to the same content after copy_init_fpstate_to_fpregs(). A softirq
with a kernel_fpu_begin() could also force to save FPU's registers after
fpu__initialize() without changing the outcome here.
Remove the preempt_disable() section in fpu__clear(), preemption here
does not hurt.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-4-bigeasy@linutronix.de
There are no users of fpu__restore() so it is time to remove it. The
comment regarding fpu__restore() and TS bit is stale since commit
b3b0870ef3 ("i387: do not preload FPU state at task switch time")
and has no meaning since.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-3-bigeasy@linutronix.de
This is a preparation for the removal of the ->initialized member in the
fpu struct.
__fpu__restore_sig() is deactivating the FPU via fpu__drop() and then
setting manually ->initialized followed by fpu__restore(). The result is
that it is possible to manipulate fpu->state and the state of registers
won't be saved/restored on a context switch which would overwrite
fpu->state:
fpu__drop(fpu):
...
fpu->initialized = 0;
preempt_enable();
<--- context switch
Don't access the fpu->state while the content is read from user space
and examined/sanitized. Use a temporary kmalloc() buffer for the
preparation of the FPU registers and once the state is considered okay,
load it. Should something go wrong, return with an error and without
altering the original FPU registers.
The removal of fpu__initialize() is a nop because fpu->initialized is
already set for the user task.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-2-bigeasy@linutronix.de
Now that we removed support for the NULL device argument in the DMA API,
there is no need to cater for that in the x86 code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Using static_cpu_has() is pointless on those paths, convert them to the
boot_cpu_has() variant.
No functional changes.
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Juergen Gross <jgross@suse.com> # for paravirt
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: linux-edac@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: virtualization@lists.linux-foundation.org
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190330112022.28888-3-bp@alien8.de
The Performance and Energy Bias Hint (EPB) is expected to be set by
user space through the generic MSR interface, but that interface is
not particularly nice and there are security concerns regarding it,
so it is not always available.
For this reason, add a sysfs interface for reading and updating the
EPB, in the form of a new attribute, energy_perf_bias, located
under /sys/devices/system/cpu/cpu#/power/ for online CPUs that
support the EPB feature.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
The current handling of MSR_IA32_ENERGY_PERF_BIAS in the kernel is
problematic, because it may cause changes made by user space to that
MSR (with the help of the x86_energy_perf_policy tool, for example)
to be lost every time a CPU goes offline and then back online as well
as during system-wide power management transitions into sleep states
and back into the working state.
The first problem is that if the current EPB value for a CPU going
online is 0 ('performance'), the kernel will change it to 6 ('normal')
regardless of whether or not this is the first bring-up of that CPU.
That also happens during system-wide resume from sleep states
(including, but not limited to, hibernation). However, the EPB may
have been adjusted by user space this way and the kernel should not
blindly override that setting.
The second problem is that if the platform firmware resets the EPB
values for any CPUs during system-wide resume from a sleep state,
the kernel will not restore their previous EPB values that may
have been set by user space before the preceding system-wide
suspend transition. Again, that behavior may at least be confusing
from the user space perspective.
In order to address these issues, rework the handling of
MSR_IA32_ENERGY_PERF_BIAS so that the EPB value is saved on CPU
offline and restored on CPU online as well as (for the boot CPU)
during the syscore stages of system-wide suspend and resume
transitions, respectively.
However, retain the policy by which the EPB is set to 6 ('normal')
on the first bring-up of each CPU if its initial value is 0, based
on the observation that 0 may mean 'not initialized' just as well as
'performance' in that case.
While at it, move the MSR_IA32_ENERGY_PERF_BIAS handling code into
a separate file and document it in Documentation/admin-guide.
Fixes: abe48b1082 (x86, intel, power: Initialize MSR_IA32_ENERGY_PERF_BIAS)
Fixes: b51ef52df7 (x86/cpu: Restore MSR_IA32_ENERGY_PERF_BIAS after resume)
Reported-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
One of the more common cases of allocation size calculations is finding the
size of a structure that has a zero-sized array at the end, along with
memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
instance = vzalloc(sizeof(struct foo) + count * sizeof(struct boo));
Instead of leaving these open-coded and prone to type mistakes, use the new
struct_size() helper:
instance = vzalloc(struct_size(instance, entry, count));
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190403184230.GA5295@embeddedor
Parsing entries in an ACPI table had assumed a generic header
structure. There is no standard ACPI header, though, so less common
layouts with different field sizes required custom parsers to go through
their subtable entry list.
Create the infrastructure for adding different table types so parsing
the entries array may be more reused for all ACPI system tables and
the common code doesn't need to be duplicated.
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In save_xstate_epilog(), use __user when type-casting userspace
pointers.
In setup_sigcontext() and x32_setup_rt_frame(), cast the userspace
pointers to 'unsigned long __user *' before writing into them. These
pointers are originally '__u32 __user *' or '__u64 __user *', causing
sparse to complain when a userspace pointer is written into them. The
casts are okay because the pointers always point to pointer-sized
values.
Thanks to Luc Van Oostenryck and Al Viro for explaining this to me.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190329214652.258477-3-jannh@google.com
Now that we have objtool validating AC=1 state for all x86_64 code,
we can once again guarantee clean flags on schedule.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Occasionally GCC is less agressive with inlining and the following is
observed:
arch/x86/kernel/signal.o: warning: objtool: restore_sigcontext()+0x3cc: call to force_valid_ss.isra.5() with UACCESS enabled
arch/x86/kernel/signal.o: warning: objtool: do_signal()+0x384: call to frame_uc_flags.isra.0() with UACCESS enabled
Cure this by moving this code out of the AC=1 region, since it really
isn't needed for the user access.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Effectively reverts commit:
2c7577a758 ("sched/x86_64: Don't save flags on context switch")
Specifically because SMAP uses FLAGS.AC which invalidates the claim
that the kernel has clean flags.
In particular; while preemption from interrupt return is fine (the
IRET frame on the exception stack contains FLAGS) it breaks any code
that does synchonous scheduling, including preempt_enable().
This has become a significant issue ever since commit:
5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
provided for means of having 'normal' C code between STAC / CLAC,
exposing the FLAGS.AC state. So far this hasn't led to trouble,
however fix it before it comes apart.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Fixes: 5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
MDS is vulnerable with SMT. Make that clear with a one-time printk
whenever SMT first gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
arch_smt_update() now has a dependency on both Spectre v2 and MDS
mitigations. Move its initial call to after all the mitigation decisions
have been made.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Add the mds=full,nosmt cmdline option. This is like mds=full, but with
SMT disabled if the CPU is vulnerable.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Let's reserve EHL stolen memory for graphics.
ElkhartLake is a gen11 platform which is compatible with
ICL changes.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20190315191938.22211-2-rodrigo.vivi@intel.com
The user can control the MBA memory bandwidth in MBps (Mega
Bytes per second) units of the MBA Software Controller (mba_sc)
by using the "mba_MBps" mount option. For details, see
Documentation/x86/resctrl_ui.txt.
However, commit
23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")
changed the mount option name from "mba_MBps" to "mba_mpbs" by mistake.
Change it back from to "mba_MBps" because it is user-visible, and
correct "Opt_mba_mpbs" spelling to "Opt_mba_mbps".
[ bp: massage commit message. ]
Fixes: 23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: dhowells@redhat.com
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553896238-22130-1-git-send-email-xiaochen.shen@intel.com
This allows the IS_PINEVIEW_<G|M> macros to be removed and avoid
duplication of device ids already defined in i915_pciids.h.
!IS_MOBILE check can be used in place of existing IS_PINEVIEW_G call
sites.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190326074057.27833-2-tvrtko.ursulin@linux.intel.com
Calling this function has been wrong for a while now:
* Can't call schedule_work() in #MC context.
* mce_notify_irq() either.
* None of that noodling is needed anymore - all it needs to do is kick
the IRQ work which would self-IPI so that once the #MC handler is done,
the work queue will run and process queued MCE records.
So remove it.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190325172121.7926-1-bp@alien8.de
All architectures (arm/arm64, ia64 and x86) do the same here, so unify
the code.
Note: We do not need to call dump_stack_set_arch_desc() in case of
!dmi_available. Both strings, dmi_ids_string and dump_stack_arch_
desc_str are initialized zero and thus nothing would change.
Signed-off-by: Robert Richter <rrichter@marvell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190328193429.21373-5-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Have the IMA architecture specific policy require signed kernel modules
on systems with secure boot mode enabled; and coordinate the different
signature verification methods, so only one signature is required.
Requiring appended kernel module signatures may be configured, enabled
on the boot command line, or with this patch enabled in secure boot
mode. This patch defines set_module_sig_enforced().
To coordinate between appended kernel module signatures and IMA
signatures, only define an IMA MODULE_CHECK policy rule if
CONFIG_MODULE_SIG is not enabled. A custom IMA policy may still define
and require an IMA signature.
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Linux reads MCG_CAP[Count] to find the number of MCA banks visible to a
CPU. Currently, this number is the same for all CPUs and a warning is
shown if there is a difference. The number of banks is overwritten with
the MCG_CAP[Count] value of each following CPU that boots.
According to the Intel SDM and AMD APM, the MCG_CAP[Count] value gives
the number of banks that are available to a "processor implementation".
The AMD BKDGs/PPRs further clarify that this value is per core. This
value has historically been the same for every core in the system, but
that is not an architectural requirement.
Future AMD systems may have different MCG_CAP[Count] values per core,
so the assumption that all CPUs will have the same MCG_CAP[Count] value
will no longer be valid.
Also, the first CPU to boot will allocate the struct mce_banks[] array
using the number of banks based on its MCG_CAP[Count] value. The machine
check handler and other functions use the global number of banks to
iterate and index into the mce_banks[] array. So it's possible to use an
out-of-bounds index on an asymmetric system where a following CPU sees a
MCG_CAP[Count] value greater than its predecessors.
Thus, allocate the mce_banks[] array to the maximum number of banks.
This will avoid the potential out-of-bounds index since the value of
mca_cfg.banks is capped to MAX_NR_BANKS.
Set the value of mca_cfg.banks equal to the max of the previous value
and the value for the current CPU. This way mca_cfg.banks will always
represent the max number of banks detected on any CPU in the system.
This will ensure that all CPUs will access all the banks that are
visible to them. A CPU that can access fewer than the max number of
banks will find the registers of the extra banks to be read-as-zero.
Furthermore, print the resulting number of MCA banks in use. Do this in
mcheck_late_init() so that the final value is printed after all CPUs
have been initialized.
Finally, get bank count from target CPU when doing injection with mce-inject
module.
[ bp: Remove out-of-bounds example, passify and cleanup commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20180727214009.78289-1-Yazen.Ghannam@amd.com
There has been a lurking "TBD" in the machine check poll routine ever
since it was first split out from the machine check handler. The
potential issue is that the poll routine may have just begun a read from
the STATUS register in a machine check bank when the hardware logs an
error in that bank and signals a machine check.
That race used to be pretty small back when machine checks were
broadcast, but the addition of local machine check means that the poll
code could continue running and clear the error from the bank before the
local machine check handler on another CPU gets around to reading it.
Fix the code to be sure to only process errors that need to be processed
in the poll code, leaving other logged errors alone for the machine
check handler to find and process.
[ bp: Massage a bit and flip the "== 0" check to the usual !(..) test. ]
Fixes: b79109c3bb ("x86, mce: separate correct machine check poller and fatal exception handler")
Fixes: ed7290d0ee ("x86, mce: implement new status bits")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20190312170938.GA23035@agluck-desk
The Hygon family 18h multi-die processor platform supports 1, 2 or
4-Dies per socket. The topology looks like this:
System View (with 1-Die 2-Socket):
|------------|
------ -----
SOCKET0 | D0 | | D1 | SOCKET1
------ -----
System View (with 2-Die 2-socket):
--------------------
| -------------|------
| | | |
------------ ------------
SOCKET0 | D1 -- D0 | | D3 -- D2 | SOCKET1
------------ ------------
System View (with 4-Die 2-Socket) :
--------------------
| -------------|------
| | | |
------------ ------------
| D1 -- D0 | | D7 -- D6 |
| | \/ | | | | \/ | |
SOCKET0 | | /\ | | | | /\ | | SOCKET1
| D2 -- D3 | | D4 -- D5 |
------------ ------------
| | | |
------|------------| |
--------------------
Currently
phys_proc_id = initial_apicid >> bits
calculates the physical processor ID from the initial_apicid by shifting
*bits*.
However, this does not work for 1-Die and 2-Die 2-socket systems.
According to document [1] section 2.1.11.1, the bits is the value of
CPUID_Fn80000008_ECX[12:15]. The possible values are 4, 5 or 6 which
mean:
4 - 1 die
5 - 2 dies
6 - 3/4 dies.
Hygon programs the initial ApicId the same way as AMD. The ApicId is
read from CPUID_Fn00000001_EBX (see section 2.1.11.1 of referrence [1])
and the definition is as below (see section 2.1.10.2.1.3 of [1]):
-------------------------------------------------
Bit | 6 | 5 4 | 3 | 2 1 0 |
|-----------|---------|--------|----------------|
IDs | Socket ID | Node ID | CCX ID | Core/Thread ID |
-------------------------------------------------
So for 3/4-Die configurations, the bits variable is 6, which is the same
as the ApicID definition field.
For 1-Die and 2-Die configurations, bits is 4 or 5, which will cause the
right shifted result to not be exactly the value of socket ID.
However, the socket ID should be obtained from ApicId[6]. To fix the
problem and match the ApicID field definition, set the shift bits to 6
for all Hygon family 18h multi-die CPUs.
Because AMD doesn't have 2-Socket systems with 1-Die/2-Die processors
(see reference [2]), this doesn't need to be changed on the AMD side but
only for Hygon.
References:
[1] https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
[2] https://www.amd.com/en/products/specifications/processors
[bp: heavily massage commit message. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553355740-19999-1-git-send-email-puwen@hygon.cn
On machines where the GART aperture is mapped over physical RAM,
/proc/kcore contains the GART aperture range. Accessing the GART range via
/proc/kcore results in a kernel crash.
vmcore used to have the same issue, until it was fixed with commit
2a3e83c6f9 ("x86/gart: Exclude GART aperture from vmcore")', leveraging
existing hook infrastructure in vmcore to let /proc/vmcore return zeroes
when attempting to read the aperture region, and so it won't read from the
actual memory.
Apply the same workaround for kcore. First implement the same hook
infrastructure for kcore, then reuse the hook functions introduced in the
previous vmcore fix. Just with some minor adjustment, rename some functions
for more general usage, and simplify the hook infrastructure a bit as there
is no module usage yet.
Suggested-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jiri Bohac <jbohac@suse.cz>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Dave Young <dyoung@redhat.com>
Link: https://lkml.kernel.org/r/20190308030508.13548-1-kasong@redhat.com
When building with -Wsometimes-uninitialized, Clang warns:
arch/x86/kernel/hw_breakpoint.c:355:2: warning: variable 'align' is used
uninitialized whenever switch default is taken
[-Wsometimes-uninitialized]
The default cannot be reached because arch_build_bp_info() initializes
hw->len to one of the specified cases. Nevertheless the warning is valid
and returning -EINVAL makes sure that this cannot be broken by future
modifications.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: clang-built-linux@googlegroups.com
Link: https://github.com/ClangBuiltLinux/linux/issues/392
Link: https://lkml.kernel.org/r/20190307212756.4648-1-natechancellor@gmail.com
There are comments in processor-cyrix.h advising you to _not_ make calls
using the deprecated macros in this style:
setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80);
This is because it expands the macro into a non-functioning calling
sequence. The calling order must be:
outb(CX86_CCR2, 0x22);
inb(0x23);
From the comments:
* When using the old macros a line like
* setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88);
* gets expanded to:
* do {
* outb((CX86_CCR2), 0x22);
* outb((({
* outb((CX86_CCR2), 0x22);
* inb(0x23);
* }) | 0x88), 0x23);
* } while (0);
The new macros fix this problem, so use them instead. Tested on an
actual Geode processor.
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Link: https://lkml.kernel.org/r/1552596361-8967-2-git-send-email-tedheadster@gmail.com
By popular demand, issue a single line to dmesg after the reload
operation completes to let the user know that a reload has at least been
attempted.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190313110022.8229-1-bp@alien8.de
hpet_virt_address may be NULL when ioremap_nocache fail, but the code lacks
a check.
Add a check to prevent NULL pointer dereference.
Signed-off-by: Aditya Pakki <pakki001@umn.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kjlu@umn.edu
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joe Perches <joe@perches.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Roland Dreier <roland@purestorage.com>
Link: https://lkml.kernel.org/r/20190319021958.17275-1-pakki001@umn.edu
Since commit:
ad67b74d24 ("printk: hash addresses printed with %p")
at boot "____ptrval____" is printed instead of actual addresses:
found SMP MP-table at [mem 0x000f5cc0-0x000f5ccf] mapped at [(____ptrval____)]
Instead of changing the print to "%px", and leaking a kernel addresses,
just remove the print completely, like in:
071929dbdd ("arm64: Stop printing the virtual memory layout").
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
Pull vfs mount infrastructure updates from Al Viro:
"The rest of core infrastructure; no new syscalls in that pile, but the
old parts are switched to new infrastructure. At that point
conversions of individual filesystems can happen independently; some
are done here (afs, cgroup, procfs, etc.), there's also a large series
outside of that pile dealing with NFS (quite a bit of option-parsing
stuff is getting used there - it's one of the most convoluted
filesystems in terms of mount-related logics), but NFS bits are the
next cycle fodder.
It got seriously simplified since the last cycle; documentation is
probably the weakest bit at the moment - I considered dropping the
commit introducing Documentation/filesystems/mount_api.txt (cutting
the size increase by quarter ;-), but decided that it would be better
to fix it up after -rc1 instead.
That pile allows to do followup work in independent branches, which
should make life much easier for the next cycle. fs/super.c size
increase is unpleasant; there's a followup series that allows to
shrink it considerably, but I decided to leave that until the next
cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
afs: Use fs_context to pass parameters over automount
afs: Add fs_context support
vfs: Add some logging to the core users of the fs_context log
vfs: Implement logging through fs_context
vfs: Provide documentation for new mount API
vfs: Remove kern_mount_data()
hugetlbfs: Convert to fs_context
cpuset: Use fs_context
kernfs, sysfs, cgroup, intel_rdt: Support fs_context
cgroup: store a reference to cgroup_ns into cgroup_fs_context
cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
cgroup_do_mount(): massage calling conventions
cgroup: stash cgroup_root reference into cgroup_fs_context
cgroup2: switch to option-by-option parsing
cgroup1: switch to option-by-option parsing
cgroup: take options parsing into ->parse_monolithic()
cgroup: fold cgroup1_mount() into cgroup1_get_tree()
cgroup: start switching to fs_context
ipc: Convert mqueue fs to fs_context
proc: Add fs_context support to procfs
...
Merge misc updates from Andrew Morton:
- a few misc things
- the rest of MM
- remove flex_arrays, replace with new simple radix-tree implementation
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
Drop flex_arrays
sctp: convert to genradix
proc: commit to genradix
generic radix trees
selinux: convert to kvmalloc
md: convert to kvmalloc
openvswitch: convert to kvmalloc
of: fix kmemleak crash caused by imbalance in early memory reservation
mm: memblock: update comments and kernel-doc
memblock: split checks whether a region should be skipped to a helper function
memblock: remove memblock_{set,clear}_region_flags
memblock: drop memblock_alloc_*_nopanic() variants
memblock: memblock_alloc_try_nid: don't panic
treewide: add checks for the return value of memblock_alloc*()
swiotlb: add checks for the return value of memblock_alloc*()
init/main: add checks for the return value of memblock_alloc*()
mm/percpu: add checks for the return value of memblock_alloc*()
sparc: add checks for the return value of memblock_alloc*()
ia64: add checks for the return value of memblock_alloc*()
arch: don't memset(0) memory returned by memblock_alloc()
...
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.
Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com> [printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __memblock_alloc_base() function tries to allocate a memory up to
the limit specified by its max_addr parameter. Depending on the value
of this parameter, the __memblock_alloc_base() can is replaced with the
appropriate memblock_phys_alloc*() variant.
Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
=8Zfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"xen fixes and features:
- remove fallback code for very old Xen hypervisors
- three patches for fixing Xen dom0 boot regressions
- an old patch for Xen PCI passthrough which was never applied for
unknown reasons
- some more minor fixes and cleanup patches"
* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix dom0 boot on huge systems
xen, cpu_hotplug: Prevent an out of bounds access
xen: remove pre-xen3 fallback handlers
xen/ACPI: Switch to bitmap_zalloc()
x86/xen: dont add memory above max allowed allocation
x86: respect memory size limiting via mem= parameter
xen/gntdev: Check and release imported dma-bufs on close
xen/gntdev: Do not destroy context while dma-bufs are in use
xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
xen-scsiback: mark expected switch fall-through
xen: mark expected switch fall-through
- Add "onchange(var)" histogram handler that executes a action when $var
changes.
- Add new "snapshot()" action for histogram handlers, that causes a
snapshot of the ring buffer when triggered.
ie. onchange(var).snapshot() will trigger a snapshot if var changes.
- Add alternative for "trace()" action.
Currently, to trigger a synthetic event, the name of that event is used
as the handler name, which is inconsistent with the other actions.
onchange(var).synthetic(param) where it can now be
onchange(var).trace(synthetic, param). The older method will still be
allowed, as long as the synthetic events do not overlap with other
handler names.
- The histogram documentation at testcases were updated for the new
changes.
Added a quicker way to enable set_ftrace_filter files, that will make
it much quicker to bisect tracing a function that shouldn't be traced and
crashes the kernel. (You can echo in numbers to set_ftrace_filter, and it
will select the corresponding function that is in
available_filter_functions).
Some better displaying of the tracing data (and more information was added).
The rest are small fixes and more clean ups to the code.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXIXXjRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qrSJAQCbGXAvZE+shfKRhbU1cu1C1nwRMHhH
eeRecJs1RChGFgD/TwatD4FzARQPjfk7snQD5KWPpoRc9grUACC2cZcaWwQ=
=LVBI
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The biggest change for this release is in the histogram code:
- Add "onchange(var)" histogram handler that executes a action when
$var changes.
- Add new "snapshot()" action for histogram handlers, that causes a
snapshot of the ring buffer when triggered. ie.
onchange(var).snapshot() will trigger a snapshot if var changes.
- Add alternative for "trace()" action. Currently, to trigger a
synthetic event, the name of that event is used as the handler
name, which is inconsistent with the other actions.
onchange(var).synthetic(param) where it can now be
onchange(var).trace(synthetic, param). The older method will still
be allowed, as long as the synthetic events do not overlap with
other handler names.
- The histogram documentation at testcases were updated for the new
changes.
Outside of the histogram code, we have:
- Added a quicker way to enable set_ftrace_filter files, that will
make it much quicker to bisect tracing a function that shouldn't be
traced and crashes the kernel. (You can echo in numbers to
set_ftrace_filter, and it will select the corresponding function
that is in available_filter_functions).
- Some better displaying of the tracing data (and more information
was added).
The rest are small fixes and more clean ups to the code"
* tag 'trace-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (37 commits)
tracing: Use strncpy instead of memcpy when copying comm in trace.c
tracing: Use strncpy instead of memcpy when copying comm for hist triggers
tracing: Use strncpy instead of memcpy for string keys in hist triggers
tracing: Use str_has_prefix() in synth_event_create()
x86/ftrace: Fix warning and considate ftrace_jmp_replace() and ftrace_call_replace()
tracing/perf: Use strndup_user() instead of buggy open-coded version
doc: trace: Fix documentation for uprobe_profile
tracing: Fix spelling mistake: "analagous" -> "analogous"
tracing: Comment why cond_snapshot is checked outside of max_lock protection
tracing: Add hist trigger action 'expected fail' test case
tracing: Add alternative synthetic event trace action test case
tracing: Add hist trigger onchange() handler test case
tracing: Add hist trigger snapshot() action test case
tracing: Add SPDX license GPL-2.0 license identifier to inter-event testcases
tracing: Add alternative synthetic event trace action syntax
tracing: Add hist trigger onchange() handler Documentation
tracing: Add hist trigger onchange() handler
tracing: Add hist trigger snapshot() action Documentation
tracing: Add hist trigger snapshot() action
tracing: Add conditional snapshot
...
Pull integrity updates from James Morris:
"Mimi Zohar says:
'Linux 5.0 introduced the platform keyring to allow verifying the IMA
kexec kernel image signature using the pre-boot keys. This pull
request similarly makes keys on the platform keyring accessible for
verifying the PE kernel image signature.
Also included in this pull request is a new IMA hook that tags tmp
files, in policy, indicating the file hash needs to be calculated.
The remaining patches are cleanup'"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
evm: Use defined constant for UUID representation
ima: define ima_post_create_tmpfile() hook and add missing call
evm: remove set but not used variable 'xattr'
encrypted-keys: fix Opt_err/Opt_error = -1
kexec, KEYS: Make use of platform keyring for signature verify
integrity, KEYS: add a reference to platform keyring
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Make the unwinder more robust when it encounters a NULL pointer
call, so the backtrace becomes more useful
- Fix the bogus ORC unwind table alignment
- Prevent kernel panic during kexec on HyperV caused by a cleared but
not disabled hypercall page.
- Remove the now pointless stacksize increase for KASAN_EXTRA, as
KASAN_EXTRA is gone.
- Remove unused variables from the x86 memory management code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Fix kernel panic when kexec on HyperV
x86/mm: Remove unused variable 'old_pte'
x86/mm: Remove unused variable 'cpu'
Revert "x86_64: Increase stack size for KASAN_EXTRA"
x86/unwind: Add hardcoded ORC entry for NULL
x86/unwind: Handle NULL pointer calls better in frame unwinder
x86/unwind/orc: Fix ORC unwind table alignment
Including:
- A big cleanup and optimization patch-set for the
Tegra GART driver
- Documentation updates and fixes for the IOMMU-API
- Support for page request in Intel VT-d scalable mode
- Intel VT-d dma_[un]map_resource() support
- Updates to the ATS enabling code for PCI (acked by Bjorn) and
Intel VT-d to align with the latest version of the ATS spec
- Relaxed IRQ source checking in the Intel VT-d driver for some
aliased devices, needed for future devices which send IRQ
messages from more than on request-ID
- IRQ remapping driver for Hyper-V
- Patches to make generic IOVA and IO-Page-Table code usable
outside of the IOMMU code
- Various other small fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAlyCNlIACgkQK/BELZcB
GuNDiRAAscgYj0BdqpZVUNHl4PySR12QJpS1myl/OC4HEbdB/EOh+bYT4Q1vptCU
GNK6Gt9SVfcbtWrLiGfcP9ODXmbqZ6AIOIbHKv9cvw1mnyYAtVvT/kck7B/W5jEr
/aP/5RTO7XcqscWO44zBkrtLFupegtpQFB0jXYTJYTrwQoNKRqCUqfetZGzMkXjL
x/h7kFTTIRcVP8RFcOeAMwC6EieaI8z8HN976Gu7xSV8g0VJqoNsBN8jbUuBh5AN
oPyd9nl1KBcIQEC1HsbN8I5wIhTh1sJ2UDqFHAgtlnO59zWHORuFUUt6SXbC9UqJ
okJTzFp9Dh2BqmFPXxBTxAf3j+eJP2XPpDI9Ask6SytEPhgw39fdlOOn2MWfSFoW
TaBJ4ww/r98GzVxCP7Up98xFZuHGDICL3/M7Mk3mRac/lgbNRbtfcBa5NV4fyQhY
184t656Zm/9gdWgGAvYQtApr6/iI+wRMLkIwuw63wqH09yfbDcpTOo6DEQE3B5KR
4H1qSIiVGVVZlWQateR6N32ZmY4dWzpnL2b8CfsdBytzHHFb/c3dPnZB8fxx9mwF
onyvjg9nkIiv7mdcN4Ox2WXrAExTeSftyPajN0WWawNJU3uPTBgNrqNHyWSkiaN4
dAvEepfGuFQGz2Fj03Pv7OqY8veyRezErVRLwiMJRNyy7pi6Wng=
=cKsD
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- A big cleanup and optimization patch-set for the Tegra GART driver
- Documentation updates and fixes for the IOMMU-API
- Support for page request in Intel VT-d scalable mode
- Intel VT-d dma_[un]map_resource() support
- Updates to the ATS enabling code for PCI (acked by Bjorn) and Intel
VT-d to align with the latest version of the ATS spec
- Relaxed IRQ source checking in the Intel VT-d driver for some aliased
devices, needed for future devices which send IRQ messages from more
than on request-ID
- IRQ remapping driver for Hyper-V
- Patches to make generic IOVA and IO-Page-Table code usable outside of
the IOMMU code
- Various other small fixes and cleanups
* tag 'iommu-updates-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (60 commits)
iommu/vt-d: Get domain ID before clear pasid entry
iommu/vt-d: Fix NULL pointer reference in intel_svm_bind_mm()
iommu/vt-d: Set context field after value initialized
iommu/vt-d: Disable ATS support on untrusted devices
iommu/mediatek: Fix semicolon code style issue
MAINTAINERS: Add Hyper-V IOMMU driver into Hyper-V CORE AND DRIVERS scope
iommu/hyper-v: Add Hyper-V stub IOMMU driver
x86/Hyper-V: Set x2apic destination mode to physical when x2apic is available
PCI/ATS: Add inline to pci_prg_resp_pasid_required()
iommu/vt-d: Check identity map for hot-added devices
iommu: Fix IOMMU debugfs fallout
iommu: Document iommu_ops.is_attach_deferred()
iommu: Document iommu_ops.iotlb_sync_map()
iommu/vt-d: Enable ATS only if the device uses page aligned address.
PCI/ATS: Add pci_ats_page_aligned() interface
iommu/vt-d: Fix PRI/PASID dependency issue.
PCI/ATS: Add pci_prg_resp_pasid_required() interface.
iommu/vt-d: Allow interrupts from the entire bus for aliased devices
iommu/vt-d: Add helper to set an IRTE to verify only the bus number
iommu: Fix flush_tlb_all typo
...
Pull RAS updates from Borislav Petkov:
"This time around we have in store:
- Disable MC4_MISC thresholding banks on all AMD family 0x15 models
(Shirish S)
- AMD MCE error descriptions update and error decode improvements
(Yazen Ghannam)
- The usual smaller conversions and fixes"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Improve error message when kernel cannot recover, p2
EDAC/mce_amd: Decode MCA_STATUS in bit definition order
EDAC/mce_amd: Decode MCA_STATUS[Scrub] bit
EDAC, mce_amd: Print ExtErrorCode and description on a single line
EDAC, mce_amd: Match error descriptions to latest documentation
x86/MCE/AMD, EDAC/mce_amd: Add new error descriptions for some SMCA bank types
x86/MCE/AMD, EDAC/mce_amd: Add new McaTypes for CS, PSP, and SMU units
x86/MCE/AMD, EDAC/mce_amd: Add new MP5, NBIO, and PCIE SMCA bank types
RAS: Add a MAINTAINERS entry
RAS: Use consistent types for UUIDs
x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
x86/MCE: Switch to use the new generic UUID API
Pull x86 kdump update from Ingo Molnar:
"Add the AMD SME mask to the vmcoreinfo, and also document our
vmcoreinfo fields"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kdump: Document kernel data exported in the vmcoreinfo note
x86/kdump: Export the SME mask to vmcoreinfo
Pull x86 fpu updates from Ingo Molnar:
"Three changes:
- preparatory patch for AVX state tracking that computing-cluster
folks would like to use for user-space batching - but we are not
happy about the related ABI yet so this is only the kernel tracking
side
- a cleanup for CR0 handling in do_device_not_available()
- plus we removed a workaround for an ancient binutils version"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Track AVX-512 usage of tasks
x86/fpu: Get rid of CONFIG_AS_FXSAVEQ
x86/traps: Have read_cr0() only once in the #NM handler
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
Pull x86 build updates from Ingo Molnar:
"Misc cleanups and a retpoline code generation optimization"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, retpolines: Raise limit for generating indirect calls from switch-case
x86/build: Use the single-argument OUTPUT_FORMAT() linker script command
x86/build: Specify elf_i386 linker emulation explicitly for i386 objects
x86/build: Mark per-CPU symbols as absolute explicitly for LLD
Pull x86 boot updates from Ingo Molnar:
"Most of the changes center around the difficult problem of KASLR
pinning down hot-removable memory regions. At the very early stage
KASRL is making irreversible kernel address layout decisions we don't
have full knowledge about the memory maps yet.
So the changes from Chao Fan add this (parsing the RSDP table early),
together with fixes from Borislav Petkov"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed/64: Do not read legacy ROM on EFI system
x86/boot: Correct RSDP parsing with 32-bit EFI
x86/kexec: Fill in acpi_rsdp_addr from the first kernel
x86/boot: Fix randconfig build error due to MEMORY_HOTREMOVE
x86/boot: Fix cmdline_find_option() prototype visibility
x86/boot/KASLR: Limit KASLR to extract the kernel in immovable memory only
x86/boot: Parse SRAT table and count immovable memory regions
x86/boot: Early parse RSDP and save it in boot_params
x86/boot: Search for RSDP in memory
x86/boot: Search for RSDP in the EFI tables
x86/boot: Add "acpi_rsdp=" early parsing
x86/boot: Copy kstrtoull() to boot/string.c
x86/boot: Build the command line parsing code unconditionally
When the ORC unwinder is invoked for an oops caused by IP==0,
it currently has no idea what to do because there is no debug information
for the stack frame of NULL.
But if RIP is NULL, it is very likely that the last successfully executed
instruction was an indirect CALL/JMP, and it is possible to unwind out in
the same way as for the first instruction of a normal function. Hardcode
a corresponding ORC entry.
With an artificially-added NULL call in prctl_set_seccomp(), before this
patch, the trace is:
Call Trace:
? __x64_sys_prctl+0x402/0x680
? __ia32_sys_prctl+0x6e0/0x6e0
? __do_page_fault+0x457/0x620
? do_syscall_64+0x6d/0x160
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
After this patch, the trace looks like this:
Call Trace:
__x64_sys_prctl+0x402/0x680
? __ia32_sys_prctl+0x6e0/0x6e0
? __do_page_fault+0x457/0x620
do_syscall_64+0x6d/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
prctl_set_seccomp() still doesn't show up in the trace because for some
reason, tail call optimization is only disabled in builds that use the
frame pointer unwinder.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20190301031201.7416-2-jannh@google.com
When the frame unwinder is invoked for an oops caused by a call to NULL, it
currently skips the parent function because BP still points to the parent's
stack frame; the (nonexistent) current function only has the first half of
a stack frame, and BP doesn't point to it yet.
Add a special case for IP==0 that calculates a fake BP from SP, then uses
the real BP for the next frame.
Note that this handles first_frame specially: Return information about the
parent function as long as the saved IP is >=first_frame, even if the fake
BP points below it.
With an artificially-added NULL call in prctl_set_seccomp(), before this
patch, the trace is:
Call Trace:
? prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
After this patch, the trace is:
Call Trace:
prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20190301031201.7416-1-jannh@google.com
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Now that the mitigations are in place, add a command line parameter to
control the mitigation, a mitigation selector function and a SMT update
mechanism.
This is the minimal straight forward initial implementation which just
provides an always on/off mode. The command line parameter is:
mds=[full|off]
This is consistent with the existing mitigations for other speculative
hardware vulnerabilities.
The idle invocation is dynamically updated according to the SMT state of
the system similar to the dynamic update of the STIBP mitigation. The idle
mitigation is limited to CPUs which are only affected by MSBDS and not any
other variant, because the other variants cannot be mitigated on SMT
enabled systems.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>