Provide an RCU-capable key lookup function. We don't want to call
afs_request_key() in RCU-mode pathwalk as request_key() might sleep, even if
we don't ask it to construct anything as it might find a key that is currently
undergoing construction.
Signed-off-by: David Howells <dhowells@redhat.com>
Pull networking updates from David Miller:
"Some highlights from this development cycle:
1) Big refactoring of ipv6 route and neigh handling to support
nexthop objects configurable as units from userspace. From David
Ahern.
2) Convert explored_states in BPF verifier into a hash table,
significantly decreased state held for programs with bpf2bpf
calls, from Alexei Starovoitov.
3) Implement bpf_send_signal() helper, from Yonghong Song.
4) Various classifier enhancements to mvpp2 driver, from Maxime
Chevallier.
5) Add aRFS support to hns3 driver, from Jian Shen.
6) Fix use after free in inet frags by allocating fqdirs dynamically
and reworking how rhashtable dismantle occurs, from Eric Dumazet.
7) Add act_ctinfo packet classifier action, from Kevin
Darbyshire-Bryant.
8) Add TFO key backup infrastructure, from Jason Baron.
9) Remove several old and unused ISDN drivers, from Arnd Bergmann.
10) Add devlink notifications for flash update status to mlxsw driver,
from Jiri Pirko.
11) Lots of kTLS offload infrastructure fixes, from Jakub Kicinski.
12) Add support for mv88e6250 DSA chips, from Rasmus Villemoes.
13) Various enhancements to ipv6 flow label handling, from Eric
Dumazet and Willem de Bruijn.
14) Support TLS offload in nfp driver, from Jakub Kicinski, Dirk van
der Merwe, and others.
15) Various improvements to axienet driver including converting it to
phylink, from Robert Hancock.
16) Add PTP support to sja1105 DSA driver, from Vladimir Oltean.
17) Add mqprio qdisc offload support to dpaa2-eth, from Ioana
Radulescu.
18) Add devlink health reporting to mlx5, from Moshe Shemesh.
19) Convert stmmac over to phylink, from Jose Abreu.
20) Add PTP PHC (Physical Hardware Clock) support to mlxsw, from
Shalom Toledo.
21) Add nftables SYNPROXY support, from Fernando Fernandez Mancera.
22) Convert tcp_fastopen over to use SipHash, from Ard Biesheuvel.
23) Track spill/fill of constants in BPF verifier, from Alexei
Starovoitov.
24) Support bounded loops in BPF, from Alexei Starovoitov.
25) Various page_pool API fixes and improvements, from Jesper Dangaard
Brouer.
26) Just like ipv4, support ref-countless ipv6 route handling. From
Wei Wang.
27) Support VLAN offloading in aquantia driver, from Igor Russkikh.
28) Add AF_XDP zero-copy support to mlx5, from Maxim Mikityanskiy.
29) Add flower GRE encap/decap support to nfp driver, from Pieter
Jansen van Vuuren.
30) Protect against stack overflow when using act_mirred, from John
Hurley.
31) Allow devmap map lookups from eBPF, from Toke Høiland-Jørgensen.
32) Use page_pool API in netsec driver, Ilias Apalodimas.
33) Add Google gve network driver, from Catherine Sullivan.
34) More indirect call avoidance, from Paolo Abeni.
35) Add kTLS TX HW offload support to mlx5, from Tariq Toukan.
36) Add XDP_REDIRECT support to bnxt_en, from Andy Gospodarek.
37) Add MPLS manipulation actions to TC, from John Hurley.
38) Add sending a packet to connection tracking from TC actions, and
then allow flower classifier matching on conntrack state. From
Paul Blakey.
39) Netfilter hw offload support, from Pablo Neira Ayuso"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2080 commits)
net/mlx5e: Return in default case statement in tx_post_resync_params
mlx5: Return -EINVAL when WARN_ON_ONCE triggers in mlx5e_tls_resync().
net: dsa: add support for BRIDGE_MROUTER attribute
pkt_sched: Include const.h
net: netsec: remove static declaration for netsec_set_tx_de()
net: netsec: remove superfluous if statement
netfilter: nf_tables: add hardware offload support
net: flow_offload: rename tc_cls_flower_offload to flow_cls_offload
net: flow_offload: add flow_block_cb_is_busy() and use it
net: sched: remove tcf block API
drivers: net: use flow block API
net: sched: use flow block API
net: flow_offload: add flow_block_cb_{priv, incref, decref}()
net: flow_offload: add list handling functions
net: flow_offload: add flow_block_cb_alloc() and flow_block_cb_free()
net: flow_offload: rename TCF_BLOCK_BINDER_TYPE_* to FLOW_BLOCK_BINDER_TYPE_*
net: flow_offload: rename TC_BLOCK_{UN}BIND to FLOW_BLOCK_{UN}BIND
net: flow_offload: add flow_block_cb_setup_simple()
net: hisilicon: Add an tx_desc to adapt HI13X1_GMAC
net: hisilicon: Add an rx_desc to adapt HI13X1_GMAC
...
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRyW8vu3V2unywtrAQIhsw//cVtxLx4ZCox5Z/93cdqych8RoCrwcUEG
Cli0NAjlp/0HETvCsIqdkPKf+4OYCW1tHB2KTdbFdQLZptLgoEhykx89k70z9ggb
ViieEa1GvAKhdamVqkPUC+3Q33uzyRaK7Gi5N3phJoaO+o328SlrPG0LerQgY0Np
Rf3je56A1gIjEgWTmpStxiY262jlgaR3IuvpOqbu2G0TQVWV8CsBKw61fTdmEEQp
dIkNO/xFXS+PvPdmQe5zCAjD/W2D+ggeBMbBwHF411qA60plGinubBYKZ98ikliZ
OnQQPExI7mroIMzpYT+rzEQyxui2nz5t+Hj+d6t7iIvitNcX/Q53sVTq3RfQ0FjG
QCd+j/l2p7fkXK4Sxgb/UBkj/pRr6W+FYSbQ/tmpD8UypEf5B3ln6GuA6yTMuNRF
wVb744slKWq0c7KUuXmz806B2qJoyFG206jyFnoByvs6cPmB1+JqhBBYOKHcwjbo
HIK+oUKkEfE6ofjQ3B9xOQ1anfbRnjjfJCmXvns9v57y/nRP2P78HUJNnEsOolk2
nc3Ep41OgeZdwkts9KnSjmwy6VF3UZ2NQEiWXsUIOxGMtcodw9ci1bpquJ71oyut
4sFMJvMU4eJD+XuCOlAgpbTaQ0Wuf11kFpl1Cof4fj0Z09C25Ahj6iKEKnumtO+4
edfNLlwO6oo=
=wgib
-----END PGP SIGNATURE-----
Merge tag 'afs-next-20190628' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull afs updates from David Howells:
"A set of minor changes for AFS:
- Remove an unnecessary check in afs_unlink()
- Add a tracepoint for tracking callback management
- Add a tracepoint for afs_server object usage
- Use struct_size()
- Add mappings for AFS UAE abort codes to Linux error codes, using
symbolic names rather than hex numbers in the .c file"
* tag 'afs-next-20190628' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
afs: Add support for the UAE error table
fs/afs: use struct_size() in kzalloc()
afs: Trace afs_server usage
afs: Add some callback management tracepoints
afs: afs_unlink() doesn't need to check dentry->d_inode
The new route handling in ip_mc_finish_output() from 'net' overlapped
with the new support for returning congestion notifications from BPF
programs.
In order to handle this I had to take the dev_loopback_xmit() calls
out of the switch statement.
The aquantia driver conflicts were simple overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRMn5vu3V2unywtrAQICpA/+IIINk6MJVQDzGhOnvWrbGdPnOdJEUyLN
B9U4bLZJRg/j+Sqodn+fXIfsEO4FQflkSJD+xoBi4pzBZcr0xkLUVOog/1S7dv4J
bPVT9p2f3ITNiatmisOrUe1InuHa6Wb/cUnQaLLRhd7NqbawKGRQG4tv4CGwKn67
dJIOOm/iTCs1ACES4C5QOpU7/DWK38Pn3BbnN21bFzDgfbtbdDTaFFkhFtXy78oB
Gcj5g+ULpkKBcuJThFuJUPZ9E4qICNZR4kJXEULSvykDDRzluhJmQ+v8btm6NJsq
hMqTrT9M2y114V1OqXj3me7tA6wOEAfTQ0WzpzF2SmyFQKnSly/EkWc4HZXFD/8O
BczCcABUbuKNE/pJSELx6k1M0+00QfeLcjHPc6joZFCni3lMdYWOncn/syyHw5P+
rc9JQsy3+dLcFsaVQ5eGmX6NDc70dCrAlS6MllIzSBcwAVCctTKwm0meaSW6B2y6
VymPy+cqi1RxMKyiQ0hAeU7Xe6yqFcl6rtonfCQqRLxkfzrCXkDp6/ELOXBzDft1
ey6+N3WsmWW7YSPuM/SIZKV66rshlflj0w+FRluZEEAF1NYeYqXUDvK/S8KC9kPG
AXUDvhI+tBpxg1AVz94JN714VmkbY23xV0g44eQsdqSQm2YvsxiFCSWZZ6L/KEWe
kWQc6BGDCB0=
=YTdG
-----END PGP SIGNATURE-----
Merge tag 'afs-fixes-20190620' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull AFS fixes from David Howells:
"The in-kernel AFS client has been undergoing testing on opendev.org on
one of their mirror machines. They are using AFS to hold data that is
then served via apache, and Ian Wienand had reported seeing oopses,
spontaneous machine reboots and updates to volumes going missing. This
patch series appears to have fixed the problem, very probably due to
patch (2), but it's not 100% certain.
(1) Fix the printing of the "vnode modified" warning to exclude checks
on files for which we don't have a callback promise from the
server (and so don't expect the server to tell us when it
changes).
Without this, for every file or directory for which we still have
an in-core inode that gets changed on the server, we may get a
message logged when we next look at it. This can happen in bulk
if, for instance, someone does "vos release" to update a R/O
volume from a R/W volume and a whole set of files are all changed
together.
We only really want to log a message if the file changed and the
server didn't tell us about it or we failed to track the state
internally.
(2) Fix accidental corruption of either afs_vlserver struct objects or
the the following memory locations (which could hold anything).
The issue is caused by a union that points to two different
structs in struct afs_call (to save space in the struct). The call
cleanup code assumes that it can simply call the cleanup for one
of those structs if not NULL - when it might be actually pointing
to the other struct.
This means that every Volume Location RPC op is going to corrupt
something.
(3) Fix an uninitialised spinlock. This isn't too bad, it just causes
a one-off warning if lockdep is enabled when "vos release" is
called, but the spinlock still behaves correctly.
(4) Fix the setting of i_block in the inode. This causes du, for
example, to produce incorrect results, but otherwise should not be
dangerous to the kernel"
* tag 'afs-fixes-20190620' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
afs: Fix setting of i_blocks
afs: Fix uninitialised spinlock afs_volume::cb_break_lock
afs: Fix vlserver record corruption
afs: Fix over zealous "vnode modified" warnings
Add a couple of tracepoints to track callback management:
(1) afs_cb_miss - Logs when we were unable to apply a callback, either due
to the inode being discarded or due to a competing thread applying a
callback first.
(2) afs_cb_break - Logs when we attempted to clear the noted callback
promise, either due to the server explicitly breaking the callback,
the callback promise lapsing or a local event obsoleting it.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix the cb_break_lock spinlock in afs_volume struct by initialising it when
the volume record is allocated.
Also rename the lock to cb_v_break_lock to distinguish it from the lock of
the same name in the afs_server struct.
Without this, the following trace may be observed when a volume-break
callback is received:
INFO: trying to register non-static key.
the code is fine but needs lockdep annotation.
turning off the locking correctness validator.
CPU: 2 PID: 50 Comm: kworker/2:1 Not tainted 5.2.0-rc1-fscache+ #3045
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: afs SRXAFSCB_CallBack
Call Trace:
dump_stack+0x67/0x8e
register_lock_class+0x23b/0x421
? check_usage_forwards+0x13c/0x13c
__lock_acquire+0x89/0xf73
lock_acquire+0x13b/0x166
? afs_break_callbacks+0x1b2/0x3dd
_raw_write_lock+0x2c/0x36
? afs_break_callbacks+0x1b2/0x3dd
afs_break_callbacks+0x1b2/0x3dd
? trace_event_raw_event_afs_server+0x61/0xac
SRXAFSCB_CallBack+0x11f/0x16c
process_one_work+0x2c5/0x4ee
? worker_thread+0x234/0x2ac
worker_thread+0x1d8/0x2ac
? cancel_delayed_work_sync+0xf/0xf
kthread+0x11f/0x127
? kthread_park+0x76/0x76
ret_from_fork+0x24/0x30
Fixes: 68251f0a68 ("afs: Fix whole-volume callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Because I made the afs_call struct share pointers to an afs_server object
and an afs_vlserver object to save space, afs_put_call() calls
afs_put_server() on afs_vlserver object (which is only meant for the
afs_server object) because it sees that call->server isn't NULL.
This means that the afs_vlserver object gets unpredictably and randomly
modified, depending on what config options are set (such as lockdep).
Fix this by getting rid of the union and having two non-overlapping
pointers in the afs_call struct.
Fixes: ffba718e93 ("afs: Get rid of afs_call::reply[]")
Signed-off-by: David Howells <dhowells@redhat.com>
Some ISDN files that got removed in net-next had some changes
done in mainline, take the removals.
Signed-off-by: David S. Miller <davem@davemloft.net>
David Howells says:
I'm told that there's not really any point populating the list.
Current OpenAFS ignores it, as does AuriStor - and IBM AFS 3.6 will
do the right thing.
The list is actually useless as it's the client's view of the world,
not the servers, so if there's any NAT in the way its contents are
invalid. Further, it doesn't support IPv6 addresses.
On that basis, feel free to make it an empty list and remove all the
interface enumeration.
V1 of this patch reworked the function to use a new helper for the
ifa_list iteration to avoid sparse warnings once the proper __rcu
annotations get added in struct in_device later.
But, in light of the above, just remove afs_get_ipv4_interfaces.
Compile tested only.
Cc: David Howells <dhowells@redhat.com>
Cc: linux-afs@lists.infradead.org
Signed-off-by: Florian Westphal <fw@strlen.de>
Tested-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pass the server and volume break counts from before the status fetch
operation that queried the attributes of a file into afs_iget5_set() so
that the new vnode's break counters can be initialised appropriately.
This allows detection of a volume or server break that happened whilst we
were fetching the status or setting up the vnode.
Fixes: c435ee3455 ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Make use of the status update for the target file that the YFS.RemoveFile2
RPC op returns to correctly update the vnode as to whether the file was
actually deleted or just had nlink reduced.
Fixes: 30062bd13e ("afs: Implement YFS support in the fs client")
Signed-off-by: David Howells <dhowells@redhat.com>
Use RCU-based freeing for afs_cb_interest struct objects and use RCU on
vnode->cb_interest. Use that change to allow afs_check_validity() to use
read_seqbegin_or_lock() instead of read_seqlock_excl().
This also requires the caller of afs_check_validity() to hold the RCU read
lock across the call.
Signed-off-by: David Howells <dhowells@redhat.com>
Split afs_validate() so that the part that decides if the vnode is still
valid can be used under LOOKUP_RCU conditions from afs_d_revalidate().
Signed-off-by: David Howells <dhowells@redhat.com>
Don't save callback version and type fields as the version is about the
format of the callback information and the type is relative to the
particular RPC call.
Signed-off-by: David Howells <dhowells@redhat.com>
When applying the status and callback in the response of an operation,
apply them in the same critical section so that there's no race between
checking the callback state and checking status-dependent state (such as
the data version).
Fix this by:
(1) Allocating a joint {status,callback} record (afs_status_cb) before
calling the RPC function for each vnode for which the RPC reply
contains a status or a status plus a callback. A flag is set in the
record to indicate if a callback was actually received.
(2) These records are passed into the RPC functions to be filled in. The
afs_decode_status() and yfs_decode_status() functions are removed and
the cb_lock is no longer taken.
(3) xdr_decode_AFSFetchStatus() and xdr_decode_YFSFetchStatus() no longer
update the vnode.
(4) xdr_decode_AFSCallBack() and xdr_decode_YFSCallBack() no longer update
the vnode.
(5) vnodes, expected data-version numbers and callback break counters
(cb_break) no longer need to be passed to the reply delivery
functions.
Note that, for the moment, the file locking functions still need
access to both the call and the vnode at the same time.
(6) afs_vnode_commit_status() is now given the cb_break value and the
expected data_version and the task of applying the status and the
callback to the vnode are now done here.
This is done under a single taking of vnode->cb_lock.
(7) afs_pages_written_back() is now called by afs_store_data() rather than
by the reply delivery function.
afs_pages_written_back() has been moved to before the call point and
is now given the first and last page numbers rather than a pointer to
the call.
(8) The indicator from YFS.RemoveFile2 as to whether the target file
actually got removed (status.abort_code == VNOVNODE) rather than
merely dropping a link is now checked in afs_unlink rather than in
xdr_decode_YFSFetchStatus().
Supplementary fixes:
(*) afs_cache_permit() now gets the caller_access mask from the
afs_status_cb object rather than picking it out of the vnode's status
record. afs_fetch_status() returns caller_access through its argument
list for this purpose also.
(*) afs_inode_init_from_status() now uses a write lock on cb_lock rather
than a read lock and now sets the callback inside the same critical
section.
Fixes: c435ee3455 ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Always ask for the reply time from AF_RXRPC as it's used to calculate the
callback expiry time and lock expiry times, so it's needed by most FS
operations.
Signed-off-by: David Howells <dhowells@redhat.com>
afs_do_lookup() will do an order-1 allocation to allocate status records if
there are more than 39 vnodes to stat.
Fix this by allocating an array of {status,callback} records for each vnode
we want to examine using vmalloc() if larger than a page.
This not only gets rid of the order-1 allocation, but makes it easier to
grow beyond 50 records for YFS servers. It also allows us to move to
{status,callback} tuples for other calls too and makes it easier to lock
across the application of the status and the callback to the vnode.
Fixes: 5cf9dd55a0 ("afs: Prospectively look up extra files when doing a single lookup")
Signed-off-by: David Howells <dhowells@redhat.com>
Replace the afs_call::reply[] array with a bunch of typed members so that
the compiler can use type-checking on them. It's also easier for the eye
to see what's going on.
Signed-off-by: David Howells <dhowells@redhat.com>
Make certain RPC operations non-interruptible, including:
(*) Set attributes
(*) Store data
We don't want to get interrupted during a flush on close, flush on
unlock, writeback or an inode update, leaving us in a state where we
still need to do the writeback or update.
(*) Extend lock
(*) Release lock
We don't want to get lock extension interrupted as the file locks on
the server are time-limited. Interruption during lock release is less
of an issue since the lock is time-limited, but it's better to
complete the release to avoid a several-minute wait to recover it.
*Setting* the lock isn't a problem if it's interrupted since we can
just return to the user and tell them they were interrupted - at
which point they can elect to retry.
(*) Silly unlink
We want to remove silly unlink files if we can, rather than leaving
them for the salvager to clear up.
Note that whilst these calls are no longer interruptible, they do have
timeouts on them, so if the server stops responding the call will fail with
something like ETIME or ECONNRESET.
Without this, the following:
kAFS: Unexpected error from FS.StoreData -512
appears in dmesg when a pending store data gets interrupted and some
processes may just hang.
Additionally, make the code that checks/updates the server record ignore
failure due to interruption if the main call is uninterruptible and if the
server has an address list. The next op will check it again since the
expiration time on the old list has past.
Fixes: d2ddc776a4 ("afs: Overhaul volume and server record caching and fileserver rotation")
Reported-by: Jonathan Billings <jsbillings@jsbillings.org>
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
If an older AFS server doesn't support an operation, it may accept the call
and then sit on it forever, happily responding to pings that make kafs
think that the call is still alive.
Fix this by setting the maximum lifespan of Volume Location service calls
in particular and probe calls in general so that they don't run on
endlessly if they're not supported.
Signed-off-by: David Howells <dhowells@redhat.com>
Currently, once configured, AFS cells are looked up in the DNS at regular
intervals - which is a waste of resources if those cells aren't being
used. It also leads to a problem where cells preloaded, but not
configured, before the network is brought up end up effectively statically
configured with no VL servers and are unable to get any.
Fix this by not doing the DNS lookup until the first time a cell is
touched. It is waited for if we don't have any cached records yet,
otherwise the DNS lookup to maintain the record is done in the background.
This has the downside that the first time you touch a cell, you now have to
wait for the upcall to do the required DNS lookups rather than them already
being cached.
Further, the record is not replaced if the old record has at least one
server in it and the new record doesn't have any.
Fixes: 0a5143f2f8 ("afs: Implement VL server rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
afs_xattr_get_yfs() tries to free yacl, which may hold an error value (say
if yfs_fs_fetch_opaque_acl() failed and returned an error).
Fix this by allocating yacl up front (since it's a fixed-length struct,
unlike afs_acl) and passing it in to the RPC function. This also allows
the flags to be placed in the object rather than passing them through to
the RPC function.
Fixes: ae46578b96 ("afs: Get YFS ACLs and information through xattrs")
Signed-off-by: David Howells <dhowells@redhat.com>
Implement the setting of YFS ACLs in AFS through the interface of setting
the afs.yfs.acl extended attribute on the file.
Signed-off-by: David Howells <dhowells@redhat.com>
The YFS/AuriStor variant of AFS provides more capable ACLs and provides
per-volume ACLs and per-file ACLs as well as per-directory ACLs. It also
provides some extra information that can be retrieved through four ACLs:
(1) afs.yfs.acl
The YFS file ACL (not the same format as afs.acl).
(2) afs.yfs.vol_acl
The YFS volume ACL.
(3) afs.yfs.acl_inherited
"1" if a file's ACL is inherited from its parent directory, "0"
otherwise.
(4) afs.yfs.acl_num_cleaned
The number of of ACEs removed from the ACL by the server because the
PT entries were removed from the PTS database (ie. the subject is no
longer known).
Signed-off-by: David Howells <dhowells@redhat.com>
Implements the setting of ACLs in AFS by means of setting the
afs.acl extended attribute on the file.
Signed-off-by: Joe Gorse <jhgorse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Implement an xattr on AFS files called "afs.acl" that retrieves a file's
ACL. It returns the raw AFS3 ACL from the result of calling FS.FetchACL,
leaving any interpretation to userspace.
Note that whilst YFS servers will respond to FS.FetchACL, this will render
a more-advanced YFS ACL down. Use "afs.yfs.acl" instead for that.
Signed-off-by: David Howells <dhowells@redhat.com>
Log more information when "kAFS: AFS vnode with undefined type\n" is
displayed due to a vnode record being retrieved from the server that
appears to have a duff file type (usually 0). This prints more information
to try and help pin down the problem.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide byte-range file locking emulation that can be configured at mount
time to one of four modes:
(1) flock=local. Locking is done locally only and no reference is made to
the server.
(2) flock=openafs. Byte-range locking is done locally only; whole-file
locking is done with reference to the server. Whole-file locks cannot
be upgraded unless the client holds an exclusive lock.
(3) flock=strict. Byte-range and whole-file locking both require a
sufficient whole-file lock on the server.
(4) flock=write. As strict, but the client always gets an exclusive
whole-file lock on the server.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement sillyrename for AFS unlink and rename, using the NFS variant
implementation as a basis.
Note that the asynchronous file locking extender/releaser has to be
notified with a state change to stop it complaining if there's a race
between that and the actual file deletion.
A tracepoint, afs_silly_rename, is also added to note the silly rename and
the cleanup. The afs_edit_dir tracepoint is given some extra reason
indicators and the afs_flock_ev tracepoint is given a silly-delete file
lock cancellation indicator.
Signed-off-by: David Howells <dhowells@redhat.com>
Holding a file lock on an AFS file does not prevent it from being deleted
on the server, so we need to handle an error resulting from that when we
try setting, extending or releasing a lock.
Fix this by adding a "deleted" lock state and cancelling the lock extension
process for that file and aborting all waiters for the lock.
Fixes: 0fafdc9f88 ("afs: Fix file locking")
Reported-by: Jonathan Billings <jsbillin@umich.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Record the timestamp on the first reply DATA packet received in response to
a set- or extend-lock operation, then use this to calculate the time
remaining till the lock expires rather than using whatever time the
requesting process wakes up and finishes processing the operation as a
base.
Signed-off-by: David Howells <dhowells@redhat.com>
Split the call to afs_wait_for_call_to_complete() from afs_make_call() to
make it easier to handle asynchronous calls and to make it easier to
convert a synchronous call to an asynchronous one in future, for instance
when someone tries to interrupt an operation by pressing Ctrl-C.
Signed-off-by: David Howells <dhowells@redhat.com>
The in-kernel afs filesystem client counts the number of server-level
callback invalidation events (CB.InitCallBackState* RPC operations) that it
receives from the server. This is stored in cb_s_break in various
structures, including afs_server and afs_vnode.
If an inode is examined by afs_validate(), say, the afs_server copy is
compared, along with other break counters, to those in afs_vnode, and if
one or more of the counters do not match, it is considered that the
server's callback promise is broken. At points where this happens,
AFS_VNODE_CB_PROMISED is cleared to indicate that the status must be
refetched from the server.
afs_validate() issues an FS.FetchStatus operation to get updated metadata -
and based on the updated data_version may invalidate the pagecache too.
However, the break counters are also used to determine whether to note a
new callback in the vnode (which would set the AFS_VNODE_CB_PROMISED flag)
and whether to cache the permit data included in the YFSFetchStatus record
by the server.
The problem comes when the server sends us a CB.InitCallBackState op. The
first such instance doesn't cause cb_s_break to be incremented, but rather
causes AFS_SERVER_FL_NEW to be cleared - but thereafter, say some hours
after last use and all the volumes have been automatically unmounted and
the server has forgotten about the client[*], this *will* likely cause an
increment.
[*] There are other circumstances too, such as the server restarting or
needing to make space in its callback table.
Note that the server won't send us a CB.InitCallBackState op until we talk
to it again.
So what happens is:
(1) A mount for a new volume is attempted, a inode is created for the root
vnode and vnode->cb_s_break and AFS_VNODE_CB_PROMISED aren't set
immediately, as we don't have a nominated server to talk to yet - and
we may iterate through a few to find one.
(2) Before the operation happens, afs_fetch_status(), say, notes in the
cursor (fc.cb_break) the break counter sum from the vnode, volume and
server counters, but the server->cb_s_break is currently 0.
(3) We send FS.FetchStatus to the server. The server sends us back
CB.InitCallBackState. We increment server->cb_s_break.
(4) Our FS.FetchStatus completes. The reply includes a callback record.
(5) xdr_decode_AFSCallBack()/xdr_decode_YFSCallBack() check to see whether
the callback promise was broken by checking the break counter sum from
step (2) against the current sum.
This fails because of step (3), so we don't set the callback record
and, importantly, don't set AFS_VNODE_CB_PROMISED on the vnode.
This does not preclude the syscall from progressing, and we don't loop here
rechecking the status, but rather assume it's good enough for one round
only and will need to be rechecked next time.
(6) afs_validate() it triggered on the vnode, probably called from
d_revalidate() checking the parent directory.
(7) afs_validate() notes that AFS_VNODE_CB_PROMISED isn't set, so doesn't
update vnode->cb_s_break and assumes the vnode to be invalid.
(8) afs_validate() needs to calls afs_fetch_status(). Go back to step (2)
and repeat, every time the vnode is validated.
This primarily affects volume root dir vnodes. Everything subsequent to
those inherit an already incremented cb_s_break upon mounting.
The issue is that we assume that the callback record and the cached permit
information in a reply from the server can't be trusted after getting a
server break - but this is wrong since the server makes sure things are
done in the right order, holding up our ops if necessary[*].
[*] There is an extremely unlikely scenario where a reply from before the
CB.InitCallBackState could get its delivery deferred till after - at
which point we think we have a promise when we don't. This, however,
requires unlucky mass packet loss to one call.
AFS_SERVER_FL_NEW tries to paper over the cracks for the initial mount from
a server we've never contacted before, but this should be unnecessary.
It's also further insulated from the problem on an initial mount by
querying the server first with FS.GetCapabilities, which triggers the
CB.InitCallBackState.
Fix this by
(1) Remove AFS_SERVER_FL_NEW.
(2) In afs_calc_vnode_cb_break(), don't include cb_s_break in the
calculation.
(3) In afs_cb_is_broken(), don't include cb_s_break in the check.
Signed-off-by: David Howells <dhowells@redhat.com>
Alter the AFS automounting code to create and modify an fs_context struct
when parameterising a new mount triggered by an AFS mountpoint rather than
constructing device name and option strings.
Also remove the cell=, vol= and rwpath options as they are then redundant.
The reason they existed is because the 'device name' may be derived
literally from a mountpoint object in the filesystem, so default cell and
parent-type information needed to be passed in by some other method from
the automount routines. The vol= option didn't end up being used.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric W. Biederman <ebiederm@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add fs_context support to the AFS filesystem, converting the parameter
parsing to store options there.
This will form the basis for namespace propagation over mountpoints within
the AFS model, thereby allowing AFS to be used in containers more easily.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
kAFS can be given certain network errors (EADDRNOTAVAIL, EHOSTDOWN and
ERFKILL) that it doesn't handle in its server/address rotation algorithms.
They cause the probing and rotation to abort immediately rather than
rotating.
Fix this by:
(1) Abstracting out the error prioritisation from the VL and FS rotation
algorithms into a common function and expand usage into the server
probing code.
When multiple errors are available, this code selects the one we'd
prefer to return.
(2) Add handling for EADDRNOTAVAIL, EHOSTDOWN and ERFKILL.
Fixes: 0fafdc9f88 ("afs: Fix file locking")
Fixes: 0338747d8454 ("afs: Probe multiple fileservers simultaneously")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Send probes to all the unprobed fileservers in a fileserver list on all
addresses simultaneously in an attempt to find out the fastest route whilst
not getting stuck for 20s on any server or address that we don't get a
reply from.
This alleviates the problem whereby attempting to access a new server can
take a long time because the rotation algorithm ends up rotating through
all servers and addresses until it finds one that responds.
Signed-off-by: David Howells <dhowells@redhat.com>
In some circumstances, the callback interest pointer is NULL, so in such a
case we can't dereference it when checking to see if the callback is
broken. This causes an oops in some circumstances.
Fix this by replacing the function that worked out the aggregate break
counter with one that actually does the comparison, and then make that
return true (ie. broken) if there is no callback interest as yet (ie. the
pointer is NULL).
Fixes: 68251f0a68 ("afs: Fix whole-volume callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
Eliminate the address pointer from the address list cursor as it's
redundant (ac->addrs[ac->index] can be used to find the same address) and
address lists must be replaced rather than being rearranged, so is of
limited value.
Signed-off-by: David Howells <dhowells@redhat.com>
Provide an option to allow the file or volume location server cursor to be
dumped if the rotation routine falls off the end without managing to
contact a server.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement support for talking to YFS-variant fileservers in the cache
manager and the filesystem client. These implement upgraded services on
the same port as their AFS services.
YFS fileservers provide expanded capabilities over AFS.
Signed-off-by: David Howells <dhowells@redhat.com>
Calculate the callback expiration time at the point of operation reply
delivery, using the reply time queried from AF_RXRPC on that call as a
base.
Signed-off-by: David Howells <dhowells@redhat.com>
Track VL servers as independent entities rather than lumping all their
addresses together into one set and implement server-level rotation by:
(1) Add the concept of a VL server list, where each server has its own
separate address list. This code is similar to the FS server list.
(2) Use the DNS resolver to retrieve a set of servers and their associated
addresses, ports, preference and weight ratings.
(3) In the case of a legacy DNS resolver or an address list given directly
through /proc/net/afs/cells, create a list containing just a dummy
server record and attach all the addresses to that.
(4) Implement a simple rotation policy, for the moment ignoring the
priorities and weights assigned to the servers.
(5) Show the address list through /proc/net/afs/<cell>/vlservers. This
also displays the source and status of the data as indicated by the
upcall.
Signed-off-by: David Howells <dhowells@redhat.com>
Improve the error handling in FS server rotation by:
(1) Cache the latest useful error value for the fs operation as a whole in
struct afs_fs_cursor separately from the error cached in the
afs_addr_cursor struct. The one in the address cursor gets clobbered
occasionally. Copy over the error to the fs operation only when it's
something we'd be interested in passing to userspace.
(2) Make it so that EDESTADDRREQ is the default that is seen only if no
addresses are available to be accessed.
(3) When calling utility functions, such as checking a volume status or
probing a fileserver, don't let a successful result clobber the cached
error in the cursor; instead, stash the result in a temporary variable
until it has been assessed.
(4) Don't return ETIMEDOUT or ETIME if a better error, such as
ENETUNREACH, is already cached.
(5) On leaving the rotation loop, turn any remote abort code into a more
useful error than ECONNABORTED.
Fixes: d2ddc776a4 ("afs: Overhaul volume and server record caching and fileserver rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
afs_extract_data sets up a temporary iov_iter and passes it to AF_RXRPC
each time it is called to describe the remaining buffer to be filled.
Instead:
(1) Put an iterator in the afs_call struct.
(2) Set the iterator for each marshalling stage to load data into the
appropriate places. A number of convenience functions are provided to
this end (eg. afs_extract_to_buf()).
This iterator is then passed to afs_extract_data().
(3) Use the new ITER_DISCARD iterator to discard any excess data provided
by FetchData.
Signed-off-by: David Howells <dhowells@redhat.com>
Include the site of detection of AFS protocol errors in trace lines to
better be able to determine what went wrong.
Signed-off-by: David Howells <dhowells@redhat.com>
Conflicts were easy to resolve using immediate context mostly,
except the cls_u32.c one where I simply too the entire HEAD
chunk.
Signed-off-by: David S. Miller <davem@davemloft.net>
Access to the list of cells by /proc/net/afs/cells has a couple of
problems:
(1) It should be checking against SEQ_START_TOKEN for the keying the
header line.
(2) It's only holding the RCU read lock, so it can't just walk over the
list without following the proper RCU methods.
Fix these by using an hlist instead of an ordinary list and using the
appropriate accessor functions to follow it with RCU.
Since the code that adds a cell to the list must also necessarily change,
sort the list on insertion whilst we're at it.
Fixes: 989782dcdc ("afs: Overhaul cell database management")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Note the maximum allocated capacity in an afs_addr_list struct and discard
addresses that would exceed it in afs_merge_fs_addr{4,6}().
Also, since the current maximum capacity is less than 255, reduce the
relevant members to bytes.
Signed-off-by: David Howells <dhowells@redhat.com>
Use new return type vm_fault_t for fault handler in struct
vm_operations_struct. For now, this is just documenting that the
function returns a VM_FAULT value rather than an errno. Once all
instances are converted, vm_fault_t will become a distinct type.
See 1c8f422059 ("mm: change return type to vm_fault_t") for reference.
Link: http://lkml.kernel.org/r/20180702152017.GA3780@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment, afs_break_callbacks calls afs_break_one_callback() for each
separate FID it was given, and the latter looks up the volume individually
for each one.
However, this is inefficient if two or more FIDs have the same vid as we
could reuse the volume. This is complicated by cell aliasing whereby we
may have multiple cells sharing a volume and can therefore have multiple
callback interests for any particular volume ID.
At the moment afs_break_one_callback() scans the entire list of volumes
we're getting from a server and breaks the appropriate callback in every
matching volume, regardless of cell. This scan is done for every FID.
Optimise callback breaking by the following means:
(1) Sort the FID list by vid so that all FIDs belonging to the same volume
are clumped together.
This is done through the use of an indirection table as we cannot do
an insertion sort on the afs_callback_break array as we decode FIDs
into it as we subsequently also have to decode callback info into it
that corresponds by array index only.
We also don't really want to bubblesort afterwards if we can avoid it.
(2) Sort the server->cb_interests array by vid so that all the matching
volumes are grouped together. This permits the scan to stop after
finding a record that has a higher vid.
(3) When breaking FIDs, we try to keep server->cb_break_lock as long as
possible, caching the start point in the array for that volume group
as long as possible.
It might make sense to add another layer in that list and have a
refcounted volume ID anchor that has the matching interests attached
to it rather than being in the list. This would allow the lock to be
dropped without losing the cursor.
Signed-off-by: David Howells <dhowells@redhat.com>
Alter the dynroot mount so that cells created by manipulation of
/proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root
cell as a module parameter will cause directories for those cells to be
created in the dynamic root superblock for the network namespace[*].
To this end:
(1) Only one dynamic root superblock is now created per network namespace
and this is shared between all attempts to mount it. This makes it
easier to find the superblock to modify.
(2) When a dynamic root superblock is created, the list of cells is walked
and directories created for each cell already defined.
(3) When a new cell is added, if a dynamic root superblock exists, a
directory is created for it.
(4) When a cell is destroyed, the directory is removed.
(5) These directories are created by calling lookup_one_len() on the root
dir which automatically creates them if they don't exist.
[*] Inasmuch as network namespaces are currently supported here.
Signed-off-by: David Howells <dhowells@redhat.com>
The AFS filesystem depends at the moment on /proc for configuration and
also presents information that way - however, this causes a compilation
failure if procfs is disabled.
Fix it so that the procfs bits aren't compiled in if procfs is disabled.
This means that you can't configure the AFS filesystem directly, but it is
still usable provided that an up-to-date keyutils is installed to look up
cells by SRV or AFSDB DNS records.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIVAwUAWvmaZvu3V2unywtrAQKZoA/9HzO6QsB7h7hWY6tTuoL0gD8T8S4hC7l3
UYFtTgq0rFHJYiET4SWoy0Sfs8rY1iFPtaIeFVQG804SrnXu5/Q1tsv+1lRhZIuo
/upAtZ3xEcqvAqU8pgcksKl/KUdmm7ZHUbhAFCasu+1eczGF5Q55UAUgonFrnEMi
9N0WviRUkRAlTre7cvCMRI05c+HJV+PCYrJPjStAkJeuS1CuTEAT/d58NumquMAt
6ENkpR4OhRUJZDhYH7XIRLm7hsYjr9v3VIeCiLpYqUZGuvhaj3jzPi0e9zD5PDzZ
lyyodQVegBs88V2rXrjjZHohNQRiuSzI+42pMXrdaDu5jBFFqYLEeaBoperJY7nl
W6l6HSb/I8VValM7iwkyzNWeQ6KhdUhYvA5ljYaJufZvqxp4di9xT4mAxRqbHSX+
H5I/n+R27FEOFAqnWInaksj5IO80HGThrGhdz9O/4pa8xITz7W2ZKg5YMLEoF9yp
/QUxsn3lz4VD4tjPrqampJ+IwbpQB+XDiJhM4boI47kC2IxEc9L2QiYWlFl/okZ4
CGuXsluQFPleR3Mo8xq1WaQzmT40iYQ+aBOPq1/OhDisexZJ55Cjha1GHk/8aHDu
GL5UiL7AfWEwY20mJiCObg8u2nnkwg/0YPR3awDBlCMDBeYhxbSFOLrKiQxUjWM9
Pp6PUhTtSjU=
=1ow3
-----END PGP SIGNATURE-----
Merge tag 'afs-fixes-20180514' into afs-proc
backmerge AFS fixes that went into mainline and deal with
the conflict in fs/afs/fsclient.c
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Implement network namespacing within AFS, but don't yet let mounts occur
outside the init namespace. An additional patch will be required propagate
the network namespace across automounts.
Signed-off-by: David Howells <dhowells@redhat.com>
The afs_net::ws_cell member is sometimes used under RCU conditions from
within an seq-readlock. It isn't, however, marked __rcu and it isn't set
using the proper RCU barrier-imposing functions.
Fix this by annotating it with __rcu and using appropriate barriers to
make sure accesses are correctly ordered.
Without this, the code can produce the following warning:
>> fs/afs/proc.c:151:24: sparse: incompatible types in comparison expression (different address spaces)
Fixes: f044c8847b ("afs: Lay the groundwork for supporting network namespaces")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
It's possible for an AFS file server to issue a whole-volume notification
that callbacks on all the vnodes in the file have been broken. This is
done for R/O and backup volumes (which don't have per-file callbacks) and
for things like a volume being taken offline.
Fix callback handling to detect whole-volume notifications, to track it
across operations and to check it during inode validation.
Fixes: c435ee3455 ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
The refcounting on afs_cb_interest struct objects in
afs_register_server_cb_interest() is wrong as it uses the server list
entry's call back interest pointer without regard for the fact that it
might be replaced at any time and the object thrown away.
Fix this by:
(1) Put a lock on the afs_server_list struct that can be used to
mediate access to the callback interest pointers in the servers array.
(2) Keep a ref on the callback interest that we get from the entry.
(3) Dropping the old reference held by vnode->cb_interest if we replace
the pointer.
Fixes: c435ee3455 ("afs: Overhaul the callback handling")
Signed-off-by: David Howells <dhowells@redhat.com>
When a server record is destroyed, we want to send a message to the server
telling it that we're giving up all the callbacks it has promised us.
Apply two fixes to this:
(1) Only send the FS.GiveUpAllCallBacks message if we actually got a
callback from that server. We assume this to be the case if we
performed at least one successful FS operation on that server.
(2) Send it to the address last used for that server rather than always
picking the first address in the list (which might be unreachable).
Fixes: d2ddc776a4 ("afs: Overhaul volume and server record caching and fileserver rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
The afs directory loading code (primarily afs_read_dir()) locks all the
pages that hold a directory's content blob to defend against
getdents/getdents races and getdents/lookup races where the competitors
issue conflicting reads on the same data. As the reads will complete
consecutively, they may retrieve different versions of the data and
one may overwrite the data that the other is busy parsing.
Fix this by not locking the pages at all, but rather by turning the
validation lock into an rwsem and getting an exclusive lock on it whilst
reading the data or validating the attributes and a shared lock whilst
parsing the data. Sharing the attribute validation lock should be fine as
the data fetch will retrieve the attributes also.
The individual page locks aren't needed at all as the only place they're
being used is to serialise data loading.
Without this patch, the:
if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
...
}
part of afs_read_dir() may be skipped, leaving the pages unlocked when we
hit the success: clause - in which case we try to unlock the not-locked
pages, leading to the following oops:
page:ffffe38b405b4300 count:3 mapcount:0 mapping:ffff98156c83a978 index:0x0
flags: 0xfffe000001004(referenced|private)
raw: 000fffe000001004 ffff98156c83a978 0000000000000000 00000003ffffffff
raw: dead000000000100 dead000000000200 0000000000000001 ffff98156b27c000
page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
page->mem_cgroup:ffff98156b27c000
------------[ cut here ]------------
kernel BUG at mm/filemap.c:1205!
...
RIP: 0010:unlock_page+0x43/0x50
...
Call Trace:
afs_dir_iterate+0x789/0x8f0 [kafs]
? _cond_resched+0x15/0x30
? kmem_cache_alloc_trace+0x166/0x1d0
? afs_do_lookup+0x69/0x490 [kafs]
? afs_do_lookup+0x101/0x490 [kafs]
? key_default_cmp+0x20/0x20
? request_key+0x3c/0x80
? afs_lookup+0xf1/0x340 [kafs]
? __lookup_slow+0x97/0x150
? lookup_slow+0x35/0x50
? walk_component+0x1bf/0x490
? path_lookupat.isra.52+0x75/0x200
? filename_lookup.part.66+0xa0/0x170
? afs_end_vnode_operation+0x41/0x60 [kafs]
? __check_object_size+0x9c/0x171
? strncpy_from_user+0x4a/0x170
? vfs_statx+0x73/0xe0
? __do_sys_newlstat+0x39/0x70
? __x64_sys_getdents+0xc9/0x140
? __x64_sys_getdents+0x140/0x140
? do_syscall_64+0x5b/0x160
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: f3ddee8dc4 ("afs: Fix directory handling")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Processes like ld that do lots of small writes that aren't necessarily
contiguous result in a lot of small StoreData operations to the server, the
idea being that if someone else changes the data on the server, we only
write our changes over that and not the space between. Further, we don't
want to write back empty space if we can avoid it to make it easier for the
server to do sparse files.
However, making lots of tiny RPC ops is a lot less efficient for the server
than one big one because each op requires allocation of resources and the
taking of locks, so we want to compromise a bit.
Reduce the load by the following:
(1) If a file is just created locally or has just been truncated with
O_TRUNC locally, allow subsequent writes to the file to be merged with
intervening space if that space doesn't cross an entire intervening
page.
(2) Don't flush the file on ->flush() but rather on ->release() if the
file was open for writing.
Just linking vmlinux.o, without this patch, looking in /proc/fs/afs/stats:
file-wr : n=441 nb=513581204
and after the patch:
file-wr : n=62 nb=513668555
there were 379 fewer StoreData RPC operations at the expense of an extra
87K being written.
Signed-off-by: David Howells <dhowells@redhat.com>
Add statistics to /proc/fs/afs/stats for data transfer RPC operations. New
lines are added that look like:
file-rd : n=55794 nb=10252282150
file-wr : n=9789 nb=3247763645
where n= indicates the number of ops completed and nb= indicates the number
of bytes successfully transferred. file-rd is the counts for read/fetch
operations and file-wr the counts for write/store operations.
Note that directory and symlink downloading are included in the file-rd
stats at the moment.
Signed-off-by: David Howells <dhowells@redhat.com>
Locally edit the contents of an AFS directory upon a successful inode
operation that modifies that directory (such as mkdir, create and unlink)
so that we can avoid the current practice of re-downloading the directory
after each change.
This is viable provided that the directory version number we get back from
the modifying RPC op is exactly incremented by 1 from what we had
previously. The data in the directory contents is in a defined format that
we have to parse locally to perform lookups and readdir, so modifying isn't
a problem.
If the edit fails, we just clear the VALID flag on the directory and it
will be reloaded next time it is needed.
Signed-off-by: David Howells <dhowells@redhat.com>
AFS directories are structured blobs that are downloaded just like files
and then parsed by the lookup and readdir code and, as such, are currently
handled in the pagecache like any other file, with the entire directory
content being thrown away each time the directory changes.
However, since the blob is a known structure and since the data version
counter on a directory increases by exactly one for each change committed
to that directory, we can actually edit the directory locally rather than
fetching it from the server after each locally-induced change.
What we can't do, though, is mix data from the server and data from the
client since the server is technically at liberty to rearrange or compress
a directory if it sees fit, provided it updates the data version number
when it does so and breaks the callback (ie. sends a notification).
Further, lookup with lookup-ahead, readdir and, when it arrives, local
editing are likely want to scan the whole of a directory.
So directory handling needs to be improved to maintain the coherency of the
directory blob prior to permitting local directory editing.
To this end:
(1) If any directory page gets discarded, invalidate and reread the entire
directory.
(2) If readpage notes that if when it fetches a single page that the
version number has changed, the entire directory is flagged for
invalidation.
(3) Read as much of the directory in one go as we can.
Note that this removes local caching of directories in fscache for the
moment as we can't pass the pages to fscache_read_or_alloc_pages() since
page->lru is in use by the LRU.
Signed-off-by: David Howells <dhowells@redhat.com>
Split the AFS dynamic root stuff out of the main directory handling file
and into its own file as they share little in common.
The dynamic root code also gets its own dentry and inode ops tables.
Signed-off-by: David Howells <dhowells@redhat.com>
Each afs dentry is tagged with the version that the parent directory was at
last time it was validated and, currently, if this differs, the directory
is scanned and the dentry is refreshed.
However, this leads to an excessive amount of revalidation on directories
that get modified on the client without conflict with another client. We
know there's no conflict because the parent directory's data version number
got incremented by exactly 1 on any create, mkdir, unlink, etc., therefore
we can trust the current state of the unaffected dentries when we perform a
local directory modification.
Optimise by keeping track of the last version of the parent directory that
was changed outside of the client in the parent directory's vnode and using
that to validate the dentries rather than the current version.
Signed-off-by: David Howells <dhowells@redhat.com>
Rearrange the AFSFetchStatus to inode attribute mapping code in a number of
ways:
(1) Use an XDR structure rather than a series of incremented pointer
accesses when decoding an AFSFetchStatus object. This allows
out-of-order decode.
(2) Don't store the if_version value but rather just check it and abort if
it's not something we can handle.
(3) Store the owner and group in the status record as raw values rather
than converting them to kuid/kgid. Do that when they're mapped into
i_uid/i_gid.
(4) Validate the type and abort code up front and abort if they're wrong.
(5) Split the inode attribute setting out into its own function from the
XDR decode of an AFSFetchStatus object. This allows it to be called
from elsewhere too.
(6) Differentiate changes to data from changes to metadata.
(7) Use the split-out attribute mapping function from afs_iget().
Signed-off-by: David Howells <dhowells@redhat.com>
Store the data version number indicated by an FS.FetchData op into the read
request structure so that it's accessible by the page reader.
Signed-off-by: David Howells <dhowells@redhat.com>
Introduce a proc file that displays a bunch of statistics for the AFS
filesystem in the current network namespace.
Signed-off-by: David Howells <dhowells@redhat.com>
Implement the AFS feature by which @sys at the end of a pathname component
may be substituted for one of a list of values, typically naming the
operating system. Up to 16 alternatives may be specified and these are
tried in turn until one works. Each network namespace has[*] a separate
independent list.
Upon creation of a new network namespace, the list of values is
initialised[*] to a single OpenAFS-compatible string representing arch type
plus "_linux26". For example, on x86_64, the sysname is "amd64_linux26".
[*] Or will, once network namespace support is finalised in kAFS.
The list may be set by:
# for i in foo bar linux-x86_64; do echo $i; done >/proc/fs/afs/sysname
for which separate writes to the same fd are amalgamated and applied on
close. The LF character may be used as a separator to specify multiple
items in the same write() call.
The list may be cleared by:
# echo >/proc/fs/afs/sysname
and read by:
# cat /proc/fs/afs/sysname
foo
bar
linux-x86_64
Signed-off-by: David Howells <dhowells@redhat.com>
When afs_lookup() is called, prospectively look up the next 50 uncached
fids also from that same directory and cache the results, rather than just
looking up the one file requested.
This allows us to use the FS.InlineBulkStatus RPC op to increase efficiency
by fetching up to 50 file statuses at a time.
Signed-off-by: David Howells <dhowells@redhat.com>
Fix warnings raised by checker, including:
(*) Warnings raised by unequal comparison for the purposes of sorting,
where the endianness doesn't matter:
fs/afs/addr_list.c:246:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:246:30: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:248:21: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:248:49: warning: restricted __be32 degrades to integer
fs/afs/addr_list.c:283:21: warning: restricted __be16 degrades to integer
fs/afs/addr_list.c:283:30: warning: restricted __be16 degrades to integer
(*) afs_set_cb_interest() is not actually used and can be removed.
(*) afs_cell_gc_delay() should be provided with a sysctl.
(*) afs_cell_destroy() needs to use rcu_access_pointer() to read
cell->vl_addrs.
(*) afs_init_fs_cursor() should be static.
(*) struct afs_vnode::permit_cache needs to be marked __rcu.
(*) afs_server_rcu() needs to use rcu_access_pointer().
(*) afs_destroy_server() should use rcu_access_pointer() on
server->addresses as the server object is no longer accessible.
(*) afs_find_server() casts __be16/__be32 values to int in order to
directly compare them for the purpose of finding a match in a list,
but is should also annotate the cast with __force to avoid checker
warnings.
(*) afs_check_permit() accesses vnode->permit_cache outside of the RCU
readlock, though it doesn't then access the value; the extraneous
access is deleted.
False positives:
(*) Conditional locking around the code in xdr_decode_AFSFetchStatus. This
can be dealt with in a separate patch.
fs/afs/fsclient.c:148:9: warning: context imbalance in 'xdr_decode_AFSFetchStatus' - different lock contexts for basic block
(*) Incorrect handling of seq-retry lock context balance:
fs/afs/inode.c:455:38: warning: context imbalance in 'afs_getattr' - different
lock contexts for basic block
fs/afs/server.c:52:17: warning: context imbalance in 'afs_find_server' - different lock contexts for basic block
fs/afs/server.c:128:17: warning: context imbalance in 'afs_find_server_by_uuid' - different lock contexts for basic block
Errors:
(*) afs_lookup_cell_rcu() needs to break out of the seq-retry loop, not go
round again if it successfully found the workstation cell.
(*) Fix UUID decode in afs_deliver_cb_probe_uuid().
(*) afs_cache_permit() has a missing rcu_read_unlock() before one of the
jumps to the someone_else_changed_it label. Move the unlock to after
the label.
(*) afs_vl_get_addrs_u() is using ntohl() rather than htonl() when
encoding to XDR.
(*) afs_deliver_yfsvl_get_endpoints() is using htonl() rather than ntohl()
when decoding from XDR.
Signed-off-by: David Howells <dhowells@redhat.com>
Attach copies of the index key and auxiliary data to the fscache cookie so
that:
(1) The callbacks to the netfs for this stuff can be eliminated. This
can simplify things in the cache as the information is still
available, even after the cache has relinquished the cookie.
(2) Simplifies the locking requirements of accessing the information as we
don't have to worry about the netfs object going away on us.
(3) The cache can do lazy updating of the coherency information on disk.
As long as the cache is flushed before reboot/poweroff, there's no
need to update the coherency info on disk every time it changes.
(4) Cookies can be hashed or put in a tree as the index key is easily
available. This allows:
(a) Checks for duplicate cookies can be made at the top fscache layer
rather than down in the bowels of the cache backend.
(b) Caching can be added to a netfs object that has a cookie if the
cache is brought online after the netfs object is allocated.
A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.
The downside of this is that live cache operation requires more memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
In rxrpc and afs, use the debug_ids that are monotonically allocated to
various objects as they're allocated rather than pointers as kernel
pointers are now hashed making them less useful. Further, the debug ids
aren't reused anywhere nearly as quickly.
In addition, allow kernel services that use rxrpc, such as afs, to take
numbers from the rxrpc counter, assign them to their own call struct and
pass them in to rxrpc for both client and service calls so that the trace
lines for each will have the same ID tag.
Signed-off-by: David Howells <dhowells@redhat.com>
Support the AFS dynamic root which is a pseudo-volume that doesn't connect
to any server resource, but rather is just a root directory that
dynamically creates mountpoint directories where the name of such a
directory is the name of the cell.
Such a mount can be created thus:
mount -t afs none /afs -o dyn
Dynamic root superblocks aren't shared except by bind mounts and
propagation. Cell root volumes can then be mounted by referring to them by
name, e.g.:
ls /afs/grand.central.org/
ls /afs/.grand.central.org/
The kernel will upcall to consult the DNS if the address wasn't supplied
directly.
Signed-off-by: David Howells <dhowells@redhat.com>
When an AFS inode is allocated by afs_alloc_inode(), the allocated
afs_vnode struct isn't necessarily reset from the last time it was used as
an inode because the slab constructor is only invoked once when the memory
is obtained from the page allocator.
This means that information can leak from one inode to the next because
we're not calling kmem_cache_zalloc(). Some of the information isn't
reset, in particular the permit cache pointer.
Bring the clearances up to date.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
Fix the AFS file locking whereby the use of the big kernel lock (which
could be slept with) was replaced by a spinlock (which couldn't). The
problem is that the AFS code was doing stuff inside the critical section
that might call schedule(), so this is a broken transformation.
Fix this by the following means:
(1) Use a state machine with a proper state that can only be changed under
the spinlock rather than using a collection of bit flags.
(2) Cache the key used for the lock and the lock type in the afs_vnode
struct so that the manager work function doesn't have to refer to a
file_lock struct that's been dequeued. This makes signal handling
safer.
(4) Move the unlock from afs_do_unlk() to afs_fl_release_private() which
means that unlock is achieved in other circumstances too.
(5) Unlock the file on the server before taking the next conflicting lock.
Also change:
(1) Check the permits on a file before actually trying the lock.
(2) fsync the file before effecting an explicit unlock operation. We
don't fsync if the lock is erased otherwise as we might not be in a
context where we can actually do that.
Further fixes:
(1) Fixed-fileserver address rotation is made to work. It's only used by
the locking functions, so couldn't be tested before.
Fixes: 72f98e7255 ("locks: turn lock_flocks into a spinlock")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: jlayton@redhat.com
Protect call->state changes against the call being prematurely terminated
due to a signal.
What can happen is that a signal causes afs_wait_for_call_to_complete() to
abort an afs_call because it's not yet complete whilst afs_deliver_to_call()
is delivering data to that call.
If the data delivery causes the state to change, this may overwrite the state
of the afs_call, making it not-yet-complete again - but no further
notifications will be forthcoming from AF_RXRPC as the rxrpc call has been
aborted and completed, so kAFS will just hang in various places waiting for
that call or on page bits that need clearing by that call.
A tracepoint to monitor call state changes is also provided.
Signed-off-by: David Howells <dhowells@redhat.com>
Get rid of the afs_writeback record that kAFS is using to match keys with
writes made by that key.
Instead, keep a list of keys that have a file open for writing and/or
sync'ing and iterate through those.
Signed-off-by: David Howells <dhowells@redhat.com>
Introduce a file-private data record for kAFS and put the key into it
rather than storing the key in file->private_data.
Signed-off-by: David Howells <dhowells@redhat.com>
Because parsing of the directory wasn't being done under any sort of lock,
the pages holding the directory content can get invalidated whilst the
parsing is ongoing.
Further, the directory page check function gets called outside of the page
lock, so if the page gets cleared or updated, this may return reports of
bad magic numbers in the directory page.
Also, the directory may change size whilst checking and parsing are
ongoing, so more care needs to be taken here.
Fix this by:
(1) Perform the page check from the page filling function before we set
PageUptodate and drop the page lock.
(2) Check for the file having shrunk and the page having been abandoned
before checking the page contents.
(3) Lock the page whilst parsing it for the directory iterator.
Whilst we're at it, add a tracepoint to report check failure.
Signed-off-by: David Howells <dhowells@redhat.com>
Add tracepoints to trace the initiation and completion of client calls
within the kafs filesystem.
The afs_make_vl_call tracepoint watches calls to the volume location
database server.
The afs_make_fs_call tracepoint watches calls to the file server.
The afs_call_done tracepoint watches for call completion.
Signed-off-by: David Howells <dhowells@redhat.com>
YFS VL servers offer an upgraded Volume Location service that can return
IPv6 addresses to fileservers and volume servers in addition to IPv4
addresses using the YFSVL.GetEndpoints operation which we should use if
it's available.
To this end:
(1) Make rxrpc_kernel_recv_data() return the call's current service ID so
that the caller can detect service upgrade and see what the service
was upgraded to.
(2) When we see a VL server address we haven't seen before, send a
VL.GetCapabilities operation to it with the service upgrade bit set.
If we get an upgrade to the YFS VL service, change the service ID in
the address list for that address to use the upgraded service and set
a flag to note that this appears to be a YFS-compatible server.
(3) If, when a server's addresses are being looked up, we note that we
previously detected a YFS-compatible server, then send the
YFSVL.GetEndpoints operation rather than VL.GetAddrsU.
(4) Build a fileserver address list from the reply of YFSVL.GetEndpoints,
including both IPv4 and IPv6 addresses. Volume server addresses are
discarded.
(5) The address list is sorted by address and port now, instead of just
address. This allows multiple servers on the same host sitting on
different ports.
Signed-off-by: David Howells <dhowells@redhat.com>
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other. Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers. The difference is purely in the database attached to the VL
servers.
The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.
Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).
To this end, the following structural changes are made:
(1) Server record management is overhauled:
(a) Server records are made independent of cell. The namespace keeps
track of them, volume records have lists of them and each vnode
has a server on which its callback interest currently resides.
(b) The cell record no longer keeps a list of servers known to be in
that cell.
(c) The server records are now kept in a flat list because there's no
single address to sort on.
(d) Server records are now keyed by their UUID within the namespace.
(e) The addresses for a server are obtained with the VL.GetAddrsU
rather than with VL.GetEntryByName, using the server's UUID as a
parameter.
(f) Cached server records are garbage collected after a period of
non-use and are counted out of existence before purging is allowed
to complete. This protects the work functions against rmmod.
(g) The servers list is now in /proc/fs/afs/servers.
(2) Volume record management is overhauled:
(a) An RCU-replaceable server list is introduced. This tracks both
servers and their coresponding callback interests.
(b) The superblock is now keyed on cell record and numeric volume ID.
(c) The volume record is now tied to the superblock which mounts it,
and is activated when mounted and deactivated when unmounted.
This makes it easier to handle the cache cookie without causing a
double-use in fscache.
(d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
to get the server UUID list.
(e) The volume name is updated if it is seen to have changed when the
volume is updated (the update is keyed on the volume ID).
(3) The vlocation record is got rid of and VLDB records are no longer
cached. Sufficient information is stored in the volume record, though
an update to a volume record is now no longer shared between related
volumes (volumes come in bundles of three: R/W, R/O and backup).
and the following procedural changes are made:
(1) The fileserver cursor introduced previously is now fleshed out and
used to iterate over fileservers and their addresses.
(2) Volume status is checked during iteration, and the server list is
replaced if a change is detected.
(3) Server status is checked during iteration, and the address list is
replaced if a change is detected.
(4) The abort code is saved into the address list cursor and -ECONNABORTED
returned in afs_make_call() if a remote abort happened rather than
translating the abort into an error message. This allows actions to
be taken depending on the abort code more easily.
(a) If a VMOVED abort is seen then this is handled by rechecking the
volume and restarting the iteration.
(b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
handled by sleeping for a short period and retrying and/or trying
other servers that might serve that volume. A message is also
displayed once until the condition has cleared.
(c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
moment.
(d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
see if it has been deleted; if not, the fileserver is probably
indicating that the volume couldn't be attached and needs
salvaging.
(e) If statfs() sees one of these aborts, it does not sleep, but
rather returns an error, so as not to block the umount program.
(5) The fileserver iteration functions in vnode.c are now merged into
their callers and more heavily macroised around the cursor. vnode.c
is removed.
(6) Operations on a particular vnode are serialised on that vnode because
the server will lock that vnode whilst it operates on it, so a second
op sent will just have to wait.
(7) Fileservers are probed with FS.GetCapabilities before being used.
This is where service upgrade will be done.
(8) A callback interest on a fileserver is set up before an FS operation
is performed and passed through to afs_make_call() so that it can be
set on the vnode if the operation returns a callback. The callback
interest is passed through to afs_iget() also so that it can be set
there too.
In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.
Notes:
(1) Pre AFS-3.4 servers are no longer supported, though this can be added
back if necessary (AFS-3.4 was released in 1998).
(2) VBUSY is retried forever for the moment at intervals of 1s.
(3) /proc/fs/afs/<cell>/servers no longer exists.
Signed-off-by: David Howells <dhowells@redhat.com>
Add an RCU replaceable address list structure to hold a list of server
addresses. The list also holds the
To this end:
(1) A cell's VL server address list can be loaded directly via insmod or
echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB
or SRV records.
(2) Anyone wanting to use a cell's VL server address must wait until the
cell record comes online and has tried to obtain some addresses.
(3) An FS server's address list, for the moment, has a single entry that
is the key to the server list. This will change in the future when a
server is instead keyed on its UUID and the VL.GetAddrsU operation is
used.
(4) An 'address cursor' concept is introduced to handle iteration through
the address list. This is passed to the afs_make_call() as, in the
future, stuff (such as abort code) that doesn't outlast the call will
be returned in it.
In the future, we might want to annotate the list with information about
how each address fares. We might then want to propagate such annotations
over address list replacement.
Whilst we're at it, we allow IPv6 addresses to be specified in
colon-delimited lists by enclosing them in square brackets.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul the way that the in-kernel AFS client keeps track of cells in the
following manner:
(1) Cells are now held in an rbtree to make walking them quicker and RCU
managed (though this is probably overkill).
(2) Cells now have a manager work item that:
(A) Looks after fetching and refreshing the VL server list.
(B) Manages cell record lifetime, including initialising and
destruction.
(B) Manages cell record caching whereby threads are kept around for a
certain time after last use and then destroyed.
(C) Manages the FS-Cache index cookie for a cell. It is not permitted
for a cookie to be in use twice, so we have to be careful to not
allow a new cell record to exist at the same time as an old record
of the same name.
(3) Each AFS network namespace is given a manager work item that manages
the cells within it, maintaining a single timer to prod cells into
updating their DNS records.
This uses the reduce_timer() facility to make the timer expire at the
soonest timed event that needs happening.
(4) When a module is being unloaded, cells and cell managers are now
counted out using dec_after_work() to make sure the module text is
pinned until after the data structures have been cleaned up.
(5) Each cell's VL server list is now protected by a seqlock rather than a
semaphore.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul permit caching in AFS by making it per-vnode and sharing permit
lists where possible.
When most of the fileserver operations are called, they return a status
structure indicating the (revised) details of the vnode or vnodes involved
in the operation. This includes the access mark derived from the ACL
(named CallerAccess in the protocol definition file). This is cacheable
and if the ACL changes, the server will tell us that it is breaking the
callback promise, at which point we can discard the currently cached
permits.
With this patch, the afs_permits structure has, at the end, an array of
{ key, CallerAccess } elements, sorted by key pointer. This is then cached
in a hash table so that it can be shared between vnodes with the same
access permits.
Permit lists can only be shared if they contain the exact same set of
key->CallerAccess mappings.
Note that that table is global rather than being per-net_ns. If the keys
in a permit list cross net_ns boundaries, there is no problem sharing the
cached permits, since the permits are just integer masks.
Since permit lists pin keys, the permit cache also makes it easier for a
future patch to find all occurrences of a key and remove them by means of
setting the afs_permits::invalidated flag and then clearing the appropriate
key pointer. In such an event, memory barriers will need adding.
Lastly, the permit caching is skipped if the server has sent either a
vnode-specific or an entire-server callback since the start of the
operation.
Signed-off-by: David Howells <dhowells@redhat.com>
Overhaul the AFS callback handling by the following means:
(1) Don't give up callback promises on vnodes that we are no longer using,
rather let them just expire on the server or let the server break
them. This is actually more efficient for the server as the callback
lookup is expensive if there are lots of extant callbacks.
(2) Only give up the callback promises we have from a server when the
server record is destroyed. Then we can just give up *all* the
callback promises on it in one go.
(3) Servers can end up being shared between cells if cells are aliased, so
don't add all the vnodes being backed by a particular server into a
big FID-indexed tree on that server as there may be duplicates.
Instead have each volume instance (~= superblock) register an interest
in a server as it starts to make use of it and use this to allow the
processor for callbacks from the server to find the superblock and
thence the inode corresponding to the FID being broken by means of
ilookup_nowait().
(4) Rather than iterating over the entire callback list when a mass-break
comes in from the server, maintain a counter of mass-breaks in
afs_server (cb_seq) and make afs_validate() check it against the copy
in afs_vnode.
It would be nice not to have to take a read_lock whilst doing this,
but that's tricky without using RCU.
(5) Save a ref on the fileserver we're using for a call in the afs_call
struct so that we can access its cb_s_break during call decoding.
(6) Write-lock around callback and status storage in a vnode and read-lock
around getattr so that we don't see the status mid-update.
This has the following consequences:
(1) Data invalidation isn't seen until someone calls afs_validate() on a
vnode. Unfortunately, we need to use a key to query the server, but
getting one from a background thread is tricky without caching loads
of keys all over the place.
(2) Mass invalidation isn't seen until someone calls afs_validate().
(3) Callback breaking is going to hit the inode_hash_lock quite a bit.
Could this be replaced with rcu_read_lock() since inodes are destroyed
under RCU conditions.
Signed-off-by: David Howells <dhowells@redhat.com>
Rename the server member of struct afs_call to cm_server as we're only
going to be using it for incoming calls for the Cache Manager service.
This makes it easier to differentiate from the pointer to the target server
for the client, which will point to a different structure to allow for
callback handling.
Signed-off-by: David Howells <dhowells@redhat.com>
If call->ret_reply0 is set, return call->reply[0] on success. Change the
return type of afs_make_call() to long so that this can be passed back
without bit loss and then cast to a pointer if required.
Signed-off-by: David Howells <dhowells@redhat.com>
The AFS abort code space is shared across all services, so there's no need
for separate abort_to_error translators for each service.
Consolidate them into a single function and remove the function pointers
for them.
Signed-off-by: David Howells <dhowells@redhat.com>
Keep and pass sockaddr_rxrpc addresses around rather than keeping and
passing in_addr addresses to allow for the use of IPv6 and non-standard
port numbers in future.
This also allows the port and service_id fields to be removed from the
afs_call struct.
Signed-off-by: David Howells <dhowells@redhat.com>